
ERROR BOUNDS IN THE APPROX IMATION OF EIGENVALUES

OF DIFFERENTIAL AND INTEGRAL OPERATORS

| F. Chatelin

| J. Lemordant

STAN-CS-75-479

| FEBRUARY 1975

| COMPUTER SCIENCE DEPARTMENT
| Schoo! of Humanities and Sciences

| STANFORD UNIVERSITY



ERROR BOUNDS IN THE APPROXIMATION OF EIGENVALUES

OF DIFFERENTIAL AND INTEGRAL OPERATORS

+ ++

FRANCOISE CHATELIN and JACQUES LEMORDANT

| February 1975

Abstract

: Various methods of approximating the eigenvalues and invariant

subspaces of nonself-adjoint differential and integral operators

] are unified in a general theory. Error bounds are given, from

which most of the error bounds in the literature can be

| derived.

+ Stanford University and University of Grenoble (France).

i Supported by IRI}, Rocquencourt, NSF Grant DCR-7203712 A02; and
| AEC Contract AT(Ok-3) 326 PA #30.

] Part of this material was presented at the GATLINBURG VI meeting

3 in Munich, December 15-22, 1974 (sponsored by the Sifterverband

4 fur die Deutsche Wissenschaft, through the German Research Council).

++ University of Grenoble



I. INTRODUCTION

We are concerned with the error bounds for the numerical

computation of the eigenvalues of differential or integral operators.

T denotes a linear operator on a Banach space X , and I its

approximation n = 1, 2,.... ll. || is the norm on the algebra L' (X)

| of bounded linear operators on X . | 1s the identity operator on X .

There exists a wide variety of approximation methods, the most important

of which belong to one of the three following classes:

e Class 1 : uniform approximation.

Definition: T, T eL£(X), 11 T - T, Il » O

Example: the Rayleigh-Ritz and Galerkin methods, where the differential

operator 1s approximated byrestrictionto a finite dimensional subspace.

They correspondto the uniform approximation of the inverse, [2], [4],

| (61, [8]

| ¢ Class 2 : collectively compact approximation.

| Definition: T, T, eL(X), (T- T, ) X= © for any x in X , and the

| sets { ( T-T,) x pI xl 1 } , n=1, 2,..., are relatively compact.

| Remark T - T is T -_compact, according to Kato ([5], p. 194).
Examples: (1) approximation of an integral operator by using approximate

| quadrature formulas (Anselone [1]). Consider X = C(0,1) with the

| uniform norm,
1

T : f(x) ¢ Xm K(x,y)f(y)dy , where K is continuous on [0,11° .
Io



n

| T, : F(x) eX ) WV K(x,y, ) f(y, ) 5 where O < a. <1

.and the weights w . n

9 n. such that : 5 Ww fy )= f(x) dx: SI Ri
J=1 0

| for any f in X (the rectangular, trapezoidal, Simpson, Weddle
| and Gauss quadrature rules satisfy this condition ).

(2) approximation of a differential operator by finite

=}

differences, when considering T (Vainikko [9])

e Class 3: neighboring approximation;

Definition: T, T are closed operators, with domain of definition

D(T) = . T - —(T) D(T,) T, is closed and ( T-T, ) X= oO for

any x in D(T)

-1
| (T-T7) (T-2z1) ||— oO ~1“ n’ IZ eo for any z in C such that ( T-z1) eg(X) .

Examples: approximation of a differential operator by a neighboring
-

differential operator (Pruess [7]) .

i (1) Consider X = C (0,1) with the uniform norm,
D= { xex : x eX and xX (0) =x(1) =o},

L T : XeDwp -x + g.xX ,
. - 1

| I: XD =x + q Xx 3
| where q, q, are real-valued continuous functions on [0,1]

| and max q(t) ~ t ~~ 0- 0g) | I ) | n - oo

. I-T, is the multiplication operator defined by g¢-q

mt-Tmm = lag ll+0.



(2) A less obvious example is given by tne following:

Consider X = C (0,1) with the uniform norm ,

| D = {xex ; x"eX and x(0) = x(1) = 0 } ,

T: xDpp pu + pu’ + Pou
: (n) n

T: xeD vw P, ul + p, Jur + ACM ,
where Ps ’ o (2), i =0,1,2, are real valued continuous functions

- pA
. on [0,1] and max | 0 py Of 0 .- We Suppose that po < 0

—_— J— m —_—

pt )<s< -
0 ——

Ho =T = I, 1s an unbounded operator, but it 1s T-bounded, according

1 to Kato ([5], p. 189).

| Definition: An operator A , whose domain D(A) includes D(T) is
T-bounded 1f :

i | Axi<a|l x) + bliTx} , for x in D(T) .

i The proof that H is T-bounded is in [5], p. 193. We get
Bx jh <a [ll xf +b | Tx], for- xeD(T) , and ab +0,

Consider x = R(z)y , for z on T , enclosing an eigenvalue A of T .

LE .R(2)y 1, <a IIR(2)y II + b_ I (T-21)R(z)y + zR(z)y |

lla, +22 RE) + voTy.

Thus y 5 R(z) | +0 .



| Various convergence proofs are given 1n the literature, adapted to each

| type of method under consideration: norm convergence for class 1[8],

| compactness argument for class 2 [1], [9], norm convergence of the

inverse for class 3 [5],(see[7] for the Sturm-Liouville operator).

We present here these three classes of approximation as special cases of

a more general approximation. With this unifying treatment, we are able

to give the general type of error bounds that hold for eigenvalues and

| the gap between invariant subspaces. It remains, however, for each

| special case, to derive specific error bounds from the general ones

given here. It should be noted that the approximation theory proposed

: here applies to unbounded closed operators as well.

The approximation will be defined so that the Newmann series of the

| approximate resolvent 1s convergent. Then the approximate and exact

invariant subspaces have the same dimension for n large enough and the

approximate eigenvalues converge to the exact eigenvalue. The proofs

| depend heavily on the perturbation theory developed by Katoin [5]. The

j main results (theorems 1, 2, 3) are due to Jacques Lemordant (University
of Grenoble).

| II. THE APPROXIMATION I, OF T
| Let X be a Banach space, T a closed linear operator from

| Xx to x, with domain of definition D(T) .

A is an isolated eigenvalue of T , with finite algebraic multiplicity m .

: I is a positively oriented rectifiable curve enclosing A , but excluding
| any other point of the spectrum of T .



P is the spectral projection associated with A :

| =

P = -1 | (T - z1) dz , PX 1s the invariant subspace2im
| r

assoclated with A . (Fn
~1

R(z) = ( T-21) is the resolvent of T,, for z in the resolvent

set of T.

We want to approximate A and PX.

Let I, sn =1,2, . . . . be an approximation of T . The precise meaning

| of "approximation of T " is stated below: (2.1) tol2.4).

| It will be shown in Section III that the spectrum of T inside [' is
| discrete and that there are exactly m approximate eigenvalues for n

| large enough: A , , i =1, .... m.
n,i

| FP 1s the spectral projection associated with all the eigenvalues of

| T lying inside T .

| R, (2) = (T, - 21) , for z in the resolvent set of T .

In general, we consider the approximation of A by the arithmetic mean:

| m

n — 2 :
| n, i

SP

| A is the weighted mean of the h-group, according to Kato [5].

Definition of the approximation Ty :

Let T,’ n =1,2,. . . . be a sequence of closed linear operators from

| x to X , with domain of definition D(T,) , and such that:

| (2.2) T — Tis closed , n = 1,2...



(2.3) Tx— Tx for any x in D(T) ,
Noo

2

(2.4) f(T -7,)) R(2)] |— 0 , for any =z on UT.
Io

Then I 1s sald to be an approximation of T .

First we need the following:

Lemma, 1 (T-T )R(z) is uniformly bounded in n , for any z on I,

and I(T -T)P J +0.
I co

Proof : Since T = T, 1s closed, and R(z) 1s a bounded operator

on X with range D(T) , (T - T JR(zks a closed operator with domain

X , hence bounded for any n , by the closed graph theorem.

(T-T )R( z)x + 0 for any x in X , then (T - T, )R(z) is uniformly

bounded in n by the principle of uniform boundedness. On the other

hand, (T - T JP , which converges pointwise to zero, converges uniformly

on the finite dimensional subspace PX .

Let S be the reduced resolvent in z =X, S =gii R(z)(1-P) .

2 2

Lemma, 2 | I(T = T)R(2))® | + 0 implies I(T - T)8) || + 0.

Proof: Let H.T-T .

2

i R(z) (1 - P) H R(z) (1 - P) = (H R(z)) - H R(z)PH R(z)

- H R(z)H R(z)P + H R(z)PH_R(z)P :

Since T and P commute, R(z)P = PR(z) . Then:



| IE R(2)(0 = 2) < | (ER(2))2 || + || Bon <I (H, I+ 10 HEP I RE) IH, R(=) fj(2 +) 2 |p)

— 0, for any z on I' .
: Il -po

Since (H_R(z)(1 - p))2 ic i J| nV 2 1s holomorphic in z inside [I', its norm at

Zz = A is less than or equal to its norm at any point z on I' . We

| then have: fl (HS) | +0

2

Remark: || (,R(z)) Il + 0 for z on I' ipplies that it tends to zero

for any z # A inside T , as it is easily shown:
2

(1 R(z)) = (H_R(z) (P +1 - p) G can be expressed in terms of

H R(z)P = H PR(z) and H R(z) (1 = P) which is holomorphic inside T.

) The desired result follows.

The definition of LR includes the three classes defined above:

a Class 1: T, T, bounded and IIT -T fj 0 .

| Class 2 : T, I, bounded and ((T - T )B) relatively compact where B

| is the unit ball of X .
Then £ ={ T - T,) R(z)B } is relatively compact for any z on U and

| ( T - T JR(z) , which 1s bounded on X and converges pointwise to zero,
| converges uniformly on 2 , i.e. (2.4) .

b

| Class 5: T, IT, T - T, closed and (rT - T, )R(z) ff «+ 0, for zonT .

III. EXISTENCE OF THE SECOND NEUMANN SERIES OF R (2)

| Let H denote T - I, : T= T - Ho and let z be any point

| on I' .



&

The key point in the whole theory is the following:

Lemma 3 R (2) can be represented by the second Neumann series:
x k

R(z) = R(z) £ (HR(z))
k=0

Proof: (3.1) T-2l =T-2 -H = (1-H R(z)) (T -z1) .
-1 © k

(1 - HR(z)) exists and is represented by ¥ (H,R(2)) , 1f this
H k=0

series 1s convergent.

eo) k QO 2k
zr (ER(z))" = (1+ HR(z) ) T (HR(2))" ,
_ k=0k=0

© 2k |

and by (2.4), ZH R(z)) is a convergent series for n large

enough. Then, from (3.1), we get the expansion of the lemma.

Oo k
Remarks (1) R (z)- R(z) = R(z) Z (HR(z))

= k=] =.

| po ok
(3.2) = R(z)ER(® +R@ (+H R(z)) © (HR(z)) "|n k=1

2 oo 2kPut & = max | (H R(z)) I's (H_R(z)) < &n

In general, rR (2) does not converge to R(z) in norm. But it does,

for example, for T in class 1 ( 15, JI + 0) or in class 3 (1H R=) 50).

So,—- if T, is in class J; (T,-21)"" is an approximation of (T-zl) which
belongs to class 1 .



] (2) Lemma 3 would be still valid if the assumption (2.4)

was replaced by: 94 p>0 such that || (6 R(2)) Il + 0 for z on T .

| Corollary 1 There are exactly m eigenvalues of I converging to

| A when n tends to infinity.

Proof : Let n be fixed such that I (H_R(2))| <1 . And consider
| the perturbation of T defined by:

| xe [0,1] : T(x) =T - XH

T(0) =T and T(l)= T, + The second Neumann series of

| (T(x) = 21)" = R(x,z) exists for any x in [0,1].
When x 4 0 , | R(x,z) - R(z) Il + 0 and | P(x) - P|» 0 .

| For x small enough such that || P(x) =P | <1, dim P(x)X = m .
| But P(x) is uniformly continuous in x on [0,1], we then deduce

that dim P(1)x =  .

| This means that there are exactly m eigenvalues of I, inside I .
Since this 1s true for any curve r inside I' , arbitrarily close to

| A (because (2.4) holds for any z # A inside I') , then:

| Lin Aap =A , 1 =1 ,...,m.
: T, is said to be a strongly stable approximation of T (Chatelin [3]).

(P - P)x= -1 feat» - R(z))x dz , for any xeX .
21m r

: From (3.2) we get readily that  [|(P, - P)x | = 0.

Since PX is m-dimensional, we even get lI (P -P) Pll 5 0 .
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Following [1] and [8] :

(P, - P)Px =_-1 J R (2) - R(z))px dz ,for any x in X ,2irm

= 1 R(2) (T- T) R(z)Px dz .

R(z)P = PR(z), then:

| 1(2, = P)P jj < m(r) max(l| BR(2) J) 11 R(z) ||). (2-7DB ,
{ 2m zZeTl

where m(r) is the length of © , and max IR, (2) Il is uniformly| A

] bounded in n . Since the dimensions of PX and PX are the same

| for n large enough, it 1s not difficult to carry out a bound for the

gap between PX and PX ( see definition in SectionV) in terms of IH ll.

E'or the eigenvalues, a bound of type: > — A | < X |8 P [| can be

{ derived, in this general setting, following the lines of the proof given

| in [8] for a collectively compact approximation.

| In order to get a more precise expression for the bound, we have to go

into a more detailed analysis of the perturbation of T by T, - T = -H_ .

| IV. THE OPERATOR P -P .

Theorem 1 There exists a decomposition : P -P =P + P ,
— n Tn 2n

| such that : a) P, esr (X), P,Xc PX ,P P=0,

| b) By ef (X) 5B Il SK EP ||

for n large enough.

The proof of theorem 1 contains five intermediate steps.



Proof :

1. A , an elgenvalue of finite algebraic multiplicity m , |
| 1s a pole

i of order £ (1<2 <m) of R(2) , whose Laurent expansion can be

written ([51, p. 180) :
: 8 0]

k=-¢

with s ©)= _p
-k k

st aks, D=(T -a1)P
k k

s) = &% x31, 8=1linr@ (0. p
. Za)

Using the Neumann series of R (2), we get:

[—. oo 3

P,-P= 1 R(z) = (HR(z))' az
21m i=1

- r
= 3 P .
i=] Hod

L with: ro ; = -1
? 2im JAS (H R(z))' dzn

| r
oo) .

= a1 R(z) (H x (2-3 )" g(k+1)yi dz .

| r
k k k

4.1 pr . = 2 1) p52) (1) (Fi)
Ht otk +o.+k =i CNB SR

| 1 72 TH —_—
K> +1, j ; (5;
= +1, J=1,..,1i+1 up, J)

| (cf Kato [5], p.76).

2. It 1s easy to show that a'theorem l1-type decomposition P, + P
: 2n

' 1 .| holds with || ZW +0 :
Let us go back to the expansion (3.2). By integration on T :



12

© 2k
Pn-P = -1 R(z)H R(z) dz + R(z) (1 + H R(z))[ (HE R(z)) 7] dz

—— n n n
2im 1

I I

If we substitute in the first integrand the Laurent expansion of R(z) ,

only the coefficient of 1 contributes to the integral :
Z=)

1 fre ER(z) dz = fp + ef wf LL. feu— 4] n n n
2311

PHS -DHS-...-0 ust,
n n n

fo 4=]

obviously : [SHED +. . . +SHP 11 <K11 HP II,

£-1 Z

and PL = PRS - . .. =D HS has 1ts range included in

PX , and P'. P = 0.
n

The second integral can be bounded in norm by :

m(r) max || R(z) ||] . (1 + || H R(z) II) &n
7 € 1-€n

where m (1)is the length of  . Then : IPA, II 2 0 .

In order to bound Pop | in terms of FE P| , we have to go back to

the expansion of P - P in terms of Posi

3. Consider (4.1).

Let N(i) be the number of terms in that sum. N(1) 1s also the

1,
absolute value of the coefficient of z  1n the series expansion of

® kT) i+1
2 Z ’

k=-f+1

C Li +1-1
or else the coefficient of z in the expansion of

co [1 .

| 3 oJ _ (1 _ z) 1k=0



da =(Dhr =a (rat RE)

| S
' ' [ , . he

The coefficient ofz 1in 1 is then (i+s)(i+s-1)...(s+1) = C,
i+7 1+s

| (1-2) il

N(i) _ olith-T
(£+1)ivg-1 .

| Making use of the Stirling formulae, we can easily show that there exists

a constant a (depending on f only) such that:

N(1) < at , 1 =1, 2, ....-

bh, Pp 111 be th fal gy (9)
’ nm Wt © the sum ol 4 U whose norm is not going to zero

h h (0) (-2) gq
(such that§ HS r 8 fo HS ; etc..). Such terms correspond to

sequences (ky skys eu, kit) 1 =1, 25 «eo in which k. >1 for J>2,
since || H s(E) |) 0 itn ~ for any nonpositive k ,

Ks CT Ry2 1 Amplies k= 1- (k, to. t Ki) < 0 . Then

{| each operator such that k, <0, Kk > 1 for J > 2 is a bounded
J — ——

| operator with range in PX .
We have to prove that Pin is bounded.

| -

1 k, k +e. Kn
) - {+1 < k, < 0

— 2

| Let us recall that Ma BN JI(HS) l= 0 . We shall prove that for 1Ny

(*3) |
} large enough, each U, 1n the above sum contains enough factors of the

2) oO
(HS) type, 1n order to ensure the absolute convergence of .z [S,] .1-1



| Namely:

| For 1> 2y 1 oF)
> - 1, each U with k, < 0, x3 > 1 for § > 2 ,contains

at least Pe i-21+3 ) times the factor D

— ) (HS) , and at most gf -1
k

: times the tractor HS , Kk =1, «., a, where Pe (x) is the integer

part of x.

This is .shownby a close study of the sequence of exponents E, subjected

to the above constraints.

Then, for 1i>24 - 1:

i 3

Is, jy < a nq Peli2e3)
n 2 K

1K

where K, = max sup || H st = kPLES, Ky = max [a]k=? , 004 I y
J LJ k=0,..,0-1

The series Pin will be absolutely convergent for n large enough so
py

that an” < 1,

Pin P=0 follows from SP = 0 .

| 5 P. will be the sum of all (k)on Un for which there exists a

“= (x) on= 2 U J _en z = Z .

| p=1 i=1 * n D > °p,i
} k. +k + . . = 1

| 12 Kg =4

[ there exist exactly p indices J , je { 2,... 147}2

such that Ek, < 0.



Consider 9p ; fora given 1 and p3 J

| 3 ki <i + (p+1) (R1) .
| JF! rk

| (k )
For 1 > (p+1) (22+1) , ‘each U , with Ks satisfying the
constraints ¥ = oontains at least pe i - (p+! )(24+1) * a times=

the factor (5 8)° rat MOST (pi9)y.1 times the factor i gk |
n

H pitk =1,.., (p+1)(22-1) > and p factors of the type nL
= | k = O0,1,00,0-1 *

k k-1 k-1< S S| HESS <r Ess |< 25sL

k _ k k
| HD" = H (T-A1) P = H P(T-A1) P , since P and T commute.

k k
Then ll HD" I< HP IT | Dy, k = Oseve,t-1 |

L . We get 3 for 1 > (p+1 (22 +1 ) = I(p) :
| Co Pe(d-( +1) (24+1 te)i ~pr1)(24+) PD, D (p+1) (22-1)ops Il < - Mh 2 EPH RP Es

s 1 (0%1)2(201)

le, I<= apy? (gat » rat nz)en = or? . i=1 i=I n
[7 [-1

) = 7 I
Y a’ = a ¢ < a_ .

1=1 a - 7 a - |

= 3 i LT 1
z (ap. 2)" < an 2) + for n such that an, 2< 7.

T-am =
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~ . ,
| Hence [RT | < Z K), 1 HPI

p=1

| < KIER

which completes the proof of theorem 1 .

Corollary 2 For n large enough :

i (3, =P) PJ <K Il H PJ,

| I (p, =P)PJl SK H PI.

: Proof : (P_,_ P) P = P,, Ps

| (p. -P) P= (P -p)° + (P -P) P
n n n n '

and (Pp -P) — PP + P P ; pe since P P=0n 2n 1n in 2n on Tn

The results then follow.

! For approximations of class 1 and 3, we have : || P - P, [PO

V. CONVERGENCE IN GAP OF THE INVARIANT SUBSPACES

| Let us borrow from Kato ([5], p.197), the definition of the

| gap between two closed subspaces M and N , of a Banach space X :

5 (M,N) = sup dist (x,N) ,
3 x eM

4 § (M,N) = max [ §(M,N), §(N,M) ] is the gap between M and N .

The following property holds: §(M,N) < 1 implies dim M< dim N ,

i and § (M,N) < 1 implies dim M=dim N.
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Theorem 2 For n large enough:

5 (PX , PX) < K| HP .

Proof We have the inequalities :

5 (PX, PX) < [[(P,-P)P ||,

and 6 (PX, PX ) < I (P_-P)P_ I.

Theorem 2 follows from Corollary 2.

Remark : If T is an approximation of T such that R (2)x + R(z)x

for any xX , and any z on TI , then PX + Px and, since PX 1s

finite-dimensional, (Pp, - P)P || +0 . This implies that dim PX <

dim PX : There are at least m approximate eigenvalues lying inside T .

We need some additional assumption to show that IP, - P)P, I+ 0 and

dim PX <dim PX . This assumption 1s provided here by the hypothesis (2.4).

VI. CONVERGENCE OF THE EIGENVALUES

6.1 Series expansion of A_ ~- A

The trace of a linear operator A with finite rank is denoted by tr A.

If A 1s of finite rank and -B continuous, the identity tr AB = tr B A

holds, (Kato [5] p. 379).

For the following, refer to Kato [5], p. 77.

m

tr Thy = 2 Ap, i1=1 \

(Tm AM) R(2) = 1 + (2-2) BR(2) .
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T =-A1)P_ = -1 T -A1)R d

(T, ) P, fo (T, - AT) (2) dz
J
r

co

= (z =A) R(2) dz = =7_ ((2-M)R(z) Z (HR(z))® dz
21m 2im p=6 ©

I I

= (T-A1) P -az [(z-2))R(z) = (H R(z))P

= p=1 ©
r | (oe)

| A -A= 1 tr (T.- A1)P. = -1 tr (z-3)R(z) 3 (H_R(z))Paz
In n n —_— n ’

m 21mm p=1
I

I

since tr (T-11) P = 0 .

2

Usingd R(z) = (R(z))° , we get
dz

da (HR(z))P = d(H R(z) . ..H R(2)] = HR(z)...H Bo(2)+..+H R(z) .. H R(z).
3, 1 n n n n n 14
dz dz

tr J en dad ( H R(z))" dz = p tr [ir dz .dz

I I

| This can be proved by using the Laurent expansion in j) of R(z),

| integrating on I" , then using tr AB = tr BA , since each term contains

| P at least once. Then :

| 0
A, - A = _-] y tr 1 (z=x) 4d (H_R(z))¥ dz

2irm p=1 | p dz
| I

= | )) tr 1 (H R(z))® dz (integration by parts)
| 2imm p=1 op» 0

r

| (6.1) Ay TA =_I x 1 tr DX Hp te HS
| m =1 k,+k +..k =p-1

| pb p 15% D pb
K> =1+1, j=l 5+ 45P



| 6.2. We prove the following:

| Theorem 3 For n large enough:

| lA, - 2] < Ltr HP |+K | HP || -
m

Proof : All operators which appear in (6.1) contain at least one

operator with finite rank, so we can apply the bound :

Litra|< raj.
; m | |

For p = 1 we get 1 tr HP r which appears to be the principal
m

} term in A -) for most approximation methods.
n

_ i k1) (k )L c =1 ¥ 7tr 3x H 5 HS
T p= p n n> P can be easily bounded

| in norm by K|| HP || by using the technique developed in Section -

Corollary 3 | For n large enough:

® k kK

) [A | < > | tr HP + 5% tr 2. Hs 1) a sl 2) ern pp2
I n Cn

| k> 1, §=1,.,p-
-i+1< k < 0

i Proof : As previously, we can decompose the sum over the k into the sumJ
h J CL

over the ky where one Ky 1s nonpositive, then two k are nonpositive,
and so on. The result above is obtained by considering one k. < 0 , and. ’

J —

noticing that we have DP operators with the same trace.
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For example, if A is a semi-simple eigenvalue, £=1, k=0,
| _

| k, tet = p-1 implies k=l J=1500, p—-1l, so that the sum. IT2

i reduces to: -tr(H SHP + (H g)° 5 (H 3) FP H P)
| } nn n n " 'n )

| P=0

| VII. APPLICATIONS

: 7.1. uniform approximation

I Ho | + 0 implies || H * | + 0, where HX is the adjoint of Ho .

We can then bound ¢ more precisely.

| Theorem 4 Forn large enough:

| Ap | <tr HP | HK EP] BHXP |]
| N took ke

AA| <1 tr (BP-ZHS HD )|+K[HJ || EPI HP].i n n n n n n n
m k=1

} Proof: Consider ¢ :

| F = 2 t ltr (HSHP + HS® HD a FE
| or p we get : L SH , Loe L STH . For

_ oo

! 1 <k<{f, tr H 5 Dp [a tr PH sy PD , then :
== n n nn

k-1

| 1 tr r H sy D | | < K || HP [| || H_¥P* ||= nn = n n
m \k=1 ’

: For p = 3, the bound is given by : K [[H || J HP || || H*P* || |
| > p-2

; then: || o || < 7H | J igen || H_*P¥ || < K [|H_P|| [|H_*P*|p=2

The second bound then follows.
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For example, if £ = 1 , we get the principal term :

1] tr (1 -HS) HP].
m A

Remark : The first bound is the same as the one given by Osborn [8]:
m

= - * basi

1 tr HP z ((T T) P37 ) , where (05) 59 1s a basis
m j=l

of PX and (p5*) 5 m the adjoint basis of P¥X¥ . On the—lsee,

“other hand, J(T-TJP |< || P | NT-T)| px II See [8], [2]
for various examples.

Using the second bound we can derive the asymptotic equalities that

we get in [4], for a Galerkin-type approximation of a normal operator

in a Hilbert space 1f I = m Im , Where mo 1s a sequence of

orthogonal projections such that mx + x , xX , then:

- 2

7 tr (mT = 2 (1-7 )oss05 ) =A [[(1-1)ol
m 3=1

where cp belongs to PX .

7.2. collectively compact approximation

Obviously the bound in theorem 3 holds. It has to be compared to

the bound : | A-A |< K 11) py given by Osborn [8].

Theorem 5 Forn large enough:

Ek kel
| A — A | <L| tr HP - tr % HS HD | + a [HP ||,n n “=n n n'""n

m k=1

IN©

where & —b 0
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| I. S- (%1) (*p)2 Proof: Consider g =1 % tr HS . HS
— — n n

-1+1< k <0
| = Pp=

| Since T 1s collectively compact , | HSH §° | +0 , for r, t> 1.

| Let € = max || H Shbs st |] , where V is the finite set of indices:| n n n

v={ (0,2), |

: (1,2-1) b (2,2-1) , }

| p1 || o 1 < b aP &, ) < K €, for n large enough.
| p=>3

Theorem 5 follows from corollary 2, with oy, = Ke + | BPI -

] 1.3. T, belongs to class 3

| Since || HR(z) || + 0 , for zer , || HS| +0.

Theorem 6 For n large enough :

| | A, ~ MS] ar B P| +o ll H PJm

Proof ; This follows readily from theorem 5 and | HS | + 0 .
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If T and I are self- adjoint in a Hilbert space we get the bounds for

n large enough:

2

| Ap mA] < L| tr HP |g KEP ,
! k-1 2

pa | | tr (EP- EO ESHDT) | 4 KES||EP)
m k=1

The proof is easily adapted from the proof of theoren 4 by using the fact

that[| HS | +» 0 .
n

7.4. T has a compact resolvent

k= k-1
Since R(z) 1s compact, || HS =| H Sed |] + 0 for2<k<1{.

Theorem 7/ For n large enough :

| Am A] <1 tr ((1 - H 8S) HP) | + oo, I HPm

| F. C. J. L.

Computer Science Department I.R.M.A. Mathématiques Appliquees
Numerical Analysis BP 53
Stanford University 38041 Grenoble-Cedex
Stanford, California 94305 France
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