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Abstract

Given two random k-ary sequences of length n , what is f(n,k) ,

the expected length of thelr longest common subsequence? This problem

arises in the study of molecular evolution. We calculate f(n,k) for

all k, where n <5, and f(n,2) where n < 10 . We study the

Ca : -1
limiting behavior of n ~f(n,k) and derive upper and lower bounds on

these limits for all k . Finally we estimate by Monte-Carlo methods

£(100,k) , £(1000,2) and £(5000,2) .
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- 1. Introduction,

In the study of the evolution of long molecules such as proteins

or nucleic acids, it 1s common practice to try to construct a large set

| i of correspondences, or matches, betwcen two such molecules, Mathematical-

| ly, this 1s just the problem of finding a longest common subsequence of

| two given finite sequences. A quadratic algorithm for doing this is

available (Sankoff (1972)). It 1s often difficult to judge whether this set

; of correspondences 1s significantly large, 1.e. contains more correspondences

| than onc would expect in the case of- two random molecules of the same

| l ength and subunit composit ion. Tests of significance are unavailable,

| except on a Monte-Carlo basis (Sankoff and Cedergren (1973)), since nothing
1s known about the distribution of the length of the longest common subse-

quence. As a first step in the study of this distribution, this note

investigates its mean value.

We introduce the following notation.

| Let a = (a;,a,,. . .,a,), b= (by Dos C yb) be two sequences.

oo A common subsequence, or (a,b)~match is a set M = {(2g,7%) 1 <sk<m)

| | with 1 ff <.<i <n, 1 $Jy<d,<...<g, <n and a. = b;
| for each (Z,J)€M. The size of a largest (a,b) -match will be denoted

| by wv(a,b) . By a k-ary sequence we mean one whose terms come from

| {1,2,...,k} . We shall study the function §f(n,k) defined as the mehn

| value of v(a,b) over all the 1%" ordered pairs (a,b) of k-ary

sequences of length n .
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2. Exact formulac for f(n, k) with small n .

| Let a=(a,,a, CL a) and b = &,.,0,,. Co. bh.) be two k-ary
| sequences. The pair (a,b) will be called normal if, setting 34g = bj

for all j , we have al = 1 and

; a3 < max (al’al,...,a; 43 + 1 (2 <gJ < 2n) .

Let N(n,v,t}) denote the number of normal pairs (a,b) with v(g,b) = v

| and max @ a, Co a, =t . Clearly, the number of pairs (c,d) where
| ¢,d are k-ary sequences of length n with v(c,d) = v is equal to

| 2n

J N(n,v,8) (RK),
| t=1

: where (kK), is the falling factorial k(k-1)...(k-t+1). Hence

| f(n,k) = TH Vv N(n,v,t)-(k)
kK p20 tel ¢

| n 2n [ J
===] v ) Nn,v,t) } s(t,

k=" v=o  t=1 J=1

2n  2n n ! 5
= 1 1 std) I olin, tk"

J=1 t=g V=0

where s(t,j) are the Stirling numbers of the first kind (Riordan (1958)).

Note that N{(n,v,2n) = 0 unless v=0 and so

2n-1 2n-1 n 5
; ft mk= J) J sd) J] vN@m,v,e)kl="

J=1 t=1 V=0

Also



n? if sl
Nn,v,2n-1) =

5 0 1 f v>1

and so the coefficient of f(n,k) at x 1S

n 2
s(2n-1,2n-1) ) vN(n,v,2n-1)=n = .

v=0

We have evaluated N(n,v,t) for 1 <n <5 and arrived at the following

formulae.

-1 |

f(2,k) = TREN YC Va

f(3,k) = ok _ 27k7% + 60k - nk + 32k :

f(4,k) = 16%} - 847%" 4 + 380k" ~ 1146k~% + 2085%° ~ 2018%° + 771%” ,

£05k) = 2571 = 200672 + 1500%7% - 82006”? + 306407 - 75096k°C +

+ 113748%™7 - 94790k78 + 32378%7°

The values of these functions for 1 <£k £15 are given in the table

below.



| | ram rar |FG £(4,k) £ (5,0)
| ©k=1| 1.000000 |2.000000 | 3.000000 | 4coo000 |5.000000

) .500000 1.125000 1.812500 2.523438 3.246094

| 3 .333333 . 888889 1.477366 2.090535 2.718742
| 4 .250000 . 734375 1.253906 1. 801453 2.363899

5 .200000 .624000 1.096640 1.594317 2.108546

| 6 166667 541667 .977109 1.435968 1.912269
| 7 .142857 .478134 .881954 1.309838 1.754954

| 3 .125000 427734 .803955 1.206201 1.625155
| 9 111111 .386831 GE 1.119008 1.515694
| 10 .100000 353000 683220 1.044309 1.421763

| 3 .090909 . 324568 .635470 .979404 1.340005

| 12 .083333 .300347 .593927 922366 1.267999
| 13 .076923 279472 557455 871776 1.203953

| 14 .071429 . 261297 .525179 .826554 1.146514

| 15 066667 .245333 496417 . 785862 1.094633

| TABLE 1

| Moreover, we have evaluated f(n,2) for all » =1,2,...,10 ; the results

| arc given in Table 2 in proportion to nn,

Co
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i 7 f (n,2)/n

l 0.500000

i 2) | 0.562500

| 3 | 0.604167

| 4 0.630859

: S| 0.649219

6 0.663330

: 7 | 0.674491

8 0.683640

: 9 | 0.691303

10 0.697844

TABLE 2

| 3. Limiting behaviour of f (n,k).

Klarner and Rivest (personal communication) have observed that

; f(n,k) is superadditive with respect to n , that is, flng+n,, kK) 2

| fling, kK) + fn,, k) . Thus, by Fekete's theorem (Fekete (1923)),

| a -1
| lim n “f(n,k) = sup n “fi(n,k). (1)

N-r>oo n

We shall denote the common value of (1) by ey Klarner and Rivest

asked whether Cc, = 1 ; we shall show that this 1s not the case.



a . A sequence (845 Sn EPL 1s said to be a subsequence of

a sequence (ays8qs 4 ms 8) if there is a mapping

| 0: {1,2,...,m} =» {1,2,...,n} such that

i<j = o(i)< oj)

| and such that

: - ] il 11 1 = 1,20 eee
20 (1) b, or a 1 y 2 ;

LEMMA 1. Let s be a k—ary sequence of length m , let n be an

| | integer with n > m and let F(n,-s, k) denote the number of k-ary

sequences of length n containing s as a subsequence. Then

: Fn, s, k) = & 3 (k-1)" :
|

| Proof. The formula holds trivially 1f m = 1 or m = n . To prove that
| it holds for all choices of s = (sys55s..0 28) , kK and n , we shall
| ” .

proceed by induction on m+n . Let s denote the sequence

(8158055. . 58, 1) ; for every sequence a = (89580; . me 8) , let a

| denote the sequence (a)s855 058 1) . Let At , resp. A' , denote

| the set of all the k—-ary sequences CAPLET containing s as

a subsequence and such'that an = S , resp. a # S . Clearly,
| ~ A os

| acAt if and only if a contains s and a = 8 i similarly,

| aehA” 1f and only if a contains s and a, # 5 - Hence
| ~

| F(n,s,k) = |A"| + |AT| = F(n-1,5, k)+ (k-1)F(n-1, §, k) .
i

The rest follows by the induction hypothesis.
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Note that

n yh] n _qy=J-1(5) 2 (fh Joe
whenever j > n/k . Hence

n n-m

F(n, s, kK) <n m, (k=) for m > n/k . (2)

For every real x with 1/k < x < 1 , we shall set

i 1 X/2-1 x 1 1X
h(x) = ——35—

x (1-x) EE

LEMMA 2. Let g(n,m,k) denote the number of ordered pairs (a, Db)

of k-ary sequences of length n with v(a,b) >m. 1f 4 ig 3 real

number with

1/k <x <1 , h, (x) < 1
then

2n

g(n, [xn], k) = o(k ) (n = =)

Proof. Let G(n,m,k) denote the number of ordered triples (a,b, s)

such that a , b are k-ary sequences of length n , s is a k-ary

sequence of' length m and s 1s a subsequence of both a and b .

. Clearly,

g(n,m, k) < G(n,m, k) 3)
- and

i G(n,myk) = & (F(n, s, k))
with the summation extending over all the k-ary sequences s of length m .

| By (2), we now have
2

i ] G(n,m,k) < @(n(2) tenn) (1)
I



3 whenever m > n/k . Let m = [xn] . By Stirling's formula, we have

2 1/n

n —o

2 1/n
-xXn -2n

| = lim (= (2 ) (en) ) k )| Xn
n —w

= (0, (x) < 1k

and so

n n-m 2 2n
| (a (5) 0c) ) = o(k™) (n =» ©)

The rest follows by (3) and (4).

| Note that

-1/2

(1k) = ¥/%E 51, lim h(x) = kV < 1| k k
xX —-1

i and

5

4p (x) =h (x) 1 1-X </dx “k Tk CIN Tx (k-1 ?

so that h, first increases and then decreases in the interval [1/k, 1) .

Hence there 1s a unique solution of

h(x) = 1, 1/k < x <1 ;

we shall denote this solution by y, . Values of y, with 2 < k < 15

are shown 1n the following table, to six-decimal accuracy.

| 8



| k

| 2 0. 866595

3 0.786473 |

| L 0.729705

p 0.686117

| 6 0.650984 |

| ! .. 621719

8 0.596756 |
9 0.575075

10 0.555971

11 0.538945

12 0.523625 |
12 O. oo...

1h 0.497038

15 0.485378

Table 3

THEOREM 1. If k >2 then ey SV,

Proof. F er ositive € with y. +e < 1

all or every p Yi we have h(ye) <1.
Lemma 2 1mplies that

- gn» [(y ten], k) = o(k™)
and so

f(n,k) = k 0snk) = 2 v(a,b) < (1-o(1))[(y,+e)nl+o(l)n
| Hence

| °x = lim f(n,k)/n < vy, + ¢n—w

i and the desired conclusion follows.

9



i 4. Lower bounds on Cy

| For cach pair (a,b) of k-ary sequences of length n , we shall

i construct a certain (a,b)-matchM of size v'(a,b) and show that

f'(n,k) , the average o f v' (a,b) over all k*" ordered pairs (a,b),
satisfies

: ~1 VL ’
lim n “ft (n,k)=—— (2)
(a K7+2k-1

The construction of M is described below. The main idea 1s to begin by

looking for the "first" matching pair fa. bh .} where 2 =1or jg=1.

For example, suppose we examine the pairs (a, sb), (a;sD,), (a,,P),

(a;,05) and finally find the first matching pair, namely (a5-b))

- -Then we include (aq:b,) in ¥ and proceed to look for the "first"

| matching pair in the sequences AgsAgy. «5a, and besby,.. : sb . We
continue until one or both sequences are exhausted.

| STEP 0. Let a, = a. B m= b. and S(z) = T@G) = 7 for all
1 =1,2,...,m.Let FLAG = 1 and M=¢

STEP I. If FLAG = 1, check successively

until a or B is exhausted or until we find a pair

with a. = Be It FLAG = -1 , check the pairs in the
| order

(018105 481), (01,8), Cogs B), (ay)

10



| In the case of exhaustion, stop; otherwise add the pair
S@, Tg) to HM.

| STEP 2. Note that Zz = 1 or j = 1 or both
If 2< 2 and gs 2 , set

[ f2=1 and j 2 3 , set

. J-1 (FLAG = 1)
ARSE Fs gel

| J (FLAG = -1)

If22 3 and j = 1 , set

7 (FLAG =1)
2! = 1+] , J! =

i-l (FLAG = -1)

STEP 3. Let p = S(')-1, q =7(j'}-1 and redefine

S(7) = +7, . =

T(G) =q+j , B. = |
g | q+J B; bps)

i for all 2,7 with1 <2< np , | <] <n-q.

i Reverse the sign of FLAG and go to Step 1.
LEMMA 2. For infinite sequences a* 4,4 b*. we have

i | k3+2k-1
B(i'+f1-2) = ==

: kK

where Z',j' are defined as in the preceding algorithm and Z(-) denotes

: mathematical expectation.

11



| Proof. Consider the sequence of pairs in case FLAG = 1 , that is,

The event that. any of these pairs contains equal terms has probability

1/k and this is also the conditional probability given any or all the pre-

| ceding pairs. Hence the probability that the r-th pair will be the first

equal one is kT" Now, .

2 1 ftr=1,

1'+3'-2 = 3 ifr=2,
r -ifr=z3.

Therefore

1 ®o (k=DF K+2k-1
E(1'+j'-2)= 2 . T + 3 Kel + ) r= ==

K r=3 k k

The same can be shown for case FLAG = -1 .

2k”
THEOREM 2. For all k , we have cy 2 =

k™+2k-1

| Proof. Obviously, it will suffice to prove (2). Let Xy:Xy,- Co.

be successive values of 2'+j'-2 found by the algorithm when applied to

the infinite sequences a* and b*. It is clear that the X's are

independent, identically distributed random variables (indeed, in each

cycle, equality or inequality of pairs 1s independent of all previous

cycles). Let A

| i NG
= g3haner

The symmetry ensured by the alternation of sign of FLAG ensures that

after w = 2u cycles of the algorithm, the total number p (resp. q) of

12



t h e a*.'s (resp. b*.'s) that have been used up satisfies

Bp) = Eg) = X E42) = w/e,

Furthermore,

Pr 7-H > c | = Pr 1 > | = 0{wW){IW

Zl wooZd

by thz law of large numbers. Now a pair (a,b) of random sequences of

length n can be considered as being the first n terms of a* and b*.

If the algorithm (applied to a,b) halts during the (w+l)-st cycle |

then the first v cycles are the same as the first w cycles of the

algorithm applied to a* and b*. Now, after [nz ] cycles of the

algorithm applied to a*,b* , we have

p oy € !Pr > n(l+e <n{l+ = P - em]5 em. (p (l+e) or p (1+e)) r es x, x),

and so

- Pr(n(l-e) < p < n(l+e) a n d n(l-e) <q <n(l+e)) =1-¢9(n) .

Hence with probability 1-0 (n) , at least [ nx, J - ne and at most

[7,1 + ne cycles of the algorithm (applied to a*,b*) operate within

a and Db since me successive terms in a sequence can give rise to at

most ne cycles of the algorithm. Equivalently,

Pr(|v' (a,b) - I na, I | < ne) = 1-0(n)

B and so lim nlp (n,k) = Too
7i>o

Values of ax, with 2 <k < 15 are given in the table below.

15



| k “xk

] 2 0.727273

3 0.562500

4 0.450704

5 0.373134

6 0.317181

I 0.275281

8 0.242884

9 0.217158

10 0.196271

11 0.178994

12 0.164477

13 0.152115

14 0.141465

15 0.132197

| TABLE 4
L

8 5. Monte-Carlo estimates for f(100,k) and c,, .

| To obtain further information about cy, , we carried out two
series of Monte-Carlo simulations. First, for zn = 100 and for each

| k=2,...,15, we generated 100 pairs (a,b) of random k-ary sequences

: and calculated v(a,b) in each case. We denote by Me 1 the average
~ value of nv(a,b) in a given sample. For large n , this quantity

| may be considered an estimate of c, Values of ye 100 are tabulated>

in Table 5, and may be compared with the upper and lower bounds in Tables

| 2 and 4. Table 5 also contains #1100 , where

1h



a ". 3 )  Yo(a,b)-m )2/ (sample size -1): k,n = ~~ ket
(a,b)
in

sample

| is an unbiascd estimator of the variance of n “v(a,b).

x Me 100 °x,100,

2 0.7814 0.0243

3 0.6855 | 6.0210
4 0.6242 0.0176

5 0.5778 0.0211

6 0.5332 0.0208 |

7 0.5065 0.0214

8 0.4812 0.0219

9 0.4593 0.0211

10 0.4423 0.0208

| 1 | 04268 | 0.0200
{

L 12 0.4126 0.0193

13 0.4003 0.0212 |

L 14 0.3827 0.0212

1 15 0.3712 0.0198
TABLE 5

.

To estimate ¢, more closely, a second series of simulations

S were carried out for k=2 and n = 10, 100, 1000, and 5000. 1.41 6

lists m, and g , as well as tle size of the sample used to make |n 2,n

these estimates.
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: n k,n sample size

| 10 0.6991 0.1079 1000

100 0.7806 0.0238 100

1000 0.80529 0.00468 100

| 5000 0.8082 0.0015 6

TABLE 6

On the basis of these simulations, it seems fair to conjecture

that c, >4/5 and that the variance of. v(a,b) is on?!3y

\
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