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Abstract

Given two random k-ary sequences of length n , what is f(n,k) ,
the expected length of their longest common subsequence? This problem
arises in the study of molecular evolution. We calculate f(n,k) for
all k, where n <5, and f(n,2) where n < 10 . We study the
limiting behavior of n-]'f(n,k) and derive upper and lower bounds on
these limits for all k . Finally we estimate by Monte-Carlo methods

£(100,k) , £(1000,2) and £(5000,2)
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1. Introduction,

In the study of thcevolution of longmolccules such as proteins
or nucleic acids, it is common practice to try to construct a large set
of correspondences, or matches, betwcen two such molecules, Mathematical-
ly, this is just the problem of finding a longest common subsequence of
two given finite sequences. A quadratic algorithm for doing this is
available (Sankoff (1972)). It is often difficult to judge whether this set
of correspondences is significantly large, i.e. contains more correspondences
than onc would expect in the case of- two random molecules of thc same
1 ength and subunit composit ion. Tests of significance are unavailable,
except on a Monte-Carlo basis (Sankoff and Cedergren (1973)), since nothing
is known about the distribution of the length of the longest common subse-
quence. As a first step in the study of this distribution, this note
investigates its mean value.

We introduce the following notation.

Let g = (a;,a,,. . . ,a,), B =(by,b,,...,b ] be two sequences.
A common subsequence, or (g,b)-match is a set M = {(i;,d,) : 1 <k <m}
with 1 Ti<211<...<1:m5n, 1 s<j1<j2<,,,<jmsnand a. = bj
for each (Z,§)€M . The size of a largest (a,b) -match will be denoted
by wv(a,b) . By a k-arysequence we mean one whose terms come from
{1,2,...,k} . We shall study the function f(n,k)defined as the mehn

2n

value of v(a,b) over all the k ordered pairs (a,b) of k-ary

sequences of length n .



F 2. Exact formulac for f(n, k) with small n

Let 'Q=(a1,a2, C ,an) and b = (bl,bz,. .. ,bn] be two k-ary

sequences. The pair  (a,b) will be called normal if, setting a__ . =bj

n+J
for all j , we have al = 1 and
a3 < max (al’a2,...,aj~1'} + 1 (2 <4 < 2n)
Let N(n,v,t) denote the number of normal pairs (a,b) with v(g,b) = v
and max {al,az, .. "aZn} =1t . Clearly, the number of pairs (¢c,d) where

¢,d are k-ary sequences of length n with v(c,d) = v is equal to

2n
L N0, (),
=1

where (k)t is the falling factorial k(k-1)... (k-t+1). Hence

1.3
F,k) === ) v ) N(n,v,t) (k)
k2" 0 ¢l ¢
RS L ot
= v ) Nn,v,t) s (t,J)k
an v=0 t=1 J=1
2n  2n n a 2
= ) 1 s(td) I oNm,v, )k "
J=1 t=g V=0

where s(t,j) are the Stirling numbers of the first kind (Riordan (1958)).

Note that ¥(n,v,2n) = 0 unless »=0 and so

2n-1 2n-1 n .
f mhk= ) ) std) ) oN@m,v,e)ki20
J=1 t=1 V=0

Also




n? i f p=l

Nn,v,2n-1) =
0 1 fol

and s o thecoefficient of f(n,k) at k-1 is

n
s(2n-1,2n-1) )} oN(n,v,2n-1)=n 2 .
=0

We have evaluated N(n,v,t) for 1 <n <5 and arrived at the following

formulae.
-1
FL,k) =k~
f(2,k) = 4k'1-5k'24-3k'3,

£3,k) = okt - 27k7% 4 sok”3 - kY 4 3k
FlaI) = 16k°Y - 8472 + 380k73 - 1146k + 2085%75 - 2018k7C 4 771k

£(5,k) = 25k”1 - 200672 + 1500k72 - 820067 + 30640k - 75006k C +
+ 113748%™7 - 94790k7% + 32378%7°
The values of these functions for 1 <k <15 are given in the table

below.



F(1,5) F2,k) F(3,K) f(4,k) F(5,k)
k=1 1 .000000 2.000000 3.000000 4 .000000 “5.000000
2 .500000 1.125000 1.812500 2.523438 3.246094
3 .333333 .888889 1.477366 2.090535 2.718742
4 .250000 734375 1.253906 1. 801453 2.363899
5 .200000 .624000 1.096640 1.594317 2.108546
6 .166667 .541667 .977109 1.435968 1.912269
.142857 .478134 .881954 1.309838 1.754954
8 .125000 427734 .803955 1.206201 1.625155
9 .111111 .386831 ¢ @ 1.119008 1.515694
10 .100000 .353000 .683220 1.044309 1.421763
11 .090909 .324568 .635470 .979404 1.340005
12 .083333 .300347 .593927 .922366 1.267999
13 .076923 .279472 .557455 .871776 1.203953
14 .071429 261297 .525179 .826554 1.146514
15 .066667 .245333 .496417 .785862 1.094633
TABLE 1
Moreover, we have evaluated f(n,2) for all n =1,2,...,10 ; the results

arc given in Table 2 in proportion to »n,



n fn,2)/n
| 0.500000
2 0.562500
3 0.604167
4 0.630859
5 0.649219
6 0.663330
7 0.674491
8 0.683640
9 0.691303
10 0.697844

TABLE 2

3. Limiting behaviour of f (n,k) .

Klarner and Rivcst (personal communication) have observed that
f(n,k) is superadditive with respect to n , that is, f(n;+n,, k) 2
f(nl, k) + f(nz, k) . Thus, by Fekete's theorem (Fekete (1923)),

lim n"l-f(n,k) = sup nulﬁ(n,k). (1)

N n

We shall denote the common value of (1) by ey - Klarner and Rivest

asked whether c, = 1 ; we shall show that this is not the case.



A sequence (sl, 32, ...,sm) is said to be a subsequence of
a sequence (ays8ps 4 Mgan) if there is a mapping

eo: {1,2,...,m} - {1,2,...,n} such that
i<j = 9(i) < e@)
and such that

= i = 2 ) .
a'cp(i) bi for all i 1,2, P!

LEMMA 1. Let s be a k-ary sequence of length m , let n be an
integer with n > m and let F(n,-s, k) denote the number of k-ary

sequences of length n containing s as a subsequence. Then

n
Fln, s, k) = & ° (k-1)*"d
~ j=m J

Proof. The formula holds trivially if m = 1 or m = n . To prove that
it holds for all choices of s = (S]fseh.otﬁsm) , kK and n , we shall
proceed by induction on m+n . Let §~denote the sequence

(sl, SE""’Sm-l) ; for every sequence a = (al:ag, ' aan) , let é.

denote the sequence (al,a2,...,an_l) . Let At , resp. A' , denote

the set of all the k-ary sequences (al,ag,...,an) containing s as

a subsequence and such'that an = s, r resp. &, f Sy - Clearly,

~ A ' '
aecAt if and only if a contains s and a = Sm ; similarly,

aecA- if and only if a contains s and &, # s, - Hence
F(n,s,k) = |A"| + |a7] = F(n-1,5, k)+ (k-1)F(n-1, &, k)

The rest follows by the induction hypothesis.



Note that
n _qyh=J n _qy-J-1
(3) ™ > (5 )0
whenever j > n/k . Hence
F(n, s, k) < n ;lb(k'l)n—m for m > n/k .

For every real x with 1/k < x < 1, we shall set

(2)

) kx/2-1 1 1x
hk(x) = - T
x (1-x)
LEMMA 2. Let g(n,m,k) denote the number of ordered pairs (a, b)
of k-ary sequences of length n with vw(a,b) >m. 1f ¢ ig 3 real

~ ~

number with
1/k <x <1 , h (x) < 1
then

2n)

g(n , [am], k) = ofk (n ~ )

Proof. Let G(n,m,k) denote the number of ordered triples (a, b, s)

~ ~

such that a , b are k-ary sequences of length n , s is a k-ary

~

sequence of' length m and s is a subsequence of both a and b

~

Clearly,
g(n,m, k) < G(n:m: k)
and

G(n,m k) = % (F(n, s, k))Z

with the summation extending over all the k-ary sequences

By (2), we now have

G(n,m,k) < K" (n (;11 ) (k-l)n_m)2

~

3)

s of length m

(L)

St ik



whenever m > n/k . Let m = [xn] . By Stirling's formula, we have

1/n

1_‘J;m (km (n (E ) (xk-1)" )2 K-2n )
- lim (kxn( (};)(k-l)n'xn)e -en )l/n

n-'co

- (m(x)" <1

and so
n-m 2 2n
km(n(rr:l)(k-l) ) _ () (n ~ )
The rest follows by (3) and (4).
Note that
b ( 1/k) = e ] »  lim h(x) = kY2 <

x -1

1/2
% hk(x) = hk(x) log(i-j-)—r'];xkﬁ ) »

so that hk first increases and then decreases in the interval [1/k, 1)

and

Hence there is a unique solution of
hk(x) =1 , 1/k < x <1 ;

we shall denote this solution by y, . Values of y, with 2 <k < 15

are shown in the following table, to six-decimal accuracy.



k T. yk
) 0. 86655 |
3 0.786473
L 0.729705
5 0.686117
6 0 .65098k
7 .. 621719
8 0.596756
9 0.575075
10 0.555971
11 0.538945
12 0.523625
13 0. ...
1k 0.497038
15 0.485378
Table 3
THEOREM 1. If k >2 then ckSyk.
Proof.  For every positive e with yy+e <1 - h (v +e) <1 .

Lemma 2 implies that

gn , [y +e)n], ¥) = o(6™®)
and so

2, = KT y(a, B) < (1-0(1))[(y,4¢)n] + o(1)m

Hence

¢x — lim f(n,k)/n < Yt €

n —c

and the desired conclusion follows.



r

— .

4. Lower bounds on ck.

For cach pair (a,b) of k-ary sequences of length n, we shall

construct a certain (a,b)-match M of size v'(a,b) and show that

f'(n,k) , the average o £ v' (a,h) over all k%" ordered pairs (a,b),

satisfies

- 2 »
lim n ifr k)= 2k

2
N K3e2k-1 2

The construction of M is described below. The main idea is to begin by

looking for the "first" matching pair ‘L(a.3,b ;) where ¢ =1or g=1.

For example, suppose we examine the pairs (al’bl)’ (al,sz, (a ,bl),

(al,bs) and finally find the first matching pair, namely (a3,b1)

-Then we include (as,bl) in ¥ and proceed to look for the "first"

matching pair in the sequences Tgslgs. - - 5@ and bS’b4"‘ . ’bn . We

continue until one or both sequences are exhausted.

STEP

STEP 1.

0. Let @y = a. 81: =bi and S(Z) = T@G) = 7 for all
1 =1,2,...,n.Let FLAG = 1 and M=¢ .

If FLAG =1, check successively

(01,81)’(u1,82)’(az,Bl),...,(al’Bd),(ad,Bl),‘.'
until a or B is exhausted or until we find a pair
with a. = 83,. If FLAG = -1, check the pairs in the

order

(allsl)’(QZ’BI),(alasz))'°‘:(ad’Bl))(al’Bd):"'

10



—

STEP 2.

STEP 3.

LEMMA 2.

In the case of exhaustion, stop; otherwise add the pair

(S®, TEG) to M.
Note that 2 =1 or j = 1 or both

If 2< 2 and gs 2 , set
' = 41, Jv = g+l

[ f2=1 and j 2 3 , set

J-1  (FLAG

i
S
A

. 2 j! = j"‘l .
J (FLAG

i
!
-
—

If2> 3 and j = 1 , set

. [ i (FLAG =1)
7«' = 1:+1 N j' =
[ i-1 (FLAG = -1)

Let p = S(')-1, q =7(j')-1 and redefine

S(?:) = p-l-?: ) ai = aS(i)

T(F) = q+5 , Bj bT(i)

L]

for all 2,7 with 1 <2< n-p , | <j<ngq.

Reverse the sign of R AG and go to Step 1.

T *
For infinite sequences a* .4 b*, we have ,

k3+2k-1

E('l:'+j'—2) =
k2

i',J' are defined as in the preccding algorithm and E(-) denotes

mathematical expectation.

11



Proof. Consider the scquence of pairs in case FLAG = 1 , that is,

(5805 (@) s By) 5 (ayBy) s ey (@), B ), (g By) e

The event that. any of these pairs contains equal terms has probability
1/k apd this is also the conditional probability given any or all the pre-
ceding pairs. Hence the probability that the »r-th pair will be the first

equal one is (k_l)r-l/kr. Now,

N =
- .

1'45'-2

it
BN ow
vV ouon
[

Therefore

% r .3
E(i'+§'-2) = 2.1 43 21(—1 + z“(k—l) =k+2k"1
3

k 2 p=3 K k%
The same can be shown for case FLAG = -1 .
212
THEOREM 2. For all k& , we have ckz =
kT +2k-1

Proof. Obviously, it will suffice to prove (2). Let Xl’X?."
be successive values of 2'+j'-2 found by the algorithm when applied to
the infinite sequences a* and b* . It is clear that the Xi's are
independent, identically distributed random variables (indeed, in each

cycle, ecquality or inequality of pairs is independent of all previous

cycles). Let

2k2

X
k=331

The symmetry ensured by the alternation of sign of FLAG ensures that

after w = 2u cycles of the algorithm, the total number p (resp. q) of



t h e a*i's (resp. b*3,'s) that have been used up satisfies

E(p) = E(q) =

NP

E(l'+j'-2) = w/xk .

Furthermore,

p 1
e

1_;1_‘ > e} = 0(w)
k

i}

s

o]
——

- |

by the law of large numbers. Now a pair (a,b) of random sequences of
length n can be considered as being the first » terms of a* and b* .
If the algorithm (applied to a,b) halts during the (w+l)-stcycle
then the first w cycles are the same as the first w cycles of the
algorithm applied to a* and b*. Now, after [[nxk]l cycles of the

algorithm applied to a*,b* , we have

Pr(p > n(l+e) or p<n(l+e)) = Pr { l[—’_?-gill—— 5

Zx

, 33.]
*x
= 0(n)

and so

Pr(n(l-€) < p < n(l+e) a n d n(l-e) < g <n(l+e))=1-g(n) .
Hence with probability 1-0 (n) , at lcastI[nxk]I-nc and at most
llnxk]] + ne cycles of the algorithm (applied to a*,b*) operate within
a2 and b since ne successive terms in a sequence can give rise to at
most  ne  cycles of the algorithm. Equivalently,

Pr(lv' (g,0) - [ nxd | < me) = 1-0(n)

and so lim n-lf' (n,k) = xy

n->o

Values of a;, with 2 <k < 15 are given in the table below.

15
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Tx

0.727273
0.562500
0.450704
0.373134
0.317181
0.275281
0.242884
0.217158
0.196271
0.178994
0.164477
0.152115
0.141465
0.132197

O oo a O WD B W o

bd e e e e e
(92 B VS S =)

TABLE 4

5. Monte-Carlo estimates for f(100,k)and ¢

2

To obtain further information about ¢ » we carried out two
series of Monte-Carlo simulations. First, for » = 100 and for each
k=2,...,15, we generated 100 pairs (a,b) of random k-ary sequences
and calculated v(a,b) in each case. We denote by mk}‘l the average
value of nb(,’c},,k)l in a given sample. For large n , this quantity

may be considered an estimate of ck . Values of m are tabulated

k 100
in Table 5, and may be compared with the upper and lower bounds in Tables

2 and 4. Table 5 also contains Sk,lOO , Where

1k



r—— r o

>

32
k

) .(n_lv(g,g)-m;«_i)2/(samp1e size -1)

T (a,b)

. . -1
is an unbiased estimator of the variance of n “v(a,b).

k M, 100 %, 100,
2 0.7814 0.0243
3 0.6855 .1 ©.0210
4 0.6242 0.0176
5 0.5778 0.0211
6 0.5332 0.0208
7 0.5065 0.0214
8 0.4812 0.0219
9 0.4593 0.0211
10 0.4423 0.0208
11 0.4268 0.0200
12 | 04126 0.0193
13 0.4003 0.0212
14 0.3827 0.0212
15 0.3712 0.0198
TABLE 5

To estimate ¢, more closely, a second series of simulations

were carried out for k=2 and n = 10, 100, 1000, and 5000. Table 6

lists m and g » as well as tle size of the samplc used to make
2n 2,n

these estimates.

15
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poo

n mk,n sk,n sample size
10 0.6991 0.1079 1000
100 0.7806 0.0238 100
1000 0.80529 0.00468 100
5000 0.8082 0.0015 6
TABLE 6

On the basis of these simulations, it seems fair to conjecture

that e, >4/5 and that the variance of. v(a,b) is

16

o(n
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