Stanford Artificial Intelligence Laboratory JANUARY 1975

- Memo AIM-258

Computer Science Department
Report No. STAN-CS-75-476

A Hypothetical Dialogue
Exhibiting a Knowledge Base
For a Program-Understanding System

by

Cordell Green
David Barstow

Research sponsored by

Advanced Research Projects Agency
ARPA Order No.2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

T

-Stanford Artificial Intelligence Laboratory JANUARY 1975

Memo AIM-258

- Computer Science Department

Report No. STAN-CS-75-476

A Hypothetical Dialogue
Exhibiting a Knowledge Base
For a Program-Understanding System

by

Cordell Green
David Barstow

ABSTRACT

A hypothetical dialogue with a fictitious program-understanding system is presented. In
the interactive dialogue the computer carries out a detailed synthesis of a simple insertion sort
program for linked lists. The content, length and complexity of the dialogue reflect the
underlying programming knowledge which would be required for a system to accomplish this
task, The nature of the knowledge is discussed and the codification of such programming
knowledge is suggested as a major research area in the development of program-

understanding systems.

T his research was supported by the Advanced Research Projects Agency of the Department of

. Defense under Contract DAHC 15-73-C-0435 . The viewsand conchsions contained in this

document are those of the author(s) and should not be interpreted as necessarily vepresenting the
official policies, citherexpressed or implied, of Stanford University, ARPA, or theU.S.
Government.

Reproduced in theU.S.A. Available from the National Technical Information Service, S pringfield,
Virginia 2215 1.

VI

A HYPOTHETICAL DIALOGUE
EXHIBITING A KNOWLEDGE BASE FOR A PROGRAM-UNDERSTANDING SYSTEM
Green and Barstow January, 1975

TABLE OF CONTENTS

INTRODUCTION
(a) SUMMARY

(b) DOMAIN OF DISCOURSE

A DIALOGUE

(a) INTRODUCTION

(b) PART 1: Setting Up the Main Tasks
() PART 2: Synthesizing the Selector
(d) PART 3: Synthesizing the Constructor

(e) PART 4: Complet ing the Program

TYPES OF PROGRAMMING KNOWLEDGE

SUMMARY AND CONCLUSIONS

ACKNOWLEDGEMENTS

REFERENCES

11

17

31

33

35

36

37

— - INTRODUCTION page 1

I. INTRODUCTION

(a) SUMMARY

The overall objective of our research is to gain more insight into the
programming process as a hecessary step toward building program-understanding systems.
Our approach has been to examine the process of synthesizing very simple programs in
the domain of sorting. We hope that by beginning with this simple domain and
developing and implementing a reasonably comprehensive theory, we can then gauge
what is required to create more powerful and general program-understanding systems.

Toward this end, we are working on first isolating and codifying the knowledge
appropriate for the synthesis and understanding of programs in this class and then
embedding this knowledge as a set of rules in a computer program. Along the way, we
have developed some preliminary views about what a program-understanding system
should know.

Our goal in this particular paper is to present a dialogue with a hypothetical
program-understanding system. A dialogue was chosen as a method of presentation
that would exemplify, in an easily understood fashion, what such a system should know.

The subject of the dialogue is the synthesis of a simple insertion sort program. Each
step in the dialogue corresponds to the utilization of one or more pieces of suggested
programming knowledge. Most of this knowledge is stated explicitly in cach step, The
dialogue presented here is a highly fictional one, although some port ions of the

reasoning shown in the dialogue have been tested in an experimental system.

INTRODUCTION " page 2

We are now in the process of formulating the necessary programming knowledge
as a set of synthesis rules. However, the scope of this paper does not include the
presentation of the current state of our rules. So far some 110 rules have been
developed and are being refined in a rule-testing system. The synthesis tasks on which
these rules are being debugged include two insertion sorts, one selection sort, and a
list reversal. We hope to present in a later paper a description of the set of rules.

As will become apparent in the dialogue, one of our conjectures is that a
program-understanding system will need very large amounts of many different kinds of
knowledge. This seems to be the key to the flexibility necessary to synthesize,
analyze, modify, and debug a large class of programs. In addition to the usual types of
programming knowledge, such as the semantics of programming languages or techniques
of local optimization, many other types are needed. These include, at least, high-level
programming constructs, strategy or planning information, domain-specific and general
programming knowledge, and global optimization techniques. In Section Il we discuss

this further and show where these kinds of knowledge occur in the dialogue.

(b) DOMAIN OF DISCOURSE

Topics mentioned in the dialogue include data structures, low-level operations,
and -high-level programming constructs. The main data structures mentioned in our
dialogue are ordered sets represented by lists. The-low level operations mentioned
include assignment, pointer manipulation, list insertion, etc. Some of the higher-level (in

some sense) notions or constructs we consider are permutation, ordering (by various

.INTRODUCTION page 3

criteria), set enumeration, generate and test, generate and process, proof by induction,

conservation of elements during a transfer, and methods of temporary marking (or

- place-saving) of positions and elements. Time and space requirements for various
methods are not discussed.

The target language is LISP, in particular the INTERLISP language [10]. However,

in the dialogue we represent the programs in a fictitious meta-LISP.

IL. A DIALOGUE

(a) INTRODUCTION

In this section we wish to exhibit what we consider to be a reasonable level of
understanding on the part of a program-understanding system. It is not obvious how
best to present this in a way thal is easy for the reader to follow, since the synthesis
process is rather complex. Wc hope that an English language dialogue is adequate. We
have added to the English several “snapshots” of the developing program that help to
indicate where the system is in the programming process. These diagrams are similar
to the stepwise refinements used in structured programming [1] Our dialogue may be
considered as a continuation of the technique of presentation used by Floyd for a

program verifier-synthesizer [2], although our more hypothetical system has been
-allowed to know more about program synthesis for its domain of discourse.
In certain ways we feel that the dialogue is not representative of how a

program-understanding -system would appear to the user during the synthesis process

A DIALOGUE " page 4

(although such a low-level dialogue would at times have its place). For expository
purposes the dialogue has certain choices and inferences made by the machine and
others made by the user. Depending upon the application, these decisions and
inferences could reasonably be re-distributed between user and machine, with some
made by other automated “experts”, such as an efficiency expert, and other decisions
forced by the cant ext in which the program is written. For example, the data
structures for this insertion sort might be determined in advance if the sort routine
were part of a larger system, and all choices made- by the user could be made instead
by rules calculating the efficiency of each branch. A more typical user-machine dialogue
would usually be conducted at a much higher level and in the words used to talk about
the application area for the program. But to present a hypothetical dialogue in which
the program merely said, “OK, I'm all finished,” or, “I wrote a sort program as part of
your operating system,” wouldn’t explicate very much programming knowledge.

The style of the dialogue is not intended to be a strong suggestion about what
the process of specifying a program should be. In fact, we feel that program
specification is a difficult problem in automatic programming research [4], and we touch
on only a few aspects of it here. However, some of the techniques used in the
dialogue will probably find some, as yet undetermined, place in program-understanding
systems. The obvious techniques include interactive specification, natural language
communication, and the periodic presentation of summaries of the structure and content

of the evolving program.

We note that we have endowed our hypothetical system with various abilities,

, A DIALOGUE page 5

including an inference capability, a program simplification capability, and the ability to
illustrate and summarize where it is in the programming process. Further, the dialogue
sometimes takes on the character of a decision-tree, sometimes of goal-oriented
problem-solving, and sometimes of step-wise refinement, These all seem appropriate
to the task.

Various decisions, such as how large to make a step, when to suppressor
explicate an inference, and when to present a diagram, are somewhat arbitrary, but
were made primarily on the basis of what seemed to be the clearest exposition.

Before the start of the dialogue, we wish to remind the user that the focus is
not on the particular mechanisms which might be employed to produce the hypothesized

behavior, but rat her on the reasoning itself.

(b) PART 1: Setting Up the Main Tasks

1. User: Please write me a sort program. Use linked lists to represent the input and
output, which are ordered sots. The output set should be ordered so that each
element is numerically greater than the preceding element. The input set will be
called input and the output set will be called outrur.

2. Machine: As | understand it, a sort program produces as output a permutation
(of the input) that satisfies a test. In this case, the test is that the elements be
ordered on the basis of the above-mentioned ordering relation, “numerically
greater than”. Please choose one of the two known methodst for finding a

! The limitation to only two “known” choices is arbitrary, but it is reasonable to expect
a system to have a limited number of choices.

PART."1: Setting Up the Main Tasks ‘page 6

permutation that satisfies a test:
(a) Generate and test permutations until the desired one is found.
(b) Carefully construct the desired pcrmut at ion.
3. User: Carefully construct the desired permutation.
4. Machine! Should the output set be constructed in the same list cells as the
input set, or should a new list be created?
B. User: A new list should be created.1
6. Machine: Do you want an iterative or recursive program?

7. User: lterative. [We wish to remind the reader that the distinctions between
“user” and “machine” are somewhat arbitrary. Yet a decision must be made, so
we have chosen to let our hypothetical “user” make it. Furthermore there is no
reason to expect the user to have a preference for an iterative or recursive
program. We have our user choose an iterative structure over what might be a
more natural recursive structure, because there are fundamental aspects of the
algorithm which are more explicit in its iterative form.]

8. Machine: Then the program will be in the form of a transfer program which must
b e totali. The program will transfer all elements from the input to positions in
the output, such that the final output is a permutation (of the input) which

satisfies the above ordering relation, namely increasing by numcrical value.

t This does not preclude overwriting the input set during the sort. Overwriting might be
done in order to indicate which elements have been selected from the input.

¥ By “tot al”, we mean that the transfer loop must be repeated until all elements have
been transferred.

.PART 1: Setting Up the Main Tasks - page 7

The transfer paradigmii

transfer program:
LOOP UNTIL a Il elements of input have been processed:
selector:
select the next element from input;
constructor:
add this element to output:
REPEAT,

©. Machine: In order to write such a transfer program, | must achieve several
goals:

(1) Write a selector. On each call, the selector will find that element of
the input which comes next in the chosen transfer order. The selector
consists of two parts:

(a) selector initializer
(b) selector body

(2) Write a constructor. On each call, the constructor will produce a new
output (or modify the old output); so that the new element is in the
appropriate position but that otherwise the order of elements in the
output is unchanged. The construct or consists of two parts:

(a) constructor initializer

T As illustrated, the transfer program has a “selector” part and a “constructor” part,
The selector produces the elements one at a time, and the constructor builds the new
set. Either the selector or the constructor may re-order the set, i.e., the selector can
produce the element s in an order different from the stored order, or the construct or
can build a set with an ordering different from the order of receipt of the elements,

t We will generally present in our diagrams only those parts which seem relevant to
the current cont ext.

Bt |

PART-1: Setting Up the Main Tasks page 8

(b) constructor body
Before | can write these parts, | must:

(8) Select a transfer order--the order in which the variables will be
transferred from the input to the output.

(4) Select a transfer termination method--a test that ail elements have
been transfered, and a position in the program appropriate to the type of
test selected.

(5) Select a name for the transfer variable==a variable which holds as its
value the element being transferred.

After writing the parts, | must:
(6) Combine the selector, constructor and transfer termination test into

a generate and process loop. This completes the final program.

PART 1: Setting Up the Main Tasks page 9

The basic structure of the program (including test posit ion)t

transfer initializer:
selector initializer: (1) (a)
constructor initial ize’r: (2) (a)
transfer body:
LOOP UNTIL DONE:
transfer termination test:

IF all elements have been transferred (4)
THEN DONE:
selector body:
select the next element from input; (1) (b)
cons truc tor body:
addthe element to output; (2) (b)
REPFAT;
DONE: HALT,

10. Machine: Should the transfer order be linear with respect to the initial order
or the final order?t

11. User: Linear with respect to the initial order.

12. Machine: Should the transfer order be identical to the initial order or the
converse of the initial order?

13. User:ident icai.

t Our syntax for iterative statements and exits is that proposed by Zahn [11] and
supported by Knuth [6] Loops arc exited upon encountering an event, such as ponE in
the above example. The program exits to the occurrence of the event label after the
body of the loop. Events are declared after 1.00P_ VNTIL. REPFAT denotes the end of the

loop.

t We define the “initial” and “final” orders to be the conventional list-representation
ordering of the input set and of the desired output set, respectively. By “linear with
respect to an order” we mean either identical to that order or the converse of that
order; The user’s choice of “linear with respect to the initial order” amounts to
choosing an insertion -sort algorithm, rather than a selection sort algorithm. The full
effect of this choice will be seen when choosing the “construction re-ordering” during
the synthesis of the constructor.

PART 1: Setting Up the Main Tasks " page 10

14. Machine: Now let's select a transfer termination method. This will consist of a
test and a position for the test. Since the transfer will be tot al, the transfer
termination test must test whether ail elements have been transferred. This is
equivalent to testing whether no elements remain to be selected. This is the
same test which is used by the select or to stop its generation of elements. | will
use this test as the transfer termination test. While writing the selector | will
thus have to write a third part: the selector termination test. Since this test
must precede a call to the selector body, |. will put the test at the beginning of
the loop.1

18. Machine: | will use eLement as the transfer variable.t

t For ease in presentation the preceding diagram showed the result of this choice (i.e.,
the test appeared in the proper location), although the choice had not yet been made.
Considering ail of the tests which might have been used and ail of the places where
such a test might have been put, one could imagine a great deal of planning going into
making this-rather difficult decision.

t To choose meaningful variable names requires knowledge about communication with
the user and is a difficult problem.

_PART 2: Synthesizing the Select or

(6) PART 2: Synthesizing the Selector

We are about to work on the indicated? parts of the selector

page 11

transfer initializer:
selector initializer: <1
constructor initial izer:
transfer body:
LOOP _UNTIL DONE:
transfer termination test:
IF al | elements havr been transferred+
all elements have been selected =1
THEN DONE :
selector body:
sclect the next element frominput; e |
constructor body:
add the element to output:

REPEAT;
DONE: HALT,

-1 6 . Machine: I will now choose a selection re-ordering. I will use the term “selection

re-ordering” to refer to the relation between (a) the order of the elements in

the input (positional order) and (b) the order in which the elements are selected

by the selector (temporal order). Since the transfer order is linear and forward

- e W EE R B W m E e e e e G @ e B M W M G G m W 4 G B G B N G e W m m M e e e e

t Throughout this dialogue, we will use special characters and type fonts to indicate
different sect ions of these diagrams. We present the meaning of the fonts here in case

confusion arises, but the meaning should be clear from the context,
areas not under cons ideration

(with « « « indicatingareas onitted]
areas currently under consideration
PROGRAM PARTS JUST COMPLETED
RESERVED WNORNS
-BASIC LISP FUNCTIONS
USER- OR MACHINE-DEFINED LABELS

= theright arrow indicates a step in the refinement process

PART 2: Synthesizing the Sclcctor " page 12

(that is, identical to the input order), the selection re-ordering must also be
linear and forward.

17. Machine: A selector is a type of gencrator, a “total” generator that produces
each element of the input once and only once. Corresponding to the three parts
of a selector, this type of generator also has three part sii

(1) a body which actually produces the elements

(2) an initializer which can set up the generator before it is called the
first time

(3) a termination test (to be used as the transfer termination test)
which tests whether all elements have been generated

18. Machine: | must now select the state-saving scheme by which the generat or will
save its state after each call. In order to save its state, the generator must
remember how the input setis divided into two sets;

(1) those elements which have alrcady been generated

(2) those clements which are yet to be generated
Recall that the generator is$ moving linearly through the input list from first to
last to find each new elemcent. Therefore all elements before its current position
in the list have already been generated, and all elements after its current

posit ion are yet to be generated. To save the state of the generator, | need

t Technically, before these parts can be written, the production re-ordering for the
generator must be chosen. In this case, it is obviously the same as the selection re-
ordering, so we have omitted it from thcdialogue in the interests of clarity. The
initializer is writtenafter the producer, since in general the form of an initializer is
dependent on the body of the loop to be init ialized.

_PART 2: Synthesizing the Selector

page 13

only save a marker for the generator’s current position in the i list.One

pointer will be sdequat e for this purpose. Let us call this pointer resr.

We are about to work on the indicated parts of the selector body

transfer initializer:
transfer body:
LOOP UNTIL DONE:
selcctor body:
selcct the next elementfrom input*
generate the next element frominput=>

produce element; <] (2)
increment state of generator; <] (1)
REPEAT;
DONE: HALT.

19. Machine: Now | will synthesize the body of the generator. | need code for

two pieces:
(1) increment the state of the generator

(2) produce the next element

PART 2: Synthesizing the Selector page 14

20.Machine: To increment the state of the generator, | will advance the position
pointer by one. Since the representation is a linked list, the code for this is

merely:

REST «CDR(REST)!

21.Machine: Now | will write the producer. Since the state-saving scheme uses a
pointer, rest, to separate those elements generated from those not yet
generated, and since the next element to be generated is the first element of
the non-generated set, then the process of saving the state will also effectively
mark the next element to be generated.1 To produce the next element, then, |
need merely take the first element of the non-generated set, which is pointed to
by REST.% Since the represent at ion is linked-lists, the subprogram for this is:

ELEMENT ¢ CAR(REST)

22. Machine: t now put the pieces of the generator body together into a block:

ELEMENT «CAR(REST);
REST + CDR(REST)

t Throughout, we will use the standard LISP terminology:
CAR(L) gives the first element of L
CDR(L) gives the remaining elements of L
CONS(X L) creates a new list with first element X and with the rest of the

elements being those of the list .
NIL is the empty list (and list terminator)

tIn a selection sort, the code to find the next element to be generated would be
considerably more complex since it would need to find the largest of the remaining
elements. .

t There are situations in which the value of the element or a pointer into the list might
be returned, rather than the element itself.

- _PART 2: Synthesizing the Selector page 15

We have just finished the indicated parts

transfer initializer:

transfer body:

LOOP UNTIL DONE:
se | ec tor body:
select the next element from input*
generate the ncoxt element from input=>
produce element=>

ELEMENT «CAR(REST); |
increment state of generator=
REST «CDR(REST); = |
REPEAT;
_ DONE: HALT.
2 3. Machine: | will now write the generator initializer and the generator

termination test. Since | am using the pointer REST to mark the elements not
generated, and since initially no elements have been generated, | must initialize it

to the entire input set:

REST « INPUT

24. Machine: Now let's write the generator termination test {which will be used

as the transfer termination test). To test whether all elements have been
generated, | will test whether there are no elements remaining. Since the
elements are being generated in a forward linear order, | simply test for being at

the end of the input list. Since the representation is a linked list, this is simply a

- test for emptiness:

REST =NIL?

PART 2: Synthesizing the Select or page 16

We have just finished the indicated parts

transfer initial izer:
selector initializer:*
generator initializer:*
" REST« INPUT; 4 |
. L[] .
transfer body:
LOOP UNTIL DONE:
transfer tcrminat ion test:
IF all elements have been transferred*
all elements have been selected=>
allelements have been generated*
no clement9remain>
REST= NIL) b |
THEN DONE:
selector body:
select the next element from input=+
generate the next element from input*
produce elcment=>
ELEMENT ¢ CAR(REST);
increment state of generator-

REST « CDR(REST);
REPEAT;
DONE: HALT,

26. Machine: | have finally finished the generator which the selector needed. In

fact, that is all there is to the entire selector, so the selector is finished.

PART -3: Synthesizing the Construct or page 17

(d) PART 3! Synthesizing the Constructor

We are now working on the indicated parts of the constructor

transfer initializer:
selector initializer:
constructor initializer: |
transfer body:
LOOP UNTII. DONE:
transfer termination test:
IF all elements have been transferred=
all elements have been selected
THEN DONE ;
se | ec tor body:
select the next element from input;
constructor body:
add the element to output; o |
REPEAT;
DONE: HALT,

28. Machine: One way to create an output set that is a permutation of the

elements received by the constructor is to write an inductive constructor that

satisfies the following constraints:
(1) The initial output set must be empty.
(2) Each construction operation must be such that the new output set
consists of the old set plus one new element.1

(3) After each construction operation, the new set must satisfy our
ordering relation.
27.Machine: To write such a constructor, iwo decisions must first be made:

- (1) Choose a construction re-ordering.

1 It is sometimes convenient to think of the constructor as producing a sequence
of output sets, and sometimes as successively modifying one output set.

PART 3: Synthesizing the Constructor page 18

(2) Choose a construction met hod for building a new set, given the old
set, the new element, and the position where the new element should
occur in the set.
After these choices are made, we will produce code for the constructor body and
then the constructor initializer.1
2 8. Machine! | will now choose a construction re-ordering. 1 will use the term
“construction re-ordering” to refer to the relation between (a) the order in which
the elements are received by the constructor (temporal order) and (b) the order
of the elements in the output (positional order). The re-orderings may be linear
or complex, where linear means same as or converse of. Since the order in
which the elements are received (the transfer order) is the same as the input
order, and the desired output order is not necessarily the same as (nor the
converse of) the input order, the construction re-ordering must be complex (non-
linear).t This re-ordering will be based on the “numerically greater than” ordering
relation. This means that the correct position of each element in the output list
will ‘be such that all preceding elements are less than or equal to the new

element and all following elements are greater than the new element.8

1 Note that we have implicitly decided that the construction consists of two steps: (1)
finding the position; (2) adding the element to the set. One might imagine schemes in
which finding a posit ion and modifying the set are interleaved operations,

t This choice of a complex construction re-ordering, along with the choice of a linear
selection re-ordering, completes the specification of an insertion sort, all of which
follow from the user’s choice of a transfer order “linear with respect to the initial
order”.

¢ For clarity, we will refer throughout to an element being “less than” or “greater than”

R —

PART -3: Synthesizing the Constructor page 19

29. Machine: Now we must select a construction method for building a new set from
the old one. The choices are:
(a) List insertion: Modify the structure of the old list by inserting a new
— cell containing the new element.
(b) Shifting; Allocate a new space at the beginning (or end) of the set
and shift all elements before (after) the new element by one position,
Then put the new element into the vacant place.1
(c) Copying: Copy the old set into a new space, one cell larger than the
old space, with the new element taking up the extra position.
Which shall | use?
30. User: List insertion.
- 31. Machine: Now | will write the body of the constructor. The body consists of
two parts:
(1) a position finder, which finds the position where the new element

belongs

(2) a list in serter, which inserts the element at this position

32. Machine: When a position has been found, there are several ways to indicate

that position. First we must select one of these representations for a position,

another element and mean that the first element precedes or follows the second
— element according to the chosen ordering relation.

t Perhaps, since the “shifting” operation is such an unlikely choice when lists are
being used, it shouldnt be presented to the user, It could be called forth only
upon questioning or in unusual programming contexts.

PART 3: Synthesizing the Construct or page 20

We are considering positions to be between two elements in a list. Since the
construct ion met hod involves inserting a new cell into the list, we must choose a
representat ion appropriate to insertions into linked lists. | know about two types

of such represent ations:

(a) Use one pointer as illustrated:

{posit ion)

l

Al —+——C |

BEFORE

In using this representation, a special unique value for BEFORE must be used if
the correct position is at the front of the list. “FRONT” will be used for this
purpose.

(b) Use two pointers as illustrated:

(posi t ion)
Al +——|C | 4——
~ ~
BEFORE AFTER

In using this representation; a special unique value for BEFORE must be used if
the correct position is at the front of the list. “FRONT” will be used for this
purpose. If the correct position is at the end of the list, AFTER will point to the

empty list.
Which shall | use?

33. Usep: Please use two pointers. [This choice might be based either on looking

ahead or on knowing at this point that the BEFORE pointer is useful for inserting

PART - 3: Synthesizing the Constructor page 21

into the list and the AFTER pointer is useful for incrementing the state of the
position finder and for testing the correctness of a position.]
84. Machine! | need variable names for the two pointers. | will use sEFORE and

AFTER.

We arc about to work on the position finder as indicated

transfer initializer:
« o 0
transfer body:
LOOP UNTIL DONE:
« o
constructor body:
add the element to output*
find the position for the new element; “a
insert the neu element into the position;
REPEAT;
DONE: HALT,

36. Machine! | am now writing the program that finds the position. First we will
select a searchstrategy for searching the output list to find the correct position.
The only strategy which | know about -for linked lists is a forward linear scan, so |
will use that strategy.

36. Machine: Since the search strategy is a forward linear scan of a finite list, the
search strategy is total;- that is, all possible positions will be considered. Since
the old output set is well-ordered, and since the ordering relation applies to all
elements involved, one of these possible positions must be correct. Therefore,

- the search for a correct position must succeed, and no exit will be required for

the case of not finding a correct position. So | will use a loop which consists only

PART 3: Synthesizing the Constructor page 22

of a test and exit on the correctness of the position and an incrementer. The
incrementer will increment the state of the search according to the search
strategy and specify the next position to be considered. | will also need to
initialize the loop.

37. Machine: Since the search strategy is forward linear, the correctness test and
the incrementer are independent. This means that the next position specified by
_the incrementer does not depend on the results of the correctness test, This

allows a simple non-branching incrementer.i

We are about to work on the indicated parts of the position finder

transfer initializer:
L L] L]
transfer body:
LOOP_UNTII. DONE:
cons tructor body:
add the element to output=>
findthe position for thenew e | ement>
initialize position finder loops i (2)
LOOP UNTIIL CORRECT POSITION FOUND;
IF position is correct < (3)
THEN CORRECT POSITION FOUND;
increment state and specify position; < (1)
REPEAT;
CORRECT POSITION FOUND:
insert the net element into the position;
REPEAT;
DONE: HALT.

88. Machine.” Now let’s design the incrementer, First we must select a scheme for

- e wm s me e wm e e e W e e e o e e m m e e o e e e e o e s e e e e e e e =

T If the search siralegy had been to use a binary chop, for example, then the next
position to be tested would be based on the results of the test.

-PART. 3: Synthesizing the Construct or page 23

representing the state of the search. The incrementer will increment this state
and will also specify the next position to be considered,

89. Machine: Since the search strategy is a forward linear scan of the linked list,
and since the two-pointer position representation has been selected, the two
pointers (serore and arter), which are already being used to represent the
posit ion, are also sufficient to remember the st ate.1

40. Machine: An incrementer for a forward linear scan using the two-pointer
position representation requires two pieces of code: one to reset serore t0 the
value of arter,and one to increment arter. This is adequate both for the
general case in the interior of a linked list, and in the special case at the front of
a list, where serore originally has the special value "FRONT" and is reset to point
to the first cell in the list. The pieces will be put together in that order,

41. Machine: | am now writing the code to reset sBeFore to the value of arTer,

The code to do that is:

BEFORE + AFTER

42, Machine: | am now writing the code to increment AFTER. Since the

representation is a linked list, the code to do that is:

AFTER «CDR(AFTER)

t The position memory and the state memory need not always be the same. For
example, if only serore were used to remember the position, a good choice Of state
memory would probably include a pointer playing the same role as ArTeR.

PART 3: Synthesizing the Constructor page 24

43. Machine: Putting these two pieces together, we have the following

increment er for the position finder:

BEFORE + AFTER,;
AFTER «CDR(AFTER)

44. Machine: |will also need a position initializer which initializes both the state
of the position finder and the position representation to the first position
according to the search strategy.

46. Machine: Since the position representation is also used to represent the
state, we need only initialize the position representation.

46.. Machine: Since the search strategy is forward linear scan, we must initialize
the posit ion represent ation to the position at the front of the list. The
convention for representing the position at the front of the list is that seFore has
the unique value “FRONT” and that AFTER points to the entire list.

47. Maohinet The code to set serore to "FRONT" is:

BEFORE ¢ “FRONT”

48. Machine: The code to set arter to the entire list is:

AFTER « OUTPUT

40. Mauhinet Putting these two pieces together, the initializer for the position

finder is:

BEFORE ¢ “FRONT”;
AFTER ¢« OUTPUT

We havo just finished t ho indicated parts of the position finder

transfer initial izer:
o 0 @
transfer body:
LOOP UNTIL DONE:
L] L] []
constructor body:
add the element to output*
find the position for the new element-
initial ize position finder loop=+
BEFORE « “FRONT”;
AFTER«OQOUTPUT;
LOOP UNTIL CORRECT POSITION FOUND;
IF position is correct
THEN CORRECT POSITION FOUND;
increment state and specify posi t ion>
BEFORE « AFTER;
AFTER «CDR(AFTER);

dd

ad

REPEAT;
CORRECT POSITION FOUND:
insert the new element into the position:
REPEAT;
DONE: | {ALT,

B0. Machine: | will now work on the exit test for the correct position. | will first
try to infer the necessary pieces of this test.

B1. Machine: Since the set is ordered, it follows from transitivity that the new
element need not be compared against all of the elements of the set, but merely
against the elements immediately adjacent to the position being considered,

62. Machine: Since the search strategy is forward linear scan, at any point in the
search, all of the elements occurring before the current position in the list have
already been tested and found to be less than the new element. - This holds for
all positions including the initial position in which no elements occur before the

position in the list.

PART 3: Synthesizing the Constructor page 26

63. Machine: Thus, the test for correctness of position need onlyinclude atest
that all elements occurring after the current position in the list are greater than
the new element.

64 . Machine! To test that all elements occurring after the current posit ion are
greater than the new element, the program must first test whether there are no
elements occurring after the current position. Then, if there are such elements,
it must test whether all such elements are greater than the new element.

BB8. Machine: A test that there are no elements occurring after the current
position is simply a test whet her the list pointed to by the second pointer

(AFTeR) is empty:

AFTER s NIL ?

66. Machine: As noted previously, the correctness test need only consider the
immediately adjacent elements, so that a test that all elements occurring after
the current position are greater than the new element is simply a test that the
first element occurring after the current position is greater than the new
element. To write such a test | need code to extract the first element from the
list pointed to by AFTER and a test whether this element is greater than the new
element.

67. Machine: The code to extract the first element from a list is:

CAR(AFTER)

68. Machine: The code to test whether this element is greater than the new

element is:

CAR(AFTER)> ELEMENT ?

PART" 3: Synthesizing the Construct or

60. Machine: Given the two partial tests, the complete correctness

ordered OR! of the two partial tests:

[AFTER . NIL] OR [CAR(AFTER)> ELEMENT] ?

The indicated parts complete the position finder

page 27

test is an

transfer initializer:
L[] . L]
transfer body:
LOOP UNTIL DONE:
constructor body:
add the element to output-
find the position for the new element-
initial ize posit ion f incler loop*
BEFORE + “FRONT”;
AFTER « OUTPUT;
LOOP UNTIL CORRECT POSITION FOUND;
IF position is correct=>
no elements occur after position*

AFTER= NIL “1
OR next element is greater-
CAR(AFTER)> ELEMENT <1

THEN CORRECT POSITION FOUND:
increment state and speci fy posi t ion>
BEFORE *+ AFTER;
AFTER «CDR(AFTER);
REPEAT;
CORRECT POSITION FOUND:
insert the new element into the position;

REPEAT;
DONE: HALT,

80.Machine: Having completed the position finder, we must now write the list

- e - -

t By “ordered OR” we mean that the second argument is evaluated only if the first

argument is false.

PART 3: Synthesizing the Constructor page 28

inserter which takes a new element, a position represented by the two-pointer
schema, and the output set, and produces a new output set with the new
element in the indicated position. The method of inserting an element into a list
depends on whether or not the indicated position is at the front of the list. | will
need to write a test to scparate the “front of the list” case from the “anywhere

else” case, and use a different method for each case.

We are about to work on the indicated parts of the list inscrter

transfer initial izer:
transfer body:
LOOP _UNTII DONE:
. L I]
constructor body:
add the element to output-
find the position for the new element:
insert the new element into the position-

IF position is at front i |
THEN add element on to front 5
ELSE insert into interior . |

REPEAT;
DONE: HALT.

61. Machine: A t cst for being at the front of the list is a test whether the value

of the first pointer is "FRONT". The code for this is;

BEFORE = “FRONT" ?

62. Machine: The addition of the new element in the “front of the list” case
entails no replacement into the list, but instead an addition to the front of the

list.” The code to do this is:

OUTPUT « CONS(ELEMENT OUTPUT)

-PART- 3: Synthesizing the Constructor page 29

63. Machine: The addition of the new element anywhere else in the list requiresa
replacement into a cell in the list. The code to do this is:

CDR(BEFORE) « CONS(ELEMENT AFTER)i

The marked parts complete the element adder

transfer initializer:
[] [] []
transfer body:
L.OOP UNTIL. DONE:
[] [] []
constructor body:
add the element to output;
find the position for the new element:
insert the neit element into the position*
IF position is at front>

. BEFORE = “FRONT” A |
THEN add element onto front*
OUTPUT « CONS(ELEMENT OUTPUT) “U

ELSE insert into interior*
CDR(BEFORE) « CONS(ELEMENT AFTER); il |

REPEAT;
DONE: HALT.

64. Machine! Having completed the list inserter (and thus the constructor body),
we must now write the constructor initializer. Since we are writing an inductive
construct or that must begin with an empty output list, we simply set the out put

— list to the empty list:

OUTPUT « NIL

t LISP programmers will recognize this as reracp .

PART 3: Synthesizing the Constructor page 30

The initializer completes the constructor

transfer initial izer:
constructor initializer*
OUTPUT«NIL; 1
transfer body:
LOOP UNTIL DONE;
[] [] [)
cons truc tot- body:
add the element to output*
find the position for theneuelement=>
initialize position finder loop=>
BEFORE + “FRONT”;
AFTER « OUTPUT; -
LOOP_UNTIL. CORRECT POSITION FOUND;
IF position is correct*
no e | ements occur after posi t ion=>
AFTER = NIL
OR next element is greater>
CAR(AFTER)> ELEMENT
THEN CORRECT POSITION FOUND;
incremen t state andspecifyposition>
BEFORE « AFTER;
AFTER +CDR(AFTER);
REPEAT;
CORRECT POSITION FOUND:
insert the nri element into the posi tion»>
IF positionis at front*
BEFORE = “FRONT”
THEM add element onto front-
OUTPUT « CONS(ELEMENT OUTPUT)
EISE insertinto interior>
CDR(BEFORE) « CONS(ELEMENT AFTER);

DONE: HALT,

6B6. -Machine: We have now finished the constructor.

PART 4: Completing the Program

(e) PART 4! Completing the Program

The final program

page 31

transfer initializer:
selector initializer:*
generator initializer:*
REST ¢« INPUT;
constructor initializer*
OUTPUT ¢ NIL;
transfer body:
LOOP UNTIL DONE:
transfer termination test:
IFallelements have been transferred*
al | elements have been selected=
all elements have been generated”
noelementsremain=>
REST = NIL
DHEKN N E ;
se | ector body:
select the next element from input=+
generate the next element from input=
produce element*
ELEMENT «CAR(REST);
increment state of generator*
REST «CDR(REST);
cons truc tor body:
add the element to output*
find the position for the new element*
initialize position finder loop*
BEFORE + “FRONT”;
AFTER « OUTPUT;
LOOP UNTIL CORRECT POSITION FOUND:
IF position is correct=+
no elements occur after position*
AFTER = NIL
OR next element is greater=
CAR(AFTER)> ELEMENT
.THEN CORRECT POSITION FOUND;
increment stateandspecifyposition=>
BEFORE + AFTER;
AFTER +CDR(AFTER);
REPEAT;
CORRECT POSITION FOUND:
i nser t the neuelenentintothe position>
IF position is at front=>
BEFORE = “FRONT”
THEN add element onto front=>
OUTPUT ¢ CONS(ELEMENT OUTPUT)
ELSE insert into interior*
CDR(BEFORE) « CONS(ELEMENT AFTER);

REPEAT:
DONE: HALT,

PART 4: Completing the Program page 32

66. Machine: Having completed the pieces of the Selector and the pieces of the
Constructor, | can assemble the pieces into the final program using a Generate
and Process paradigm with the termination test before the generator.

67. Machine: The final program, without any meta-code or comments, and its

translation into LISP are given below:

[LAMBDA NIL
(PROG NIL

REST « INPUT;
OUTPUT ¢ NIL;

(SETQ OUTPUT NIL)
(SETQ REST INPUT)

|
|
|
]
LOOP_UNTIL DONE; | Ll -
IF | (COND
REST = NIL] ((NULL REST)
THEN DONE; | GO L2))
ELEMENT «CAR(REST); | (SETQ ELEMENT (CAR REST))
REST «CDR(REST); I (SETQ REST (CDR REST))
BEFORE ¢ “FRONT”; | (SETQ BEFORE “FRONT”)
AFTER « OUTPUT; I (SETQ AFTER OUTPUT)
LOOP UNTIl. CORRECT POSITION FOUND; | L3
IF | (COND
AFTER = NIL | ((OR (NULL AFTER)
OR CAR(AFTER) > ELEMENT | (GREATERP (CAR AFTER) ELEMENT))
THEN CORRECT POSITION FOUND; | GO L4))
BEFORE « AFTER; I (SETQ BEFORE AFTER)
AFTER «CDR(AFTER); | (SETQ AFTER (CDR AFTER))
REPEAT; | (GO L3)
CORRECT POSITION FOUND: L4
IF (COND

BEFORE = “FRONT”
THEN OUTPUT ¢+
CONS(ELEMENT OUTPUT)
ELSE
CDR(BEFORE) «
CONS(ELEMENT AFTER);
REPEAT;
DONE: HALT,

!

((EQUAL BEFORE “FRONT”)
(SETQ OUTPUT

(CONS ELEMENT OUTPUT)))
(T
(RPLACD BEFORE
(CONS ELEMENT AFTER))))
(GO L1)

L2 (RETURN NIL]

page 33

ITI. TYPES OF PROGRAMMING KNOWLEDGE

On reviewing the dialogue, we can see that there are several types of
knowledge involved. We first note that there is significant use of a kind of strategy or
planning knowledge. On one level, we see this in steps 9 and 14, where the system
discusses what must be done to write a transfer program. In step 9 for example, the
sub-steps 3 and 4, where the transfer order and the transfer termination method are
chosen, are really a kind of strategy for determining the form that the basic algorithm
will take. On a different level, we see a kind of global optimization in steps 21 and 39,
where the system decides that information structures designed for one purpose are
sufficient for another. In step 21, for example, the pointer originally chosen to save the
state of the selector (by marking the dividing point between those elements generated
and those not yet generated) is found to be adequate for the purpose of indicating the
next element to be generated. One could imagine, as an alternative to this type of
planning, the use of more conventional local optimization such as post-synthesis removal
or combination of redundant portions.

We also see that the system makes considerable use of inference and
simplification knowledge. Inference plays a role in the global optimization planning
mentioned above, and also appears in steps 16 and 28, where the selection and
construct ion re-orderings are determined. Simplification and inference are both
apparent in steps 50 through 56, where the test for the correctness of the posit ion
was reduced to a simple test on the variable AFTER. Simplification and inference are
also needed in step 36 where the system decides that an error exit (for the case of no

position being found) is unnecessary.

TYF;ES OF PROGRAMMING KNOWLEDGE page 34

Additionally, there are types of knowledge which are spread throughout the
dialogue. Relatively domain-specific knowledge (in this case, about sorting) is
particularly necessary in the earlier stages. Language-specific knowledge (inthis case,
about LISP) is necessary when the final code is being generated. General programming
knowledge, such as knowledge about set enumeration and linked lists, is necessary
throughout the synthesis process. Further, one could imagine significant use of
efficiency information, although it is not present in our particular dialogue.

The variety of types and amounts of knowledge used in the dialogue would tend
to indicate that much more information is required for automatic synthesis of sorting
programs than appeared in earlier, computer-implemented, systems for writing sort
programs [3, 7,11]. Ruth has developed a formulation of the knowledge involved in
interchange and bubble sort programs [9] His formulation is aimed primarily at the
analysis of simple student programs in an instructional environment and the analysis task

as defined does not seem to require the same depth and generality of knowledge
suggested by our dialogue. Our intuition is t-hat a significantly greater depth of
programming knowledge would be required to extend his formulation to a larger class of
programs. It is also interesting to compare the information involved in our dialogue to
that found in non-implemcntcd (and not intended for machine implementation) human-
oriented guides for sort-algorithm selection and in text books on sorting. Martin [8]
gives methods for selecting a good algorithm for a particular sorting problem. Those
algorithms are much more powerful than those we deal with and their derivation would

require considerably more information. We note that at the level of algorithm

TYPES OF PROGRAMMING KNOWLEDGE page 35

description presented, little explicit information is available to allow pieces of
algorithms to be fitted together or to allow slight modification of existing algorithms, A
sorting textbook such as [5], gives several orders of magnitude more information on
sorting than is required for our dialogue.

Can we measure or estimate in some way how much knowledge is necessary for
program-understanding systems? The fact that the dialogue describing the synthesis
took some seventy steps (with some of the steps rather complex) is an indication that
considerable information is involved. From our experiments, we estimate that about
one or two hundred explicitly stated “facts” or rules would get a synthesis system
through the underlying steps of this dialogue. Furthermore, it is our guess that at least
this much knowledge density will be required for other similar tasks, in order to have
the flexibility necessary for the many aspects of program understanding. Although we
are suggesting that such information must be effectively available in some form to a
system, we are not in a position to estimate how much of this information should be
stated explicitly (as, say, rules), how much should be derivable (from, say, meta-rules),

how much should be learned from experience, or available in any other fashion.

XV. SUMMARY AND CONCLUSIONS

In this paper we have tried to exemplify and specify the knowledge appropriate
for a-program-understanding system which can synthesize small programs, by presenting

adialogl.ie between a hypothetical version of such a system and a user. Our conjecture

SUMMARY AND CONCLUSIONS page 36

is that unless a system is capable of exceeding the reasoning power, and even some of
the communication abilities, exemplified by the dialogue, the system will not effectively
“understand” what it is doing well enough to synthesize, analyze, modify, and debug
programs. It appears that a system which attempts to meet this standard must have
large amounts of many different kinds of knowledge. Most such programming knowledge
remains to be codified into some form of machine implementable theory. In fact, the
codification of such knowledge is one of the main research problems in program-
understanding systems.

As for our own work, in the near future we expect to refine our experimental
system until it approaches (as closely as seems useful and possible) the standard
suggested by our dialogue (but without the actual language interface). We hope then
to extend the system to deal with several different types of sorting programs. Perhaps
then we will be in a better position to estimate the requirements of larger program-

understanding systems.

V. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the helpful suggestions given by Avra J.
Cohn, Brian P. McCune, Richard J. Waldinger, and Elaine Kant after numerous readings of
earlier drafts of this paper. Computer time for our preliminary tests was made

available by the Artificial Intelligence Center of the Stanford Research Institute.

S r—

page 37

VI. REFERENCES

[1] Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R.,Structured Programming (New
York: Academic Press, Inc., 1972).

[2] Floyd, Robert W., Toward Intcractive Design of Correct Programs,
Computer Science report STAN-CS-71-235, (Stanford University, September, 1971).

[3] Green, C. Cordell, The Application of Theorem Proving to Question-
Answering Systems, Computer Science report STAN-CS-69-138, AlM-96,
ADG696394,(Stanford University, August, 1969).

[4] Green, CC., Waldinger, RJ., Barstow, D.R., Elschlager, R., Lenat,D.B,McCune,
BP,Shaw,DE, an d Steinberg, LI, Progress Report on Program-Undcrst anding
Systems, Computer Scienc report STAN-CS-74-444, (Stanford University, August,

1974).

[5] Knuth, Donald E., Sorting and Searching, T#he Artof Computer Programming,vol.
3 (Reading, Mass.: Addison-Wesley, 1973).

[6] Knuth, Donald E., Structured Programming with GOTO Statements, Compting
Surveys,vol.6 (December, 1974), 26 1-301.

[7] Kowalski, R.A., Predicate logic as programming language, Memo no, 70,
Dept. of Computational Logic, (University of Edinburgh, November, 1 974).

[8] Mart in, William A, Sorting, Computing Surveys, vol. 3 (December, 1971),147-
174.

. [9] Ruth, Gregory R., Analysis of Algorithm Implementations, Project MAC
report MAC TR- 130, (Massachusetts Institute of Technology, May, 1974).

[10] Teitelman, Warren, rral, INTERLISP Reference Manual, (Xerox Palo Alto
Research Cent cr and Bolt Beranck & Newman, 1974).

[11] van Emden, MH, First-order predicate logic as a high-level program
.language, Report MIP-R-106, Dept. of Machine Intelligence, (University of Edinburgh,
May, 1974).

[123 Zahn, Charles T., A Control Statement for Natural Top-down Structured
Programming, presented at Symposium on Programming Languages, Paris, (1974).

