
Stanford Artificial Intelligence Laboratory December 1974
‘Memo AIM-255

Computer Science Department
Report No. STAN-CS-74-473

Automatic Program Verification II:

VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION

by

Norihisa Suzuki

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

Hows.
W We latst tate) 4

eS

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY DECEMBER 1974
MEMO AIM-255

COMPUTER SCIENCE DEPARTMENT

REPORT STAN-CS-74-473

AUTOMATIC PROGRAM VERIFICATION II;

VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION |

<

by

Norihisa Suzuki

~

\

ABSTRACT:

\ Methods for verifying programs written in a higher level programming language are

devised and implemented. The system can verify programs written in a subset of
PASCAL, which may have data structures and control structures such as WHILE,
REPEAT, FOR, PROCEDURE, FUNCTION and COROUTINE. The process of creation of

. verification conditions is an extension of the work done by Igarashi, London and
Luckhamuhich is based on the deductive theory by Hoare. Verification conditions
are proved using specialized simplification and proof techniques, which consist

. of an arithmetic simplif ier, equal i ty replacement rules, fast algorithm for
simpl i fying formulas using propositional truth value evaluation, and a depth

_ first proof search process. The basis of deduction mechanism used in this prover

. is Gentzen-type formal system. Several sorting programs including Floyd's
TREESORT3 and Hoare'sFIND are verified. It is shoun that the resulting array is
not only well-ordered but also a permutation of the input array. :

“ This research was supported in part by the Advanced Research Projects Agency of the Office of the
Secretary of Defence under contract DAHC 15-73-C-0435.

The view and conclusions contained in this document are those of the author and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research ProjectsA gency or the US Government.

\

Reproduced in the USA. Available from the National Technical Information Service, Springfield,

Virginia 22151.

\

I. Introduction

Verifying that programs work faultlessly 1s a necessity. We can test whether they work or not

in several cases. But unless we prove the correctness of programs, it is impossible to claim that they

endure long lasting usage. Since proving by hand 1s cumbersome and not always free of errors,

mechanization of verification 1s strongly desired.

Some attempts have been made to verify programs mechanically [11,(2],[10],[11], but there are

several problems which must be solved in order to make automatic verification of programs

practical.

First, we have to find a way to express assertions more easily. Most of the previous verifiers

require assertions to be written in first order predicate sentences with a fixed number of predefined

predicate symbols and function symbols. But this is in many cases mconvenient and infeasible. For

example, if we have to deal with the correctness of programs with complex data structures, we need

to express properties in higher order sentences. Thus, many complex programs have not been

verified because the assertions about programs have not been properly stated.

Second, we have to find a better way to prove verification conditions automatically. Proving

verification conditions using a general automatic theorem prover is in most of the cases

unsatisfactory. If we are verifying programs in specific domains, we can use special properties of

functions and predicates to construct fast special purpose provers. King[10] and Deutsch[2] have

] succeeded by using a built-in simplifier for integer arithmetic, but these programs still cannot cope

with other domains.

) In most verification systems the user must specify not only input and output conditions but

-also loop invariants. Although it 1s an undecidable problem to generate loop invariants, the system

should aid the programmer in constructing loop invariants. Also, programs with complex data

\ structures and complex control structures must be verified, including parallel programs.

In this paper we describe a fast simplification and theorem proving facility that 1s a new

component of the Stanford PASCAL Verification System described by Igarashi, London and

\

Luckham in [9]. This system permits the programmer to formulate the semantics of his data

. structures, procedures, and functions in simple, natural statements. These statements are used by the
system as simplification and special theorem-proving rules during verification. So programs

computing over any domain can be dealt with easily.

As an example, automatic verification of a sorting program 1s studied in detail. It 1s shown

~ that not only is the resulting array ordered but also it 1s a permutation of the input array. The

verification of Floyd’s TREESORT program and Hoare’s FIND program are listed, both of which

are verified within a reasonable amount of computation time. Because these programs are complex,

L and use data structures--in this case an array data structure, whose semantics has not been studied

well--they have been considered as one of the big challenges for automatic verification. Thus our

method of verification 1s very promising for practical use.

(

(

L 2

|

Il. Expressing Assertions by Structured Definitions.

Here, we make a few comments about how the user of the system might construct

— documentation in a way that aids the verification of his program. The main idea 1s to use defined

| concepts that are close to the natural concepts employed in creating the program.

= As 1s discussed mm the previous section, it is impossible to state all properties of programs in

. first order sentences with fixed number of predefined function symbols and predicate symbols. As an

C oo example let us examine the process of verifying sorting programs. Suppose a program S accepts an

array A and sorts it and output it as an array B. Then, the correctness of S 1s expressed in terms of

| ” properties that elements of B are ordered in ascending(or descending)order and B consists of all

R elements of A and of nothing else. The first property can be stated as

VI. (1<I<N-15B111<BI1411).

| But one way to describe the second property is to state that there is a one-to-one mapping from
elements of A to elements of B. That is the sentence

; 3F. (VI. (1<I<Nol<F(1) sNIAYID, Jd. (1sT<JsNoF(1) =F (J)) AVI. (1<I<sNOATT}=BIF(1}]1))

expresses the second property.

| But previous verifications of sorting programs, either manual or automatic, have dealt with
: only the first property. The detailed study of FIND by Hoare[7] briefly explains that to prove the

" cotrrectnessitls necessary to show that the second property holds, but does not formally verify it. He

thought that the assertions were not obvious and the proof would be tedious. It 1s certainly

v disadvantageous to introduce second order sentences because they require complicated proof

procedures. But since it 1s essential for the automatic verification to prove the second properties

formally, we have to invent a way to verify them.

The way to avoid using second order sentences 1s to extend the language by introducing new

symbols. There 1s also another nice thing about introducing new symbols. To express that array B is

a permutation of array A, we have to employ a rather complex sentence. It might be as difficult to

understand what 1t means as to understand what the program does. Also it 1s very easy to introduce

3

|

errors. But we can avoid complexitites by writing

| Permutation(B,A).

~ In general there are two methods to introduce new symbols. The first method 1s to assume the
new symbol as a shorthand representation of a sentence represented by already defined symbols. The

second method is to define symbols by axioms stating the properties of these symbols. For example,

after defining axioms of propositional calculus consisting of symbols “>" and "-", we can introduce

“A” symbol as a shorthand notation for -(A>-B). But also we can introduce it by axioms,

AnBoA, AABSB and Ao (BoAAB)

oo Assertions describing a program can be structured top-down by using new symbols. Their

meanings are refined succesively until everything is well-defined. An analogous concept can be

found in programming. We can enrich the language and clarify the meaning by introducing new

symbols (operations). These new operations are defined either by macros or by procedures. Macros

define new operations by using already defined concepts. So they do not give more computation

power but clarify programs. Whereas, procedures can define new operations recursively, so that they

give NEw power. K

Following this analogy to programming, we can call the way we write predicate sentences with

newly defined symbols a structured way of expressing assertions. A detailed study of how to

introduce new symbols 1s in section V, and also 1s found in the work by von Henke and

Luckham[5]

In the case of "Permutation (B,A)", we could define it as the shorthand representation of the

previous sentence. But instead we shall define it by a set of properties (specifications) including the

following axiom,

YA, I, J.Permutation(Exchange(A,1l,J),A),

where Exchange (A,1,J) 1s a function mapping an array A into an array resulting from

exchanging I-th element and J-th element of A. In addition, Permutation is an equivalence relation,

> so we must include axioms for symmetric, reflexive and transitive properties.

We have replaced a second order statement by a relation which has arrays as individuals.

Now, arrays are a second sort of individuals.

\ —_—
4

Thus, we need to have a special semantic definition for array assignment, since arrays as well

as array elements occur in assertions.

NOTATION <A,],E>: An array obtained from A by placing E in the i-th

position.

ARRAY ASSIGNMENT AXIOM

P(<A,I,E>) {All]l<E} P(A).

LN

\

III. Documentation Statements and Their Use,

Introduction of new symbols 1s essential to verification for ease of both representation and

unclerstandrng of assertions. We allow users to introduce new symbols by documentation in the form

| of three simple kinds of statements. They are used by the prover as (i)rewriting rules to expand new

symbols, {11) reduction strategies which state that some expressions are reduced to others under

| specified conditions, and (iii)goal-subgoal strategies which state that certain well-formed formulas are

Yq true if certain others are true. We found that they are convenient and powerful.

From the method of construction of verification conditions [5],[6],[7].[9), all the verification

conditions are of the form

Alan. , .AAN = Cla. . . ACM.

Since this form of representation 1s more natural for understanding than disjunctive normal form,

we retain this form throughout the proof. The proof procedure sbased on Centzen’s formal system.

Thus, the validity of each Cl1s proved with the assumption Ala... AN.

\ _ We first explain a special pattern matching language, in which all the documentation
statements are written.

C 1. Pattern Matching.

A pattern 1s a string of symbols which match a term or a well-formed formula. Patterns consist

; of pattern constants and pattern variables. A pattern constant 1s an identifier and a pattern variable

« is an identifier preceded by a symbol "@". So eX stands for a pattern variable. Under the pattern
matching mechanism, a pattern constant matches only that symbol and an unbound pattern variable

"matches any term and 1s bound to that term thereupon. A bound pattern variable matches only the

corresponding term. |

\ Higher order pattern matching 1s undecidable in general. So, in this algorithm a term with

unbound pattern variables 1s not matched to a term with unbound pattern variables. But still this

restricted matching algorithm is ambiguous. For example, if a pattern @P (eX) is matched to

C_

6

€

Q(F (A)), both eP=0Q, eX=F (A) and eP=Q(F()),eX=A are permissible bindings. This ambiguity

is costly in computation and should be avoided if possible. Thus, in this system we employ an

| mcomplete but decidable procedure. The matching is done from the outer symbols, and from left to

right among parameters. So eP (eX) matches to Q (F (A)) and yields eP=0 and eX=F (A).

The limited facility has not caused much inconvenience. Since higher order sentences can be

- translated to first order sentences by introducing new symbols, all properties can be expressed in first

order sentences. We are going to see that the pattern matching does not cause much inconvenience

| in the case’ of data structures either. Suppose A and B are both arrays. If we match eX[eY] to

ABIII3, we geteX=A and eY=B [I I by our matching algorithm. But we do not want the bindings

of @X=A[B[3 1 and eY=1, since A [B[]]1s not meaningful.

2. Rewriting Rules.

We can use TEMPLATE statements to introduce new symbols as shorthand representations of

already defined expressions.

TEMPLATE <pattern> «<expression>.

\ Then, a rewriting rule is created from this statement. The system replaces every occurrence of

<pattern> by <expression> according to the rule.

_ If we want to introduce

C Ordered (A, 1,J)

as a shorthand representation of

) VX. (IeX<do AIX) <sAIX+1]),

_ then we can write

L TEMPLATE Ordered(eA,el,ed)o VX. (IsX<dD> AIX] <AIX+11).

3. Reduction Strategies.

C Also, we can introduce new symbols by a set of axioms. These axioms can be stated by

AXIOM statements and COAL statements to produce reduction strategies and goal-subgoal

strategies respectively.

We can specify reduction strategies to simplify terms or well-formed formulas. These strategies
{

1

are of two kinds, one is an unconditional reduction and the other is a conditional reduction.

Unconditional reduction strategies can be fed into the system by statements of the form

AXIOM <pattern>e <expressions,

The effect of this strategy 1s to reduce any expression which matches the <pattern> to <expression>.

The <expression> may have identifiers which appear in the pattern as pattern variables. They are

“~ bound to some forms by matching. For example, one can represent one of the axioms of list data

structures,

VX, Y.CAR (CONS (X,Y) } =X,

L as a simplification rule,

AXIOM CAR (CONS (eX, @Y)) «X,

Then P (CAR (CONS (A, B)) is reduced to P (A) since eX 1s bound to A. Only universally quantified

equality or equivalence relations can be represented by this method.

” Conditional reduction strategies are specified to the system by statements of the form

| AXIOM IF <pattern 1> THEN <pattern> o <expressions,
The effect 1s to reduce expressions which match <pattern> to <expression>, if <pat tern 1> is

_ provable by the system. Some pattern variables of the <pat tern 1> become bound when
<pat tern> 1s matched. If the <pat tern 1> does not include unbound pattern variables, the

g validity of the sentence

Ala. ..nAN > <pattern 1>,

1s checked by recursively activating the prover. If the <pat tern 1> includes unbound pattern

variables, it 1s tested whether it matches the antecedent part of the verification condition or not. If it

matches then we consider <pat tern 1> to be provable and otherwise not provable.

For example,

. VX, Y (XsYAY<XoX=Y)

1s a valid statement. We want to incorporate this fact into the system by conditional reduction, and

reduce Y<X to X=Y if X<Y holds. The statement we should write is

AXIOM IF X<Y THEN eYseX o X=Y,

Then if we are to reduce the statement

A<BAB<AAP(A) oP (B),

8

=

the pattern matches to AsB to get bindings eY=A and eX=B. Since there 1s no unbound pattern

variable, the system sets up a subgoal B<A, and tries to prove

B<AaP (A) oB<A,

: which 1s valid. So the statement is reduced to

_ B=AAB<AAP(A) SP (B),

iN which will be proved to be valid by equality substitution. As the previous example shows

universally quantified theorems can be represented by this statement. But also some existentially

quantified theorems can be represented,

2 For example
VX (3Y.P (X,Y) oF (X)=G{X})

can be represented by a statement

AXIOM IF P (X,eY) THEN F {eX)» G(X).

-

4. Coal-Subgoal Strategies.

” Reduction strategies turn out to be important components of proof. It is a frequently used

proof step. However, we rely heavily on additional goal-subgoal strategies to complete many

} verification proofs. Verification conditions are of thé form

| ALA. . .AAN = Cla... ACM.
The problem 1s to prove each CI. If we can prove BIoCl and Ala. ..AAN-BI, we can deduce

: Ala... AAN-CI by modus ponens. Thus, if we have an axiom BI>Cl the subproblem we have to
solve 1s

_) Aln...nANss BI.

T his fact 1s the motivation for employing goal-subgoal strategies.

y Statements to specify strategies are of the form

GOAL <pattern> SUB <pattern 1>,...,<patternn>,

| The strategy constructed from this statement works as follows. If <pat tern> matches to the

consequent C1, each <pat tern j> is tested successively until one of them is provable. If <pat tern

j> has unbound pattern variables it 1s tested to determine whether it matches one of the con juncts

of the antecedent. If <pattern j> has no unbound pattern variables, a new subproblem

9

Alan. ..nAN -» <patternj>

| 1S tested by recursively activating the prover.

uN _ For example, the transitivity of "<" is defined by an axiom
VX, Y. (JZ. (XsZnZ<Y)oX<Y)

This 1s represented by a goal-subgoal strategy,

\- GOAL eX<eY SUB XseZnreZsY.

In order to prove a sentence

. A<BAB<CAC<D-A<D

- using this goal, first eX<eY is matched to As<D to obtain eX=A and @Y=D. Then, the antecedent is
searched whether AseZ matches one of the con juncts. In this case the search is successtul and yields

~ @Z=B. Thus, the remaining subgoal 1s eZ<D, which 1s now B<D. So the new subproblem

A<BAB<CAC<0-B<D

be 1s set up. This can be proved by using the same goal one more time. These strategies can also

| represent universally or existentially quantified theorems.
Everything which goal-subgoal strategies can express can be expressed by conditional

| reduction strategies, since we can express the statement
GOAL A SUB B,

by the statement

AXIOM IF B THEN A«TRUE.

i However, the system uses these statements in different ways. Conditional reduction strategies are
used to reduce expressions in both the consequent and the antecedent of verification conditions. For

| example, suppose we have a conditional reduction strategy specified by

IF Al THEN A2 e C.

then

AlnA2- B

1s reduced to

ALAC - B,

and

Al » AZ

10

=

1s reduced to

Al -» C,

Goal-subgoal strategies are used only to make reduction in the consequent.

The reason why we have goal-subgoal strategies 1s that because they are more efficient than

conditional reduction strategies. Most of the time we are interested in proving the validity of a

| statement of the form A +B. Thus, we are interested in how B can be proved from A, Also the

antecedent A 1s usually more complex than the consequent B because the antecedent contains all the

information about data structures and control structures. So the goal-subgoal strategy gains efficiency

C by limiting the reduction to the consequent part.

{

IV. Implementation,

This verification system 1s built upon the PASCAL verification condition generator

VCGENI[9] First, files of the user’s Axioms and Goal statements are ihptit to the system, and the

corresponding reduction rules and goal-subgoaling strategies are constructed. This yields a special

reduction and proof system for the data structures and functions described by these statements. The

system 1s extensible, since strategies can be added to handle larger domain of programs. Next, a file

\ containing the program with assertions is processed by VCCEN to produce verification conditions.

These are passed to the proving system. The proving system is divided ito several functions. They

are ()the arithmetic simplifier, (ii)the equality substitution algorithm, (iii)the truth value substitution

algorithm, (iv)the unconditional simplifier, (v)the conditional simplifier, (vi)the goal-subgoaler, and

(vii)the logic symbol elimination algorithm.

Gentzen-type inference rule notations are used to express the effects of functions.

\
NOTATION : A B

C

where C 1s the goal and A and B are subgoals both of which

must be proved in order to prove C.

(1) The arithmetic simplifier transforms arithmetic expressions into standard representations, and

simplifies them. The standard representation 1s a sum of products of simple factors. A simple factor

is an arithmetic expression which is neither a sum nor a product. Then each product consists of a

coefficient(if not equal to 1) followed by simple factors which are ordered by system-defined

orderings, And the sum consists of the ordered products followed by a constant(if not equal to 0).

(11) The equality substitution algorithm handles verification conditions of the form

Anla=B)AB- C.
iu

12

C

CASE I. Suppose one of a or 8 is a variable. Without loss of generality we can

suppose ato be a variable. If g1s a constant, a variable, or an
“

_ expression with « not appearing free, then all the occurrences of a in A, B

and C are replaced by g.

- CASE 2. Suppose one of a or 8 is a variable. Without loss of generality we suppose

~ ato be a variable. If 8 1s an expression containing a, then all the

| occurrences of gin A, B and C are replaced by a.

2 CASE 3. If « and 8 do not satisty cases 1 or 2 then all the occurrences of a are

replaced by g.

(111) The trutt, value substitution algorithm evaluates logical sentences. The grand rule of the truth

value substitution is

Tsubst (A, a) nanTsubst(B,«) » Tsubst (C,a)

AnanB -» C,

where both A and B may be null expressions and a 1s not a conjunction. Tsubst (A, «) 1s defined by

the following see of functions, which give the value of A assuming a is true.

Tsubst{(A,a)=if a is of the form = then Fsubst(A,B} else

i f « is of the form Ac then

Tsubst (Tsubst(A,B),c) else

replace al | occurences of a in A by “True”.

Fsubst(A,B)=ifB is of the form =a then Tsubst(A,a) else

i fB is of the form ax then

Fsubst (Tsubst(A,al,¢) else

LC i f 8 is of the form ave then

Fsubst (Fsubst(A,ua),c) else

— replace al | occurences of 8 in A by “False”,

1S

13

.

|

_ (iv) The unconditional simplifier applies all unconditional reduction strategies.

The algorithm works from inside out. Thus if we want to simplify

_ R(PL,...,PN},

first all P1,..., PN are simplified to Ql, .. .,QN respectively. Then R (Q1,..., ON) 1s simplified.

(v) The conditional simplifier applies all conditional reduction strategies. The treatment 1s different

according to the position of the expression--in the antecedent or consequent of the verification

condition. Suppose a conditional reduction strategy 1s given to the system by a statement

AXIOM IF <patternl> THEN <pattern> ® <expressions,

and the verification condition to be proved 1s

Alan. , .AAM 5 Cla. . . ACN,

If <pattern> matches a subexpression of CI, then

Ala... nAM > <pattern 1>

becomes the subproblem to be solved.

Nest, suppose <pat tern> matches a subexpression of the antecedent say Al. Then

N Alan... AAT=-1AAT+1A...AAM> <patternl>

N becomes 1he subpioblem to be solved. If it 1s valid then the replacement takes place as before.

The validity1s checked by recursively activating the prover. So this 1s a depth first search,

and it might go into a wrong direction infinitely. So the system allows the user to specify the search

depth. If thesearch reaches this limit, 1t 1s backed up until the last decision point.

(vi) The goal-subgoaler incorporates all goal-subgoal strategies. Suppose a goal-subgoal strategy is

given to the system by a statement

GOAL <pattern> SUB <pattern 1>,...,<patternN>,

and the verification condition to be proved 1s

Alan... .AAN - Cla... .ACNM,

If CI matches to <pat terns, then

Aln. . .AAN= <patternl>, , , , , Ala. , .AANo <pattern N>

are set up as a dis junction of subproblems successively, until one of them 1s proved to be “True”. If
\

14

“

~

the proof 1s successful the problem is reduced to

(vii) The logic symbolelimination algorithm works on elimination of logic symbols "v" and ">"

from the antecedent of the statement. Their functions are explained by inference rules as shown

below.

AnanB» C AnBAB=» C
(v-elimination) ee

An (avB)AB » C

An-anB + C AnBAB » C
(o-eliimination)

An{ooB)nB =» C

Le

These seven functions are applied serially. But the simplification may be applicable after

— reduction by goal-subgoaling. So these functions are iterated several times. The user can specify the

number of iterations.

\

“_ 15

|

The overal| structure of the prover is as fol lous,

| |
~ Prover

|

tatad
| |)
|

“
Repeat

_ 2 or 3

| Times |
| |
|
|
| If v or _
| Ne D> exists
|

Arithmetic | Vv
| Simplifier | EXIT
| v0

| | | |
RR EE | Logic |

| | | | Symbo |
| | Equal i ty | | Elimination|
| | Substitution | Algorithm

| Algorithm | |]
| | |

| ov

| I | |
| | | Prover |

| Truth Value | |
| Substitution |

| | Algorithm |
| 0 |
| | v

IE EXIT
| |

| | Unconditional|

] | | Simplifier |
| 0000000|
|

Vv

| |
| | Condi t ional Simpl if ier
| | (Recursively activates the Depthof recursive search
| | prover) has a fixed bound which

can be altered before

| running the system.
|

|

| | Goal-Subgoaler
| | (Recursively activatesthe

| prover)
| |

| |

I

16

V. Application to Sorting Programs

As the first example, the verification of a simple sorting program which successively finds the

largest element among the unordered part of the array and puts it at the end of the ordered part is

considered. This program is the one considered by King[10). The program with input and output

~ conditions and an assertions about loop invariants is shown below. This 1s the actual input form for

the system.

” PASCAL

TYPE SARRAY=ARRAY [1l:L] OF INTEGER;

PROCEDURE EXCHANGESORT (VAR A: SARRAY:L: INTEGER) :
INITIAL A=AD;
ENTRY 1<L;

\ EXIT | ssortedarirayof(A, AQ);

VAR X:REAL:VAR K,I, J: INTEGER:

BEGIN

|-L;
INVARIANT Permutation{(A,AB)AOrdered(A,[+1,L)APartitioned(A,1)Aa(l21)

. WHILE [>100
BEGIN

Je23sXA [1] 1Kel
INVARIANT Biggest (A, J-1,K)A(lsK)A(Ksd-11A{J-1<51)1A(X=AK])
WHILE J<I DO

BEGIN

IF X>A[J] THEN GOTO 3;
XeA [J]
Keds

3: Jed+l
END:

AlKI<ATLl];
All]eX;
|CI-1

END;

END:.;

We are going to explain the intended interpretation of symbols and the set of axioms defining

them. When we express axioms, we have to be careful not to introduce an inconsistent set. Since a

consistent set of axioms has a model, we can avoid introducing an inconsistent set by defining an

interpretation and justifying axioms by showing validity relative to that interpretation.

Inputs tothis program are an array A and an integer parameter LL defining the upper bound

17

|

of the array. Since we have an array with at least one element, the input condition is

| L=1.
= The output condition 1s

I ssortedarrayof(A, AQ),

where AO is the initial value of A at the entrance to the procedure and I ssor tedarrayof (A, AB)

means that A0 1s sorted to become A.

1. Issortedarrayof(A,B).

In order A to be a sorted array of B, it must be ordered in ascending order and it must consist

of all the elements of B and nothing else. We describe the two facts by introducing additional

predicates. The axiom is,

Ordered(A,l,L)APermutation(A,B)>olssortedarrayof (A,B).

2. Ordered(A, JL).

The interpretation of Ordered(A,J,L) is that the subarray A[J:L] is ascendingly ordered.

A Thus,

Ordered (A, J,L) x» VX. (JsX<L-15A IXIA [X+1]),

where x-» means that the left-hand side is the shorthand notation of the right-hand side.

Three axioms are necessary to specify the predicate. The first one specifies the boundary case

when J is equal to L+l. Then there is no element in the subarray and an empty array 1s ordered. So

) Ordered (A,L+1,L)

1s true.

The next axiom 1s an induction axiom which state that if the property holds for a smaller

. subarrayit holds for a larger subarray under certain conditions. It is

Orcdered(A, J,L)APartitioned(A,J-1)>0rdered(A,J-1,L).

This axiom enables the property to be extended to the whole array. The meaning of

Partitioned (A, J) 1s that the array A 1s partitioned between J-1 and J such that all the

elements in the upper half are larger than or equal to all the elements in the lower half.

The last axiom states that changing elements outside of the concerned subarray will not

18

change the property. The operation on the array in this program is Exchange (A, I,J), which is an

array obtained by exchanging I-th and J-th element of A, thus

Ordered (A, J, L)allsd)alKsd}APartitioned (A, J)

>0rdered (Exchange (A, | ,K),Jd,L).

{ 3. Partitioned(A,J).

The meaning of this predicate has been stated before as

Part i t i oned (A, J) x= VX, Y.(1<X<sJ<Y<sLoA[X]I<AlY]),

; There are also three axioms to specify this predicate with the same nature as those of
Ordered(A, JL).

When J is equal to L, there 1s no element in the upper half of the array, so the property

holds. Thus, the boundary property is

\- Part i t ioned(A,L).

The axiom about induction is

Partitioned(A,J)ABiggest (A, J,J)oPartitioned(A,J-1).

(Since Biggest (A, J, J) means that A[}] is the biggest element among elements of the subarray

A[1: J], there is a separation between J- | and J.

Also 1f we exchange elements of the lower half of the array the property remains valid. So,

\ Partitioned(A,J)a(lsJ)an(Ks))oPartitioned (Exchange (A, 1,K),J).

4. Biggest(AlJ).

] The meaning of this predicate is that, A[J] is the biggest element among the elements of the

S subarray Al 111].

The ax1om of the boundary case states when I 1s equal to 1. Then, there 1s one element in the

subarray which 1s the biggest element. Thus,

L Biggest (A,1,1).
The axioms about the induction are

Biggest (A, I, DA(AlJI2A[I+1])oBiggest (A, 1+1,J)

and

19

|

Biggest (A, 1, J)a(AlI+1]12A[J])oBiggest (A, [+1,1+1).

The next axiom states that if we move the biggest element by Exchange, then the place of the

biggest clement changes. The objective of the program 1s to move the biggest element of subarray

Al 1:1] to A[1]). Thus, the axiom

Biggest (A,1,J)oBiggest (Exchange(A,J,1)},1,1),

. 1s sufficient.

5. Permutation(A,B).

| The meaning 1s that the array A 1s a permutation of the array B.
| If we exchange elements of an array, this 1s a permutation of the array.

Thus,

Permutation (Exchange (A, I,J), A)

is an ax 1om. Also Permutation (A,B) 1s an equivalence relation, so

Permutation(A,A), and

Permutation(A,B)>Permutation(B,A}, and

Permutation (A,B)aPermutation(B,C)>Permutation(A,C),

are axioms. Since any permutation can be obtained by repeated operations of Exchange, these are

sufficient axioms to prove the property.

6. Exchange(A,L)).

The axiom sufficient to represent that any N-place cycle 1s decomposable into N Exchanges 1s

Y=A[J)o<<A,1,Y>, J, X>=Exchange (<A, 1,X>,1,J).

20

The following listing is the goalfile which is supplied to the system along with the program.

This shows how simplification and goal-subgoaling rules are selected to represent axioms.

GOALFILE

GOAL Issortedarrayof (eA, eB) SUB Permutation(A,B}AOrdered(A,1,L):

AXIOM Ordered (A,L+1,L)}oTRUE:

| GOAL Ordered (eA,ePl,L) suB Ordered (A,Pl+1,L)APartitioned(A,P1):
= GOAL Ordered (Exchange (eA, ePl,@P2),eP3,L)

SUB (P1<P3) A (P2<P3)A0rdered(A,P3,L)APartitioned(A,P3);

AXIOM Partitioned (A,L) «TRUE;
GOAL Partitioned(eA,ePl) SUB Biggest (A,P1+1,Pl+1l)APartitioned(A,Pl+1);
GOAL Par titioned{(Exchange (eA, ePl,eP2),eP3)

| SUB (P1<P3)A(P2<P3)APartitioned(A,P3);

AXIOM Biggest (A,1,1)eTRUE;
GOAL Biggest tExchange (eA, ePl,eP2),eP2,eP2) SUB Biggest (A,P2,P1);
GOAL Biggest (eA,eP2,ePl) SUB (A[P1)2A[P2))ABiggest (A,P2-1,P1);
GOAL Biggest (eA, eP2,@P2) SUB (A[P2]2A[P1])ABiggest (A,P2-1,@P1);

AXIOM Permutation(el,el) «TRUE:

« AXIOM Permutation(Exchangelell,el2,@l3),ell)~TRUE;
GOAL Permutation(eA,eB) SUB Permutation (A,eC)APernutation(eC,B);

AXIOM IF Y=P1[P3] THEN

<<ePl,eP2,eY>,eP3,eP4>eExchange (<P1,P2,P4>,P2,P3)

GOAL 0 <cePl+eP2 SUB (8<P1)A(B<P2);
GOAL e@Pl1<eP2SUB (Pl<eP3)n{eP3<P2);
AXIOM e@Pl<eP2«Pl+1<P2;

\.

21

This is the outputof computation which verified the programin 19 seconds.

THERE ARE 4 VERIFICATION CONDITIONS

#1

(1<L
->

| Permutation(A,A) &
~ Ordered (A,L+1,L) &

Partitioned(A,L} &
i1<L &

(-1<I#1 &

| Permutation (A#1,A) &
Ordered (A#1,1#1+1,L) &
Partitioned (A#1, [#1) &

N 1<1#1

+l ssor tedarrayof (A#1,A)))

72

(1<] &

Permutation(A, AB) &
Ordercd(A,1+1,L) &
Partitioned (A,1) &
1<]

Biggest (A,2-1,1) &
1<1 &

1<2-1 &

2-11 &

N All] =A [118
(-J#3<] &

Biggest(A, J#3-1,KH#3} &
1<K#3 &

KHEI<JH3-1 &

JH3-1<1 &

X#3=A [KH#3]

Permutation(<<A,KH#3,All]l>,1,XH#3>,A8) &
Ordered (<<A,K#3,A[1)>,1,X#3>,1-1+1,L) &
Partitioned (<<A,KH3,AlI)>,],X#3>,1-1) &

_ 1<1-1))

73

(~A [J] <X &

Jel &

Biggest(A, J-1,K) &
. 1K &

Krd-1 &

J-1=1 &

X=A [K]
3

Biggest(A, J+1-1,J} &
lJ &

JgJ+1-1 &
J+l-1<] &

A [J] =A ([J])

22

#4

(A[Jl<X &
Jl &

Biggest(A, J-1,K)l<K & 8
K<d-1 &

| J-1<1 &
| X=A [K]

Biggest(A, J+1-1,K) &
1<K &

he Ksd+1-1 &
J+1-1<] &
X=A[K]1)

AFTER SOME SIMPLIFICATION, YOU CAN GET

#1

h TRUE

2

TRUE

H 3
TRUE

tr #4
TRUE

| SORA KK
TIME: 19 CPU SECS, 21 REAL SECS

| 778 STATE STACK CELLS USED
136 TOKEN STACK CELLS USED

958 DECISION POINTS
1947 FAILURES

~ 3 SECS GC TIME

23

Here 1s another sorting program which has been verified. This 1s Floyd’s TREE SORT

program[4] with assertions and the goalfile. This is verified with 142 seconds of computation time.

Most of the previously defined predicates are used in the goalfile with the same set of axioms. Thus

| there 1s a possibility of forming a standard set of symbols and axioms.PASCAL

PROCEDURE TREESORT3 (VAR A: TREEARRAY;L: INTEGER) ;
INITIAL A=AQ;
ENTRY L22;
EXIT 1 ssortedarrayof(A, AB);

r PROCEDURE SIFTUP (VAR M:REAL ;1,N: INTEGER):
INITIAL 1=18,M=M3;
ENTRY Treeordered(M,I1+1,N)A(]2]1);

EXIT Treeordered(M, 18,N)APermutation(M,M8) A
Unchanged (M,M8, 1, 18-1) AUnchanged (M, M8, N+1,L) ;

VAR COPY: REAL: J: INTEGER:

As BEGI N
COPY «MI(I};

10: J « 2 x |;

IF JN THEN

BEGIN

IF J « NTHEN IF M{J+11>M{J] THEN J « J+];
IF M [Jl> COPY THEN

BEGIN

MII] « MIJI;
ASSERT Treeordered(M,18,N)A(COPYsMIJDIV2])A

Permutation(<M, J, COPY>, MB) A
Unchanged (M,M8,1, 18-1) A
Unchanged (M,M8,N+1,L) A
(N2J)A(J210)A (10821);

| GO TO 10
END;

END;

MII] « COPY;
ENG;

VAR WORK:REAL; I: INTEGER:

BEGIN

T«L OIV 2 ;

INVARIANT Treeordered(A,1+1,L)n{l21)APermutation(A, AD)
WHILE [22 00

m BEGIN SIFTUP(A,1,L):lel~1 END:
INVARIANT Ordered (A,1+1,L)APartitioned(A, I) ATreeordered (A, 2 1)

Allz1)APermutation(A, AB)
WHILE [220 0

BEGIN

SIFTUP(A,1,1):

HORK A [1] ALLTCATID; ALLT MORK;
END

END:.;

24

|

GOALFILE

GOAL lIssortedarrayof (@A,eB) SUB Permutation(A,B) AOrdered(A,1,L):

AXIOM Permutation(el, el) «TRUE;

AXIOM cermutat ion (Exchange loll, 612, 13), al1) «TRUE:GOAL Permutation(eA,eB) SUB Permutation(A, eC) "Permutation (eC,B):

AXIOM IF Y=P1[P2)]

THEN <<ePl,eP2,eY>,eP3, aP4>uwExchange (<P1,P2,P4>,P2,P3) :

AXIOM Ordered (A,L+1,L) TRUE:
~ GOAL Ordered(eA,ePl,L) SUB Ordered (A,P1+1,L)AParti tioned (A,P1)

GOAL Ordered (Exchange (eA,ePl,eP2},eP3,L)
SUB Ordered (A,P3,L)A{P1<P3)A(P2<P3)Partitioned {A,P3);

SUB Ordered (eY,P,L)AUnchanged(X,Y,eQ,L)A (Q<P+1) ;
AXIOM Unchanged(eX, eX, al ,eJ) «TRUE:
GOAL Unchanged(<eX, el, eJ>,eY, eK, el)

| SUB Unchanged (X,Y,K,L)AQutofrange(K,1,L);

’ GOAL Biggest (eA,el, 1) SUB Treeordered(A, 1,1);
GOAL Biggest (Exchange(eA, el,eJ),eJ, el) SUB Biggest (A,J, 1);

GOAL Treeordered (ePl,eP2,eP3)
SUB Treeordered (P1,P2+1,P3])

| nBiggerthanchildren(P1,P3,P2,P1(P21);
GOAL Treeordered (<eM,ed, eK>, el], eN)

SUB Treeardered(M, I,N})AQutofrange(],J,N);
GOAL Treeordered (el,el, eN) SUB N«<2x];

| GOAL Treeordered{<eM,ed, eK>, el, aN)
L SUB Treeordered(M,I,N)aSmal ler thanparent (M, 1, J,K) A

Biggerthanchi {dren(M,N, JK);
GOAL Treeordered (Exchange (eA,el,eJd), eK,el)

SUB Treeordered(A, eM, eN)A(K=I+1)AflL=J-1) A (McK) A (N2L) :

GOAL Outofrange(el,ed,eN) SUB J<I, N<J;

GOAL Smal lerthanparent (eM,el, ed, eK)
SUB J<2xI,{(KsMIJd OIV 21) ,K=M[2%xJ] ,K=M[2%J+1];

GOAL Bigger thanchildren(eM, eN, ed, eK)
SUB N<2xJ, (N=2xJIa(K2MIN)) | (KaMI2%J1) A (K2M[2%J+1 1);

AXIOM Partitioned (A L)~TRUE;

GOAL Partitioned (eA,ePl) SUB Partitioned (A,Pl+1)ABiggest(A,P1+1,P1+1)
GOAL Part i t ioned{Exchange(eA, Pl, eP2),@P3)

SUB Partitioned(A,P3)A(P1<P3)A(P2<P3):
GOAL Part i t ioned (eX, eP)

SUB Partitioned(eY,P)aUnchanged(X,Y,eQ,L)A(QsP+1);

AXIOM (eKxel)DIVeKe L;
AXIOM eKx{el DIV eK)eo L;
AXIOM IF M+1<K THEN {{eKxel)+eM)DIVeKeo L;
GOAL @Pl<aeP2 OIV @P3 SUB PlxP3< P2;
GOAL 5 £ePl+eP2 SUB (8zP1)A(8<P2);
GOAL e@PlzeP2 SUB (Pl<eP3)a{eP3<P2);
AXIOM ePl<eP2eo Pl+1<P2;

25

This is Hoar-e’s FIND program(7] and goalfile. This program is verified with 53 seconds of

computation time.

PASCAL

PROCEDURE FIND (VARA:FARRAY;F,K: INTEGER):
INITIAL A=AQ:
ENTRY 1<F&8F<K;

EXIT PARTITIONED (A,F)APERMUTATION (A, AB);

VAR M,K: INTEGER;VAR R:REAL;

BEGIN

| M1; NeK;
INVARIANT MINVARTANT (A, M}ANINVARIANT(A,N) APERMUTATION (A, AB)

\ A {MsF)A (F<N)

WHILE M < N DO

BEGIN

RAF) 1eM:id - N
INVARIANT MINVARITANT(A, M) ANINVARIANT (A,N) Al INVARIANT(A, ,R)

AJINVARTANT (A, J,R)APERMUTATION(A, AB) A {MT I) A(N2J)
WHILE 1<J DO

BEGIN

INVARIANT | INVARIANT(A, I,RYA({M<])
WHILE All] < RDO lel+l:
INVARIANT JINVARIANT(A, J,R)A{N2J)
WHILE R<A[JIDO Je J-I:
IF 1< J THEN

BEGIN

WAI): AllleA(d] ys ALJ] <M;
[el+l: Jed-1
END

END:

IF F <J THEN Ned ELSE IFIsF THEN Me] ELSE GO TO 10

END:

10:

END:.:

- GOALFJLE

AXIOM PERMUTATION(el, el) «TRUE:
AXIOM PERMUTATION (EXCHANGE (ell,el2,el3),ell) «TRUE;
GOAL PERMUTATION(eA, eB) suB PERMUTATION(A, eC) APERMUTATION (eC,B)

AXIOM IF Y=P1 (P2]

THEN <<@Pl,eP2,eY>,eP3, @P4>sExchange (<P1,P2,P4>,P2,P3)

GOAL PARTITIONED(eA, el) suB MINVARIANT(A, I) ANINVARIANT (A, 1);
AXI1OMMINVARIANT (eA,1)e TRUE: *
GOAL MINVARIANT(eA, eM)

SUB I INVARIANT(A, el, @X) AJINVARIANT (A, ed, eX)n(l2J+1)A(I2M)A (M2J)
GOAL MINVARIANT (EXCHANGE (eA, el ,@J), eM) SUB MINVARIANT(A,M)A(I2MIA(J2M)
AXIOM NINVARIANT (eA,K)e TRUE:
GOAL NINVARIANT(eA, eN)

SUB I INVARIANT(A, el, @X) AJINVARIANT (A, eJ, eX) a(l2J+1)A{I12N)A (N2J)
GOAL NINVARIANT (EXCHANGE (eA, el, ed) ,eN) suB NINVARIANT(A,N)A (I <N} A (JN);

26

EE

=

GOAL I INVARIANT(eA, el, eA [ed]) SUB MINVARIANT(A, 1) A(J21);
GOAL I INVARIANT (2A, 2],eJ) SUB [INVARIANT (A,eK,J)A(eK=]-1)nA{J2A [aK])
GOAL J INVARIANT (EXCHANGE (eA,el, ed) ,el +1, eR)

SUB TINVARIANT (A, I ,RIA(I<dIA(R2ATJ]) ¢
GOAL JINVARIANT(eA, el, eA [eJ]) SUB NINVARTANT(A, I} A (Js]);
GOAL JINVARIANT(eA, el, ed) SUB JINVARIANT(A, eK, JIA (eK=l+1) A (JA [eK]) :
GOAL JINVARIANT (EXCHANGE (eA, el, J), @J-1, 8R)

| SUB JINVARIANT(A, J,RIa{lsd)A(R2A[I}):
AXIOM @A<@B « A+1<B;

- GOAL @P1<eP2SUB(P1<eP3)A (eP3<P2) :
AXIOM IF P1sP2 THEN eP2<ePl o Pl1=P2;

. Von Henke and Luckham have verified other programs using this system. Also a detailed

study of the verification method has been performed.[5]

I Acknowledgements. The author is grateful to David C. Luckham, who helped a great deal in writing
this paper and in developing t he system. Also, he 1s grateful to Friedrich W. von Henke and Jorge

Morales for their advice and comments during the development of the system.

27

1

B References

i 1. R.S. Boyer and].S. Moore, “Proving Theorems about LISP Problems”,
¥ - Third 1 JCAI Proceedings, 1973.

2. Deutsch, L.P., An Interactive Program Verifier, Ph. D. thesis,
; University of California, Berkeley, 1973.

\ 3. R. W. Floyd, “Assigning Meanings toPrograms”,Proc. Symp. Appl.
Math., Amer. Math. Soc., Vol. 19, 1967, 19-32.

J 4 R. W. Floyd, “Algorithms 245. TREESORT3",CACM, Vol 7, 1964,
8 Dec., 701.

| ~ 5. F.W. von Henke and D.C. Luckham, A Methodology for Verifying Programs,
| forthcoming AIMEMO, Stanford Artificial Intelligence Project, Stanford
| University, 1974.

6. C.A.R. Hoare, “An Axiomatic Basis for Computer Programming”, CACM,
; Vol. 12, 1969, Oct., 576-580.

C.A.R.Hoare,"Proof of a Program: FIND”, CACM, Vol. 14, 1971,
Jan., 39-45.

8. C.A.R. Hoare and N. Wirth, “An Axiomatic Definition of the Programming

Lang uage PASC AL”, Actalnformatica 2, 19°73, 335-355.

9. S.lgarashi,R.L. London, and D.C. Luckham, “Automatic Program
Verificationl: Logical Basis and Its Implementation”, AIM-200,
Stanford Artificial Intelligence Project, Stanford University, 1972.

S 10. J.C. King,A Program Verifier, Ph.D. thesis, Carnegie-Mellon
University, 1969.

11. R.Milt-let-, Logic for Computable Functions: Description of a Machine
) Machine Im plementation, AIM-200, Stanford Artificial Intelligence

Project, Stanford University, 1972.

28

“

