Stanford Artificial Intelligence Laboratory o December 1974
"Memo AIM-255

Computer Science Department
Report No. STAN-CS-74-473

Automatic Program Verification II:
VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION

by

Norihisa Suzuki

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY DECEMBER 1974
MEMO AIM-255 .

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-74-473

AUTOMATIC PROGRAM VERIFICATION I
VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION

by

Norihisa Suzuki

ABSTRACT:

Methods for verifying programs written in a higher level programming language are
devised and implemented. The system can verify programs written in a subset of
PASCAL, which may have data structures and control structures such as WHILE,
REPEAT, FOR, PROCEDURE, FUNCTION and COROUTINE. The process of creation of
verification conditions is an extension of the work done by lgarashi, London and
Luckhamuhich is based on the deductive theory by Hoare. Verification conditions
are proved using specialized simplification and proof techniques, which consist
of an arithmetic simplif ier, equal i ty replacement rules, fast algorithm for
simpl i fying formulas using propositional truth value evaluation, and a depth
firs t proof search process. The basis of deduction mechanism used in this prover
. is Gentzen-type formal system. Several sorting programs including Floyd’s
TREESORT3 and Hoare'sFIND are verified. It is shoun that the resulting array is
not only weli-ordered but also a permutation of the input array.

This research was supported in part by the Advanced Research Projects Agency of the Office of the
Secretary of Defence under contract DAHC 15-73-C-0435.

The view and conclusions contained in this document are those of the author and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects A gency or the US Government.

Reproduced in the USA. Available from the National Technical Information Service, Springfield,
Virginia 22151.

. Introduction

Verifying that programs work faultlessly is a necessity. We can test whether they work or not
in several cases. But unless we prove the correctness of programs, it is impossible to claim that they
endure long lasting usage. Since proving by hand is cumbersome and not always free of errors,
mechanization of verification is strongly desired.

Some attempts have been made to verify programs mechanically [1],[2],[10],[11], but there are
several problems which must be solved in order to make automatic verification of programs
practical.

First, we have to find a way to express assertions more easily. Most of the previous verifiers
require assertions to be written in first order predicate sentences with a fixed number of predefined
predicate symbols and function symbols. But this is in many cases inconvenient and infeasible. For
example, if we have to deal with the correctness of programs with complex data structures, we need
to express properties in higher order sentences. Thus, many complex programs have not been
verified because the assertions about programs have not been properly stated.

Second, we have to find a better way to prove verification conditions automatically. Proving
verification conditions using a general automatic theorem prover is in most of the cases
unsatisfactory. If we are verifying programs in specific domains, we can use special properties of
functions and predicates to construct fast special purpose provers. King[10] and Deutsch[2] have
succeeded by using a built-in simplifier for integer arithmetic, but these programs still cannot cope
with other domains.

In most verification systems the user must specify not only input and output conditions but

-also loop invariants. Although it is an undecidable problem to generate loop invariants, the system
should aid the programmer in constructing loop invariants. Also, programs with complex data
structures and complex control structures must be verified, including parallel programs.

In this paper we describe a fast simplification and theorem proving facility that is a new

component of the Stanford PASCAL Verification System described by Igarashi, London and

Luckham in [9). This system permits the programmer to formulate the semantics of his data
structures, procedures, and functions in simple, natural statements. These statements are used by the
system as simplification and special theorem-proving rules during verification. So programs
computing over any domain can be dealt with easily.

As an example, automatic verification of a sorting program is studied in detail. It is shown
that not only is the resulting array ordered but also it is a permutation of the input array. The
verification of Floyd’s TREESORT program and Hoare’s FIND program are listed, both of which
are verified within a reasonable amount of computation time. Because these programs are complex,
and use data structures--in this case an array data structure, whose semantics has not been studied
well--they have been considered as one of the big challenges for automatic verification. Thus our

method of verification is very promising for practical use.

______/

1. Expressing Assertions by Structured Definitions.

Here, we make a few comments about ~how the user of the system might construct
documentation in a way that aids the verification of his program. The main idea is to use defined
concepts that are close to the natural concepts employed in creating the program.

As is discussed in the previous section, it is impossible to state all properties of programs in
first order sentences with fixed number of predefined function symbols and predicate symbols. As an
example let us examine the process of verifying sorting programs. Suppose a program S accepts an
array A and sorts it and output it as an array B. Then, the correctness of S is expressed in terms of
properties that elements of B are ordered in ascending(or descending)order and B consists of all
elements of A and of nothing else. The first property can be stated as

VI, (1<IsN-1oB[11<B[I+1]1).

But one way to describe the second property is to state that there is a one-to-one mapping from
elements of A to elements of B. That is the sentence

FF. (V1. (L<INol<F (1) NI AV, J. (DsT<JsNoF (1) =F (J)) AYIL (1<I<NoATT)=BIF(1)1))
expresses the second property.

But previous verifications of sorting programs, either manual or automatic, have dealt with
only the first property. The detailed study of FIND by Hoare[7] briefly explains that to prove the
correctnessitis necessary to show that the second property holds, but does not formally verify it. He
thought that the assertions were not obvious and the proof would be tedious. It is certainly
disadvantageous to introduce second order sentences because they require complicated proof
procedures. But since it is essential for the automatic verification to prove the second properties
formally, we have to invent a way to verify them.

The way to avoid using second order sentences is to extend the language by introducing new
symbols. There is also another nice thing about introducing new symbols. To express that array B is
a permutatton of array A, we have to employ a rather complex sentence. It might be as difficult to

understand what it means as to understand what the program does. Also it is very easy to introduce

errors. But we can avoid complexitites by writing

Permutation(B,A).

In general there are two methods to introduce new symbols. The first method is to assume the
new symbol as a shorthand representation of a sentence represented by already defined symbols. The
second method is to define symbols by axioms stating the properties of these symbols. For example,
after defining axioms of propositional calculus consisting of symbols ">" and "-", we can introduce
“A” symbol as a shorthand notation for -(A>-B). But also we can introduce it by axioms,

AABoA, AnBoB a nd Ao (BoAAB) .

Assertions describing a program can be structured top-down by using new symbols. Their
meanings are refined succesively until everything is well-defined. An analogous concept can be
found in programming. We can enrich the language and clarify the meaning by introducing new
symbols (operations). These new operations are defined either by macros or by procedures. Macros
define new operations by using already defined concepts. So they do not give more computation
power but clarify programs. Whereas, procedures can define new operations recursively, so that they
give new power.

Following this analogy to programming, we can call the way we write predicate sentences with
newly defined symbols a structured way of expressing assertions. A detailed study of how to
introduce new symbols is in section V, and also is found in the work by von Henke and
Luckham([5].

In the case of "Permutation(B,A)", we could define it as the shorthand representation of the
previous sentence. But instead we shall define it by a set of properties (specifications) including the
following axiom,

VA, I,J.Permutation(Exchange(A,1,J),A),
where Exchange (A, 1,J) is a function mapping an array A into an array resulting from
exchanging I-th element and J-th element of A. In addition, Permutation is an equivalence relation,
so we must include axioms for symmetric, reflexive and transitive properties.

We have replaced a second order statement by a relation which has arrays as individuals.

Now, arrays are a second sort of individuals.

Thus, we need to have a special semantic definition for array assignment, since arrays as well

as array elements occur in assertions.

NOTATION <A,1,E>: An array obtained from A by placing E in the i-th

position.

ARRAY ASSIGNMENT AXIOM
P(<A,1,E>) {All1«E} P(A).

III. Documentation Statements and Their Use,

Introduction of new symbols is essential to verification for ease of both representation and
unclerstandrng of assertions. We allow users to introduce new symbols by documentation in the form
of three simple kinds of statements. They are used by the prover as (i)rewriting rules to expand new
symbols, {ii) reduction strategies which state that some expressions are reduced to others under
specified conditions, and (iii)goal-subgoal strategies which state that certain well-formed formulas are
true if certain others are true. We found that they are convenient and powerful.

From the method of construction of verification conditions [5],(61,[7],[9], all the verification
conditions are of the form

Aln., .AAN - ClA. . .ACHM,

Since this form of representation is more natural for understanding than dis junctive normal form,
we retain this form throughout the proof. The proof procedure isbased on Centzen’s formal system.
Thus, the validity of each Clis proved with the assumption AlA. .. AN,

We first explain a special pattern matching language, in which all the documentation

statements are written.

1. Pattern Matching.

A pattern is a string of symbols which match a term or a well-formed formula. Patterns consist
of pattern constants and pattern variables. A pattern constant is an identifier and a pattern variable
is an identifier preceded by a symbol “e". So eX stands for a pattern variable. Under the pattern

matching mechanism, a pattern constant matches only that symbol and an unbound pattern variable

“matches any term and is bound to that term thereupon. A bound pattern variable matches only the

corresponding term.
Higher order pattern matching is undecidable in general. So, in this algorithm a term with
unbound pattern variables is not matched to a term with unbound pattern variables. But still this

restricted matching algorithm is ambiguous. For example, if a pattern P (@X) is matched to

Q(F (A)), both eP=0Q, eX=F (A) and eP=Q(F ()),eX=A are permissible bindings. This ambiguity
is costly in computation and should be avoided if possible. Thus, in this system we employ an
incomplete but decidable procedure. The matching is done from the outer symbols, and from left to
right among parameters. So eP (eX) matches to Q(F (A)) and yields eP=Q and eX=F (A).

The limited facility has not caused much inconvenience. Since higher order sentences can be
translated to first order sentences by introducing new symbols, all properties can be expressed in first
order sentences. We are going to see that the pattern matching does not cause much inconvenience
in the case’ of data structures either. Suppose A and B are both arrays. If we match eX[eY]to
ABIII3, we geteX=A and eY=B[I I by our matching algorithm. But we do not want the bindings

of eX=A[B[3 1 and eY=1, since A [B[]]is not meaningful.

2. Rewriting Rules.

We can use TEMPLATE statements to introduce new symbols as shorthand representations of
already defined expressions.

TEMPLATE <pattern> «<expression>.
Then, a rewriting rule is created from this statement. The system replaces every occurrence of
<pattern> by <expression> according to the rule.

If we want to introduce

Ordered (A,1,J)
as a shorthand representation of

VX. (I1sX<J>AXI<AIX+1]),

then we can write

TEMPLATE Ordered(eA,el,ed) o ¥X.(1sX<dD> AIXI<AIX+11).

3. Reduction Strategies.

Also, we can introduce new symbols by a set of axioms. These axioms can be stated by
AXIOM statements and COAL statements to produce reduction strategies and goal-subgoal
strategies respectively.

We can specify reduction strategies to simplify terms or well-formed formulas. These strategies

are of two kinds, one is an unconditional reduction and the other is a conditional reduction.

Unconditional reduction strategies can be fed into the system by statements of the form
AXIOM <pattern>e <expressions,
The effect of this strategy is to reduce any expression which matches the <pattern> to <expression>.
The <expression> may have identifiers which appear in the pattern as pattern variables. They are

bound to some forms by matching. For example, one can represent one of the axioms of list data

structures,
VX, Y.CAR(CONS (X, Y)) =X,
as a simplification rule,
AXIOM CAR (CONS (eX, @Y)) X,
Then P (CAR (CONS (A, B))is reduced to P (A) since eX is bound to A. Only universally quantified

equality or equivalence relations can be represented by this method.

Conditional reduction strategies are specified to the system by statements of the form

AXIOM IF <pattern 1> THEN <pattern> o <expressions>,
The effect is to reduce expressions which match <pattern> to <expressions, if <pat tern 1> is
provable by the system. Some pattern variables of the <pat tern 1> become bound when
<pat tern> is matched. If the <pat tern 1> does not include unbound pattern variables, the
validity of the sentence

Aln...nAN - <pattern 1>,

is checked by recursively activating the prover. If the <pat tern 1> includes unbound pattern
variables, itis tested whether it matches the antecedent part of the verification condition or not. If it
matches then we consider <pat tern 1> to be provable and otherwise not provable.

For example,

. VX, Y (X<YAY<XoX=Y)

is a valid statement. We want to incorporate this fact into the system by conditional reduction, and
reduce Y<X to X=Y if X<Y holds. The statement we should write 1s

AXIOM IF X<Y THEN eYseX o X=Y,
Then if we are to reduce the statement

A<BAB<AAP (A) P (B),

the pattern matches to As<B to get bindings eY=A and eX=B. Since there is no unbound pattern
variable, the system sets up a subgoal Bs<A, and tries to prove

B<AAP (A) 5B<A,
which is valid. So the statement is reduced to

B=AABzAAP (A} 5P (B),
which will be proved to be valid by equality substitution. As the previous example shows
universally quantified theorems can be represented by this statement. But also some existentially
quantified theorems can be represented,

For example

YXA(3Y.P (X, Y)oF (X)=G (X))
can be represented by a statement

AXIOM IF P (X, eY) THEN F (eX)» G(X).

4. Coal-Subgoal Strategies.

Reduction strategies turn out to be important components of proof. It is afrequently used
proof step. However, we rely heavily on additional goal-subgoal strategies to complete many
verification proofs. Verification conditions are of thé' form

Aln. . .AAN - ClAa.. . ACH,

The problem is to prove each CI . If we can prove BI>Cl and AlA...AAN-BI, we can deduce
AlA...AAN-CI by modus ponens. Thus, if we have an axiom BI>Cl the subproblem we have to
solve is

Aln...nAN s BI.

T his fact is the motivation for employing goal-subgoal strategies.

Statements to specify strategies are of the form

GOAL <pattern> SUB <pattern 1>,...,<patternn>,

The strategy constructed from this statement works as follows. If <pat tern> matches to the
consequent C1, each <pat tern j> is tested successively until one of them is provable. If <pat tern
j>has unbound pattern variables it is tested to determine whether it matches one of the con juncts

of the antecedent. If <pattern j> has no unbound pattern variables, a new subproblem

Ala...nAN - <pattern j>
is tested by recursively activating the prover.
For example, the transitivity of “<" is defined by an axiom
V¥X, Y. (3Z. (X<ZAZ<Y) oX<Y) .
This is represented by a goal-subgoal strategy,
- GOAL eX<eY SUB X<eZreZsY.
In order to prove a sentence

A<BAB<CAC<D-A<D

- using this goal, first @X<eY is matched to A<D to obtain eX=A and @Y=D. Then, the antecedent is
searched whether A<eZ matches one of the conjuncts. In this case the search is successful and yields
= @Z=B. Thus, the remaining subgoal is eZ<D, which is now Bs<D. So the new subproblem
A<BAB<CAC<D-B<D
is set up. This can be proved by using the same goal one more time. These strategies can also
L represent universally or existentially quantified theorems.
Everything which goal-subgoal strategies can express can be expressed by conditional
reduction strategies, since we can express the statement
GOAL A SUBB,
by the statement

AXIOM IF B THEN AeTRUE.

However, the system uses these statements in different ways. Conditional reduction strategies are
used to reduce expressions in both the consequent and the antecedent of verification conditions. For
, example, suppose we have a conditional reduction strategy specified by
IF Al THEN A2 o C.
then
AlnA2-+ B
is reduced to
AIAC - B,
and

Al » AZ

is reduced to

Al - C,

Goal-subgoal strategies are used only to make reduction in the consequent.

The reason why we have goal-subgoal strategies is that because they are more efficient than
conditional reduction strategies. Most of the time we are interested in proving the validity of a
statement of the form A -B. Thus, we are interested in how B can be proved from A, Also the
antecedent A is usually more complex than the consequent B because the antecedent contains all the
information about data structures and control structures. So the goal-subgoal strategy gains efficiency

by limiting the reduction to the consequent part.

IV. Implementation.

This verification system is built upon the PASCAL verification condition generator
VCGENI([9] First, files of the user’s Axioms and Goal statements are thput to the system, and the
corresponding reduction rules and goal-subgoaling strategies are constructed. This yields a special
reduction and proof system for the data structures and functions described by these statements. The
system is extensible, since strategies can be added to handle larger domain of programs. Next, a file
containing the program with assertions is processed by VCCEN to produce verification conditions.
These are passed to the proving system. The proving system is divided into several functions. They
are (i)the arithmetic simplifier, (ii)the equality substitution algorithm, (iii)the truth value substitution
algorithm, (iv)the unconditional simplifier, (v)the conditional simplifier, (vi)the goal-subgoaler, and
(vii)the logic symbol elimination algorithm.

Gentzen-type inference rule notations are used to express the effects of functions.

NOTATION : A B

C
where C is the goal and Aand B are subgoals both of which

must be proved in order to prove C.

(i) The arithmetic simplifier transforms arithmetic expressions into standard representations, and
simplifies them. The standard representation is a sum of products of simple factors. A simple factor
is an arithmetic expression which is neither a sum nor a product. Then each product consists of a
coefficient(if not equal to 1) followed by simple factors which are ordered by system-defined

orderings, And the sum consists of the ordered products followed by a constant(if not equal to 0).

(i) The equality substitution algorithm handles verification conditions of the form

Anla=8)rB- C.

CASE I. Suppose one of a or 8 is a variable. Without loss of generality we can
suppose ato be a variable. If 81s a constant, a variable, or an
expression with « not appearing free, then all the occurrences of a in A, B
and C are replaced by 8.

CASE 2. Suppose one of a or 8 is a variable. Without loss of generality we suppose
ato be a variable. If 8 is an expression containing a, then all the
occurrences of g8 in A, B and C are replaced by a.

CASE 3. If « and B do not satisfy cases 1 or 2 then all the occurrences of a are

replaced by 8.

(iii) The trutt, value substitution algorithm evaluates logical sentences. The grand rule of the truth

value substitution is

Tsubst (A,a) nanTsubst (B, u)» Tsubst (C,a)

AnanB - C,

where both A and B may be null expressions and a is not a conjunction. Tsubst (A, «) is defined by
the following see of functions, which give the value of A assuming a is true.
Tsuhst{A,a)=if a is of the form =8 then Fsubst(A,B) else
ifa is of the form Bac then
Tsubst(Tsubst(A,B),c) else
replace al | occurences of a in A by “True”.
Fsubst(A,B)=ifB is of the form =« then Tsubst(A,a) else
if@ is of the form ax then
Fsubst (Tsubst(A,al),¢) else
ifB is of the form ave then
Fsubst (Fsubst(A,a),c) else

replace al | occurences of f in A by “False”,

(iv) The unconditional simplifier applies all unconditional reduction strategies.
The algorithm works from inside out. Thus if we want to simplify

R(PL1,...,PN),
first all P1, ..., PN are simplified to Q1, .. .,QON respectively. Then R (Q1,. .., QN) is simplified.

(v) The conditional simplifier applies all conditional reduction strategies. The treatment is different
according to the position of the expression--in the antecedent or consequent of the verification
condition. Suppose a conditional reduction strategy is given to the system by a statement
AXIOM IF <pattern 1> THEN <pattern> ® <expression>,
and the verification condition to be proved is
Aln., .AAM > ClA. . .ACN.
If <pattern> matches a subexpression of CI, then
AlA...nAM 5 <pattern 1>
becomes the subproblem to be solved.
Nest, suppose <pat ter> matches a subexpression of the antecedent say Al. Then
Aln...AAT-1AAT+1A. . AAM > <pattern 1>
becomes 1he subpioblem to be solved. If it is valid then the replacement takes place as before.
The validity1s checked by recursively activating the prover. So this is a depth first search,
and itmight go into a wrong direction infinitely. So the system allows the user to specify the search

depth. If thesrarch reaches this limit, it iS backed up until the last decision point.

(vi) The goal-subgoaler incorporates all goal-subgoal strategies. Suppose a goal-subgoal strategy is
given to the system by a statement
GOAL <pattern> SUB <pattern 1>,..,.,<patternN>,
and the verification condition to be proved is
AlA.. .AAN » ClAa.. .ACM.
If CI matches to <pat terns, then
Aln. . .AAN s <patternl> |, ,, , Ala., .AAN= <pattern N>

are set up as a dis junction of subproblems successively, until one of them is proved to be “True”. If

14

the proof is successful the problem is reduced to

AlAa...AAN = Cla...ACI-1ACl+1A...ACM,

(vii) The logic symbolelimination algorithm works on elimination of logic symbols “v" and ">
from the antecedent of the statement. Their functions are explained by inference rules as shown

below.

AnanB-» C AnBnB -~ C

(v-elimination)

AnlavB)AB » C

An-anB +» C AnBAB 5 C
(o-elimination)

Anloof)AB » C

These seven functions are applied serially. But the simplification may be applicable after
reduction by goal-subgoaling. So these functions are iterated several times. The user can specify the

number of iterations.

15

AT

N

The overal | structure of the prover is as fol lous.

Arithmetic
Simplifier

|
J

\
Equal i ty |
\
Algorithm \

|

l
|
| Substitution
|
\

\
v

\ \
| Truth Value \
| Substitution |
| Algorithm |

l
y

\
| Unconditional
| Simplifier

\

|
v

If v or
> exists

€ ——

| EXIT

L
S
E

|
ogic |
ymbo | |
limination |

Algorithm |

v

Prover |

(Recursively activates the

|
|Condi t ional Simplif ier
I
\ prover)

|

\

| Goal-Subgoaler

| (Recursively activates the
| prover)

\

|

|

v
EXIT

Depthofrecursive search
has a fixed bound which
can be altered before
running the system.

V. Application to Sorting Programs

As the first example, the verification of a simple sorting program which successively finds the
largest element among the unordered part of the array and puts it at the end of the ordered part is
considered. This program is the one considered by King[10). The program with input and output
conditions and an assertions about loop invariants is shown below. This is the actual input form for

the system.

PASCAL
TYPE SARRAY=ARRAY [1:L] OF INTEGER;

PROCEDURE EXCHANGESORT (VAR A: SARRAY;L: INTEGER) ;
INITIAL A=AQ;

ENTRY l<zL;

EXIT I ssortedarrayof(A,AB);

VAR X:REAL;VAR K,I, J: INTEGER:

BEGIN
I-L;
INVARIANT Permutation (A, AB) ADrdered (A, [+1,L)APartitioned (A, 1)A(]21)
WHILE I>100
BEGIN
Je2i XeA 1T 3Ke1;
INVARIANT Biggest (A, J-1,K}A(1sK)A(K<d-11A(J-15])A(X=A[K])

WHILE J<1 DO
BEGIN
IF X>A[J] THEN GOTO 3;
XeA [J];
Ked;

3 Jed+1

END:

AIKI<A{I);

AlTTeX;

ICI-1

END;

END;.;

We are going to explain the intended interpretation of symbols and the set of axioms defining
them. When we express axioms, we have to be careful not to introduce an inconsistent set. Since a
consistent set of axtoms has a model, we can avoid introducing an inconsistent set by defining an
interpretation and justifying axioms by showing validity relative to that interpretation.

Inputs tothis program are an array A and an integer parameter L defining the upper bound

of the array. Since we have an array with at least one element, the input condition is
Lz1l.

The output condition is
I ssortedarrayof (A, A},

where A0 is the initial value of A at the entrance to the procedure and I ssor tedarrayof (A, AB)

means that A0 is sorted to become A.

1. Issortedarrayof(A,B).

In order A to be a sorted array of B, it must be ordered in ascending order and it must consist
of all the elements of B and nothing else. We describe the two facts by introducing additional
predicates. The axiom is,

Ordered(A,1l,L)APermutation{A,B)olssortedarrayof (A,B).

2. Ordered(A, J,L).
The interpretation of Ordered(A,J,L) is that the subarray A[J:L] is ascendingly ordered.
Thus,
Ordered(A,J,L) x> VX. (JsXsL-15A[X) A X+11),
where x-» means that the left-hand side is the shorthand notation of the right-hand side.
Three axioms are necessary to specify the predicate. The first one specifies the boundary case
when J is equal to L+l. Then there is no element in the subarray and an empty array is ordered. So
Ordered{(A,L+1,L)

is true.

The next axiom is an induction axiom which state that if the property holds for a smaller

. subarrayit holds for a larger subarray under certain conditions. It is

Ordered(A,J,L)APartitioned(A, J-1)>0rdered(A,J-1,L).
This axiom enables the property to be extended to the whole array. The meaning of
Part i tioned (A, J-1) is that the array A is partitioned between J-1 and J such that all the
elements 1n the upper half are larger than or equal to all the elements in the lower half.

The last axiom states that changing elements outside of the concerned subarray will not

18

change the property. The operation on the array in this program is Exchange (A, I, J), which is an
array obtained by exchanging I-th and J-th element of A, thus

Ordered (A, J, L) allsd)alKsdYAPartitioned (A, J)
S0rdered (Exchange (A, |,K),J,L).

3. Partitioned(A, J).

The meaning of this predicate has been stated before as

Part i t i oned (A, J)x= VX, Y.(1sXsJ<Y<LoA[XI<A[Y)),

There are also three axioms to specify this predicate with the same nature as those of
Ordered(A, J,L).

When J is equal to L, there is no element in the upper half of the array, so the property
holds. Thus, the boundary property is

Part i t ioned(A,L).

The axiom about induction is

Partitioned(A,J)ABiggest(A,J,JIoPartitioned(A,J-1).
Since Biggest (A, J, J) means that A[J] is the biggest element among elements of the subarray
A[1:], there is a separation between J- | and J.

Also if we exchange elements of the lower half of the array the property remains valid. So,

Partitioned(A,J)allsd)a(Ksd)oPartitioned(Exchange (A, I,K),J).

4. Biggest(A]l J).

The meaning of this predicate is that, A[J] is the biggest element among the elements of the
subarray Al 1:1].

The ax1om of the boundary case states when I 1s equal to 1. Then, there is one element in the

subarray which 1s the biggest element. Thus,
Biggest (A,1,1).
The axioms about the induction are
Biggest(A,1,)A(ALJI2A[I+1])oBiggest (A, 1+1,J)

and

19

Biggest (A, 1,)A(ATI+112A1J))oBiggest (A, 1+1,1+41).,

The next axiom states that if we move the biggest element by Exchange, then the place of the
biggest clement changes. The objective of the program is to move the biggest element of subarray
Al1:1]to A[1] Thus, the axiom

Biggest(A,1,J)oBiggest (Exchange(A,J,1),1,1),

is sufficient.

5. Permutation(A,B).
The meaning is that the array A is a permutation of the array B.
If we exchange elements of an array, this is a permutation of the array.
Thus,
Permutation (Exchange (A, I, J), A)

is an ax jom. Also Permutation (A B) is an equivalence relation, so
Permutation(A,A), and
Permutation(A,B)>Permutation(B,A), and
Permutation(A,B)aPermutation(B,C)oPernutation(A,C),

are axioms. Since any permutation can be obtained by repeated operations of Exchange, these are

sufficient axioms to prove the property.
6. Exchange(ALJ).

The axiom sufficient to represent that any N-place cycle is decomposable into N Exchanges is

Y=A[Jlo<<A,1,Y>,J,X>=Exchange (<A, 1,X>,1,J).

20

The following listing is the goalfile which is supplied to the system along with the program.

This shows how simplification and goal-subgoaling rules are selected to represent axioms.

GOALFILE
GOAL Issortedarrayof (eA,eB) sUB Permutation(A,B)ADrdered(A,1,L);

AXIOM Orcdered(A,L+1,L)oTRUE;
GOAL Ordered(eA,ePl,L) suB Ordered(A,P1+1,L)APartitioned(A,P1);
GOAL Ordered(Exchange (@A, ePl,@P2),eP3,L)

SUB (P1<P3) A(P2<P3} AOrdered(A,P3,L)APartitioned(A,P3);

AXIOM Partitioned(A,L)«TRUE;
GOAL Partitioned(eA,ePl) SUB Biggest{A,P1+1,Pl+1)APartitioned(A,Pl+1);
GOAL Partitioned(Exchange (eA,ePl,eP2),eP3)

SUB (P1<P3)A(P2<P3)APartitioned(A,P3);

AXIOM Biggest(A,1,1)eTRUE;

GOAL Biggest (Exchange (eA, ePl,eP2),eP2,eP2) SUB Biggest (A,P2,P1);
GOAL Bigyest (eA,eP2,ePl) SUB (A[P1)2A[P2])ABiggest (A,P2-1,P1);
GOAL Biggest (@A, eP2,@P2) SUB (A[P2]2A[P1])ABiggest (A,P2-1,ePl):

AXIOM Permutation(el,el)«TRUE;
AXIOM Permutation(Exchange(ell,el2,el3),ell)«TRUE;
GOAL Permutation(@A,@B) SUB Permutation(A,eC)APermutation(eC,B);

AXIOM IF Y=P1[P3] THEN
<<ePl,eP2, eY>,eP3, eP4>eExchange (<P1,P2,P4>,P2,P3);

GOAL 0 <ePl+eP2 SUB (8<P1)A(B<P2);

GOAL @P1<eP2SUB (P1<eP3)a{eP3<P2);
AXIOM @Pl<eP2«Pl+1<P2;

21

This is the output of computation which verified the program in 19 seconds.

THERE ARE 4 VERIFICATION CONDITIONS

1
(1<t
-
Permutation(A,A) &
Ordered{(A,L+1,L) &
Partitioned{(A,L} &
1<L &
(-1<I#1 &
Permutation(A#1,A) &
Ordered (A#1,1H#1+1,L) &
Partitioned(A#l, 1#1) &
1<1#1

-+l ssor tedarrayof (A#1,A)))

2

(1< &
Permutation(A,AB) &
Ordercd(A,I1+1,L) &
Partitioned(A,1) &
1<l

Bigyest(A,2-1,1) &
1<1

<Z

1

1<2-1 &
2-1<1 &
Alll =A[118&

(-JH#H3<] &
Biggest (A, J#3-1,K#3} &
1<K#3 &

K#3<J#3-1 &

JH3-1<1 &

X#3=A[KH3]

Permutation(<<A,K#3,Al11>,1,X#3>,A0) &
Orcered(<<A,KH#3,A01)>,1,X#3>,1-1+1,L) &
Partitioned (<<A,K#3,A011>,1,X#3>,1-1) &
1<1-1))

Biggest(A,J+1-1,J) &
1<J &

JgJ+1-1 &

J+l-1<1 &

A[Jl=A1J])

22

—

*_—M

4

(AlJI<X &

Js<l &
Biggest(A, J-1,
lsKJ& K) &
Ks<Jd-1 &

J-1<1 &

X=A[K]

Biguest (A, J+1-1,Kk) &
1<K &)

AFTER SOME SIMPLIFICATION, YOU CAN GET

71
TRUE

¥ 2
TRUE
3
TRUE

H# 4
TRUE

AR
TIME: 19 CPU SECS, 21 REAL SECS

778 STATE STACK CELLS USED
136 TOKEN STACK CELLS USED

958 DECISION POINTS

1947 FAILURES
3 SECS GC TIME

23

Here is another sorting program which has been verified. This is Floyd’s TREE SORT
program[4] with assertions and the goalfile. This is verified with 142 seconds of computation time.
Most of the previously defined predicates are used in the goalfile with the same set of axioms. Thus

there is a possibility of forming a standard set of symbols and axioms.

PASCAL

PROCEDURE TREESORT3 (VAR A: TREEARRAY;L: INTEGER) ;
INITIAL A=AB;

ENTRY L322;

EXIT lssortedarragof(A,ABh

PROCEDURE SIFTUP(VAR M:REAL ;1,N:INTEGER);
INITIAL I=18,M=M8;

ENTRY Treeordered(M,1+1,N)a(I21);
EXITTreeordered(M, 18, N)APermutatson(M M8) A

Unchanged (M, 48,1, 18- 1)AUnchanged(N MB,N+1,L);
VAR COPY: REAL: J: INTEGER:

BEGI N
COPY «M([]1;
10 J « 2 % |;
IF J£ N THEN
BEGIN
IFJ <NTHEN TIF M{J+1]>M{J} THEN J «J+1;
IF M [Jl> COPY THEN
BEGIN
MUY « MIJY;
ASSERT Treeordered(ﬁ 18,N)A(COPYsMIJDIV21)A
Permutation (<M, J,COPY>,M8) A
Unchanged (M, M9, 1, 18-1)A
Unchanged (M, M8, N+1 Lia
(N>J)A(J>IB)A(IB>11
|«]
GO TO 10
END;
END;
Mll] -« CoPy;
ENO;

VAR WORK: REAL; I: INTEGER:

BEGIN
1L DIV 2 ;
INVARIANT Treeordered(A,l+1,L)a{I21)APermutation(A, AQ)
WHILE 122 00
L BEGIN SIFTUP(A,1,L);l<I~1 END:
INVARIANT Ordered(A, 1+1, LYAPartitioned(A, I)ATreeordered (A, 2, 1)
All \l)APermutatton(A AB) "
WHILEIz2070
BEGIN
SIFTUP(A,1,1);
LilO!?KIA[l]; Alll«Al1]; ALI]<WORK;
END
END;.;

24

‘______’

GOALFILE
GOAL Issortedarrayof (eA,eB) SUB Permutation(A,B)AOrdered(A,1,L);

AXIOM Permutation{el,el)«TRUE;
AXIOM Permutation(Exchange(ell,el2,@l3),@]1) «TRUE:
GOAL Permutation(eA, eB) gUB Permutation(A,eC)APermutation(eC,B);

AXIOM IF Y=P1(P2]
THEN <<eP1,eP2,eY>,eP3, aP4>«Exchange (<P1,P2,P4>,P2,P3) ;

AXIOM Ordered(A,L+1,L)«TRUE;
GOAL Ordered{eA,ePl,L) SUB Grdered(A,P1+1,L)/\Partitioned(A,Pl);
GOAL Ordered (Exchange (eA,ePl,eP2),eP3,L)

SUB Ordered(A,P3,L)A{P1sP3)A(P2<P3) APartitioned(A,P3);
SUB Ordered{eY,P,L) AUnchanged (X, Y,eQ,L) A (Q<P+1)
AXIOM Unchanged{eX, eX, el ,eJ) o TRUE;
GOAL Unchanged (<eX, el,eJ>,eY, ek, el)

SUB Unchanged (X, Y,K,L)AButofrange (K, 1,L);

GOAL Biggest (eA,el,1) SUB Treeordered(A,1,1);
GOAL Biggest (Exchange (@A, el,eJ),eJ,eJ) SUB Biggest(A,J,1};

GOAL Treeordered (ePl,eP2,@P3)
SUB Treeordered (P1,P2+1,P3}
nBiggerthanchildren(P1,P3,P2,P1[P2]);
GOAL Treeordered (<&M, od, eK>, @], eN)
SUB Treeordered(M,I,N)aQutofrange (1, J,N);
GOAL Treeordered (elt,el, eN) SUB N<2x];
GOAL Treeordered (<eM, eJ, eK>,el, eN)
SUB Treeordered (M, 1,N)ASnal ler thanparent (M, I, J,K) A
Biggerthanchi Idren(M,N,J,K);
GOAL Treeordered (Exchange (@A,el,eJ), eK,el)
SuB Treeordered(A,@H,@N)A(K=I+1)A(L=J—1)/\(NSK)A(NEL);

GOAL Outofrange(el,ed,eN) SUB J<I, N<J;

GOAL Smal lerthanparent {(eM, el,eJ, eK)
SUB J<2x1,(KsMId OIV 21} ,K=M[2%J],K=M[2%J+1];

GOAL Bigger thanchildren(el,eN, ed, eK)
SUB N<2xJ, (N=2xJIA(K2MINI) | (KaMI2%J1) A (K2M[2%J+11);

AXIOM Par titioned (A L)»TRUE;
GOAL Partitioned(eA,ePl) SUB Partitioned(A,P1+1)ABiggest (A,P1+1,P1+1);
GOAL Part i t ioned{Exchange (eA,ePl,eP2),eP3)
SUB Partitioned{A,P3)A{P1<P3)A(P2<P3);
GOAL Part i t ioned(eX, eP)
SUB Partitioned(@Y,P)aUnchanged(X,Y,eQ,L)A(QsP+1);

AXIOM (eKxel)DIVeKs L;

AXIOM eKxf{el DIV eK)e L;

AXIOM IF M41<K THEN {(eKxel)+eM)DIVeK o L;
GOAL @Pl<eP2 OIV @P3 SUB P1xP3< P2;
GOAL 5 <ePl+eP2 SUB (8<P1)A(B<P2);

GOAL @PlszeP2 SUB (Pl<eP3)a{@P3<P2);

AXIOM ePl<eP2 e Pl+1<P2;

25

This is Hoar-e’s FIND program[7] and goalfile. This program is verified with 53 seconds of

computation time.

PASCAL

PROCEDURE FIND(VARA:FARRAY;F,K: INTEGER) ;
INITIAL A=AD;

ENTRY 1<F8F=zK;
EXITPARTITIONED(A,F)APERMUTATION (A, AB) ;

VAR M,K: INTEGER; VAR R:REAL;

BEGIN
Mel; NeKy
INVARIANT MINVARTANT (A, M) ANINVARIANT (A, N) APERMUTATION (A, AB)
A (M<F)YA(F<N)
WHILE M < N DO
BEGIN
ReATFY;1eM;d -
INVARIANT MINVARIANT(A MYANINVARIANT (A,N) Al INVARIANT (A, I,R)
AJINVARTANT (A, J R)APERNUTATION(A AB)A(H<I)A(N>J)
WHILE I<J DO
BEGIN
INVARIANT I INVARIANT (A, I, R} A(M<1)
WHILE All] < R DO I(-l+1
INVARIANT JINVARIANT (A, J,R)A(N2J)
WHILE R<A[JIDO J e J-I;
IF 1€ J THEN
BEGIN
WeATIT: AlITAlJ]y ALJIU;
[el+l Jed-1
END
END:
IFF <J THEN NeJ ELSE IFIsF THEN Me]l ELSE GO TO 10
END;
10:
END:.:
GOALFJLE

AXIOM PERMUTATION (@1, el)«TRUE;
AXIOM PERMUTATION (EXCHANGE (el l,el2,el3),el1) «TRUE;
GOAL PERMUTATION (eA, @B) suB PERMUTATION (A, eC) APERMUTATION (eC,B) 3

AXIOM IF Y=P1 [P2]
THEN <<@Pl,eP2,eY>,eP3, eP4>eExchange (<P1,P2,P4>,P2,P3) ;

GOAL PARTITIONED (@A, @) SUB MINVARJANT (A, 1) ANINVARIANT (A, 1)
AX10M MINVARIANT (eA,1)e TRUE; *
GOAL MINVARIANT (@A, @M)

SUB I INVARIANT (A, @l,eX) AJINVARIANT (A, eJd,eX)a(l2J+1)A(12M) A (M2J) 3
GOAL MINVARIANT (EXCHANGE (@A, @l ,@J),eM) SUB MINVARIANT(A,MIa{I2MIA(JzM)
AX10M NINVARIANT (eA,K)e TRUE:
GOAL NINVARIANT (@A, eN)

SUB I INVARIANT (A, el,@X) AJINVARIANT (A, eJ,eX)All2J+1)A(I2NI A (N2J) ;
GOAL NINVARIANT (EXCHANGE (eA,el,ed),eN) suB NINVARIANT (A,N)A (1N} A(J<N) 5

26

GOAL 1 INVARIANT (eA, el , @A leJ]) SUB MINVARIANT (A, 1) A(J21);
GOAL T INVARIANT (A, 21 ,@J) SUB 1INVARIANT (A, @K, J) A (@K=]-1) A (J2A fekKl);
GOAL HNVARIANT(EXCHANGE(@A el,ed), @I+1 @R}

SUB 1INVARIANT (A, I, R)A(1<J) A (R2A [J])

GOAL JINVARIANT (eA, el, @A [eJ]) SUB NINVARIANT(A Daldsl)
GOAL JINVARIANT (eA, el,eJ) SUB JINVARIANT(A ek, J)A(@K-HIJA(JSA leK]);

GOAL JINVARIANT (EXCHANGE (eA,el,ad),@l-1,@R
SUB JINVARIANT (A, J, R)A(]<J)A(R<A[I])'

AXIOM @A<eB o A+1<B:
GOAL @Pl<eP25SUB (Pl<eP3)a (@P35P12)

AXIOM IF P1<P2 THEN eP2<ePl o P1=P2:

Von Henke and Luckham have verified other programs using this system. Also a detailed

study of the verification method has been performed.[5]

Acknowledgements. The author is grateful to David C. Luckham, who helped a great deal in writing

this paper and in developing t he system. Also, he is grateful to Friedrich W. von Henke and Jorge

Morales for their advice and comments during the development of the system.

27

)

11

References

>

R.S. Boyer and J.S. Moore, “Proving Theorems about LISP Problems”,
Third 1 JCAI Proceedings, 1973.

Deutsch, L.P., An Interactive Program Verifier, Ph. D. thesis,
University of California, Berkeley, 1973,

R. W. Floyd, “Assigning Meanings toPrograms",Proc.Symp.Appl.
Math., Amer. Math. Soc,, Vol. 19, 1967, 19-32.

R. W. Floyd, “Algorithms 245. TREESORT 3", CACM, Vol 7, 1964,
Dec., 701.

F.W. von Henke and D.C.Luckham, A Methodology for Verifying Programs,
forthcoming AIMEMO, Stanford Artificial Intelligence Project, Stanford

University, 1974.

C.AR. Hoare, “An Axiomatic Basis for Computer Programming”, CACM,

Vol. 12, 1969, Oct., 576-580.

C./\‘R.Hoare,"Proof of a Program: FIND”, CACM, Vol. 14, 1971,
Jan., 39-45.

C.A.R. Hoare and N. Wirth, “An Axiomatic Definition of the Programming

Lang uage PASC AL”, Actalnformatica 2, 19’73, 335-355.

S.lgarashi,R.L. London, and D.C. Luckham, “Automatic Program
Verificationl: Logical Basisand Its Implementation”, AIM-200,
Stanford Artificial Intelligence Project, Stanford University, 1972.

J.C. King, A Program Verifier, Ph.D. thesis, Carnegie-Mellon
University, 1969.

R. Milt-let-, Logic for Com putable Functions: Description of a Machine

Machine Implementation, AIM-200, Stanford Artificial Intelligence
Project, Stanford University, 1972.

28

