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Abstract. A computer implemented algorithm to solve the following

graph theoretical problem is presented: given the empirical formula
for a molecule and one or more non-overlapping substructural fragments

of the molecule, determine all the distinct molecular structures based

: on the formula and containing the fragments. That is, given a degree
sequence of labeled nodes and one or more connected multigraphs,

= determine a representative set of the isomorphism classes of the connected

| multigraphs based on the degree sequence and containing the given multi-
graphs as non-overlapping subgraphs.
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MOLECULAR STRUCTURE ELUCIDATION III

1. Introduction. This paper 1s the third 1n a sequence of papers

| on the derivation of combinatorial algorithms necessary for the development

of a package of computer programs designed to assist the analytic chemist

he in determining the topological structure of organic molecules. The first

paper [1] described an algorithm for labeling the nodes or edges of a

graph, and the second paper [2] described an algorithm for determinfng ali
1%

the distinct graphs based on a given degree sequence of nodes. The relevance

of these algorithms to structure elucidation problems in analytic chemistry

2)
is discussed in [3].

The present paper addresses itself to a frequently encountered probiem in

L analytic chemistry. Namely, by applying spectroscopic measuring devices ard

varicus laboratory techniques to an unknown organic compound, the chemist

can often determine the molecular formula of the compound as well as the

topological structure of several fragments of this molecule, at least up tc

some unspecified bonds. 3 What 1s desired then is a complete and irredundant,

1) Throughout, we view a chemical molecule as a connected graph wiacse
(labeled) nodes represent the atoms in the molecule and whose edges

represent bonds, 1.e., as the gekule diagram of the molecule.

[3.] also contains numerous references to articles describing specific
chemical applications of these algorithms.

2)
“’ ‘hese laboratory techniques usually yield much more information about

the unknown molecule, e.g., excluded fragments and multiple bonding
patterns. Integration of this other information 1nto our program

package will be described in later papers.
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_ 1.e., nonisomorphic, set of the topological structures based on the molecular

formula and containing the known fragments. In some cases these known

N fragments may overlap, 1i.e., have atoms in common. However, we will consider
here only the case in which the fragments are assumed to be disjoint.

d 2. Problem Formulation. In order to formulate this molecular structure

Co problem in precise, graph theoretical terms, we make the following definitions.

_ 2.1. Let N = {n, cen ny be a collection of k, not necessarily distinct,

ordered pairs of the form ns = (1,. v.) where 1, is an alphanumeric symbol,

" (the label of n,) and Vv, 1s a positive integer (the valence value of n.). We
| call such a collection N an atom set. By a graph based on the atomset N we

mean a loop-free, connected multigraph G = (N, D) with node collection N

L and edge collection D such that the degree of each n, in G is equal to vt.
| We say that two graphs based on N, say G = (N, D) and H = (N, BE) are
= isomorphic if and only if there is a graph isomorphism Y from G to H which

i preserves labels, i.e. , Y 1s a permutation of N such that the multiplicity
of each (n,, n,) in D is equal to the multiplicity of (¥(n,), #'(n,)) in E

~ and ¥(n,) =n, implies 1, = L., Since G and H are graphs based on N,
such a 'd must, necessarily, also preserve valence values.

If G =(N,D) and H = (M, E) are graphs where the node collections N and

| M are both atom sets, then H is said to be a subgraph of G if there is an

injection ¥ from M into N which preserves connectivity, labels and valence

values, 1.e., the multiplicity of each (m, , m, ) in E does not exceed the

multiplicity of (V7 (m.), V) (m,)) in D and V(m,) = n, implies m. and n.

L) Ce
Note that we distinguish here between the valence value of an atom and

its degree as a node in a graph.



: have the same label and valence value.

In terms of these definitions, our molecular structure problem can now

. be stated as follows:
C

Given: An atom set N and a list of_.q loop-free, connected multigraphs

fy - (M E,), © 1 = (M,> E,) with each M1 anatom set and

C satisfying:

1) The disjoint union of the M; 1s a subcollection of N.

11) The degree of a node 1n any H, does not exceed its

C _ valence value.

111) In each H, at least one node has degree less than its

valence value.

. Determine: A representative set of the isomorphism classes of those

(loop-free, connected, multi-) graphs based on N which contain

His Hy “ee and # as pairwise disjoint subgraphs.
N Using our current techniques, a direct, effective, computer implementable

solution to the above problem does not seem possible. our solution strategy,

- therefore, consists of reducing this problem to an iterative sequence of

N simpler problems which, when solved, yields a collection of graphs containing

_ the desired representative set but possibly with redundancies, These

redundancies, as produced, are pruned from the collection. We now describe

C our problem reduction technique.

i 2.2. Let k, = ai (valence m, - degree in H, of m,). k. is called the
free valence of H,. It corresponds to the number of unassigned valences 1in

C the fragment whose known structure 1s represented by i, . By assumption, ke
1s positive. -

Since we consider only connected graphs, in any solution graph at least

L
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one of the free valences of H, must be used for an edge going from a node

in M. to a node not 1in M. . Moreover, those free valences used for edges

C going between nodes in M, must occur 1n pairs. Accordingly, we let

B = {(v),.%a , by) jo<b, <k, , b. =k, (mod 2)} , where each difference
k, - b, indicates the number of free valences to be used by edges going

C between nodes in M;

Let Yio Coy Yq be gq distinct atom labels different than any of the

labels of the atoms in N. For each b= (by, . Co. b,) in B, let N° denote
the atom set obtained from N by deleting from N all the atoms in the disjoint

union of the M. and adding to the remaining atoms the set of g new atoms

{x = (¥; b.) | 1 = 1, . oo a}. For each so modified atom set NP, consider
( the following sequence of constructions:

L. Construct a representative set of the isomorphism classes of the

| graphs based on NP,

C 2. For each graph G° constructed in step 1, for i =1, . . . , a,

iteratively construct a representative set of the isomorphism

) classes of all the graphs Gt obtained from all the graphs git as

follows:

a) Add (k, - b,)/2 edges to H, in such a way that the resulting

degree of each node ms in H, does not exceed the valence value

C of my
_ b) Delete the atom X. from G11 and replace each edge in chil of

of the form (n_ , xi) with an edge of the form (n_ m, ) in such

L_ a manner that the resulting degree of each mn, 1s equal to the
valence value of m, -
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Each graph produced by this sequence of constructions will be a graph

| satisfying the conditions of our molecular structure problem. Moreover,

| 1f for each b 1n B we perform these constructions, the resulting collection
of graphs will contain, up to isomorphism, all solution graphs of our

original problem but possibly with redundancy.

C We have previously developed and implemented an algorithm which, given
a degree sequence of nodes representing the atoms of an organic molecule;

determines a representative set of the isomorphism classes of all loop

3 free, connected multigraphs based on that degree sequence [2]. This

| algorithm yields an effective solution to step 1 of the &bove construction.

L Thus, up to redundancy elimination which is discussed in Section 3.6,our

| molecular structure problem is reduced to the problem of deriving an
effective algorithm for step 2 of the construction. We call this latter

_ problem the fragment embedding problem.

3. Fragment Embedding. In this section we will give an independent, more

precise formulation of the fragment embedding problem, and we will ghey

that this problem can be represented, at least partially, as a special double

coset representative problem,

3.1. Let G= (M, D) and H = (N, E) be connected, loop-free, multigraphs

with disjoint node sets M ={m, gy vee wm } and N ={n,, Lo. >a} and
edge sets D and E, respectively. Here, the edge sets are considered as

unordered pairs of nodes with multiple edges appearing multiply. For nodes

my in M and n, in N, we now formally define an embedding of H at n, in G

at m, where degree (n,) - degree (m, ) is non-negative and even. To simplify
the notation we assume, without loss of generality, that i = J = 1.
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An embedding of H at n, in G at my is a multigraph A = (B, C) where

} 1) The node set B consists of MUNN {m, , n, } , l1.e., all the

N nodes of both G and H except m, and n, .
11) The edge set C consists of :

{(m,, m, )€ D | i #1, J # 1} Uftn, , n,)€E |i #1, 5 # 1 FU F UK,
C

where F satisfies:

a) Every element in F 1s an edge of the form (m,, n,) where

(m, , m:)€D and (n, n,)EE.

b) For each n, in N, the number of edges in F having fn as an

R endpoint does not exceed the multiplicity of the edge (n n,)

. in H.
¢) For each m, in M, the number of edges in F having m, as an

endpoint is equal to the multiplicity of the edge (mn, m,) in G.
and X satisfies:

i a! Every element K is an edge of the form (n,, n,), i # j, where

| both (n,, n,) and (nq n) are in E.
b) For each n, in N, the sum of the number of edges in F having

n, as an endpoint and the number of edges in K having n, as an

endpoint is equal to the multiplicity of (n, n,) in H.

That 1s, C consists of all edges 1n D except those with endpoint ms all

edges 1n E except those with endpoint no, the connecting edge set F and the

internal edge set K. Note that by definition, an embedding is a connected,

loop-free multigraph, and it is completely determined by the edge sets F and kK.)

5) This formulation of the embedding problem corresponds to the formulation 1n
the previous section as follows:

a) G corresponds to a Bagh oil ang Che be
b)Hec ‘responds to the fre~m-~-t =
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Our objective 1s to develop a reasonably efficient, computer implementable

algorithm which accepts as input the graphs G and H and which outputs a

R representative set for the topological isomorphism classes of the embeddings
of H at ny in G at m, |

We consider first the special case where degree (m, ) = degree (n,), l.e

. the case where the internal edge set K 1s empty.

3.2. Letw = degree (m, ) = degree (n)), and let 5, denote the full
permutation group on {1, 20 «ee vl. We index from 1 to w all edges in

D of the form im, m. ), say index im, , my) = t,t=1, . . . . w, where

for definitiveness , we require that t,< t, implies i(t))= i(t,). Similarly,

we index from 1 to w all edges in E of the form (n, n.), say index
(ng, nig) = t, where t,< t, implies Jt025(t,). B ror any Y in S we

define F{¥) as the set of (multiple) edges {lm py, By (4) | t=1, . . . . wv} .
F(¥Y) is a connecting edge set of an embedding of H at n, in G at m,.

Conversely, if F is a connecting edge set for an embedding of H at n, in G

at m,, we define the map 7(F) iteratively as follows:

For t = 1, ...,w, n(F) (t) = t, where t, is the least unassigned index

such that CI % (¢,)) 18 in F. MM(F) is a well-defined permutation in
SHC Moreover, for any connecting edge set X, F(T (X)) = X. Hence we have:

Lemma1. Let degree (m, ) = degree (n,) = w. Relative to an indexing of

the edges of G with endpoint m, and the edges of H with endpoint n., there

1s a surjettive correspondence from the elements of S. onto the embeddings

of H at n, in G at m, .

We will now show that there 1s a surjective correspondence between a

certain set of double coset, representatives in 5, and the topologically

distinct, 1.e., nonisomorphic, embeddings of H at n, in G at m,



Let Grp(G) be the topological symmetry group of G considered as acting

on the nodes of G, and let Stab (G) be the stabilizer in Grp(G) of ml,

C i.e., Stab (G) = {ote 6rp(6) of (m =m 3. If, as above, we index those
edges of G with endpoint ml, then each node map & in Stab (G) naturally

induces a well-defined permutation U(&) in § follows: For any index t,

C (my, mp) is the edge in D with index t and (my, X (my 4) must also

be an edge in D. Moreover, both (nm , my) and (m, , (mm, (4) ) ) have the
same multiplicity in G, say k. Let x and y be the least indices of the

C- k edges (mgm; (iy) and the k edges (m, , ot (m (oy) respectively. Since
multiple edges were 1ndexed in sequence, t = x + b for some 0£b<k, and

we define T(a)(t) = y + b. Since Stab (G) is a subgroup of Grp(G), the

set I1(G) = {%(«) | & € Stab(Q) } is a subgraup of S_.

For each i such that (ml, m, ) is in D, say the multiple edges (ml, m, )

are indexed by Xeg. Xo t 1, . . . X. + k = 1 where k 1s the multiplicity

- of (m., m, ) in G, let g (1) denote the full permutation group on
{x Ce Xg + k - 1} considered as a subgroup of 5S, Let M(G) denote

the internal direct product of all the s(1) such that (ml, m, ) 1s in D.
- Then, I(G) ~ M(G) = M(G) .I(G) and I(G) and M(G) have only the identity

in common. Hence, the set product U(G) = I(G) .M(G) is a subgroup of

S, with order (U(G)) = order (I(G)) .order (M(G)).

‘ In a completely analogous manner, we define the subgroups I(H), M(H)

_ and U(H) of S, corresponding to H at ng.

L_

L
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Lemma 2. Let § and 5 be two elements in 5 lying 1n the same double coset
of U(H) and U(G) in Se 1. UH) Yule) = UH) &J(G). Then, the embeddings

Cy and Cg of H at n, in G at m, determined by ¥ and § , respectively, are
topologically isomorphic graphs. |

Proof. Since 5 is an element of U(H) ¥ U(G), T =rroot. 'S > 7 V.2, Y for

some 0; & 1(0),T, € MG), \) je I(H) and vy € M(H). Let
T € Stab (G) and V)€ Stab (H) be elements inducing T, and Y., respectively.

By definition, both C —
y yw and Cg have the same node set L = DYE {mys n,}o.

We define amap Y on L by Y(m.) = ¥ (n.)... Yu). VV (n,) . Sincei 1 1 i

T (rm, ) = my and V (n.) = no, va is a well-defined permutation of L.
Yoreover, since Te Grp(G), YW restricted to the subgraph of C, consisting

the edges of Cy of the form (m, , m, ) is an isomorphism from this subgraph to
the corresponding subgraph of ’¢ Similarly, ¥ determines an isomorphism

from the subgraph of the edges of the form (n. n.) in Cy to the correspondingJ

subgraph of Cg . Thus to show that Wis an isomorphism from Cy tc Cs , we
need only consider the action of Y on F(¥). We claim that (g , nn) is in

X°y

F(¥) if and only if ( Vin), Y(n)) is in F(§).Y

For an alr (m , n ), let m — =Vy P ( Xo J Y J m and Yn) n_. Then, by
definition of F(Y), (m_, n) is in F( ¥) iff

1) x= i(t) and y = J(¥ (t)) for some index t. By definition of ¥, (i)

1s true iff

ii) uw =1 (T,(%)) and v = J (9 ( ¥t))).

Since C, only moves the index of an edge with endpoint m, to the index of

one of its multiples and similarly for V 5s (11) 4s true iff
111) u = 1 and v = : Cia(7, 7, (¢)) J (Vv, (8). By assumption, (iii) is

true, 1ff
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iv) u = 4 an =
(Tr, %,(t)) and v = x? (t)) By d fhition of F(§ ),

| (iv) is true iff(¢¥ (m ), ¥ (n ) is in F(§)v

- Hence, is an isomorphism from C

e=cs-n+ Tet H and G be the graphs in figures la and lb, respectively.

3

J hn == C —c
. 1/ \2 4 i | \

A B = / C
Fie, ja +

he Here A, B
and C are the node (atom) labels. Both Grp (G) and Grp(X)

( consist i i ]

| of only the identity map and, using the image vector notation
for elements of S

4"

ule) = {(1,2,3,4), (1,3,2,4)} and

Ute) = {(1,2,3,4), (1,2,4,3)}.
~ There are seven double cosets of U(H) and U(G) in S

L° A set of double
Cosel representatives is:

a. (1,2,3,4) a. (4,2,3,1)

b. (2,1,3,4) €. (3,1,4,2)

Ce. (3,2,1,4) £. (1,4,3,2)

ge (2,3,4,1)

The corresponding embedding are given in Figure 2.

A= C a

C

B= c” | d
N J A= C—¢C

C \ /
C

(a) (b)
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(c) 5 A

C. =¢C

\ ~ | LGCc - C I

| A B I

L B
(e)

(f)

_ Bec BEN
BED
C=C ¢

A

(g)

Figure 2.
Note that the embeddings (d) and

(e) are topologically isomorphic
As shown in the above example .

» the converse of Lemma 2 is not
The difficulty here 1s that an en] true.

>eédding may have symmetries not i
by symmetries of its components. -We do have nduced

. however
result: ’ , the following
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Lemma 3. Letd and & be elements of S. with associated embeddings of H at

ny in G at my Cy andCg , respectively. If there exists an (node)

| isomorphism Y from Cy to Cg such that WY (p \ {m ) = DS {m3 , l1.e.,\

Y permutes the nodes of G, and hence. also those of H, among themselves,

| then ¥ and § are in the same double coset of U(H) and U(G) in S

C Proof. By the definition of an embedding, there is a T in Stab (G) such

"TU and '% agree on the subgraph of Cy consisting of all edges of the

form (m. , m,). Similarly, there is an V/ € Stab (H) such that v and ¥
L agree on the subgraph of Cx consisting of all edges of Cy of the form

(n,, n,). Also, (m, , n,) is in F(Y) if f(y (m,), ¢ (n,)) is in F(§ ).

Thus we have that (m,, ny) is in F(Y) if (7 (m, ), Vv (n,)) is in F (6).
‘ Let T and VE be elements of U(G) and U(H) induced by T and v ,

respectively. Then, up to a permutation of indices on multiple edges, we

have that for any index t:

S (ms (4) nyw(t))) in F(¥) implies
m, n

( (2 (t))? 3% ¥(t)) is in F( §) implies; 1 1

ST. (t) = Y(t).1 1
L

-1

Hence, V7, § T, = ¥ up to permutations of the multiple edge indices,
and‘s € UH) ¥ U(G).

L The above results yield a method for determining all embeddings of H

at n, in G at m, where degree (ml) = degree (n,)= w. Namely,

1. Construct the subgroups U(G) and U(H) of 8.
L
— 2. Construct a set of double coset representatives for U(H) and U(G) in

S .
Ww

I
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3. Construct the set of graphs determined by these double coset

representatives.

" 4, Eliminate any isomorphic duplicates from this set of graphs.
Although this method does produce initially a set of graphs with possible

redundancies, a great deal of empirical evidence leads us to believe that

at least in the case of graphs of organic molecules, the number of duplicates is sta-

tistically relatively small, e.g., less than 10%. Moreover, since the resulting

graphs are needed later in a canonical form, the additional effort needed

to prune out duplicates 1s not excessive.

3.3. We will consider first the problem of determining the groups U(G)

and U(H). The essential problem 1s given a graph G = (M, D), a node m in

M, say degree (ml) = w, and an indexing from 1 to w of the edges in G with

endpoint a where multiple edges are indexed 1n sequence, effectively

determine the subgroup I(G) of S. induced on the edge indices by Stab (G),

the subgroup of the topological symmetry group of G which fixes m, . The

"derivation of U(G) from I(G) is a straight forward process.

Most graph symmetry group'algorithms are based on the following

technique:

1. Partition the node set M of the graph G such that each member of the

partition 1s a union of orbits of nodes with respect td the

topological isomorphism group of G.

2. Via a recursive backtrack generation scheme, systematically generate

those node permutations which preserve the partition, 1.e., which

carry-a node m, to an element in the member of the partition

containing mi. llere, the pth level of generution is choose the
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image of m, subject to the condition that the partially determined

permutation preserves the adjacency structure of G.

Often the partitioning of M 1s done via a sequence of partitions Pls oo P

where associated with each partition P."is an lsomorphism invarient node

weight function nw, . Here two nodes m, and m, are 1n the same member of the

partition Py if and only if m, and a, are in the same member of Pq and

Ww, (m, ) = we (m, ). A simple example at such a node weight function 1s the
degree function. The finest partition of the nodes would be the orbit

partition. However, since one wants a partition which is relatively cheap to

compute, a compromise which yields a partition coarser than orbits 1is

usually used, for example, the Morgan partition [#4].

For the problem of determining I(G), empirical evidence indicates that

the following sequence of node weight functions yields an effective partition:

W (m,) = label of node m,

| Wy (m, ) = 1 if m, is adjacent to m, else O0.

) Wo (m, ) = degree (m, )

W (m,) 2; (m, ) where the sum is over all m, adjacent to m, counted
with multiplicity,k23.

The partitioning 1s done iteratively until either all members of the current

partition are singleton sets or two, not necessarily successive, 1terations

do not yield finer partitions.

Since we need only the permutations induced on the edge indices by

Stab (G), the following economies are made 1n our algorithm:
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1. The singleton set {m} 1s made a member of the first node partition,

and the node m, 1s not considered further in the partitioning process.

R 2. For the backtrack permutation generation routine, the nodes are
ordered so that:

a) Those nodes which occur as singleton sets ip the final

w partition come first, say m , .,, 6m .
xq xX,

b) Of the remaining nodes, those which are adjacent to ml come

next, say m y see mm
- Txel Xs

c) The nodes 1n each member of the final partition are 1n sequence.

Then, the backtrack generation starts at level Xe hl and, whenever

an allowable permutation 1s generated, the algorithm backtracks

immediately to level x
An algorithmfor generating I(G) which implements the above ideas is

given in Appendix III.

3.4. We will now consider the double coset problem. The problem of

effectively determining a set of double coset representatives for two

subgroups A and B in S. 1s very difficult. 1p fact, at least to the author's

knowledge, no generally effective, computer implementable algorithm to

perform this task 1s known. However, in the case of fragment embedding in

graphs of organic molecules, both w and the number of double cosets are

usually sufficiently small that a fairly weak algorithm suffices.

The double coset representative algorithm which we present here is

based partially on ideas due to Charles Sims [5].
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The group Sw admits a natural-total ordering " <<". Namely, we

associate with each 7 € S,, the vector (W(1),w(2), . . .,w(W)),

N and for ¥ and pe in 5 s» We define « << if and only if the associated
oT vector of &X 1s lexicographically less than or equal to the associated

vector of A. If X is a subset of Ss we write «¢¢X if and only if

a ¢< X for every X€X.

We select as the canonical representative ¥ of a double coset A9rB

of A and B in 5S. the least element in AP’B, i.e., that ¥ in AMB satisfying

¥ << AB. Since a double coset is determined by any of its members, i.e.,

A7”B = A%B if and only if % € AT'B, we have that for & in AB,

{<< AB if and only if o<& ALB,

Clearly if ¥ is the least element in A¥XB, then ¥ << A ¥ and

¥ << ¥B. The converse, unfortunately, 1s not true. Even so, if we can

determine all¥ in S_, satisfying ¥<< AY and I <<Y¥B, we have
effected a considerable reduction of the double coset problem.

Lemma 4. (Sims [6] ). Let B be asubgroup of §, Let 0,, i=l, .... wl,
be the orbit of 1 with respect to the elementwise stabilizer in B of

11,2,...,i-1} , ieee, 0, ={M(4) | ™eB and T(J) = J, 123<i}.

Then for v} & 5. 1 << VB. if and only if V(i)< Vi (x) for every x

in 0., i=l, . . . . w-1.
The above lemma yields a very powerful method for generating those ef

in Sw satisfying 8 << YB. However, relative to our functional notation

for permutations, it is only applicable to left cosets. The technique

that we use for determining those ¥ satisfying << A hf , 1s much

more direct, and it is based on the following elementary ©}
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Let A be a subgroup of 5S. Then ¥¢€ S_ satisfies ¥ «<< AY if

and only if ¥ (J) = MIN § T( ¥(3))} where ? ranges over

STAB, (¥(1), «vv, ¥(3-1)) = {XeA | of (¥ (x) = ¥(x), x1, +++» I-1}
In particular, ¥(1) must be the least element in its A orbit.

Our method of generation of representative permutations is

J based on a backtrack scheme where the j-th level of the backtrack tree

corresponds to selecting the image of j under§ . Since we seek only

those § € s,which satisfy. ¥<< A YB and hence, T<£L WB and
J << A¥ we note that:

1. If a potential image k for Jj under J is rejected because it

violates the condition of Lemma 4, then by the above observation,

we can also eliminate from consideration the values

{ C (k) Ko- STAB, (Y(1), .... Y(3-1) )} as potential values
for § (J]).

C 2. Let As Cu A be the orbits of A, i.e., the A, form the

partition of {1, .... w} induced by the equivalence relation

xny iff y= (x) for some  € A. Here, we canonically index

C - the A orbits via MIN { x € A; 4 MIN { xé Ate Let By be the
B orbit of 1. Then, if (1) E Ay i21 and J&B, we can
eliminate from consideration as values for XY (3) the elements

C™ of A UAU...UA, 1°

Based on the above ideas, we now present an algorithm in an ALGOL

type format, which given w and two subgroups A and B of S first generates

C_ those § in § satisfying ¥ << AY, << UB and ¥ (1) < ot 3B(1)

for every aaé A and Be B. We note that the set of all & € S,
satisfying the above conditions does contain the canonical double coset
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representatives for A and B in S_ Moreover, such a X satisfies

WW <L<AYB if and only if 8 << «3 for all pairs & € A and B¢B
- Ca 1-1 Ce

_ satisfying § oY (1) = BL). This latter condition is used
directly by the algorithm to test each permutation as it is generated.

A proof that the algorithm does produce the desired output is given 1n

— Appendix II
 -

Algorithm IT.

« Input: An integer W>20 and two subgroups A and B of Sy

output: The canonical set of double coset represetnatives for A and B in S_.

BEGIN
LN

Determine the 0, of Lemma U4, i=1,2,...,W-1

Determine R, = {J | L€o0,, J<i}, i=2,3,...,W
. Determine the orbits of A; Ais Ass ...s AT where MIN { x ¢ ALY

<

< MIN { xe Ar.%

© Initialize: k<1, je&2, P,¢1, SBIF 1€R, THEN 1 ELSE 0,
“

Me {2, ..., W}
— WHILE K<T (T = number of A orbits) DO

BEGIN k-loop

«

WHILE IM, # § DO
_ BEGIN IM-loop

Pj¢-MIN{ x € IM, §
“

IF P,< SB THEN
J 3

Determine 4 = STAB, (P,, coos Py, 1)
IM, IM, \ §%(P,) | TesgE NLR) | Tes,

-
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| —
ELSE

J&J +1

SByeMAX {P| xe R }
IF J< W=-1 THEN

IM& {1,2,... \N{PJ { W } { 1! Poy
N {IF i=1 OR J¢0, THEN

ELSEA.U,BAY o $dir 3
ELSE

P <ELEMENT ({1,. no ~(rp . P )eee, 13
IF P << SB THEN

. W W

IF ¥X = (p s++s,P ) satisfiesi Co

. ¥e<<cx¥ 8 for all pairs
Ae& A, fB¢ B satisfying

- ~1, 1

ely (1) = B1) THEN
output ¥

JJ ~- 1

Determine S =

J STAB, (Pp, tte Pio1)
IM& IM

4 5 \ Lee) | Tes,
END IM-loop

IF J > 2 THEN

J&J -1

Determine 5S, = sTAB. (p
J A 1° ® [<O F3-1/

IM

ELSE

k&k + 1

IF k€ T THEN

P. ae
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-

SB,¢MAX (P| x¢R,}

Cm, 4 {1,20 {Ag 2)
END k-loop

END.

C 3.5. The above algorithm coupled with algorithms to determine the relevant

groups, to perform the necessary edge indexing and to output the embedded

structures yields an effective, computer implementable scheme for solving

1 the embedding problem in the case where the degree of the replaced atom

in the molecule is equal to the number of unassigned valences in the

fragment, 1i.e., in the case that degree (ml) = degree(n, ).

_ The case where degree (n,)>degree (m. ), degree (n)) = degree (ml) (mod 2)
can be handled by a simple extension of the above techniques. This is the

case where some of the bonds to be allocated are internal to the fragment.

Let k = (degree (n;) - degree (m,))/2. we construct a new graph
B G' obtained from G by adding k new bivalent nodes all with a label different

than any label occurring previously in G, say NIL, where each NIL labeled

node 1s double bonded to m, . The embedding problem for H in G' is of the

: above considered type and thus cun be handledby our algorithms. In the

| resulting embedded structures, the NIL labeled nodes are then simply
erased leaving bonds internal to the fragment. Since we want to generate

i only loop-free structures, the following constraint is inserted in the
backtrack double coset representative generation algorithm:

No pair of (successive) edge indices which correspond to a double

bond to a node with label NIL in G' can map to a pair of edge indices

which correspond to two multiple edges from a node ny to n, in H.
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A simple flagging of the relevant edge indices yields an economical

method for testing this additional constraint. O)

3.6. As shown by the example in section 3.2, the double coset

algorithm, as well as the overall technique, can produce isomorphic

structures. These duplicate structures are eliminated by a direct

pruning based on a canonical node indexing scheme.

There are numerous canonical node indexing algorithms in use, i.e.,

algorithms which index the nodes of a graph in such a manner that two

C graphs are isomorphic if and only if relative to the indexings, they

have identical adjacency (or indidence) matrices. The indexing algorithm

most used for chemical structures is due to Hm Morgan [4]. Morgan's

% indexing scheme 1s based on a node weight classification similar to that

used by our group determination algorithm. This scheme is the basis of

the Chemical Abstract% Serial Index of Organic Compounds. = an 1ndex

containing, at present, about three million structures.

Since 1t was desired that the structures produced by our programs

- be compatible with Chemical Abstract's Serial Index, all output from our

Co structure elucidation package is in a Morgan-type canonical form. In

particular, as each structure is produced by the embedder, it 1s checked

against possible additional constraints given by the user, and, 1f 1t

C satisfies these constraints, it is put into canonical form. This

6)
Several types of constraints on the embedded structures can be

introduced at the backtrack generation level by using edge flags.
w

C
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canonicalized structure 1s then directly compared with the previously

| - generated structures for possible duplication. In the process of
canonicalizing a structure, a simple many-to-one one word isomorphism

invarient structure key is determined: This key 1s used to economize

structure comparison.

4, Implementation. The above described fragment embedding algorithm has

been coded in SAIL, an ALGOL like language. This computer implementation

makes use of numerous devices to speed up the computation, for example,

the cases w £3 are handled directly - bypassing the double coset

algorithm entirely, and the stabilizers STAB, (Py 5. ..,P, 5) are recomputed
only when necessary.

The fragment embedding program has been extensively tested using the

. Stanford University Medical Experimental Computing Facility (SUMEX). This

facility 1s based on a PDP-10 computer running under the TENEX operating system.

The average execution time 1s about.3 seconds per completed structure,

The embedder program 1s incorporated in the general molecular

structure elucidation package under development at Stanford as part of

the DENDRAL project [8]. This package has a chemist-oriented I/O interface

which permits the user to input only the emperical formula for a molecule,

the desired fragments in graphical form and several other types of

informationabout the unknown compountm The package driver itself then

calls the necessary structure generation routines, thus freeing the user

from this task.
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Appendix I. Example

The following example was chosen' for its convenience in illustrating

| the operation of the fragment embedder rather than for its chemical~

relevance. )

Atom Set: {(c,4), (c,h), (c,b),(c,3),(c,3),(C,3),C,2),(C,2),(0,2), (R,1))

C This atom set represents the emperical formula C fh £ where R 1s a
monovalent radical and the bonding of the hydrogen atoms to the carbon

atoms is known, namely there are three CH's and two CH,'s.

- Fragments:
Atomic Form Label = Valence Form

CH (C

\ SN
Fl: oe | (c,h)=(c,k)

CH (c,3) ~

i
F2: 0=C ~ CH (0,2)=(c,k)- (cC,3)

_ Fragment F1 has free valence 4 and fragment F2 has free valence 3. We

assume that it is not known how the free valences are distributed between

~ bonds internal and external to the fragment Fl; and that the free valences

| on fragment F2 are all used for external bonds. Hence there are two cases.

| Namely, F1 has one additional internal bond and Fl has no additional internal

bonds.

Case 1. Fl has one additional internal bond. Reduced atom set:

§ (F1,2),(F2,3),(c,2),(C,2),(R,1)} .
There are seven non-isomorphic graphs based on this atom set.
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Cc - Fil F1 - C C
re

| | \ R - Fl ~ F2 «
F2 = C , F2 - cc |, cC

/ /
R R

~~ Fl
ay

R-C-F2 ~ , C=F2 -FI'=C -R
C

C

(=F2-C~-Fl-R, FL=F2-C-C-R

We will consider only the first graph. Then:

3 NIL>

°: ¢ % F1 A

1 2

F2 - C

/
R

H: Fv

ny
C

I
1 C 2

! 7” \

| cm _¢C

We want first the embeddings of H at FV in G at Fl. 1f we index the

relevant edges as indicated, then U(H)=U(G)= £(1,2,3,4), (2,1,3,4),
h

~ (1,2,4,3), (2,1,4,3)r. There are three double cosets of U(H) and U(G)

in S), + The canonical set of double coset representatives 1s

- (1,2,3,4),(1,3,2,4), (3,4,1,2)]). The first representative violates

| the bonds to NIL atom condition and 1s discarded. The second and third

representatives give, respectively, the following structures ol.
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C = oc

Y / \\
SE G' rR 3

| 1 -~ F2 C CcAN Ny
C C

“

C

ry \N °C' 3 7

g oP R = F2 c_c |]
A/D C .

C

The graph H corresponding to F2 1is:

i FV1
H:

72 \3
C =

An

} No

The associated groups are:

U(H) = {(1,2,3), (2,1,3)} ,

ule’) = {(1,2,3)},

co uler,)= {(1,2,3),(2,1,3)} .

The canonical set of double coset representatives for U(H) and ue.) in
S, is §
3 tS 1(1,2,3), (1,3,2), (3,1,2)}. These representatives correspond,
respectively, to the following structures:

0 -

N 7” C Ca
C.-C cC-c

/ Ny
R 'c—-cC

R C=C

\ 5°
C c

7 \N/

0 4 C
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C — C

0 7 / \\
~C C~C

AN \
C C

RT \N /

| C

The canonical set of double coset representatives for U(H) and u(c',)

in 53 is {(1,2,3) » (1,3,2)%, These correspond to the structures:
C

AN ON pe
c -o c=c |

/ ~ N

0

NN
c — C C

/ \ rd
Pa C—=¢cC |

C C

All of the final structures are distinct. Thus there are five embedded

structures based on the first graph and with one allocated bond internal

to the fragment Fl

Case 2. No additional internal fragment bonds. Reduced atom set:

{(F1,4), (F2,3), (C,2), (C,2), (R,1)}. There are eight distinct graphs

based on this atom set.
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R ‘ C=Fl -F2=C.R,
R

yd \ C —F1—

N NN ¢ Fo]r2” FR

C

~ R=-¢C- Fl
R NE

Np

| C
FZ ,

] re \ R-r2p 7
1d | Neo

We will consider only the first graph. Then:

. GY. F2 - 4
-3 Fl-C-c-&

i Fv

Ia
c
i

vd NN— C
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Relative to the above indexings,

Uo = 01,2,3,4),(2,1,3,4),(3,2,1,4),(1,3,2,4),(2,3,1,4),(3,1,2,4)}
The canonical set of double coset representatives for U(H) and U(G) in

~ Sy I's 4(1,2,3,4),(1,3,4,2)}. These representatives correspond,

respectively, to the following structures G':

G, : C-C-C-Rl '

¢5c—F
NY/C

G! C
2 y/

F272 Ny
R74C = -C-C-R

|
L The graph H corresponding to F2 is again:

FV

J -y

A—C
| No

The associated groups are:

UH)= 1(1,2;3),(2,1,3)1,

u(ey)= {(1,2,3),(1,3,2)3,

u(6y))= 101,2,3),(2,1,3)1.

The canonical set of double coset representatives for U(H) and u(e;) in S,
is 4(1,2,3),(3,1,2)}. The corresponding structures are:

c - GC - C - BR

C.-C -- ¢

\ NS
C - ¢

74
0
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0

AN
C-C - C - C - R

c —t~~¢

~~. ed
“

The canonical set of double coset representatives for U(H) and u(s,) in

>3 is {(1,2,3),(1,3,2)}. Thses correspond to the structures:

C

,C

C C
| ‘|

iC AREER=

AN

PIN0 NNY
Nc c

|
C Cc - CC - C - R

NN //
C

Using our programs, we have determined all embeddings of the fragments

! " Fland F2. There are 46 distinct structures based on the given atom

set and containing the non-overlapping fragments Fl and F2 where one
|

L F1 .has one additional internal bond and 68 distinct structures where Fl

has no additional internal bonds.
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Appendix tl. Proof of the correctness of the double coset algorithms.

| Lemmal. Let Te S, be generated by the algorithm of Section 3.4.

| Then:
“ a) TT << AT.

b) r<< 7B .

c) 7(1) £ «ZB (1)for every K€ A, /3€B.

L Proof. a) Choose any «€ A. Then o«(77(1)) is int he A orbit of 77(1).

By choice of 7(1),7™(1) was least in this orbit. Hence 7 (1) €&7(1)

AssumeW () £ «x (t)forli=t<j-1<W-1. If for any t in

a this range, T(t) <x%(t), then <<?.Thus, we may assume that

| T(t) = x(t), £t%j-1, and, hence, «€ S = STAB, (ray), ....
77(j = 1)). Since S is a subgroup of A, every orbit of A is a (disjoint)

L union of orbits of S. Let I, be as in the algorithm, i.e., IM; is the
set from which 77(j) was chosen. By the design of the algorithm and the

i above remark, iE is of the form
{1, ..,ow} Nr), ooo, T(G-D}  U (S-orbit of x),

| xeT

for some subset T of { 1, . ... W). Assume 7 (j)>«£77 (j). Since 77 (j)

was chosen as least in Mo, 2 ()) is not in IM. Hence either « 77 (j)
is in-r { TO), . ... m™(-1)} or «7 (j)is in S-orbit of x for some
XE T. However, both of these alternatives contradict the assumption that

X is in S. Thus 7 (j) <7?(j) and, by induction, TG) <sodpr(i)f or

l<i€W-1. Hence TT << «<7,

b)By the design of the algorithm, 77 (j)> MAX {mrlieo, x<j}.
Hence, by Sim's Lemma (Lemma 4, Section 3.4), Tr<</rs.
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c) By choice, 7 (1) is the least element in some A = A orbit

of (1). For «€& A and /3€ B, let Al be that A orbit containing

FB (1). ThenNB(1)EA .AIso 3(1)0,=B -orbit of 1. Now,

it k = 1,70) =1 and (1)2P30).11fk>1,t hen mB (1) EA U...Ua__.

. Hence t 2k and 77 (1) =MIN{ x€A } < MIN {xea Js emp).

| Lemma 2. Let 77€S,, satisfy:

A a )flr<< AT
b ) 7><& 7B.

c ) WD) 2 xPR() for every «é¢A , /B€B.

N Then 77 is generated by the algorithm of Section 3.4.
Proof. Since T7<<B ,by Sim's Lemma 7 (j)<7 (t) for any j and t such

that te o. , t # j. Also, t€0;, t#j implies t>j . Hence W(j)> SB.,
2 <<.

Since W<LLAMW,7”(1) must be the least element in A= A - orbit of

W(). Hence (1) = P, for some pass of the algorithm. Assume

W(s) = Pg 1<s< j<W for some pass of the algorithm. Now Tr << ATF"

implies 97 (j) is the least element in U = STAB, (P,, . + 5-F ) - orbit of
+ Tr(j) . Also, (c) implies that 7 (j)EAVY ... UAL if j is in B-orbit

of 1. Thus, on the initial pass to select P., To) E& IM. Since IM. is

only decreased by some orbit of STAB, (P, coo Pip) on any pass, W(]) is

eliminated from 4, only when all of U is. Now IX, is used as the selection

oO set for P until IM. = 0. Thus an element from U must be selected on some
pass; and, since TQ) is least in U, it must be the first element of U so

- selected. Moreover, since TG)> s8., (J) is not rejected. Hence, by
« induction, at some pass P, = TG), 1£j<W unless P = Tr), ....

Primo = TT(w-2), P17 Py # -T(W), occurred earlier and was rejected because

P,,<SB,- In this case we would have Pyar = TW), P= TT (W-1) and
C
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mT (W) <r (W ~ 1) since the algorithm generates the permutations in

lexicographical order. But then FT(W)<7 (Ww-1) < SB oo
W which is

impossible.

h.
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Appendix Ill. Symmetry group generation.

Let G be a node indexed graph, x a node of G and Stab_ the subgroup

oo of the topological symmetry group of G stabilizing Xx. The following

8 algorithm is used by our program to generate, as node index permutations,
| a subset S of Stab maximal with respect to the property that distinct

elements of S induce distinct permuations of the edges with endpoint x.

\ ALGORITHM. 1) Place the node x in a singleton class and classify the

remaining nodes by weight according to the scheme given

in Section 3.3.

2) If all the node classes are singleton classes, then output

the identity permutation and exit.

3) Order the node classes so that

a) The singleton classes come first.

b) Following the singleton classes are the non-singleton

classes which contain nodes neighboring node x listed

in non-decreasing size. |)

c) Following the neighbor classes of (b) are the remaining

nhon-singleton classes listed in non-decreasing size.

4) Reindex the nodes so that node a preceeds node b if and only

if the class containing node b does not preceed the class

containing node a.

) Our weighting scheme is such that either all the nodes in a given class

neighbor x or no node in the class neighbors x.
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5) Execute (for effect) with initial parameter value START

the recursive procedure given by the SAIL program listed

below where the external variables are initially defined

as follows:

a) NUMBEROFNOOES = number of nodes in G.

b) START= number of singleton classes + 1.

c) STOP= total number of nodes in singleton classes or

L neighbor classes

d) ADJACENCYMATRIX [I,J] is the (i,j)t" entry in the

adjacency matrix for G relative to the node indexing

. formed in step (4).

e) LOWBOUND {JJ is the least index of the nodes in the J-th

class (relative to the class ordering of step 3 and the

node indexing of step 4) and UPBOUND[J] is the greatest

index of the nodes in the J-th class. Here J > START.

f) IMAGE(l] =1 for 1 <I1< START

g) MAPPED[I] = FALSE for START <1< NUMBER OF NODES

h) CLASSI! = class index of the class containing the node

with index I.

|

PROGRAM.

g RECURSIVE BOOLEAN PROCEDURE PERMUTATION (INTEGER);
BEGIN "PERMUTATION"

- INTEGER J.K;

_ IF | LEQ NUMBEROFNODES THEN

BEGIN

FOR J <--LOWBOUND [CLASS{I]] STEP 1 UNTIL UPBOUND [CLASS [i_] DO
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BEGIN ''J LOOP"

| F MAPPED [J] THEN

CONTI NUE ''J LOOP"

FORK<=- 1 STEP 1 UNTIL I-1 DO

w IF ADJACENCYMATRIX [I ,K] NEQ

ADJACENCYMATRIX [J, IMAGE[K]]

: THEN CONTINUE ''J LOOP”;

C IMAGE [I] <- J;

MAPPED {J ]<- TRUE;

IF PERMUTATION (+1) ANDI > STOP THEN

BEGTN

MAPPED [JJ] &- FALSE;

RETURN (TRUE) ;

END

ELSE

MAPPED {J_}<- FALSE;

. END ''J LOOP”;

RETURN (FALSE);

END

‘ ELSE

. BEGIN

INDUCED PERMUTATION; COMMENT: INDUCED PERMUTATION IS AN EXTERNAL

“ PROCEDURE WHICH COMPUTES AND STORES THE PERMUTATION OF THE EDGES

OF G WITH ENDPOINT X INDUCED BY THE NODE INDEX PERMUTATION

| ==? IMAGE [I-J;

= RETURN (TRUE) ;

END; |

END “PERMUTATI ON”;

C


