MOLECULAR STRUCTURE ELUCIDATION 111

by

Harold Brown

STAN-CS-74-469
DECEMBER 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

I

MOLECULAR STRUCTURE ELUCIDATION ITI

by

Harold Brown

Abstract. A computer implemented algorithm to solve the following

graph theoretical problem is presented: gjven the empirical formula

for a molecule and one or more non-overlapping substructural fragments

of the molecule, determine all the distinct molecular structures based

on the formula and containing the fragments. That is, given a degree
sequence of labeled nodes and one or more connected multigraphs,

determine a representative set of the isomorphism classes of the connected
multigraphs based on the degree sequence and containing the given multi-
graphs as non-overlapping subgraphs.

This work was supported in part by NIH Grant RR612-05A1 and NSF Grant
DCRT7L-12646.,

r—

MOLECULAR STRUCTURE ELUCIDATION III

1. Introduction. This paper is the third in a sequence of papers

on the derivation of combinatorial algorithms necessary for the development
of a package of computer programs designed to assist the analytic chemist

1)

in determining the topological structure of organic molecules. The first

paper [41] described an algorithm for labeling the nodes or edges of a

graph, and the second paper [2] described an algorithm for determinfng ali
the distinct graphs based on a given degree sequence of nodes. The relevance
of these algorithms to structure elucidation problems in analytic chemistry

is discussed in [3J.2)

The present paper addresses itself to a frequently encountered probiem in
analytic chemistry. Namely, by applying spectroscopic measuring devices ard
varicus laboratory techniques to an unknown organic compound, the chemist
can often determine the molecular formula of the compound as well as the
topological structure of several fragments of this molecule, at least up te¢

some unspecified bonds.3) What is desired then is a complete and irredundant,

1 . .

} Throughout, we view a chemical molecule as a connected graph whcse
(labeled) nodes represent the atoms in the molecule and whose edges
represent bonds, i.e., as the gekule diagram of the molecule.

o .
?) [3.] also contains numerous references to articles describing specific
chemical applications of these algorithms.

’ "hese laboratory techniques usually yield much more information about
the unknown molecule, e.g., excluded fragments and multiple bonding
patterns. Integration of this other information into our program
package will be described in later papers.

i.e., nonisomorphic, set of the topological structures based on the molecular
formula and containing the known fragments. In some cases these known
fragments may overlap, i.e., have atoms in common. However, we will consider

here only the case in which the fragments are assumed to be disjoint.

2. Problem Formulation. 1In order to formulate this molecular structure
problem in precise, graph theoretical terms, we make the following definitions.
2.1. Let N = {nl, ceu nk} be a collection of k, not necessarily distinct,

ordered pairs of the form n, = (1

41 v.l) where li is an alphanumeric symbol,

(the label of ni) and Vs is a positive integer (the wvalence value of ni). We

call such a collection N an atom set. By a graph based on the atom set N we

-mean a loop-free, connected multigraph G = (N, D) with node collection N

L)

and edge collection D such that the degree of each n in G is equal to v, ’.
i i
We say that two graphs based on N, say G = (N, D) and H = (N, E) are
isomorphic if and only if there is a graph isomorphism ¥ from G to H which

preserves labels, i.e., ¥ is a permutation of N such that the multiplicity

of each (n.,, n

. i J

and W(nj.) =n3 implies 11 = 13' Since G and H are graphs based on N,

such a ¥ must, necessarily, also preserve valence values.

) in D is equal to the multiplicity of (‘/}(ni), Su(nj)) in E

If G = (N, D) and H = (M, E) are graphs where the node collections N and
M are both atom sets, then H is said to be a subgraph of G if there is an
injection \Q from M into N which preserves connectivity, labels and valence
values, i.e., the multiplicity of each (mi, m3)in E does not exceed the

multiplicity of (V](mi), V](mJ)) in D and Vz(mi)1= ny implies m.land n.J

Note that we distinguish here between the valence value of an atom and
its degree as a node in a graph.

have the same label and valence value.

In terms of these definitions, our molecular structure problem can now
be stated as follows:

Given: An atom set N and a list of.q loop-free, connected multigraphs

H = (Ml’ El)’) Hq = (Mq’ Eq) with each Mi anatom set and
satisfying:
i) The disjoint union of the Mi is a subcollection of N.
ii) The degree of a node in any Hi does not exceed its
~ valence value.
iii) In each Hi at least one node has degree less than its
valence value.

Determine: A representative set of the isomorphism classes of those

(loop-free, connected, multi-) graphs based on N which contain
Hl’ H2, «es 5 and Hq as pairwise disjoint subgraphs.

Using our current techniques, a direct, effective, computer implementable
solution to the above problem does not seem possible. Qur solution strategy,
- therefore, consists of reducing this problem to an iterative sequence of
simpler problems which, when solved, yields a collection of graphs containing
the desired representative set but possibly with redundancies, These
redundancies, as produced, are pruned from the collection. We now describe
our problem reduction technique.

2.2. Let ki = nE M (valence mJ - degree in Hi of m).ki is called the

3 J

free valence of Hi' It corresponds to the number of unassigned valences in

the fragment whose known structure is represented by Hi' By assumption, k,1
is positive.

Since we consider only connected graphs, in any solution graph at least

one of the free valences of Hi must be used for an edge going from a node
in Mi to a node not in Mi' Moreover, those free valences used for edges
going between nodes in Mi must occur in pairs. Accordingly, we let
B = {(bl,.*a > bq) ‘O<b].1$ki » b=k, (mod 2)} , where each difference
ki - bi indicates the number of free valences to be used by edges going
between nodes in Mi'

Let Yoo v -1 Y be g distinct atom labels different than any of the

q

labels of the atoms in N. For each b = (b , bq) in B, let ¥ denote

1’
the atom set obtained from N by deleting from N all the atoms in the disjoint
union of the Mi and adding to the remaining atoms the set of g new atoms

{XI = (yi’ bi) li =1, . . q}'. For each so modified atom set Nb, consider
the following sequence of constructions:

L. Construct a representative set of the isomorphism classes of the

graphs based on Nb.

For each graph G° constructed in step 1, for i =1, . . ., q,

na

iteratively construct a representative set of the isomorphism

classes of all the graphs G1 obtained from all the graphs Gl_l as

follows:
a) Add(ki - bi)/2 edges to H, in such a way that the resulting

degree of each node m, in Hi does not exceed the valence value

J
of m,.
J _ .
b) Delete the atom Xy from Gl_l and replace each edge in Gl_l of
of the form (ns , xi) with an edge of the form(ns , m3) in such

a manner that the resulting degree of each m3 is equal to the

valence value of m,.

J

Each graph produced by this sequence of constructions will be a graph
satisfying the conditions of our molecular structure problem. Moreover,
if for each b in B we perform these constructions, the resulting collection
of graphs will contain, up to isomorphism, all solution graphs of our
original problem but possibly with redundancy.

We have previously developed and implemented an algorithm which, given
a degree sequence of nodes representing the atoms of an organic molecule,
determines a representative set of the isomorphism classes of all loop
free, connected multigraphs based on that degree sequence [2]. This
algorithm yields an effective solution to step 1 of the above construction.
Thus, up to redundancy elimination which is discussed in Section 3.6,our
molecular structure problem is reduced to the problem of deriving an
affective algorithm for step 2 of the construction. e call this latter

problem the fragment embedding problem.

3. Fragment Embedding. 1In this section we will give an independent, more
precise formulation of the fragment embedding problem, and we will ghoy

that this problem can be represented, at least partially, as a special double
coset representative problem,

3.1. Let G= (M, D) and H = (N, E) be connected, loop-free, multigraphs

with disjoint node sets M ={m1 g eee mk} and N =(nl, .. .,nq} and
edge sets D and E, respectively. Here, the edge sets are considered as
unordered pairs of nodes with multiple edges appearing multiply. For nodes

m, in M and n, in N, we now formally define an embedding of H at pn_ in G

1 J J

at m, where degree (n,) - degree (mi) is non-negative and even. To simplify

J

the notation we assume, without loss of generality, that i = j = 1.

(B, C) where

An embedding of H at n, in G at my is a multigraph A
i) The node set B consists of MUN\{ml , nl} , i.e., all the
N nodes of both G and H except m1 and nl.

ii) The edge set C consists of

{m,menfs#1, 541} Ultn, npex |

[N

#1,3#1}UF UK,

where F satisfies:

a) Every element in F is an edge of the form (mi, n,) where

J
(ml, mi-)GD and (nl, nj)éE.
b) For each n3 in N, the number of edges in F having n‘j as an
endpoint does not exceed the multiplicity of the edge (nl,nj)
L} in H.
¢) For each m, in M, the number of edges in F having m, as an
endpoint 1is equal to the multiplicity of the edge hﬁ} mi)in G.
and X satisfies:
a! Every element K is an edge of the form (ni,rﬁ), i # j, where
both (nl, ni) and (nl, n3) are in E.
b) For each ni in N, the sum of the number of edges in F having
n, as an endpoint and the number of edges in K having n, as an

endpoint is equal to the multiplicity of (n) in H.

10N
That is, C consists of all edges in D except those with endpoint o s all

edges in E except those with endpoint n the connecting edge set F and the

l’

internal edge set K. Note that by definition, an embedding is a connected,

loop-free multigraph, and it is completely determined by the edge sets F and K.S)

5)

This formulation of the embedding problem corresponds to the formulation in
the previous section as follows:

a) G corresponds to a gra i -
! b € "p'hu"l 1 and the he

b)Hc ‘responds t0o the fre~m-~-: ’

Our objective is to develop a reasonably efficient, computer implementable
algorithm which accepts as input the graphs G and H and which outputs a

representative set for the topological isomorphism classes of the embeddings

ofHatnlinGatml,
We consider first the special case where degree (ml) = degree (nl), i.e. ,,

the case where the internal edge set K is empty.

3.2. Letw = degree (ml) = degree (nl), and let Sw denote the full

permutation group on {1,2,w}. We index from 1 to w all edges in

D of the form (mll,' mi), say index I, mi(t)) =t,t=1, w wherey

for definitiveness , we require that tl< t2 implies i(tl)f, i(tZ)' Similarly,

we index from 1 to w all edges in E of the form (p , n.), say index
177

12

(Hl, nj(t)) = t, where t.<t, implies J(tl)éj(tg)_ #ror any Y in Sw" we
define F(¥) as the set of (multiple) edges {(mi(t)’ n.j(()”(t))) | t=1, w} .

F(Y¥Y) is a connecting edge set of an embedding of H at n, in G at m,.

Conversely, if F is a connecting edge set for an embedding of H at n, in G

at m, , we define the map 9 (F) iteratively as follows:
For t =1, ..., w, n(F)(t) = tl where t, is the least unassigned index

such that (mi n)) is in F. M(F) is a well-defined permutation in

" (tl
Sw“ Moreover, for any connecting edge set X, F(7T(X)) = X. Hence we have:
Lemma 1. Let degree (ml) = degree (nl) = w. Relative to an indexing of

the edges of G with endpoint m and the edges of H with endpoint n,, there

is a surjettive correspondence from the elements of Sw onto the embeddings

of H at nl in G at m:L

We will now show that there is a surjective correspondence between a

certain set of double coset, representatives in Sw and the topologically

distinct, i.e., nonisomorphic, embeddings of H at n1 in G at ml

Let Grp(G) be the topological symmetry group of G considered as acting

on the nodes of G, and let Stab (G) be the stabilizer in Grp(G) of ml,
i.e., Stab (G) = {dé Grp(G)lb((ml)=ml‘§. If, as above, we index those
edges of G with endpoint ml, then each node map & in Stab (G) naturally
induces a well-defined permutation (&) in §, follows: For any index t,
(ml, mi(t)) is the edge in D with index t and (ml,d(mi(t))) must also

be an edge in D. Moreover, both (ml, mi(t)) and (ml, o((mi ())) have the
same multiplicity in G, say k. Let x and y be the least indices of the

k edges (ml,mi(t)) and the k edges (m

1 & (mi(t)))’ respectively. Since

multiple edges were indexed in sequence, t = x + b for some 0£b<k, and
we define T(&)(t) = y + b. Since Stab (G) is a subgroup of Grp(G), the
set T(G) = {¥(x) | & & Stab(G)} is a subgraup of S _.

For each i such that (ml, mi) is in D, say the multiple edges (ml, mi)
are indexed by X'J’.'X'1+ 1, ..., X. + k-1 where k is the multiplicity
(1)

of (ml, mi) in G, let S

{xi, RV + k - l} considered as a subgroup of Sw' Let M(G) denote
(1)

denote the full permutation group on
the internal direct product of all the S such that (ml, nﬁ) is in D.
Then, I(G) " M(G) = M(G) .I(G) and I(G) and M(G) have only the identity
in common. Hence, the set product U(G) = I(G) .M(G) is a subgroup of
SW with order (U(G)) = order (I(G)) .order (M(G)).

In a completely analogous manner, we define the subgroups I(H), M(H)

and U(H) of Sw corresponding to H at ng-

Lemma 2. Let ¢ and 8 be two elements in SW lying in the same double coset
of U(H) and U(6) in S , i.e., u(H) Y U(G) = U(H) &J(G). Then, the embeddings
Cy and Cg of Hatn inG at m determined by ¥ and § , respectively, are
topologically isomorphic graphs.
Proof. Since $ is an element of U(H) ¥ U(G), 8’2’2’2‘1 =\?2\?lh’ for
some T, € 1(6), T, € MG), V) ;e I(H) and V, € M(H). Let
T € stab(G) and V) € Stab(H) be elements inducing "L’l and \?1' respectively.
By definition, both C‘X and Cg have the same node set L = DUE /{@1, n, ¥ .
We define a map ¥ on L by q’(mi) = X m)...Yxn.). YV (n.) . since
1 by i
T (ml) =m and %7(nl) =n, W is a well-defined permutation of L.
Yoreover, since rté Grp(G),lP restricted to the subgraph of Cy consisting
the edges of Cy of the fornl(mi, m3) is an isomorphism from this subgraph to
the corresponding subgraph of CS . Similarly, ¥ determines an isomorphism
from the subgraph of the edges of the form (ni, rﬁ) in(jX to the corresponding
subgraph of CS . Thus to show that ¥ is an isomorphism from CX tc CS , We
need only consider the action of ¥ on F(¥). We claim that (mk, ny) is in
F(¥) if and only if (W(mx), ‘F(nY)) is in F(§).
For any pair (mx, n '3' let ¥ (mx) = m and l/’(ny) =n_. Then, by
definition of F(Y), (mx, nY) is in F(¥) iff
i) x= i(t) and y = J(¥ (t)) for some index t. By definition of ¥, (i)

is true iff

i) w=1 (T () and v = J (9 (¥(t))).
Since TQ only moves the index of an edge with endpoint m, to the index of
one of its multiples and similarly’for V;y (ii) is true iff

iii) u =1 (?’2’2‘1(’5)) and Vv = }§ (\?2\?1¥(t)). By assumption, (iii) is

true, iff

—

10

iv) u =i (Q‘E'zl(t)) and v = J (‘o”z‘z@' (t)) By @ fhition of F(§),

(iv) is true iff(y¥ (mx)’ ¥ (n ; is in F(S)

Hence, v)is an isomorphism from CU to CS

rz=eces-r» TLet H and G be the graphs in figures la and lb, respectively.

m:}:c C —— ¢
J/\2 1) ‘\C
A B %cwc/

N
F'g'iq' F;a_n

Here A, B and C are the node (atom) labels.
() Both Grp (G) and Grp(H)
consist of only the i i d ing the i
o y the identity map and, using e 1mage vector notation
for elements of S
4!
u(e) = {(1,2,3,4), (1,3,2,4)} eand
U(H) = {(1,2,3,)4), (1,2,4,3)}.
There are seven double cosets of U(H) and U(G) in S
5" A set of double

coset representatives 1is:

a. (1,2,3,4) d. (h',2,3,1)
-b- (2,1,3,h) e. (3’13)"‘92)
c. (3,2,1,4) £ (1,4,3,2)

g' (2,3,14,1)

The corresponding embedding are given in Figure 2.

A"C"‘C\ B-C-C
DT Y
B—-C._,C/ Ve

N A= c—¢

¢ N\ /

11

Cem—c
C ¢
| [N v \
:,‘c-c/ C\cl-_(f:/c
I
(c) A
(a)
c .
c 7~ ; \ c AweC —¢
\C - C/ 1 I>C
| |
A B I
(e) °
(£)
B-—-C___C
DY
CZ=c— ¢
|
A
(g)
Figu.ve. 2.

Note that the embeddings (d) and
(e) are topologically isomorphic

As shown in the above example
» the converse of Lemma 2 is not
true.

The difficulty here is that an em]
edding may have symmetries not i
nduced

by symmetries of its components. -We do have
, however ., following

result:

12

Lemma 3. Letd and § be elements of SW with associated embeddings of H at
ny in G at m o, Cy endCq , respectively. If there exists an (node)
isomorphism ¥ from Cy to Cg such that LF(D \ fml}) =D N {ml} , i.e.,
LP permutes the nodes of G, and hence. also those of H, among themselves,
then ¥ and § are in the same double coset of U(H) and U(G) in Sw

Proof. By the definition of an embedding, there is a T in Stab(G) such
7 and (P agree on the subgraph of C?f consisting of all edges of the
form (mi, mj). Similarly, there is an \QE Stab(H) such that V) and '
agree on the subgraph of C\‘ consisting of all edges of CB’ of the form
(ni’ nJ). Also, (mi’ nj) is in F(Y¥) iff(tﬂ(mi), W(nj)) is in F(§).
Thus we have that (mi, nj) is in F(Y) iff("C’(mi), v (nj)) is in F(6).
Let /tl and V[l be elements of U(G) and U(H) induced by T and \? ’
respectively. Then, up to a permutation of indices on multiple edges, we

have that for any index t:
(m; (¢) 2 nyw(t))) in FO¥) implies

(mi('Cl(t))’ nj(\qlx(t))) is in F(§) implies
§7,(¢) = ¢, ¥ (b).

-1
Hence, \Ql S 7:1 =Y up to permutations of the multiple edge indices,

and‘s € U(H) ¥ U(G).

The above results yield a method for determining all embeddings of H

at n, in G at m; where degree (ml) = degree (nl)z w. Namely,

1. Construct the subgroups U(G) and U(H) of Sw'

2. Construct a set of double coset representatives for U(H) and U(G) in

S, .
w

I~

13

3. Construct the set of graphs determined by these double coset
representatives.

4, Eliminate any isomorphic duplicates from this set of graphs.

Although this method does produce initially a set of graphs with possible
redundancies, a great deal of empirical evidence leads us to believe that
at least in the case of graphs of organic molecules, the number of duplicates is sta-
tistically relatively small, e.g., less than 10%. Moreover, since the resulting
graphs are needed later in a canonical form, the additional effort needed

to prune out duplicates is not excessive.

3.3. We will consider first the problem of determining the groups U(G)
and U(H). The essential problem is given a graph G = (M, D), a node m in
M, say degree (ml) = w, and an indexing from 1 to w of the edges in G with
endpoint m. where multiple edges are indexed in sequence, effectively
determine the subgroup I(G) of Sw induced on the edge indices by Stab(G),

the subgroup of the topological symmetry group of G which fixes ml. The

" derivation of U(G) from I(G) is a straight forward process.

Most graph symmetry group'algorithms are based on the following

technique:

1. Partition the node set M of the graph G such that each member of the
partition is a union of orbits of nodes with respect tb the
topological isomorphism group of G.

2. Via a recursive backtrack generation scheme, systematically generate
those node permutations which preserve the partition, i.e., which
carry-a node m, to an element in the member of the partition

i

containing mi. Illere, the ith level of generation is choouse the

1k

image of m, subject to the condition that the partially determined
permutation preserves the adjacency structure of G.
Often the partitioning of M is done via a sequence of partitions P., . . Pk’
where associated with each partition Pt'is an isomorphism invarient node
weight function Wt' Here two nodes m, and uﬁ are in the same member of the
partition Pt if and only if m, and mJ are in the same member of Pt—l and
W£ (mi) = W% (mj). A simple example at such a node weight function is the
degree function. The finest partition of the nodes would be the orbit
partition. However, since one wants a partition which is relatively cheap to
compute, a compromise which yields a partition coarser than orbits is
usually used, for example, the Morgan partition [4].

For the problem of determining I(G), empirical evidence indicates that

the following sequence of node weight functions yields an effective partition:

Wl(mi) label of node m, .

W =1 i i ' .
Q(mi) 1 if m is adjacent to m, else 0

; W3(mi) degree (mi)
W = i -
k(mi) Ewk_l(mj) where the sum is over all mJ adjacent to m, counted
with multiplicity, k>3.
The partitioning is done iteratively until either all members of the current

partition are singleton sets or two, not necessarily successive, iterations

do not yield finer partitions.

Since we need only the permutations induced on the edge indices by

Stab(G), the following economies are made in our algorithm:

15

1. The singleton set {mi} is made a member of the first node partition,

and the node mlis not considered further in the partitioning process.

2. For the backtrack permutation generation routine, the nodes are

ordered so that: .

a) Those nodes which occur as singleton sets i the final

partition come first, saym , m .
x
1 %

b) Of the remaining nodes, those which are adjacent to ml come

+1 Xy

c) The nodes in each member of the final partition are in sequence.

next, say m s seey

Then, the backtrack generation starts at level xk+l and, whenever
an allowable permutation is generated, the algorithm backtracks

" immediately to level Xt'

An algorithmfor generating I(G) which implements the above ideas is

given in Appendix III.

3.4. We will now consider the double coset problem. The problem of
effectively determining a set of double coset representatives for two
subgroups A and B in Sw is very difficult. 1p fact, at least to the author's
knowledge, no generally effective, computer implementable algorithm to
perform this task is known. However, ip the case of fragment embedding in
graphs of organic molecules, both w and the number of double cosets are
usually sufficiently small that a fairly weak algorithm suffices.

The double coset representative algorithm which we present here is

based partially on ideas due to Charles Sims [5].

The group Sw admits a natural-total ordering " €€ ". Namely, we
associate with each 7 € s, the vector (m(1),w(2), . . s (W),
and for o and /8 in 5, we define « <</@ if and only if the associated
vector of & 1is lexicographically less than or equal to the associated

vector of ,9. If X is a subset of Sw’ we write o¢¢X if and only if

& << x for every x€X.

We select as the canonical representative ¥ of a double coset A9rB
of A and B in §w the least element in A?'B, i.e., that ¥ in A®#B satisfying
¥ << A®7B. Since a double coset is determined by any of its members, i.e.,
A®7B = A%B if and only if %#* €& ATB, we have that for ¢ in A®B,

A< AMB if and only if o< AB.

Clearly if ¥ is the least element in AXB, then ¥ << A ¥ g
¥ << ¥B. The converse, unfortunately, is not true. Even so, if we can
determine &l1 ¥ in S, satisfying ¥<< AY and T <<YB, we have
effected a considerable reduction of the double coset problem.

Lemma 4. (Sims [6]). Let B be asubgroup of Sw' Let Oi’ i=1, wl,
be the orbit of i with respect to the elementwise stabilizer in B of
{1.2,0..,1-1} , deer, 0, ={W(1) | ™eB ana 7 (3) = 3, 123<1}.
Then for v} & Sw’ V << \QB. if and only if \Q(i)'S \Q (x) for every x
in 0., i1, w-1.

The above lemma yields a very powerful method for generating those k.4
in Sw satisfying & << ¥B. However, relative to our functional notation
for permutations, it is only applicable to left cosets. The technique
that we use for determining those X satisfying << A h’ , is much

more direct, and it is based on the following elementary ol

i7

Let A be a subgroup of Sw' Then Y¢ SW satisfies ¥<< A Y if
and only if Y (J) = MIN-{ (¥ (J))} where ¥ ranges over
STAB, (¥ (1), ..., ¥(3-1)) = {@€ A | ot (Y (x)) = ¥(x), x=1, -5 I-1}-
In particular, ¥(1) must be the least element in its A orbit.

Our method of generation of representative permutations is
based on a backtrack scheme where the j-th level of the backtrack tree
corresponds to selecting the image of j under § . Since we seek only
those ¥ € S, which satisfy . ¥ << AYB and hence, ¥ << ¥ B and
¥ << A¥ we note that:

1. If a potential image k for j under ¥ is rejected because it

violates the condition of Lemma Y4, then by the above observation,

we can also eliminate from consideration the wvalues

{ T (x) "ré STAB, (¥(1), Y(3-1))} as potential values

for ¥ (J]. '
2. Let Al’ Cy Ak be the orbits of A, i.e., the Ai form the
partition of {l, w} induced by the equivalence relation

xay iff y=«(x) for some & € A. Here, we canonically index

;41 Let Bl be the

the A orbits via MIN{xe Ai} 4 MIN { xX& A
B orbit of 1. Then, if ¥ (1) € f;., i>1 and jéBl, we can
eliminate from consideration as values for Y(J) the elements
of AlUAQU...UAi 1"
Based on the above ideas, we now present an algorithm in an ALGOL
type format, which given w and two subgroups A and B of Sw first generates
those ¥ in S satisfying ¥ << A¥, ¥ << ¥B and ¥ (1) £ ozble(l)
for every o & A and /Qé B. We note that the set of all ¥ € Sw

satisfying the above conditions does contain the canonical double coset

18

representatives for A and B in Sw' Moreover, such a X satisfies
¥ << A¥B if and only if ¥ << “\//3 for all pairs & € A and BéB

. . -1 -1 , o .
satisfying ¥ ~ o« ¥ (1) = /6"(1). This latter condition is used
directly by the algorithm to test each permutation as it is generated.
A proof that the algorithm does produce the desired output is given in

Appendix II

Algorithm TI.

Input: An integer W>0 and two subgroups A and B of Sw'

output: The canonical set of double coset represetnatives for A and B in Sw'

BEGIN
Determine the Oi of Lemma 4, i=1,2,...,W-1
Determine Ri = {,j l f.éOJ, J<i} s 12,3504, W

Determine the orbits of A; A., A

10 A5 .» AT where MIN{xG AI}

< mn{xe A}

Initialize: k<1, J&2, Pl(—l, SB2€- IF le R, THEN 1 ELSE O,

2
e {2, ..., W}
WHILE XK<T (T = number of A orbits) DO
BEGIN k-loop
WHILE IMJ. # ¢ DO
BEGIN IM-loop
Pj<MIN{ x & IM
JeMIN{ xe IM, §
IF P <SB3 THEN

J

Determine Sj = STABA (Pl’ cens Pj-—l)

&1, N\ {2(p,) | e s,]

ELSE

IF §

ELSE

19

J&d + 1
SByemax {p | xe R3}
IF J< W-1 THEN
M \N{pP
Jé{l,2....,w} { TIRLIT !
N {1F i=1 or J¢o, THEN g
HSEAD. o #4513
ELSE
Pw“ELEMENT({lsm - oo~ +ess P .})
. o > Tw-1d 7.
IF Pw < SBw THEN
IF ¥ = (Pl""’Pw) satisfies
K((c{\',e for all pairs
A€ A, 3¢ B satisfying
-1 -
by) = B(1) TN
output X
J& -1
Determine SJ = STABA (P_‘L’ oo PJ_J_)
I
Mf' IMJ N\ {Q.’(PJ) l Te SJ}
END IM-loop
> 2 THEN
J&J -1

Determine 8, = STAB, (Pl, P

J
° 90

IMJ(-'IMJ\ {?.‘(PJ), Te s, 1

31/

k&k + 1
IF k< T THEN

P1 e

-

20

SB,& MAX (P | xeR,}

2
IM24“ {1,2,. ﬁ%’w ' (Pl}
END k-loop

3.5. The above algorithm coupled with algorithms to determine the relevant
groups, to perform the necessary edge indexing and to output the embedded
structures yields an effective, computer implementable scheme for solving

the embedding problem in the case where the degree of the replaced atom

in the molecule is equal to the number of unassigned valences in the

fragment, i.e., in the case that degree (ml) = degree(nl).

) = degree (ml) (mod 2)

The case where degree (nl)>degree (m,), degree (n

1 1

can be handled by a simple extension of the above techniques. This is the
case where some of the bonds to be allocated are internal to the fragment.
Let k = (degree (nl) - degree (ml))/2. We construct a new graph
G' obtained from G by adding k new bivalent nodes all with a label different
than any label occurring previously in G, say NIL, where each NIL labeled
node is double bonded to m . The embedding problem for H in G' is of the
above considered type and thus cun be handled by our algorithms. In the
resulting embedded structures, the NIL labeled nodes are then simply
erased leaving bonds internal to the fragment. Since we want to generate
only loop-free structures, the following constraint is inserted in the
backtrack double coset representative generation algorithm:
No pair of (successive) edge indices which correspond to a double
bond to a node with label NIL in G' can map to a pair of edge indices

which correspond to two multiple edges from a node , to n, in H.

21

A simple flagging of the relevant edge indices yields an economical
method for testing this additional constraint.

3.6. As shown by the example in section 3.2, the double coset
algorithm, as well as the overall technique, can produce isomorphic
structures. These duplicate structures are eliminated by a direct
pruning based on a canonical node indexing scheme.

There are numerous canonical node indexing algorithms in use, 1.e.,
algorithms which index the nodes of a graph in such a manner that two
graphs are isomorphic if and only if relative to the indexings, they
have identical adjacency (or indidence) matrices. The indexing algorithm
most used for chemical structures is due to Hm Morgan [4]. Morgan's
indexing scheme is based on a node weight classification similar to that
used by our group determination algorithm. This scheme is the basis of
the Chemical Abstract% Serial Index of Organic Compounds. = an index
containing, at present, about three million structures.

Since it was desired that the structures produced by our programs
be compatible with Chemical Abstract's Serial Index, all output from our
structure elucidation package is in a Morgan-type canonical form. In
particular, as each structure is produced by the embedder, it is checked
against possible additional constraints given by the user, and, if it

satisfies these constraints, it is put into canonical form. This

6)

Several types of constraints on the embedded structures can be
introduced at the backtrack generation level by using edge flags.

e ————————

22

canonicalized structure is then directly compared with the previously
generated structures for possible duplication. In the process of

canonicalizing a structure, a simple many-to-one one word isomorphism
invarient structure key is determined: This key is used to economize

structure comparison.

4. Implementation. The above described fragment embedding algorithm has
been coded in SAIL, an ALGOL like language. This computer implementation
makes use of numerous devices to speed up the computation, for example,
the cases w €3 are handled directly - bypassing the double coset

algorithm entirely, and the stabilizers STABA(Pl) are recomputed

”"’PJ-—l
only when necessary.

The fragment embedding program has been extensively tested using the
Stanford University Medical Experimental Computing Facility (SUMEX). This
facility is based on a PDP-10 computer running under the TENEX operating system.
The average execution time is about .3 seconds per completed structure.

The embedder program is incorporated in the general molecular
structure elucidation package under development at Stanford as part of
the DENDRAL project [8]. This package has a chemist-oriented I/0 interface
which permits the user to input only the emperical formula for a molecule,
the desired fragments in graphical form and several other types of
informationabout the unknown compountm The package driver itself then

calls the necessary structure generation routines, thus freeing the user

from this task.

23

-

- ACKNOWLEDGEMENTS

This work was supported in part by NIH Grant RR612-05A1 and

B NSF Grant DCRT4-12646.
<
@
b
)
(-

-_—-/

2L
REFERENCES

[1] H. Brown., L. Hjelmeland and L. Masinter, Constructive Graph Labeling
Using Double Cosets, Discrete Math., T (1974) 1-30.

[2] and L. Masinter, An Algorithm for the Construction of the Graphs
of Organic Molecules, Discrete Math., 8 (1974) 227-24h

[3] D. Smith, L. Masinter and N. Sridharan, Heuristic DENDRAL: Analysis
of Molecular Structure, in Computer Representation and Manipulation of
Chemical Information (J. Wiley and Sons, New York, 197k4) 287-315.

[4] H. Morgan, The Generation of a Unique Description for Chemical
Structures ~ A Technique Developed at Chemical Abstracts Service,
J. Chem. Doec. 5(2) (1965) 107-113.

[5] c. Sims, Computations with Permutation Groups, in Proceedings of the
Second Symposium on Symbolic and Algebraic Manipulation (ACM, New York,
1971)“ 23_28' -

A__—-—-;—

25
Appendix I. Example

The following example was chosen' for its convenience in illustrating
the operation of the fragment embedder rather than for its chemical

relevance.

Atom Set: {(c,h),(c,u),(c,h),(c,3),(c,3),(c,3),c,2),(c,2),(0,2),(R,1)3

This atom set represents the emperical formula C80H 7R where R is a

monovalent radical and the bonding of the hydrogen atoms to the carbon

atoms is known, namely there are three CH's and two CHZ'S'

Fragments:

Atomic Form Label - Valence Form

CH (C,3)
\
r: | csc l (c,k)=(c,k)

/7 -

CH (c,3)

F2: 0=C - CH (0,2)=(c,4) - (C,3)
Fragment Fl has free valence 4 and fragment F2 has free valence 3. We
assume that it is not known how the free valences are distributed between
bonds internal and external to the fragment Fl; and that the free valences
on fragment F2 are all used for external bonds. Hence there are two cases.
Namely, F1 has one additional internal bond and Fl has no additional internal

bonds.

Case 1. F1l has one additional internal bond. Reduced atom set:

{ (71,2),(r2,3),(c,2),(c,2),(R,1)} .

There are seven non-isomorphic graphs based on this atom set.

26
C - Rl FL - C _c
| | \ | R -FlL=-F2_ |
F2 - C s, F2 - c , c
/ /
R R
Fl
7
R—C-F2\: , C=F2-Fr-C-R
v

C=F2-C-Fl -R FL=F2-C-C-R

We will consider only the first graph. Tpen:

3 NIL
-,
G°: c 1 Fl‘q
I 2
F2 = C
/
R

We want first the embeddings of H at FV in G at Fl. 1f ye index the

relevant edges as indicated, then U(H)=U(G)= {(l,2,3,h),(2,1,3,h),
(1,2,4,3), (2,1,h,3)}. There are three double cosets of U(H) and U(G)
in Sh' The canonical set of double coset representatives is

{(‘$2933h),(l,3,2;h), (3,h,l,2)}. The first representative violates

the bonds to NIL atom condition and is discarded. The second and third

representatives give, respectively, the following structures Gl,

27
C - ¢
. 3 Y / \
¢y R = F2 C-c¢C
2\ \/
C C
C
y NS
G'2 R§F2 C=C”
A7 N
C

The graph H corresponding to F2 is:

L Fv
H: l//2 \3
C -— ¢
X 0
The associated groups are:
ule) - {(1,2,3),(2,1,3)} ,
uie') = {(1,2,3)},
vle'y) = {(1,2,3),(2,1,3)} .

The canonical set of double coset representatives for U(H) and U(G'l) in

s, is {
3t 1(1’2’3)’ (1’3’2)’ (3’1’2)}' These representatives correspond,

respectively, to the following structures:

0 C -
AN d PR\
c-¢ c-c
s/ \
R 'c-c /
R C -(C
~ GF
¢ ¢

28
C — C
0 s / \\
~C c—2C
AN \ |
R N/
c

The canonical set of double coset representatives for U(H) and.U(G’g)

in S3 is {(1'2'3) ’(l’3s2)§- These correspond to the structures:

N\ 7N -
e=c |
7 ~ S N
0
AN
c —C c
/ \ e
c C—c
R/ N / \II
C C

A1l of the final structures are distinct. Thus there are five embedded

structures based on the first graph and with one allocated bond internal

to the fragment Fl

Case 2. No additional internal fragment bonds. Reduced atom set:

{ (F1,4), (F2,3), (c,2), (C,2), (R,1)}. There are eight distinct graphs

based on this atom set.

4
F]-C-C_R

29
C=Fl -F2 =
¢ —r1—R
[l
C—F2 ,
P
R=-2C-rFl] ,
Nr,
c
R'FZ:;:]/I
¢

C-. R,

30

Relative to the above indexings,
U(H) {(1,2,3.14),(2,1,3,4),(1,2,4,3),(2,1,4,3)} and
UG = (1,2,3,4),(2,1,3,4),(3,2,1,4),(1,3,2,4),(2,3,1,4), (3,1,2,4)} -

The canonical set of double coset representatives for U(H) and U(G) in

54 is ‘}'(],2,3.4),(1,3,4,2)}. These representatives correspond,
respectively, to the following structures G':

Gy ¢ %ci\c-c—a

c
3¢

\/

F2

Gé: '
i

2 \C
\{C{JZ-C-C-R

The graph H corresponding to F2 is again:

A

¢ —=¢C
%O

‘The associated groups are:
UH) = {(1,2;3),(2,1,3)},
u(e= {01,2,3),(1,3,2)3,
uey)= {01,2,3),(2,1,3)].
The canonical set of double coset representatives for U(H) and U(Gi) in 53

is 4(1,2,3),(3,1,2)}. The corresponding structures are:

c - GC C R
RN ,
c-¢C -- ¢
\ N 7
C - ¢

0

AN

c-C - ¢ - C - R

/ N\

c /"’C\

\l/

The canonical set of double coset representatives for U(H) and U(Gé) in

53 is {(1,2,3),(1,3,2)}. Thses correspond to the structures:

.C
77 N\
C _‘c
| |
."(‘c //c = C - C - R
o;'
\c
c
0 /
C/ I
l |
¢ C - - ¢ - R
\

Using our programs, we have determined all embeddings of the fragments
Fland F2, There are 46 distinct structures based on the given atom
set and containing the non-overlapping fragments F1 and F2 where one
F1 .has one additional internal bond and 68 distinct structures where Fl

has no additional internal bonds.

32

Appendix 'l. Proof of the correctness of the double coset algorithms.

Lemmal. Let Tre Sw be generated by the algorithm of Section 3.4.
Then:

a) T<«<AT.

b) r<< 7B

c) 7() =2 «B(1)tor every x€EA, BEB .
Proof. a) Choose any &€ A. Then o(77(1))isint he A orbit of 77(1).
By choice of 7 (1), (1) was least in this orbit. Hence 7 (1) €7 (1)
Assume W) £ < (t)f o rift<j - 1<w-~1., If for any t in
this range, W (t)<x%7(t), then " << 7. Thus, we may assume that
T(t) = «xT(t),I£t<j-1, and, hence, o€ S = sTAB, (77(1),
77(j = 1)). Since S is a subgroup of A, every orbit of A is a (disjoint)
union of orbits of S. Let IMJ. be as in the algorithm, i.e., IMJ. is the
set from which 77(j) was chosen. By the design of the algorithm and the
above remark, IT. is of the form

{nowl N {ra), ..., MG-1} U (S-orbit of x),
x€ T

for some subset T of { 1, W). Assume 7 (j)> &7 (j). Since 77 (j)
was chosen as least in lM,,J,od?T(j) is not in IMJ.. Hence either « 77 (j)
isin { T(Q), « .. W(j-l)} or &7 (j)is in S-orbit of x for some
X€E T. However, both of these alternatives contradict the assumption that
X is in S. Thus T (j) <« (j) and, by induction, TG)<dr(i)for
1<i<W-1. Hence Tr<< <7,

b)By the design of the algorithm, 77 (j) > MAX {ﬂ'(x)leOx, x<j}.

Hence, by Sim's Lemma (Lemma 4, Section 3.4), Trecirs.

33

c) By choice, (1) is the least element in some A= A orbit
of (1). For € A and /36 B, let A be that A orbit containing
0(77/8 (m. Thenﬁ/?(l)éAt.Also ﬁ(l)0]=B -orbit of 1. Now,
. _ _ <
it k=1,T0) =1 andZ()=xZB0).11k>,the n77/8(1)¢A]u...uAk_].

Hence t >k and (1) =MIN{x€A J <M | N{xeAaJ<semB(1).

Lemma 2. Let77'éSwsatisfy:

a)<< AT

b) 77<< 7B,

c)’I‘f(l)fa(ﬂ/?(l)for everyoéA ,/QéB.
Then 77 is gen_erated by the algorithm of Section 3.4.
Proof. Since 7<<” B ,bySim's Lemma 7 (j) <77 (t) for any j and t such
that téﬁ). , t# j. Also, téoj, t#j implies t>] . Hence 7 (j)> SBJ.,
2 <5<,

Since W<LAMW, 777 (1) must be the least element in A = A - orbit of
7). Hence (1) =P
T(s) =P

]for some pass of the algorithm. Assume

S’ 1€s<j<W for some pass of the algorithm. Now T << A7’
implies o () is the least element in U = STABA (P], . j-r') - orbit of
o) . Also, (c) implies that ’/7'(j)EAkU...UAT if j is in B-orbit
of 1. Thus, on the initial pass to select Pj’ o) é IMj. Since IM.J is
only decreased by some orbit of STABA(P], ey Pj-l) on any pass, W(j) is
eliminated from IMJ, only when all of U is. Now IMJ. is used as the selection
set for Pj until IM.J = 0. Thus an element from U must be selected on some
pass; and, since 7T(j) is least in U, it must be the first element of U so
selected. Moreover, since 7 (j)> S%,,'Y(j) is not rejected. Hence, by
induction, at some pass PJ = T(), 1494 unless P, = m),

P 7 (wW-2), Pw_] , Pw # ‘W (W), occurred earlier and was rejected because

W-2 =
P,<SB,. In this case we would have P, = ')T(w),Pw =T (W-1) and

r—

34

T (W) "/7(*/ = 1) since the algorithm generates the permutations in

lexicographical order. But then 7 (W< 7 (Ww-1) < SB .
w which is

impossible.

35

Appendix Ill. Symmetry group generation.

Let G be a node indexed graph, x a node of G and Stabx the subgroup
of the topological symmetry group of G stabilizing X. The following
~ algorithm is used by our program to generate, as node index permutations,
a subset S of Stabx maximal with respeEt to the property that distinct
elements of S induce distinct permuations of the edges with endpoint x.
. ALGORITHM. 1) Place the node x in a singleton class and classify the
remaining nodes by weight according to the scheme given
in Section 3.3.
2) If all the node classes are singleton classes, then output
the identity permutation and exit.
3) Order the node classes so that
a) The singleton classes come first.
b) Following the singleton classes are the non-singleton
classes which contain nodes neighboring node x listed
in non-decreasing size.])
c) Following the neighbor classes of (b) are the remaining
non-singleton classes listed in non-decreasing size.
4) Reindex the nodes so that node a preceeds node b if and only

if the class containing node b does not preceed the class

containing node a.

N Our weighting scheme is such that either all the nodes in a given class

neighbor x or no node in the class neighbors x.

——

36

5) Execute (for effect) with initial parameter value START
the recursive procedure given by the SAIL program listed

below where the external variables are initially defined

as follows:

a) NUMBEROFNOOES = number of nodes in G.

b) START = number of sni‘ngleton classes + 1.

c) STOP= total number of nodes in singleton classes or
neighbor classes

d) ADJACENCYMATRIX {1,J] is the (i ,j)th entry in the
adjacency matrix for G relative to the node indexing
formed in step (4).

e) LOWBOUND [J] is the least index of the nodes in the J-th
class (relative to the class ordering of step 3 and the
node indexing of step 4) and UPBOUNDLJ} is the greatest
index of the nodes in the J-th class. Here J > START.

f) IMAGE(!] =1 for 1 <1< START

g) MAPPED[I] = FALSE for START <1< NUMBER OF NODES

h) CLASSUI! = class index of the class containing the node

PROGRAM.

with index |I.

RECURSIVE BOOLEAN PROCEDURE PERMUTATION (INTEGERI);

BEGIN "PERMUTATION"

INTEGER J,K;

IF | LEQ NUMBEROFNODES THEN

BEGIN

FOR J <--LOWBOUND[CLASS[I1]] STEP 1 UNTIL UPBOUND [CLASS [i_] DO

37

BEGI N ''J LOOP"
I F MAPPED [J] THEN
CONT I NUE''J LOOP"'
FORK<=- 1 STEP 1 UNTIL I-1 DO
IF ADJACENCYMATRIX [l ,K] NEQ
ADJACENCYMATRIX [J, IMAGE[K]]
THEN CONTINUE ''J LOOP”;
IMAGE [1] <~ y;
MAPPED [J]<4 - TRUE;
IF PERMUTATION (1+1) AND| > STOP THEN
BEGIN
MAPPED [JJ]&- FALSE;
RETURN (TRUE) ;
END
ELSE
MAPPED {J]<- FALSE;
END ''J LOOP”;
RETURN (FALSE) ;
END
ELSE
. BEGIN
INDUCED PERMUTATION; COMMENT: INDUCED PERMUTATION IS AN EXTERNAL
PROCEDURE WHICH COMPUTES AND STORES THE PERMUTATION OF THE EDGES
OF G WITH ENDPOINT X INDUCED BY THE NODE INDEX PERMUTATION
| == IMAGE [I-J;
RETURN (TRUE) ;
END; -

END “PERMUTATI ON”;

