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SECTION 1INTRODUCTION

This paper represents a first attempt at the axiomatization of the metamathematics of a first order
theory and at usingthe new proof checker FOL (First Order Logic). The logic which FOL checks
is described in detail in the usermanual for this program, Weyhrauch and Thomas 1974. It is based
on a system of natural deduction described in Prawitz 1965,1970,

Our motivation in axiomatizing the metamathematics of FOL was the desire to work on an
example which could be used as a case study for projected features of FOL and, at the same time,
had independent interest withiespect to 1epresenting the proofs of significant mathematical results

to a computer.

The eventual ability to clearly express the theorems of mathematics to a computer will require the
facility to state and prove theorems of metamathematics. There are several clear examples:

a. Axiom schemas. How exactly do we express that
P(8) A ¥Yn.(P(n)>P(n+!)) > Vn.P(n)

is an axiom schema? We need to say: “If for any first order sentence P with one free variable y we
denote by P(n) the formula ebtained from P by substituting n for y assuming n is free for y in P,
then the sentence

P(B) A Vn.(P(n) 2 P(n+1)) > Yn.P(n)

is an axiom of arithmetic”.

b. T heorem schemas. The following kind of “theorem” is sometimes seen in set theory books
Vxl ... xn S. 3T. Vu. (<xl ..., xn>€T 23y (<x1,..., xn,y>€5)). |

It asserts the existence of some particular projection of n+l-tuples. In its usual formulation this is
not a theorem of set theory at all, but a metatheorem which states that, for each n, the above
sentence is a theorem. We do not know of any implementation of first order Iogic capable of
expressing the above notion in a straightforward way.

c. Subsidiary deductionyules.Below we show how to prove that if there is a proof of ¥xy WFF then
there is also a proof of Vy x WFF, where WFF is any well formed formula. We chose this task because
it seemed simple cnoughtodo, andis a theorem which may actually be used. The use of
metatheoremsasrules of inference by means of a reflection principle will be discussed in a future
memo by RichardWeyhranch  Eventually we hope to check some more substantial
metamathematical theot ems

d. Interesting mathematical theerems. We presenttwo examples. The first is any theorem about finite
groups. The notion of finite group cannot be defined in the usual first order language of group
theory. Thus many "theorems” are actually metatheorems, unless you axiomatize groups in set
theory. The second theorem is the “duality principle” in projective geometry.
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sy syl sy2sy3sy8sy5sy6¢ SYM (SYMs are logical symbols)

np npl np2 np3 np4 np5np6 (N_PLCSYM ‘ (N_PLCSYMs are symbols which have an arity)
fn fnl fn2 fn3 fn4 in5fn6 € OPCONST, (OPCONSTs are function symbols)

P PIP2 P3 P4 P5 P6 ¢ PRCDCONST; PREDCONSTs are predicate symbols)

the partial order between these sorts is defined by the following FOL declarations:

MG SEQ > { STRING , PROOFTREE };

MC PROOFTREE »{ FORM };

MG STRING > { TERM , FORM , ATOM , VARSTRING } ;

MG TERM > { INDVAR | ;

MG FORM >{ ELF , SENTCONST , PREDPARS , AXIOM , BEW } ;

MG BEW > { AXIOM };

MG ATOM > { INDCONST , SENTCONST , SYM,INTEGER , N,PLCSYM. ,
INDPAR, INDVAR , AUXSIGN , PREDCONSTB , PREDPARB };

MG INDCONST > { NUMERAL };

MG SYM > { QUANT , SENTCONN };

MG N,PLCSYM »{ PREDCONST , OPCONST , PREDPAR }

Sorts are always predicates with one argument. The declaration
M C SORTI2{ SORT2 , SORTn}

should be read as SORT1 is moregeneral than SORT2,..,SORTn and corresponds to the implicit axioms

Vg.SORT 1(g)oSORTI(g),

Vg.SORTn(g)=SORT I(g)

The first declaration, forinstance, says that strings and derivations are particular sequences of
formulas. Stringsate in fact <eqquences of length | and derivations are those sequences satisfying the

predicate PROOFTREE.

Section 2.2 The domain of representation of the metamathematics

T h e basic notions of the metamathematics of first order logic have been axiomatized interms o f
strings and wequencesof sniings . Theprimitive functions on them are concatenation (¢ for strings, cg,
for sequences) and selectors (car, cdr forstiings and scar, sedr for sequences) ¢ and ccare infix
operators.
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SECTION 2 THE AXIOM SYSTEM

In this section we present two axiomatizations of the metamathematics of first order logic, The main
difference between them is that one is done in a many sorted first order logic and the other not.
These axjomatizations represent an attempt at experimenting with proofs about properties of
formulas and deductions. No effort has been spent on guaranteeing that the axioms are
indcpenden t. It would not only have been uninteresting but also contrary to our basic philosophy.
We wish to find axioms which naturally reflect the relevant notions. At the moment this
axiomatizationis far from being in its final form. Neither the extent of the notions involved nor the
best way of expressing them is considered settled.

Section 2.1 The sorts

The sorts we have defined correspond to the basic notions of the metamathematics i.e. terms,
formulas, individual variables, logical symbols, function symbols etc. and to the notions of the
domains (strings and -sequences of strings) in which the axiomatization has been defined. FOL (see
Weyhrauch and Thomas 1974) allows the declaration of variables to be of a certain sort. In the
formulas appearing in this paper the following declarations are assumed:

gel g2 g3 g4 gh gb range over the most general sort

sq sql 892 sqg3 sqg4 sq5 sq6 € SEQ (SEQs are sequences of strings)

pf pfl pf2 pf3 pf4 pf5 pf6 € PROOFTREE (PROOFTREES are sequences represen ting
derivations in FOL)

s sl 82 s3 s4 s5 56 ¢ STRING (STRINGs are strings)

tt1t2131415 16 ¢ TERM (TERMs are strings representing terms)

x x1 x2 x3 x4 x5 x6 €INDVAR (INDVARs are strings representing individual
variables)

eloliel2el3el406l50l6€¢ELF (ELFs are strings representing elementary
formulas)

f $162 3 $4 15 16 ¢ FORM (FORMs are well formed formulas)

th thl th2 th3 th4 th5 thé ¢ BEW (BEWs are theorems of a first order theory)

A Al A2 A3 A4 A5 A6 ¢ AXIOM (AXIOMs are axioms of a particular theory)

€0 ¢l ¢2 ¢3 c4 ¢5 ¢6 € INDCONST | (INDCONSTs are individual constants)

aal a2 a3 a4 a5 a6 ¢ ATOM (ATOMs are the individual constituents of a string)

N nl n2 n3 n4d n5 k¢ INTEGER (INTEGERs are integers)

nc ncl nc2 nc3 nc4 nc5 nc6 € NUMERAL (NUMERALs are numerals)
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The properties of wtfsrelevanttoourtheory have been defined by the predicates FR, FRN, GEB and
SBT.FR(x,f)1strueiff thevariable x has atleastonefree occurrence in the wff f while FRN(x,n,f)
and GEB(x,n,f) arerespectivelytrne when the variable x occurs free or bound at the place ninthe
formula f. These predicates are defined i n-appendix 1.6. In addition, some generalized selector
functions are defined, whichevaluate the first or the k-th free occurrence of a variable in a wff, or
the number o f it (yee accuriences. The precicate SBT is then defined. It axiomatizes the notion of
substitution of a termfor any freeoccurrence of a variable in a wff.

V x t1142.(SBT(x,t,f1,§2)=
Vnl n2.((n2=(numbfreeocc(x,nl,{ 1 )xk(len(t)=1))+nl) >
((~INDVAR(nlgl f 1) 2 (nl gl f1)=(n2gl f2)) A
(INDVAR(nlgl f 1) o ((FRN(x,n1,f 1 )oSUBT(t,12,n2)) A
(~FRN(x,n 1,f1)=INVART(n 1,f1,n2,£2)))))

Vit §2 n2.(SUBT(1,§2,n2) = Vx2 k.((k g | t)=x2 > FRN(x2,n2-(len(t}-k),{2)))),

Vi f1 nlf2.(INVART(nf1,nl1,42)=((GEB(nlglf2,nl §2)=GEB(nglfl,nf1)) A
(FRN(n1glf2,n1 12)=FRN(n gl f 1 ,mf1)) a (nl glf2)=(ngl f 1)))

I'n the previousdefinition, nlisanypositionin the stringfl and n2 is the corresponding position in
f2. The auxihiarypredicate SUBT statesthat the variables appearing in the term tsubstituted for a
freeoccurrence o fthevariable x arestilifree. INVART defines which properties of flare still true
forf2.1f thetermtisavariable,then S E Treducesto SB V :

Vxl x 2 £112.(SBV(x] x1,{1,62)=
V n ((~INDVAR{ngl t 1) 2(nglf1)=(nglf2)A
(INDVAR(n glf 1) 2 ((FRN(xI,n,f 1) 2 FRN(x2,n,{2)) A
(~-FRN(x 1,n,f 1) 2INVARV(n,f 1,£2))))),

Vn f 1 f2.(INVARV(n,{1,12)- ((GEB(nglf2,n,2)=GEB(n g/ f 1 ,n,f 1)) A
(FRN(n gl12,n,#2) = FRN(n gl f1,mf1)) A ( n gl f2)=(ngl £ 1)),

Theproof of the equivalence of SBT and SBY when t is a variable is very simple. It is based on the
fact that n2 coincides with nl when the term t has length | (see appendix 4). The function sbt (sbv)
evaluates to the string representing the result of substituting a term (variable) for every free
occurrence of a variable in agiven wif. sbt and sbv are defined from the predicates SBT and SBY as

follows:
Vx t£1 §2SBT(x,t,f1,12) = sbt(x,t,f])=12)
Vx| x2 f 1f2.(SBV(x | x2,{1,2) = sbv(x | ,x2,f 1 )=f2)

The problem of f inding the bestway of defining functionsim FOLiscrucialint h e axtiom s y s t e m
givenmthispaper a unifoomwayhasnnotheen followed. Indefining the substitutionw e ar e
interested i n properties of the functions sbt and sbv and 1h drawing conclusions from the fact that a
substitution hasheenmade. It is thususeful to have a predicate which defines the relation between
formulas beforeandafterasubstitutioninstead of infering it from the definitions of the functions
(stated for exampleasasystem o f equations, asin Kleene1952). One of the motivations of the
present experiment was to explore differentways of defining functions. We do not yet have enough
examples of proofs to makeaclearstatementaboutthis matter.
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2.2.1 Formulas and terms

Formulas and terms are represented by the string of symbols appearing In them. Terms are defined
recursively as strings which either represent an individual variable or can be decomposed into n+1
substrings representing a function symbol of arity n, followed by n terms. The two predicates
defining terms are:

TERMSEQ(8,LAMBDA)
Vs.(TERM(s) = INDVAR(s) v 3n fn.(fn=car(s) A n=arity(fn) A TERMSEQ(n,cdr(s))))

V n s.(TERMSEQ(n,s) = ((car(s)=LPARSYM) A ({len(s) gl 6)sRPARSYM) A
3nl (TERM(substring(s,2,nl)) A TERMSEQ(n~1 ,substring(s,nl +1 len(s)=1)))))

where the function substring(s,m,n) (see appendix 1.3) returns the substring of s starting from its m-th
element and ending with the n-th. len(s) computes the length of 8 and (ngls) selects the n-th element
of s.

Well formed formulas (wffs) are represented as strings which either are elementary formulas
(defined by the predicate ELF) or can be partitioned into substrings for formulas and logical
connectives. Formulas are defined by:

Vs.(ELF(s) # (sesFALSESYM v PREDPARO({s) v 3n P.(P=car(s) A n=arity(P) A TERMSEQ(n,cdr(s))))),

Vs.(FORM(s)® (ELF(s) v 3x f.(s=(x genf) v s=(xex{)) v
3f142.(s=(f | Sisf2) v s=(fl con 12) v s=(f 1 impl{2)) v 3f.s=neg(f) )) 33

genis the infix operator that maps its arguments x and f into the string (FORALLSYM ¢ x) c f
representing the well formed formula Vx{. The operator ex is used for the existential quantifier.

dis, con and impl are the infix operators for the disjunction, conjunction and implication of two

formulas. Finally, neg is the operator which maps a formula into its negation.

We could possibly represent wffs as structured objects (lists, trees, etc.) which contain all the
information about the structure of the formula and do not require any parsing. This approach
amounts to axiomatizing metamathematics in terms of the abstract syntax of first order logic, instead
of strings of symbols. Both of these possibilities should be explored. We have chosen the first
alternative because:

1) It is the most traditional, i.e. metamathematics, as it appears in logic books, is usually stated in
terms of strings.

2) Axioms in terms of abstract syntax are simply theorems of the theory expressed in terms of
strings.  Thus the two representations look substantially the same with respect to “high level”
theorems.

3) lli-formed formulas can be mentioned. This is of course impossible in an axiomatization in
terms of the abstract syntax.

Ry
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Themain theoremwchave provedinthisaxiomatization of the metamathematics states that if vx
y.wif is provable in some theory, then Vy x.wif is also provable. We have chosen this theorem
because, even if vet y simple, ttinvolvesbasicnotions of provability, substitution and universal
quantification. Its proofisfoundinappendices5.1-2. The theorem depends on the first three lines
of the proof. Thefiiststepisalemmastating that Vx wif.sbt(x,x,f)=wff, i.e. substituting a variable x
for any free occurrence of x mwifdocsn'tchange that wif. Steps two and three give simple facts
a bout sequences. The theoiem is then proved by instantiating two other lemmas: ) if Vx.wiff is a
theorem, then wifisalsoatheorem;2)if wifis provable, then x cannot be free in the dependencies
of the proof of wif and so Vx.witis provable. This 1sof course true only for theories with no free
variables in their axioms.

The only property of theinfriencerulesused mthis proof involves universal quantification. The
restriction on theapplicability of the V-mtrorduction rule is, that the variable to be universally
quantified in a wff mustnotappearfreem any of its dependencies. This restriction is reflected in
our axiomatization I)y the |nr'rlican' APGENI Inthis proof APGENI issatisfied because if wifis
provable, its dependenars areaxioms with nofree variables.

The following is-an infoumalproot of the ahove theorems. If Vxwifis provable, thentherei s a
prooftree pf whose tin st <tring, is Vx wit. The sequence (Vxwif) cc p £ 18 still aprooftree, It is obtained
b y applying the V-elimination jule Theapphcation of this rule doesn’t add any dependency to the
prooftree. Asits only dependencies areaxioms, it follows from the definition of BEW that wif is a
theorem. Onthe other hand,if wffis a theoremthere exists a prooftree pf whose first element is wif,
B yapplying t h e V-intioduction tuletopfweobtain the prooftree (Vxwif)cc pf. Thisrule is
applicable sincethevtemshave n o free variablesin their dependencies. It follows that Vxwifis a
theorem. If Vxy.wifisprovablethenVxwif and wff are provable using the first lemma. Finally, we
can quantify first over x andthen over y, obtaining Vy x.wff as a theorem.

Section 2.4 Another axiomatization

A different asiomatirntion has Iwcngivcn man earlier version of FOL where there was no facility
for creating sorts We presentithere as wewant to do some comparisons between proofs, and discuss
some of thefeaturesof FOL. Some differrncesbetween the two axiomatizations are due to the new
features available in FOL They will bediscussed in the next section. Here we only discuss the
difference betweenthe definition of formulas and terms. The list of all the axioms can be found in
appendices 2f8

In this axiomatization, formnlis and terms are still vepr esented as the strmg o £+ he symbols
appearing i them  They ate det ined as strinesthat can bedecomposedinto a sequence o f
substrings tecortlimy the constinction o f thatformulaor term from elementar y formulas a n d
individualvariables, according to theusualformationrules (see appendix 2.5 for thelist of axioms).
These sequences arc detmed bythepredicate TERMSEQ for terms and FRR for wffs. A sequence
satisfies the predicate TERMSEQif itrepresents thr history of the construction of its first element (the
term tobe defined), statting from symbols, functions and individual variables. Similarly, a string is a
wff if there exists a sequence whichsatisfics the predicate FRR and represents the history of the
construction of that wff from elementary formulas and the logical connectives.
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2.2.2 Rules of inference, deductions and the notion of provability

The rules of inference are defined by the predicates in appendix 1.7. The rules with one premise,
are expressed by means of a binary predicate whose arguments are two sequences of wffs (sq, pf)
which satisfy PROOFTREE. The predicate is true iff pf is the sedr of 8q and the first element of sq is a
wif obtained by applying that particular deduction rule to the first wff of pf. The rules with more
antecedents are defined in a similar way.

Derivations are recursively defined as sequences of wffs which either are a single wff or are
obtained from one or more derivations by applying one of the deduction rules. The recursion is
implicitly stated by saying that there exist objects of sort PROOFTREE which satisfy one of the
predicates defining the rules of inference. These sequences represent the linearization of a deduction-
tree and are defined as follows:

Vsq.(PROOFTREE(sq) =
(FORM(sq) v
3pt.(ORI(sq,pf) v ANDE(sq,pf) v FALSEE(sq,pt) v NOTH(sq,pf) v NOTE(sq,pt) v IMPLI(sq,pt)) v
3pf x L(GENK(sq,pf,x,t) v GENE(sq,pfx,t) v EXI(sq,pfx,t)} v
Ipf 1 pf2.(ANDI(sq,pf I ,pf2) v FALSEI(sq,pf 1,pf2) v IMPLE(sq,pf1,pf2)) v
3pf 1 pf2 x 1x2.EXE(sq,pf |,pt2,x] x2) v
3pf | pf2 pf3.0RE(sq,pf1,pf2,pf3) )) 33

A sequence of wffs is a prooftreeif either it consists of a single wff or one of the following
alternatives holds: there exists another prooftree and a one premise deduction rule has been applied;
there exist two prooftrees and one of the two premises rules has been applied; finally, there are three
prooftrees and the predicate defining the v-elimination rule is true. Note that the root of a prooftree
is not necessarily a theorem in a given theory. A predicate DEPEND has been defined which is true if
a given wff is a dependencefor theroot of a prooftree. The axioms about DEPEND allows to decide
all the dependencies of a prooftree.

Since some of the deductron rules (the implication introduction, for instance) eliminate dependencies,
not all the leaves of a prooftree pf are dependencies for a wif f such that fsscar(pf). The predicate
DEPEND is true only for those leaves of the prooftree which the formula f actually depends on, lts

- definition is shown in appenciix 1.8. The axioms DEPEND state which dependencies do not change by
applying the deduction rules and are transferred from one prooftree to the other. The axioms
NDEPND state which rules discharge dependencies in a given prooftree.

Using this notion of dependence the provability of a formula in a theory is defihed as follows:

V4.(BEW(f) = 3sq.(PROOF TREE (sq) A f=scar(sq) a Vf 1.(DEPEND(sq,f 1) = AXIOM{f 1))))::

A wif f i atheorem in a given theory if there exists a prooftree whose first element is fand whose
only dependencies are axioms in that theory. We have limited our attention to theories in which
axioms have no free variables. This property is defined by the axiom:

V x f.(AXIOM(f) 2 ~FR(x,));;

Section 2.3 The main proof in themany sorted logic
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statements.  Hence, the statements produced by them have quantifiers as main symbols or it is
necessary tointroduce aquantifier to proceed in the proof. After the right introductions or
eliminations have been done to them, the tautology commands are used again. This process is
iterated until the completion of the proof.

The command UNIFY decidesif agiven wff can be obtained by instantiation of quantified variables
or introduction of them for fieecccurrences of variables or terms in a second wiff. The code for this
command has beenwritten by Ashok Chandra and is still in an experimental stage. In the proofs
presented here, this command has been rssentiallyused for the simultaneous introduction of the
existential quantifier. As an example, consider the following assumption:

1 Vx.(P(x)2(Qf 1 c 12)AVLR(I)) (I ) ASSUME
the command

unify Ix.(P(x)23L(QINHAR(g (1)), 1;

deduces in a single step

2 Ix(P(x)23.(QIDAR(g(1)))) (6) UNIFY I

A good examplenofacombineduse of thesefcaturesisfound in appendix 3.3:

19 FRR((xlgent) cc SQ) (SEQUENCE((x1gent) cc SQ)All{x] gen ) cc U)¥
SLAMBDAA(ELF (scar((xigenf) c c SQ))V(FRR(sedr((xlgent) c c SQ)A
351 52 (STRING(s 1 )A(STRING (s 2)A{(scar((sl gon f) ¢ ¢ SQ)=NEG(s1)A
find(1,s1,scdr({xlgent) c c SQ)Iv((scar((xlgenf)cc SQ)=(s] dis s2)A
find(2,51 ¢ s2,scdr{(x!zen f) cc SQ)Ivi(scar((xlgenf) cc SQ)=(sl con s2)A
find(2,s1 ¢ s2,scdr{(x! zenf) c ¢ SQ)))vil(scar((xlgent) c ¢ SQ)=(slimpl s2)A
find(2,s1 ¢ s2,scdr((x]gent) c c SQ)))vi{scar((x] gonf)cc SQ)=(sl g e n s2)A(INDVAR(s1)A
find(1,s2,scdr{(xigent) c c SQ))))viscar{({xlgent) c c SQ)=(sl ex s2)A(INDVAR(s1)A
find( 1 ,s2,8cdr{{x 1 gen f) cc SONMMMIMNMMN) — VEWFFI(xl gen f) cc SQ

20 STRING(x 1 JA{STRING(f)A((scar({xlgen{) cc SQ)=NEG(x1) A
find( 1 ,x 1 ,scdr((x| genf) cc SQ))Iv((scar({xlganf) cc SQ)=(x1 dis f)A
find(2,x1 ¢ t,sedr({xlgant) c c SQ))Iv((scar({x] genf)ceSQ)=(xl con f)A
find(2,x! ¢ f,scdr({xtgent) ¢ ¢ SONIV(scar({(xlgen f) cc SQ)=(xlimpl f)A
find(2,x1 ¢ fscdr{{xlgan ) ¢ ¢ SOMVv{(scar{(xl gant) cc SQ)={x]l g e n HA(INDVAR(xI)A
find(1 f,scdr((xlgenf) c c SOMviscar((xlgenf) c ¢ SQ)=(x1ex f)A(INDVAR(x1)A
find(1,f,scdr((x1gent) cc SO))))))))) (1 23 456 7 8 11) --- TAUTEQ 1:19

2 1 35162 (STRING(s1 )A(STRING(s2)A((scar((sl gen f) ¢ ¢ SQ)=NEG(s1)A
find(1,51,scdr{{xlgenf) c c SO))v((scar{({x] pon f) cc SQ)=(s] dis s2)A
find(2,s1 ¢ §2,5¢dr((xIgent) c c SO)))v((scar({xlgenf) c c SQ)=(sl con s2)A
tind(2,51 ¢ s2,5cdr((xlgent) c ¢ 50)))vil(scar{(xlgent) c c SQ)=(slimpl s2)A
find(2,s1 ¢ s2,scdr({xlgenf) c ¢ SQ)))v((scar({xlgent)cc SQ)=(s1 g e n s2)A(INDVAR(s1)A
find( 1 ,s2,5cdr({xlgenf) cc SQ)))) viscar{(xlgenf) c c 5Q)=(sl ex s2)A(INDVAR(s])A
find(1,s2,scdr({x] gen f) cc SQNMNIMIMNI(1 23456 78 11) === UNIFY 20

Line 19 is the instantiation of anaxtom. Line 20 is generated by the command,

TAUTEQ19:420282a2428 1w {sl«{ : s2¢x]1]1:19;
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note how the use of the FOL subpart designators allows us to mention the desired subpart of 19,
without having to retype #. En addition we can do the appropriate substitutions. Line 21 is just a
use of UNIFY:

UNIFY 19:8282420282 20;

Because we can mention the conclusion, without writing It down explicitly, the amount of typing
necessary is severely reduced. Without UNIFY, line 21 would have required two 3-introductions and
the commands would have been:

3t 20 xl+-sl OCC 1,2,3,4,7,8,11,12,15,16,19,20,23,24;
31 20 f «s2 occ |,5,9,13,17,18,21,22;

W e do not enter into a detailed discussion of the command UNIFY. It is our intension to do it
elsewhere. It should be thought of as the routine which handles quantifiers In “simple” inferences.
As seen above, the saving to a user can be large.

3 Y

-
\x
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SECTION 4 CONCLUSION

The desire to represent mathematics ma computer in a feasible way certainly requiresthe facility to
discuss metamathematical notions. The axiomatization presented here only treats the syntactic part
- of the problem. Any mentionof the models involved needs the addition of set theory tothe
axiomatization. However, it is clear from the simple theorems we proved that any practical system
needs more extensive featureseven to do a satisfactory job of writing down the theorems we might

- want.

An impottantpointfarfutine workis how (in a practical way) to use these theorems. Consider for
instance:

Vxl x2 f.{BEW(x! gen (x2 ganf{))>BEW(x2gen (x| gen{)))

= What we mean by reflection principleisa rule of FOL which says:
- //BEW(f) //in meta FOL

J E—
| /111 / m FOL

That is, if in the axinmatization of the metamathematics of FOL, we can prove the existence of an
L FOL proof of f, then we can asseit f inFOL. Suppose we have a proof in FOL of Vx y.wif. Then
instantiating the above theoremygivesus

BEW(x gen (y g e n wif)) > BEW({y gen (x gen wif})

- Since we started with aproof of Vxy.wif n FOL and BEW represents the proof predicate for FOL,
we can conchide BEW(x gen (y gan wif)). Using modus ponens we get BEW(y gen (x gen wiff)), and
using; the abovetule we canconclude Vy xwif inFOL.

The exact form of such arulerequiresmore examples of proofs and is one of the main reasons for

“doing theexamplemnthememo. It isnot justa proof checking exercise, but a case study for
fundamental questions  of representing  mathematical informationi n a computer.  Using
metamathematics also preparesthe way for more comprehensive systems which can formally discuss
how they reason. That s exactly what the metamathematics is good for.
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APPENDIX |

THE AXIOMS IN THE MANY SORTED LOGIC

1.1 Natural numbers

AXIOM NUMB:
Vnl n2 n3. (nl =n2>(ni=n3 2 n2=n3)),
Vnl n2. (nl=n2 2 sucelnl)=succ(n2)),
Vnl. Bpsuce(nl),
Vnln2. (suce(nl)=succ{n2)> nl =n2),
vnl. nl+B=n} |
Vnln2. ni+suce(n2)=succinl @ n2),
Vnl. nix8=0 ,
Vnl n2. nl %ksucc(n2)=(nl%*n2)+nl ;;

A X | O MINDCT:
(F(@)AVN.(F(n)oF(n*1)))> Vn.F(n) ;;

AXIOM DEFN:
vn. (succ(n)=1)=n |
vnl n2. suce(nl)=n2=ni=(n2-1) ,
Vnl n2n3.(nl<n2=23n3.(n348 A ni+n3=n2)) |
Vnl n2. (n1<n2 = (n1<n2) v (nl=n2)) ,
Vnln2. (n2>nl ® nl<n2) |

Vnl n2. (n22nl = nidn2) ; ;

1.2 The set of symbols

AXIOM SYM:
Vs. (SYM(a)® a=LPARSYM v a=RPARSYM v azQRSYM v a=ANDSYM v aslMPSYM v

asFALSESYM v a=FORALLSYM v a=EXISTSYM) ss

1.3 Strings

AXIOM STRING:

Vs. s=car(s) c cdr(s),

Vsl s2. (s| =LAMBDA o car{s] ¢ s2)=car(s2)) ,
Vsl s2. (s1 JLAMBDA > car(sl c s2)=car(sl)) ,
Vsl s2. (s| =LAMBDA > cdr(s] c s2)=edr(s2)),
Vsl s2. (s| {LAMBDA ocdr(s] c s2)=cdr{sl)) ,
Vs. (s c LAMBDA=LAMBDA c s) ,

vs. s ¢ LAMBDA=s |

Vel s2 83, (sl c(s2 c 63)=(s1c s2) c63),

Va. (ten{a)=1 v a=LAMBDA) ,

Vs. len(sP0 |

Vsl s2. len(sic s2)=len(s 1 )+len{s2) ,

VS. (len(s)=1> ATOM(s)) ,

VS. 8 gl se LAMBDA ,
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VS. 1 gls=car(s),
Vs n. ((m1)2((n gl s)=((n=1) gl cdr(s)))) ; ;

AXIOM SUBSTRDEF:
Vnl n2 sl s2. (SUBSTP(s 1,52,n1,n2) =z(len(s2)=n2-nl+1 A(Vn.(n2nl AnSn2 >
nelsl =(n-nl o 1) gis2)))),
Vnl n2sl &2 (SUBSTP(s1,52,n1 n2) = substring(sl ,nl,n2)=62) ,
Vsl s2. (SUBS(s1,52) = 3nl n2.SUBSTP(s1 ,s2,n1 ,n2))s;

The value of substring(sl,nl,n2)isthe substiing of sl whose first element Is the nlthelement of
sl and whose last element | s the n2th element,

AXIOM DISEQ:
Vel g2. (s(gl=g2) = glfg2) ; ;

AXIOM EQS:
Vsls2(Vn(nglsl=ngls2)=sl=s2);;

AXIOM COMP:
VA. e(f)-(LPARSYM cf) ¢ RPARSYM ,
Vil f2. f 1 dis {2=(e(1] ) ¢ ORSYM) ¢ e(f2),
Vil 2. flimplf2=(a(f1) c IMPSYM) ¢ e(f2) ,
Vi, neg(f)=(fimpl FALSESYM) ,
Vil 12, f1 con f2=(a(f 1) ¢ ANDSYM) c e(f2),
vx f2. x gon{2=(FORALLSYM ¢ x) ¢ {2,
vx 2. x ox{2=(EXISTSYM ¢ x) ¢ 12 ;;

1.4 Formulas

AXIOM TERM:
TERMSCQ (1,LAMBDA) ,
Vn s. (TERMSEQ(n,s) - (3nl (TERM(substring(s,1 ,nl)) a
TERMSEQ(n=1,substring(s,nl « 1 len(s)))))),
vs. {TERM(s) INDVAR(s) v Intn.(fn=car(s) A n=arity(fn) A TERMSEQ(n,cdr(s)))) ;s
AXIOM WFF:
vs. (ELF(s) "(s=FALSESYM v PREDPARO(s) v 3nP.(P=car(s) A n=arity(P) a
TERMSEQ(n,cdr(s))),
vs. (FORM(s) = (ELF(s) v

3 xflls=xgenf) v(s=xexf))wv
3t112.((s = {1 dis f2) v(s=1fl con f2) v (s =flimplf2)) v
Hs=neg (f)) 5

1.5 Sequences

AXIOM SEQ:
vsg. sg=scar (5q) cc sedr(sq) ,
Vsql sq2. (sq1=SLAMBDA > scar(sgl ¢ c sq2)=scar(sq2)) ,
Vsql sq2. (sq) #/SLAMBDA o scar(sql ¢ ¢ sq2)=scar{sql)) ,
Vsql sq2. (sql =SLAMBDA > scdr(sql cc sq2)=scdr(sq2)) ,



Vsql sq2.
vsq.

vsq.
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(sq 1 #SLAMBDA > scdr(sq 1 cc 892)=scdr(sql) cc sq2) ,
sq cc SLAMBDA=SLAMBDA cc sq ,
sq cc SLAMBDA:eq,

Vsql sq2 sq3. (sq 1 cc (sq2 cc 593)=(sql 6c £q2) cc sq3),

VS.

vsq.

Vsql sq2.
vs(Q.

vs(Q.

Vn sq.

AXIOM SUBSEQDEF:

(slen(s)=1vs=SLAMBDAY},

slen(sq)28 ,

slen(sq 1 cc $92)=slen(sql)+slen(sq2) ,

8 sgl sq=SLAMBDA ,

1 sglsq=scar(sq) ,

((m1)2((n sgl sq)=((n-1) sgl sedr(sq)))) ;;

Vnin2sql sq2. (SUBSEP(sql,5q2,n1,n2) = (slen{sq2)=n2=nl:! A

(Vn.(n2nl Angn2 = n sglsq2=(n-nl+l) sgl sql)))) ,

vnl n2 sql sq2.  (SUBSEP(sql,sq2,n1,n2) s subseq(sql ,nl ,n2)=sq2) ,

Vsql sq2.

AX IOMEQSQ:
Veql sq2.

(SUBSSE(sql sq2) 2 3n| n2.(SUBSEP(sql,8q2,n1 ,n2))) ;;

(Vn.(n sgl sql=ansgl sq2) 2sql=s5q2);;

1.6 Free and bound variables andthe substitution

AXIOM BOUNDV:
Vx n f.

AXIOM FREEV:
Vx n f.
vxf.

AXIOM FIRSTFRDF:
Vx nf.
Vx n f.

-AXIOM KFREEOCCDF:
Vx k ntf.

Vx k n f.
Vx k n f.
Vx k n f.

AXIOM SUBSTDF:
Vx tf1 2.

Vit {2 n2.

(GEB(x,n,f) = 3 s 1562 f 1.(len(sl)+1<n A n¢(len(f)-len(s2)) A
(x=n glf)Allf=(s] c ((x gen f 1) c s2)))v(fa(sl c ((x ox t1) c s2)))))) ;;

(FRN(:,n,f) 2 (x=(n gl 1) A ~GEB{x,n,f))) ,
(FR(x,£) = In.FRN(x,n,f ));3

(FIRSTFREE(x,n,f) = (FRN(x,n,f) A ¥nl.(x=nl g1 2 (n12n v GEB(x,n1,{))))) .
(FIRSTFREE(x,n,f) = firstfreeoce(x,t)=n) 53

(KTHFREEOCC(x,k,n,f) = (k=8 A n=B) v
(n=len(f) A Vn2.(n2>kthfreeocc(x,k~1,f) o ~FRN(x,n2,{))) v
(FRN(x,n,f) A ¥nl .{(n] <k A n1>8) @ In2.(n2¢<n A KTHFREEOCC(x,n! ,n2,$))))),
(KTHFREEOCC(x,k,n,f) = kthfreeocc(x,k,f)=n) ,
(KTHFREEQCC(x,k,n,f) > numbfreeocc(x,n,{)=k),
(numbfreeocc(x,n,f)=k > (KTHFREEOCC({x,k,n,{) v
(n<kthfreeocc(x,k,f) A n>kthireeocc(x,k=1,{))))s;

(SBT(x,1,1,§2) = ¥l n2.({n2=(numbireeocc(x,nl ,f 1 Yx(len(t)=1))enl)>
((-INDVAR(nl gl f1)2nl gl fl = n2 gl f2)A
(INDVAR(nl gl 1) > ((FRN(x,nl 1) o SUBT(1,12,n2))A
(~FRN(x,n1,{1)3INVART (n1,f 1,n2,£2)))))),
(SUBT(t,f2,n2) = Vx2 k.({(k gl t) = x 2) @ FRN(x2,n2=(len(t)=k),{2))),

Vn f 1 nl 2. (INVART(n{f 1,n1,2) s ((GEB(nlgi{2,n1,f2) s GEB(n gl f 1,n,f 1 ))A

Vx Lf1¢f2.

(FRN(nl g1 f2,n1,12)=FRN(n gl f I,nf1)) A n| glf2=nglf 1))
(SBT(x,t,f1,f2)asbt(x,t,f1)=42) ;;
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AXIOM SUBDEF:
Vx| x2 112.(SBV(x1,x2,{1,12) = Vn.((~INDVAR(n gl f1) 2 n gl f1 = n gl 2)A
(INDVAR(n gl £ 1) > ((FRN(x1 ,n,f | )>FRN({x2,n,12)) A
(<FRN(x1 ,n,f 1)2INVARV(n,{ 1,{2))))),
vnilf2,  (INVARV(n(fl,§2)=((GEB(n gl f2,n,f2) = GEB(ngl f 1 ,n,f1))A
(FRN(n gl 12,n,12) 2= FRN(n gl fl ,nf1)) A n gt 2= n gI {1)),
V ox x | $142.(SBV(x,x1,{1,12) = sbv(x,x1,{1)=62);;

1.7 Rules of inference

- AXIOM ANDIRUL:

Vaq pfl pf2. (ANDl{sq,pf | ,pi2) = 3112 (scdr(sq)=(ptl cc pt2) Ascar(sq)=f 1 con f2 A
f1=5car(ptl) Af2=zscar(pf2))),

vsq pf. (ANDE(sq,pf) # 3t1 12 (scdr(sq)=pf A scar(sq)=fl A ({fl c o n f2)=scar(pf))v
(f2con 1 )=scar(pt))));;

AXIOM FALSERUL:
vsq pfi pf2. (FALSEl(sq,pti,pf2) = 31 .((scdrisq)=(pt! cc pt2))A
(scar(sq)=FALSESYM)A(neg(f 1 )=scar(ptl)) a(f 1 =scar(pf2))}),
vsq pf. (FALSEE(sq,pf) = 3f.((scar(pf)=FALSESYM) A f=scar(sq) A scdr(sq)=pf));;

AXIOM IMPLRUL:
Vsq pf 1pt2.(IMPLE(sq,pf1,pf2)= 3f 1{2.((scdr(sq)=(pf 1 cC pi2))A
(scar{pt 1 )=(fl1impl 12)) A (scar(sq)=f2 A (scar(pf2) = f1))),
vsq pf {1, (IMPLID(sq,pt,f 1) = (scdr(sq)=pf A 3{2.{(scar(sq)=(f 1 impl{2))A
(f2=scar(pf)) A In(t1=(n sgl pf))))),
vsq pf. (IMPLI(sq,pf) 2 3f.IMPLID(sq,pt,f 1);;

AX IOMNEGRUL:
vsq pf f. (NOTID(sq,pt,f) = (scdrisq)=pf A scar(sq)zf A (scar(pf)zFALSESYM) A
InAnsgl pf)=f)) ,
vsq pf. (NOTH{(sq,pf) = 3{.NOTID(sq,pt,1),
vsq pf f. (NOTED(sq,pt,t) = (scdr(sq)=pf A (scar{pf) = FALSESYM)A
3n((n sgl pt)=f) A (f=neg(scar(sq))))),
vsq pi. (NOTE(sq,pf) = 3f .NOTED(5q,pf,f)3;

AX IOM ORRUL:
vsq pf. (ORI(sq,pf) = (sedr(sq)=pt A 3f112.({scar(sq)=(fl dis 2)) A
f 1=scar(pf)) v (f2=scar(pf))))),
V s q ptl pf2 pf3 11 2. (ORED(sq,pf1 ,pf2,pf3,f1 f2) = (sedr(sq)=(pt] cc (pf2 cc pf3)) A
(scar{pfl)=(f 1 dis f2) A 3f3.(scar(pf2)=13) A scar(sq)=f3 A
(scar(pf3)=13)) A 3nl .{nl sgt pf2)=f1)A3nl (n] sgt pt3)=f2))),
vsq pfl pf2 pf3. (ORE(sq,pf1,pf2,pf3)=3f112.0RED(sq,pt 1 ,pf2,pf3,f 1 ,12));3

AX IOM EXRUL:

vsq pf x L. EXHsq,pfx,0) =31 1 ((sedr(sq)=pf1) A (scar(sq)=(xexf1)) a
scar(pf)=sbt(x,t,f1))),

Vsq pf 1 pf2 xI x2 1. (EXED(sq,pf 1,pf2,x1,x2,{1)=({sedr(sq)=(pf 1 cC pf2)) A
(scar(pt 1 )=(xlex 1)) A(scar(sq)=scar(pf2))A
In.((nsglpf2)=sbt(xl x2,f 1) A EXAPPL(x2,pf2,{1 ),

vq if £l pf2 xI x2. (EXAPPL(x,pt,f1, (-FR(x,scar{pfD(sq,pf 1,pf2,x1 x2,{1),

) A ~FR(x,f) A Vi1.(DEPEND(pf,{1)

~FROx;t 1 )))s;
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AXIOM GENRUL:

vsq sql x L. (GENE(sq,sq! ,x,{) = (scdrsq)=sql A PROOFTREE(sql) A

3f.(scar(sql)=x gen f A scar(sq) = sbtix,},1)))),
vsq sql x| x2. (GENI(sq,5q 1 x | x2) = (scdr{sq)=sql A PROOFTREE(sq 1) A

I .(scar(sq)=x! gen f Ascar(sql) = sbt{xl x2,f) A APGENI(x2,5q1)))),
VX $q. (APGENI(x,5q) & (V1.(DEPEND(sq,f) > -FR(x,{))} A PROOFTREE(sq)),
Vpf.3x. APGENI(x,pt)ss

1.8 Deduct ion

AXIOM PROOF:
vsq. (PROOFTREE(sq) = (FORM(sq) v
3pf.(ORIsq,pt) v ANDE(sq,pt) v FALSEE(sq,pf) v NOTI(sq,pf) v NOTE(sq,pt) v
IMPLI(sq,pf )) v
3pt x L{GENI(sq,pf,x,t) v GENE(sq,pf,x,t) v EXI{sq,ptx,t)) v
3pt 1 pt2.(ANDI(sq,pf] pt2) v FALSEl(sq,pf 1 pt2) v IMPLE(sq,pf 1 pf2)) v
3pf | pf2 x 1 x2. EXE{sq,pf 1 pf2,x1,x2)v
3pf | pf2 pf2 pf3.0RE(sq,pt1,pt2,p13)));3

AXIOM DEPNDG:
vsq f. (DEPEND(sq,) © SUBSSE(f,sq)) ,
vsq f. (f=sq  DEPEND(sq,f)) 5;

AXIOM DEPEND:
Vpf pf 1t. ((pt1=scdr(pf) > (DEPEND(pt,{) = DEPEND(pt1,1))) =

ORI(pf,pt1) v ANDE(pt,pt1) v FALSEE(pf,pfl) v
gfl.((&OEHD(pf,p(l.f 1) v NOTED(ptpt 1,11} v IMPLIDIRLRE 1D AT, gy y
Ixt (GENHpt,pf 1 ,x,t) vGENE(pf,pf 1 x,t) v EXi{pt,ptl x,t))),
Vpf pfl pf2f, ((((pf 1 cc pt2=sedr(pf)) v (pt2 cc pf 1=scdr(pf))) =
(DEPEND(pf ) = ((DEPEND(pt 1 1) v DEPEND(pt2,1)))) =
(ANDI(pf,pt 1 ,p12) vFALSEI(pf,pf 1 ,pf2) vIMPLE(pt,pfl pf2) v
3x1 x2 f 1 .(EXED(pt,pt1,pi2,x1,x2,f1) AtdE1))),
vpt pfl pf2 pf3 f.  ((({(ptlcc (pf2 c c pf3))=sedr(pt)) v
((pfl ¢ c (pf3 ¢ ¢ pf2))=sedr(pf)) v
{(p12 ¢ ¢ (pflc c pt3N=sedripf)) v
((pt2 cc (pt3 cc ptl))=sedripf)) v
((pf3 cc (pfl cc pt2))=scdr(pf))v
((pt3 cc (pf2 cc pf 1))=sedr(pf))) =
(DEPEND(pf,f) = (DEPEND(pt | ,f) v DEPEND(pf2,f) v
DEPEND(p{3,{)))=
3f | 12.(ORED(pf,pt] ,pt2,pt3,1,12) A 1451 A 1412)) 33

AXIOM NDEPND:
V¥ptl pf2 . ((NOTID(pf1,pf2,1) v NOTED(pt 1 ,pf2,) v MPLIDIRE | 542 13y o

~DEPEND(pf1,4)),

vpfl pt2 pt3 xI x2 t{ EXED(pf | ,pt2,pf3,x1 x2,f) 2-DEPEND(pt 1 ,1)) ,

Vpil pf2 pf3 pfaf1 1 2 . (ORED(pt | ,pt2,pi3,pt4,fl @) BEPEND(pH ,f1) A
~DEPEND(pt1,§2));; _

vi. (BEW({) = 3sq.(PROOFTREE(sq) o = scar{sq) A vf 1.(DEPEND(sq,t 1) =
AXIOM(f 1))))s3

AXIOM THEORY:
vx f. (AXIOM(f) 3=FR(x,1));3
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APPENDIX 2
THE AXIOMS IN THE LOGIC
2.1 Natural numbers
AXIOM NUMB:
Vnl n2 n3. ((INTEGER(nl) a INTEGER(n2) A INTEGER(n3)) 2 (n1=n2 o (n1=n3 > n2=n3))),
vnl n2. ((INTEGER(n1) a INTEGER(n2)) = (n1=n2 o suce(nl )=succ(n2))),
Vnl. (INTEGER(n1 ) 2 84suce(nl),
Vnln2. (INTEGER(n1) a INTEGER(n2))  (succ(nl) = succ(n2) > n 1 =n2)),
Vnl. (INTEGER(nl) @ nl+B=nl),
Vvnl n2. ((INTEGER(n1)AINTEGER(n2)) 2 nl « suce(n2)= succ(nt +n2)),
Vnil. (INTEGER(n1) o n1%8=0),

Vnl n2. ({INTEGER(n1) A INTEGER(n2)) 2 nl %suce(n2)=(n1 *n2)+n});;

AXIOM INDCT: :
(F(0) A Yx.(INTEGER(x) 2 (F(x) @ F(x+1)))) 2 Vx.(INTEGER(x) @ F(x));;

AXIOM DEFM;
vn. (INTEGER(n) 2 (suce(n)=1)=n),
Vnl n2. ((INTEGER(n1) a INTEGER(n2)) 2 succ(nl )=n2enl =(n2=1)),
VYnln2 n3. ((INTEGER(nl) A INTEGER(n2) A INTEGER(n3)) =
(n1<n2 = In3.(n340 A nl +n3=n2))),
vnln2. ((INTEGER(n1) a INTEGER(n2)) ® (n1¢n2 = (n1<n2) v (nl=n2))),
Vnln2. ((INTEGER(n1) A INTEGER(n2)) 2 (n2>nl 2 nl<n2)),
Vnl n2. ((INTEGER(nl ) a INTEGER(n2)) = (n22nl 5 nl$n2)),

2.2 The set of symbols

AXIOM SYM:
Vs. (SYM(a)=a=LPARSYM v a=RPARSYM Vv asORSYM v a=sANDSYM v aaiMPSYM v
a=FALSESYM v a=FORALLSYM v a=EXISTSYM) ;
2.3 Strings
AXIOM STRING:
VS. (STRING(s) @s=¢ar(s) ¢ edr(s)),
Vsl s2. ((STRING(s!) A STRING(s2)) > (s] =LAMBDA > car(sl ¢ s2)=car(s2))),
Vsl s2. ((STRING(s1) A STRING(s2)) = (s1 ALAMBDA o car(sl c s2)scar(sl))),
Vsl s2. ((STRING(s1) A STRING(s2)) o (s! =LAMBDA 2 cdr(sl ¢ §2)=cdr(s2))),
Vsl s2. ((STRING(s1) A STRING(s2)) o (s] JLAMBDA = cdr(sl c s2)sedr(sl))),
VS. ((STRING(s) 2{s c LAMBDA=LAMBDA ¢ s)),
VS. (STRING(s) 2(s c LAMBDA=s)),
Vsl s2 s3. ((STRING(s1) A STRING(s2) A STRING(s3)) = (sl ¢ (82 c 83)=(s] ¢ §2) ¢ 53)),
VS. (STRING(s) > (len(a)=l v a=LAMBDA)),
vs. (STRING(s) =2lan(s)20),
Vsl s2. ((STRING(s1) A STRING(s2)) = len(s] c s2)=len(s] )+len(s2)),

vs. (STRING(s) 2{lenis)=12 ATOM(s)),
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Vs, (STRING(s) = B gl ssLAMBDA),
Vs. (STRING(s) = | gl s=car(s)),
vs n. ((STRING(s) A INTEGER(n)) = ((n>1) 2 ((n gl s)=((n=1) gl cdr(s))))),
AXIOM SUBSTRDEF:
Vnln2 s | s2. ((INTEGER(n1) A INTEGER(n2) A STRING(sl) A STRING(s2))
(SUBSTP(s1 ,52,n1 n2) = (len(s2)=n2-ni1+]1 A (Vn.(n3nl A n¢n2 =
n glst=(n-nl+ 1) gls2))))),
Vnl n2 sl s2. ((NTEGER(n1) A INTEGER{n2) A STRING(sl) A STRING(s2)) >
(SUBSTP(s1,52,n1,n2) = substring(sl,nl ,n2)=s ,
Vsl 02. ((STRING(s1) A STRING(s2)) > (SUBS(s1 ,s2) ®* 3n] n2.SUBSTP(s1,52,n1,n2)))3;
AXIOM DISEQ:
Vel g2. (~{gl=g2) = glpg2) ;;
AXIOM EQS:
Vsi s2. ((STRING(s1) A STRING(s2)) = (Vn.(INTEGER(n) > (n gl s 1 =n gl $2)) # 51 *2))s;
AXIOM COMP:
vt (FORM(f) = (e(f)=(LPARSYM c f) ¢ RPARSYM),
Vil f2. ((FORM(f 1) AFORM(f2))2{f1 dis f2)=(e{f1) c ORSYM) c e(f2}),
vil 12 ((FORM({{1) A FORM(f2)) = (1 impl {2)x(a(f1) c IMPSYM) c o(12)),
v, (FORM(f) 2 neg(f)={f impl FALSESYM)),
Vil f2. ((FORM(f1) A FORM(2)) 2 (f1 con f2)={e{t]) c ANDSYM) ¢ o(f2)),
vx 2. ((INDVAR(x) A FORM(12)) > (x gen 2)=(FORALLSYM c x )} ¢ f2)
vx f2. ((INDVAR(x) A FORM(f2)) @ (x 0 x f2)=(EXISTSYM ¢ x) c f2) 5

2.4 Sequences

AXIOM SEQ:
vsq.
Vsql sq2.

Veql 892,
Vsql sq2.
Vrgl sq2.

voqQ.
vsq.
Vsql 892 eq3.

VS.

vsq.

Vsql sq2.
Vsq.

vsQ.

Vn sq.

AXIOM SUBSEQDEF:

Vnl n2 sql sq2.

(SEQUENCE (sq) = sq=scar(sq) cc scdr{sq)) ,
((SEQUENCE(sq! ) A SEQUENCE(sq2)) ® (sql *SLAMBDA »

scar{sq 1 cc sq2)=scar(sq2))),
((SEQUENCE(sql ) A SEQUENCE(sq2))  (sql #SLAMBDA >

scar(sql cc $q2)=scar(sql))),
((SEQUENCE(sql ) A SEQUENCE(sq2)) » (syl sSLAMBDA o

sedr{sql cc $q2)=scdr(sq2))),
((SEQUENCE(sql) A SEQUENCE(sq2)) ® (sql §SLAMBDA o

sedr(sq 1 cc sq2)=scdr(sq 1) cesq2)),

(SEQUENCE(sq) ® sq cc SLAMBDA=SLAMBDA cc sq),
(SEQUENCE(sq) @ sq cc SLAMBDA=sgq),
((SEQUENCE(sql) A SEQUENCE(sq2) A SEQUENCE(sq3)) o

(sql cc (592 cc sq3)=(sql cc 842) cc £q3))
(STRING(s) > (slen(s)= 1 v s=SLAMBDA)),
(SEQUENCE(sq) > slen(sq)>8),
((SEQUENCE(sql) A SEQUENCE(sq2))  slen(sql c c £q2)=slen(sql )+slen(sq2)) .
(SEQUENCE(sq) 8 sgl sq=SLAMBDA),
(SEQUENCE(sq) = 1 sglsqg=scar(sq)),
((INTEGER(n) A SEQUENCE(sq)) > ((n>1) 2 ((n sgl sq)=((n=1) sgl sedr(sq)))) 33

((INTEGER(n1) A INTEGER(n2) A SEQUENCE(sql) » SEQUENCE(sq2)) =
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(SUBSEP({sql,5q2,n1,n2) = (slen(sq2)=n2-nl « 1 A (Vn.(nnlansn2>
nsglsq2=(n=nl « 1) sgl sql IN),

Vnl n2 sql $q2.((INTEGER(nl)AINTEGER(n2) ASEQUENCE(sql) A SEQUENCE(sq2)) =

Vsql sqg2.

AXIOM EQSQ:

Vsql sq2.

2.5 Formulas

AXIOM FIND:
vsq.

Vn s sq.

AXIOM FINDTOP:
vsq.

Vn ssq.

AXIOM TERM:
vsq.

vt
AXIOM WFF:
vt.

vsq.

vt

(SUBSEP(sql sq2,n1,n2) = subseq(sql ,nl ,n2)=5q2)),
((SEQUENCE(sql ) A SEQUENCE(s592)) » (SUBSSE(sql ,sq2) =
3nl n2.(SUBSEP(sql ,sq2,n1 ,n2))));;

((SEQUENCE(sql) A SEQUENCE(sq2)) = (Vn.(n sgl sqlan sgl sq2) » sql =8q2));;

(FIND(B,LAMBDA ,5q): SEQUENCE(sq)),

(FIND(n,5,5q) = INTEGER(n) A STRING(s) A SEQUENCE(sq) A
Ansls2.(INTEGER(n) A STRING(s1) A STRING(s2) A (B<s A s<slen(sq)) A
(sl ={n sgl 8q)) a (s=(s] c §2)) AFIND(n=1,82,5q)));;

(FINDTOP(0,5LAMBDA,sq)= SEQUENCE(sq)),

(FINDTOP(n,5,5q9) = INTEGER(n) A STRING(s) A SEQUENCE(sq) a
35152.(STRING(s1) ASTRING(s2) A (s] fLAMBDA) A (s=(sl c 82)) A
(s=5car(sq)) A FINDTOP(n-1,52,scar(sq))));;

(TERMSEQ(sq) = SEQUENCE(sq) A ((sten(sq)=] A INDVAR( 1 sgl sq)) v
(ston(sq)> 1 A TERMSEQ(scdr(sq)) a (INDVAR(scar(sq)) v
InsINTEGER(N) A STRING (s) A (s=car(scar(sq)) A OPCONST(s) a n=arity(s) a
FIND(n,cdr(scar{sq)),scdr (sa))I)),

(TERM({1) = STRING(t) A 35q.(TERMSEQ(sq) A tscar(sq)))s;

(ELF(f) = STRING(f) A (f=FALSESYM v PREDPARO(f) v 3n sq.(INTEGER(n) A

SEQUENCE(sq) a PREDPAR(car(f)) a n=arity(car(f)) » TERMSEQ(sq) A
FINDTOP(n,cdr(f),sq)))),

(FRR(5q) = SEQUENCE(sq) A (sqfSLAMBDA) A (ELF(scar(sq)) v
(FRR(scdr(sq)) A 3s1s2.(STRING(s1) A STRING(s2) A
(((scar(sq)=neg(sl) A FIND{1,x1, scdr{sq))) v
(scar(sq)=(sl dis §2) A FIND(2,(s] c s2),5¢dr(sq))) v
(scar{sq)=(s]1 con s2) A FIND(2,(s1 c §2),scdr(sq))) v
(scar(sq)=(sl impl §2) A FIND(2,(s! c 62),5¢dr(sq))) v
{scar(sq)=(s1 gen 52) A INDVAR(s!) A FIND(1,s2,scdr(sq))) v
(scar(sq)=(s1exs2) A INDVAR(sl) A FIND(1,s2,s¢dr(sq))))))),

(FORM(f) & STRING(f) A 3sq.(FRR(sq) A fescar(sq)));;

26 Free andbound variables andthe substitution

AXIOM BOUNDV:

¥x n f.(GEB(x,n,{) = INDVAR(x) A INTEGER(n) A FORM (f) A 3s1s2f1.(STRING(s1)A

FORM(f 1) a STRING(52) alen(si}el<n A n<(len(f)=len(s2)) A
(x=n gl )A((f=(s]1 C ((X genfl) C s2))) v (f=(sl C ((xex f 1) C £3))))));;
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AXIOM FREEV:
Vx n f. (FRN(x,n,t) = INDVAR(X) AINTEGER(n) AFORM (f) ax=(nglf) A
~GEB(x,n,1)),
vx f. (FR(x,f) = 3n.(INTEGER(n) A FRN(x,n,f)));;
AXIOM FIRSTFRDF:
Vx n f. (FIRSTFREE(x,n,f) = FRN(x,n,f) A ¥n1.(INTEGER(nl) A x=nl gl f >
(nl2n v GEB(x,n1,{)))),
Vx n f. (FIRSTFREE(x,n,a) = firstfree(x,f)=n);;

AXIOM KFREEOCCDF:

Vx knt. (KTHFREEOCC(x,k,n,f)=(INDVAR(x) A INTEGER(k) A INTEGER(n) A
FORM(f) A (k=B A n=) v
(n=len(f) A Vn2.((INTEGER(n2) A n2>kthfreeocc(x,k=1,f)) > -FRN(x,n2,{))) v
(FRN(x,n,f) A Vnl .((INTEGER(n1)A(nl<k A n1>8))>

3n2.(INTEGER(n2) A n2<n A KTHFREEOCC(x,n!,n2,))))),

Vx k n f. (KTHFREEOCC(x,k,n,f) £ kthfreeocc(x,k,f)=n),

Vx k n {. (KTHFREEOCC(x,k,n,f) > numbfreeocc(x,n,f)=k),

vx k nf.  (numbfreeocc(x,n,f)=k> (KTHFREEOGCC(x.k,n,f) v

- (n<kihfreaocc(x,k,f) A n>kthfreeocc(x,k=1,f)))ss

AXIOM SUBSTDF:

V x t112.  (SBT(x,t,{ 1 ,12)=((INDVAR(x) A TERM(t) A FORM{f 1) A FORM(f2)) 2
vnl n2.((INTEGER(n1) A INTEGER(n2) A
n2=numbfrecocc(x,nl,f 1 }x(len(t)-1))enl>
((<INDVAR(nlgltl)> n| giflan2 g1 12) A
(INDVAR(nlglt 1) o ((FRN(x,nl,f1)>SUBT(1,2,n2)) A

(-FRN(x,nL,f 1) 2INVART(n1,f 1,n2,f2)))))),

vt {2 n2. (SUBT(1,§2,n2)= (TERM(t) A FORM(f2) A INTEGER(n2) A
Vx2k.((INDVAR(x2) A INTEGER(k) A ((k gl1)=x2))>
FRN(x2,n2=(len{t)=k),{2))),

vnl f 1 n2 {2(INVART(nl,f 1 n2,§2)s(INTEGER(nl) A FORM(f 1) A INTEGER(n2) A
FORM(12) o (GEB (n2 gl12,n2,§2)=GEB(nlgifl,nl f 1)) A
(FRN(n2 glf2,n2,12)=FRN(nl g f1,n1,f1)) A
n 2glf2=nlglfl)),

vx tf1 §2.  ((INDVAR(x) A TERM(t) A FORM(f 1) A FORM(f2))>
(SBT(x,4,1 1,§2)=sbt(xt,f 1)=12)),

v x til. (UNDVAR(x) A TERM(t) A FORMI(f 1)) 2FORM(sbt(x,t,f 1)));5

AXIOM SUBDEF:

Vx| x2 t 1 §2.(5BV(x1,x2,f 1,§2)=((INDVAR(x1) A INDVAR(x2) A FORM(f1) A FORM(f2)) =
Yn.(INTEGER(n) > ((-INDVAR(nglf 1) 2 n gl f 1 =nglf2) a
(INDVAR(n g | 1) 2 ((FRN(x1,n,f1) 2 FRN(x2,n,{2)) A
(~FRN(x 1 ,n,{ 1) 2INVARV(n,{ 1 £2))))),

Vn fl f2. (INVARV({n,f 1,2)= (INTEGER(n) A FORM(f 1) A FORM(f2) A
(GEB(n glf2,n,2)=GEB(nglfl,nfl)) A
FRN(n gl2,n$2)=FRN(n gl f1,n,f1)) A
n glf2=ngl f 1)),

Vxl x2 f 1 f2.((INDVAR(x1) A INDVAR(x2) A FORMIf1) A FORM({2)) >
(SBV(x1,x2,f1,f2)=sbv(x],x2,f 1 )=£2)),

Vxl x2 1. ((INDVAR(x 1) A INDVAR(x2) A FORM(f 1)) @ FORM(sbv(x1,x2,f 1)));;

2.7 Rules of inference
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AXIOM ANDIRUL:
vsq pfl pf2. (ANDI(sq,pf 1,pt2) = (SEQUENCE(sq) A PROOFTREE(pf 1) A PROOFTREE(pf2) A
3f142.(scdr(sq)=(pf 1 cc pt2) A scar(sq)=t 1 con 2 A FORM(f 1) a
FORM(12) A f 1=scar(pf1) a f22scar(pf2)))),
vsq pf. (ANDE(sq,pf) = (SEQUENCE(sq) A PROOFTREE A 3fl.(scdr(sq)=ptA
FORM(f1) a (((scar(sq) con f | )=scar(pf)) v
((f 1 con (scar(sq))=scar(pf)))));;

AXIOM FALSERUL :
vsq pfl pf2. (FALSEl(sq,pf 1 ,pf2)=(SEQUENCE(sq) A PROOFTREE(pf 1) A PROOFTREE(pf2) A
3f1.((sedr(sq)=(pf 1 cc pt2)) A (scar(sq)=FALSESYM) A FORM(f 1) A
(neg(x)=scar(pf1)) A (xI =scar(pf2))))),
vsq pf. (FALSEE(sq,pf) = (SEQUENCE(sq) A PROOFTREE(pf) A (scar(pt)sFALSESYM) A
scdr(sq)=pt));;

AXIOM IMPLRUL :

Vsq pfl pf2. (IMPLE(sq,pf 1 ,pf2)=(SEQUENCE(sq) A PROOFTREE(pf 1) A
PROOFTREE(pf2) a Vf 1.({sedr(sq)=(pf 1 cc pf2))  FORM(f 1) a
(scar(pf1)=(f] impl (scar(sq))) A (scar(pt2)=(1)))),

vsq pf 1. - (IMPLID(sq,pf,f 1) = (SEQUENCE(sq) A PROOFTREE(pf) A scdr(sq)=pt a
FORM(f 1) o 3f2.((scar(sq)=(flimpl x2)) A FORM(f 1) A (f2=scar(pf)) A
3n(INTEGER({n) A fl=(nsglp)))N);;

vsq pf. (IMPLi(sq,pt) = 3f.IMPLID(sq,pf,f }};3

AXIOM NECRUL:

vsq pf f1. (NOTID(sq,pf,f 1) =(scdr(sq)=pf » SEQUENCE(sq) » PROOFTREE(pf) a
FORM(f 1) A 3n.((scar(pf)=FALSESYM) A scar(sq)sneg(f 1) A
INTEGER(n) A ((n sgl pf)=f 1 )},

vsq pf. (NOTI(sq,pf) = 3{.NOTID(sq,pt,!}),

vsq pf fl. (NOTED(sq,pf,f 1) = (scdr{sq)=pf A SEQUENCE(sq) A PROOFTREE A
FORM(f) A 3n.((scar(pf)=FALSESYM) A INTEGER(n) A
((n 58l pf )=neg (scar (sq)M)),

vsq pf. (NOTE(sq,pf) = 3{.NOTED(sq,pf,f));;
AXIOM ORRUL:
vsq pf. (ORI(sq,pf) = (scdr(sq)=pf A SEQUENCE(sq) A PROOFTREE A

Jt142.((scar(sq)= (f 1 dis 12)) A FORM(f1) A FORM(f2) A (f 1 =scar{pf)) v
(f2=scar(pf)))),

Vsq pflpf2 pf3 f 1 §2.(ORED(sq,pf 1 ,pf2,pf3,f 1 ,f2)=(SEQUENCE(sq) A PROOFTREE(pf 1) A
PROOFTREE(pf2) A PROOFTREE(pf3) A FORM(f 1) A FORM(2) A
(sedr(sq)=(pt] cc (pt2 cc pf3)) A
(scar(pf 1)=(f1 dis 12))A(scar(pf2)=scar(sq)) A (scar(pf3)=scar(sq)) A
3nl .{nl sgl pf2)=f 1) A 3nl .(nl sgl pf3)=12))))},

Vsq pf 1 pf2 pf3. (ORE(sq,pf1,pf2,pf3)=3f112.0RED(sq,pf 1 ,p12,pf3,f 1 ,12));3

Y

AXIOM EXRUL :

vsq pf x L. (EXI(=q,pf,x,1) = (SEQUENCE(sq) A PROOFTREE(pf) A INDVAR(x) A TERM(t) A
3f1.((scdr(sq)=pf 1) A (scar(sq)=(xex f 1)) A FORM(f 1) A
scar(pf)=sbi(x,t,f 1)))),

Vsq pf 1 pf2 xi x2f1.(EXED(sq,pf 1 ,p12,x1,x2,f 1) =(SEQUENCE(sq) A PROOFTREE(pf 1) A
INDVAR(x1) A INDVAR(x2) A (sedr{sq)=(pf 1 cc pf2)) A FORM(f 1) A
(scar{ptl)=(xlex f 1)) A (scar(sq)=scar(pt2)) A
In.((nsglpf2)=sbt(x1,x2,f1) A INTEGER(n) A EXAPPL(x2,pf2,f 1))))),

Vsq pf 1 pf2 x| x2(EXE(sq,pf 1,pf2,x1,x2)=EXED(sq,pf 1 x1,x2)),

vx pf f. (EXAPPL(x,pt,1) = (INDVAR(x) A PROOFTREE(pt)  FORM(f) A ~FR(x,scar(pf)) A
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~FR(x,f) AVt 1 (DEPEND(pf,f 1} > ~FR(x,{1))));;

AXIOMGENRUL.:
vsq sql x a. (GENE(sq,5q1 ,x,1) * (SEQUENCE(sq) A INDVAR(x} A TERM(t) A scdr(sq)asql A
_ PROOFTREE({sql) A 31.(FORM(f) A scar{sql )=x gen f a
scar(sg)=sbi(x,t,))}),
vsq sql x| x2. (GENI(sa,sq1,x1,x2) = (SEQUENCE(sq) A INDVAR{x 1) A INDVAR(x2)} A
sedr(sq)=sq 1 APROOFTREE(sq 1) A3f.(FORM(f) A (scar(sq)sx] gen f) A
- scar(sql )=sbt{x1 x2,f) » APGENKx2,541)))),

VX sq. (APGENI(x,5q) = (INDVAR(x) A V{.(DEPEND(sq,{} = ~FR(x,f))) A
PROQFTREE(sq)),
vsg. (PROOFTREE(sq) @ 3x.(INDVAR(x) A APGENI(x,5q))) ;3
L,
2.8 Deduct ion
- AXIOM PROOF:
Vsq. (PROOFTREE(sq) = ((SEQUENCE(sg) A FORM(sq)) v
3pt (PROOFTREE(pt) A (ORI(sq,pf) v ANDE(sq,pf) v FALSEE(sq,pf) v
L — NOTi(sq,p!) v NOTE(sq,pf) v IMPLI(sq,pf))) v
3pf x t.(PROOFTREE(pt) A INDVAR(x) A TERM(t) A
; (GENI(sq,pf,x,1) v GENE(sq,pf,x,t) v EXl(sq,pfx,t))) v
L 3pf 1 pf2.(PROOFTREE(pf 1) A PROOFTREE(pf2) A

(ANDI{sq,ptl,pf2) v FALSEl(sq,pf 1 ,pf2) v IMPLE(sq,pt 1 ,pf2))) v

3pf 1 pf2 x| x2.(PROOFTREE (pt1) A PROOFTREE(pt2) A INDVAR(x1) A
INDVAR(x2) A EXE(sq,pfl,pf2,xl x2)) v

3pf 1 pf2 pt3.(PROOFTREE(pf!) A PROOFTREE(pf2) A PROOFTREE(pf3) A
ORE(sq,pf 1 ,pf2,pf3)))) 35

AXIOM DEPNDG:
Vsq 1. (DEPEND{sq,f) = (SEQUENCE(sq) A FORM(f) A SUBSSE(f,sq)}),
vsq f. ((SEQUENCE(sq) A FORM(f) A sq=f)=> DEPEND(sq,{)) ;;

— r—

AXIOM DEPEND:
~ Vpt pfl t. {((PROOFTREE(pf) A PROOFTREE(pf 1) a(pf 1 =scdr(pt))) =
(DEPEND(pf,{) = DEPEND(pt | ,f))) =

(ORI(pt,pf 1) v ANDE(pt,pf 1) vFALSEE(pt,pf 1) v

IfL(FORM(fL)A(NOTID(pf,pf 1 ,§1)vNOTED(pt,pt1 4 1) v
IMPLID(pt,pf 1 f1)At1A)v

3x t.(INDVAR(x) A TERM(t) A GENI{pf,pf 1 xt) v
GENE(pt,pf1,x,t) v EXNpf,pt 1 X)) 55

AXIOM DEP:
Vpf pfl pf2 f. (((PROOFTREE A PROOFTREE(pf 1) A PROOFTREE(pf2) A
((pf 1 cc pt2=sedripf)) v (pf2 cc pfl =sedr(pf}))) > (DEPEND(pf,f) &
(DEPENO(pf 1 ,f) v DEPEND(pf2,1))))=(ANDI(pf,pf 1 ,pi2) v
FALSEI(pf,pf 1 ,pf2)vIMPLE(pf.pf 1 pf2)v
3x 1x2f 1 .(EXED(pt,pf 1 ,pf2,x1,x2,¢1 )ALAE1)));;
AXIOM DEPND:

Vpf pfl pf2 pf3 f. (((PROOFTREE A PROOFTREE(pf 1) A
PROOFTREE(pf2) A PROOFTREE(pf3) A

({((pf1 cc (pt2 cc pf3))=sedr{pf)) v

({pf} cc (pf3 cc pi2))=scdr(pt)) v
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Vptl pf2 f.
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((pf2 cc (ptl cc pf3))=scdr(pf)) v

((pf2 cc (pf3 cc pfl))=scdr(pf)) v

((pf3 cc (pfl cc pf2))=scdr{pt)) v

((pf3 cc (pf2 cc pf 1))=scdr(pf)))) =

(DEPEND(pf,f) =(DEPEND(pf 1,{)v DEPEND(pf2,f) v DEPEND(pt3,f))))=
3f1 t2.(ORED(pf,ptl ,pf2,pf3,§1,2) A 14f] A 14§2)) |

((NOTID(pf 1,pf2,1) v NOTED(pf 1,pf2,f} v tMPLtD(pf 1,pf2,§)) 2
~DEPEND({pt1 1)),

vpf 1 pf2 pf3 xI x 2 f(EXED(pfl,pf2,pi3,x1,x2,f) 2 ~ DEPEND(pt 1 ,f))
Vptl pf2 pf3 pf4 f1 12.(ORED(pf 1 ,pf2,p3,pf4,f1,f2)> . DEPEND(pf1,f1) A ~DEPEND(pf1,2))s;

AXIOM PROVABLE:
V.

AXIOM THEORY:
vx f.

AXIOM INFVAR:

Vs.3x.Vn.

(BEW(f)= FORM(f) a 35q.(PROOFTREE(sq) A fascar(sq) A
Vf 1.(DEPEND(sq,f1) 2 AXIOM(f 1))));;

(AXIOM(f) == FR(x,{)AFORM(f));;

n gt 5Ax) 33
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- APPENDIX 3

THE PROOF OF “IF f IS A WFF ALSO . x.f IS A WFF”

3.1 FOL commands and printoutin the many sorted logic
- commands

VE WFF1, x gen f;
TAUTEQ (x gen f= x gen ) v (x gen f = x ex#);
UNIFY ==:02828] =

- TAUT ===181, [1=;

proof

i FORM(x gen f)=(ELF(x gen f)v(Ix1f1.({x gen f)=(xl gen f 1 Iv(x gen f)z(xlexfl))v
(3f112.((x gen f)=(f1 dis f2)v((x gen f)=(fl con f2)v(x gen f)=(flimpl12)))v
3fl.(x gen f )=neg(f1))))

2 (xgenf)=(xgen fIvix gen f)=(xext)
3 3x1fl.({x gen f)alxl gen f1)vixgenf)=(xl e x 1))

4 FORM(x gen f)

3.2 FOL commandsinthe earlier axiomatization

DECLARE INDVAR A U;
label hpt 1 ;
ASSUME FORM(f) A INDVAR (xI) 3
labelteol
ASSUME Vi 8.{SEQUENCE(sq)Asqf SLAMBDA 2 (STRING(s)=, (s cc 8q) # SLAMBDA));
! label teo2 ;
ASSUME Vs $q.{STRING(s)ASEQUENCE(sq)s scar(s cc sq)=5);
label teo3 ;
ASSUME Vs §q.(STRING(s)ASEQUENCE(sq)s sedr(s cc sq)s 5q);
. label teod ;
A S S UM E Vsq.(SEQUENCE(sq)AsqfSLAMBDA = find(1 ,scar(sq),5q));
label teo5 ;
"ASSUME Vi x.(FORM(f)AINDVAR(x) 2STRING(x g e n f));
iabel teo06;
ASSUME Vs $q.{STRING(s)ASEQUENCE(sq) 2SEQUENCE(s cc sq));
— label teo7 ;
. ASSUME Vx.(INDVAR(x)> STRING(X));

Ve WFF2 f ;
LABEL assl ;
taut 3sq.(FRR(sq)Af=scar(sq)) | :=;
ASSUME FRR(SQ) A f =SCAR(SQ) ;
. Ve WFF1s Q ;
" Vo te0l15Q xl gen f;

25
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Ve teo2 x| gen f,5Q;

Ve teo3 xl gen f,5Q;

Ve teo4 SQ;

Ve teo5 f ,x1;

Ve teo7 xl;

Ve w1 (x 1 gent) cc SQ;

TAUTEQ =:m2u2u2u2u2u|®][sl+f : s2¢x]] 1:=;
Unify ==:M26828268282 -

Ve teob x| gen f,5Q;

Ve WFF2 xlgent;

tauteq =:#282#][sqe(x1 gen f) cc SQ) 1:=;
unify ==:4292 -

taut FORM(x1genf) 1:=;

Je ass 1,-,5Q;

oi hptl,=;

VI =x1 {3

3.3  Printout of-the proof in the earlier axiomatization

1 FORM(f)AINDVAR(x1) (1) === ASSUME

2 Ysqs.((SEQUENCE(sq)AsqfSLAMBDA)=(STRING(s)>(s cc sq)#SLAMBDA)) (2) --- ASSUME

3Vssq.((STRING(s)ASEQUENCE(sq))“scar(s cc sq)=s) (3) --- ASSUME

4 V8 5q.((STRING(s)ASEQUENCE (sq))=scdr(scc sq)=sq) (4) --- ASSUME

5 Vsq.((SEQUENCE(sq)~~qfSLAMBDA )=find( 1 ,scar(sq),sq)) (5) --- ASSUME

6 Vi x.((FORM(f)AINDVAR(x))>STRING(x gen f)) (6) --- ASSUME

7 V8 5q.((STRING(s)ASEQUENCE(sq))>SEQUENCE(s ¢¢ £q)) (7) --- ASSUME

8 Vx.(INDVAR(x)>STRING(x)) (8) --- ASSUME

9 FORM(f)=(STRING(f)A3sq.(FRR(sq)Af=scar(sq))) --- VE WFF2 ¢

10 3sq.(FRR(sq)Af=scar(sq)) (1 23 4 56 7 8) --- TAUT 1:9

1 1 FRR(SQ)Af=scar(SQ) (1 1) - ASSUME

12 FRR(SQ)=(SEQUENCE(SQ)A(SOF/SLAMBDAA(ELF (scar(SQ))V{FRR(scdr(SQ))A3s 1
s2.(STRING(s 1)A(STRING(s2)A((scar(SQ)=NEG(s 1)Atind(1,s1,s¢dr(SQ)))v((scar(SQ)
=(sl dis s2)Afind(2,51 c x2,5¢dr (SQ)))v((scar(SQ)=(sl c o n s2)Afind(2,s1 ¢ §2,
sedr(SQ)))v((scar(SQ)=(sl impl s2)Afind(2,s1 ¢ §2,5¢dr(SQ)))v((scar(SQ)=(sl gen
s2)A(INDVAR(s 1)afind( 1,52,5¢dr(5Q))))v(scar(SQ)=(s1exs2)A(INDVAR(s1)Afind(1,
$2,5¢dr(SQNMINMMM) - - - VE WFF1 SQ

13 (SEQUENCE(SQ)ASQFSLAMBDA)>(STRING(x1 gen )2((x] gen f) cc SQ)ASLAMBDA) (2)
--- VE 2SQ,xl gen f
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14 (STRING(x! gen f)ASEQUENCE(SQ))=scar((x] gen f) cc SQ)=(x! gen f)
(3) --- VE 3 xI gent,SQ

15 (STRING(x 1 onSEQUENCE(SQ))=sedr({x 1 f) cgenc SQ)=SQ ( 4 ) --- VE 4 x1 gen {,SQ
16 (SEQUENCE(SQ)ASQASLAMBDA)=find(1,scar(5Q},SQ) (5) - VE 5 SQ

17 (FORMI(f)AINDVAR(x1))=string(xl gen 1) (8) --- VE 6 f,xl

18 INDVAR(x1)=>STRING(x 1) (8) --- VE 8 xI

19 FRR((x! gen f) cc SQ)*(SEQUENCE((x1genf) cc SQ)A(((x1gen ) cc U)f
SLAMBDAA({ELF (scar{{x!zenf) cc SQ))v(FRR(scdr((xl gsn f)ecSQ))A
s 152.(STRING(s 1)A{STRING(s2)A((scar{(s! panf) cc SQ)=NEG(s!)A
find(1,s1 ,scdr((xI gen f) cc SQN)v((scar{(xlgen f) cc SQ)=(s] dis s2)A
find(2,s81 c s2,scdr({xlgenf) cc SQ)))v((scar((xl gen f) cc SQ)=(sl con §2)A
finc:2,s1 ¢ s2,scdr((xlgenf) c ¢ SON)IVi(scar{(xl g e n f) c ¢ SQ)=(slimpis2)A
find(2,s1 c s2,sedr((xlgent) cc SQ)))v((scar((xlgenf) c c SQ)=(sl g e n s2)A(INDVAR(s] )a
find(1,s2,s¢dr({xl gen ) c c SQ))))viscar((x]l geni) c ¢ SQ)=(sl ex s2)A(INDVAR(s1)A
find(1,s2,scdr{(xl gen f) cc SQINNMNIMIN) - - - VEWFFI(xl genf) ¢ ¢ SQ

20 STRING(x1)A(STRING(f)A((scar({x] gen f) cc SQ)=NEG(x!)A
find(1,x1,scdr((xlgent) c c SO))Iv((scar({xigoant) cc SQ)=(xl dis f)A
find(2,x1 c f,scdr({xigenf) cc SQ)))v((scar((xl gen f) cc SQ)=(xl con fA
find(2,x1 ¢ f,scdr({x!gen f) cc SQN)Iv((scar({x] gan f) cc SQ)=(xl impl f)A
find(2,x1 ¢ f,scdr{(xlgeni) c c SQNIv((scar((x]l gen ) ecc SQ)=(xl g e n f)A(INDVAR(x1)A
find(1,f,scdr((xl genf) ¢ c 5Q))))viscar((x! gent) c ¢ SQ)=(x1 ex {)A(INDVAR(x1)A
tind(1,f,sedr{(xl gen ) cc SO (123456 7811)--- TAUTEQ:19

21351 s2.(STRING(s 1 VA{STRING(s2)A{(scar({sl gon f) ¢ c SQ)=NEG(s!)A
find(1,s1,s¢cdr{({xl germ ) cc SQMv((scar((xlgenf) cc SQ)=(sl dis s2)A
tind(2,s1 c s2,sedr{(xlgenf) cc SQN)Iv((scar(({xl gen f) cc SQ)=(s! con s2)A
find(2,s1 c s2,scdr((x] gen f) cc SQ))Iv((scar((xl gen 1) cc SQ)=(s]l impl s2)A
find(2,s1 c §2,scdr({xl gen f) cc SQNIv((scar{(xl gen f) cc SQ)=(s] gen s2)A(INDVAR(s1)A
find(1,52,s¢cdr((x! gen f) cc SQIMVviscar((x] gen f) cc SQ)=(sl ex s2)A(INDVAR(s1)A
find(1,s2,sedr{(x1 gen f) cc SQMMMMMMN (1 23 456 7 8 k1) --- UNIFY 20
2 2 (STRING(x 1 g e n f)ASEQUENCE(SQ))>SEQUENCE((x1 g e n f) cc SQ) (7) ===VE 7 x| GEN 1,SQ
2 3 FORM(x1 g e n )=(STRING(x | gen f)A3sq.(FRR(sq)A(x] g e n f)=scar(sq))) --- VE WFF2x1 gen f
24 FRR((x] gen f) cc SQ)A(xlgenf)=scar((xlgenf) ccSQ)(123 456 7811) TAUTEQ 1:23
25 3sa.(FRR(sq)A(x] gen f)=scar(sq)) (123456 781l)--- UNIFY 24
26 FORM(x] gen f) (1 23 456 7 8 11) === TAUT 1:25
27 FORM(x! gen f) 1 234567 8)---3E 10 26 U
2 8 (FORM(f)AINDVAR(x1))>FORM(xl genf) (2 3456 7 8) ---2ll27

29 Vf xI.((FORM(f)AINDVAR(x1))>FORM(x] gen 1)) (23 456 7 8) --- VI 28 xlex] fef

27
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APPENDIX 4

THE PROOF OF THE EQUIVALENCE BETWEEN S$BY AND SBT FOR VARIABLES

4.1 FOL commandsin the many sorted logic

LABEL ARITHI ; ASSUME Vn x.{nk(ien{(x)=1)=8);
LABEL ARITH2; ASSUME Vn. (B+n=n);

LABEL ARITH3; ASSUME Vx. (len(x)~1)=8;
LABEL ARITH4; ASSUME Vn. (n=8)=n;

LABEL STRING1 ; ASSUME Vx. l gl x = x;

Proof of the First Lemma: Vx f n.(SUBT(x,f,n) 2 FRN(x,n,f}))

LABEL HPTLEM; ASSUME SUBT(x,f,n);
Ve SUBSTDF Ix,f,n;

TAUT =:82,=+=;

Ve-x,|;

Ve STRING1 ,x§ substr =in ==

Ve ARITti3 ,X3 substr = in ==}

Ve ARITH4 ,n; substr = in ==3
TAUTEQ FRN(x,n,f),HPTLEM«1:=;

ol HPTLEM,=;

LABEL LEMMA 1 3VI=,x,f,n;

Proof of the Second Lemma: Vnt 1 {2.(INVART(n,f 1 ,n,f2)2INVARV(n,{1,{2))

Ve SUBSTDF2,n,f1,n,12;

Ve SUBDEF 1 ,n,f 1 ,§2;

TAUT ==:#] = ~:8] = s
LABEL LEMMAZ2; Vi =,nf1,{2;

Proof of the Main Theorem: Vxl x2 f 1 f2.(SBT(x1x2,f 1 ,f2)2SBV(x1,x2,f1,{2))

LABEL HPT; ASSUME SBT(xI,x2,{1,{2);
Ve SUBSTDFO,x 1,x2,f1,{2;

TAUT =:#2,HPT,-;

VE=nl,nl;

Ve ARITHI ,numbfreeoce{x!,nl i1 ),x2; substr = in ==3
Ve ARITH2,nl;

Ve SUBDEFO x 1,x2,11,{2;

Ve LEMMA1 x2,{2,nl;

VeLEMMA2,n 1 ,f1,f2;

TAUTEQ ===:#28[nen]],HPT+ | :=s
Vi=,nlen;

TAUTEQ ====- s8] HPTe]:=;

ol HPT,-;

VI-x1px2,f1 12

4.2 Printout of the proof in the many sorted logic
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1V nx(nx(len(x)=1))=0 (1)
2 ¥n.(O+n)=n (2)

3 Vx.(len{x)-1)=0" (3)

4 ¥Yn(n=0)=n ( 4)

5 vx.(l gl x)=x (5)

6 SUBT(x,f,n) (6)

~

SUBT(x,,n)=Vx2 k.((k gl x)=x2>FRN(x2,n-(len(x)-k),{))

Vx2 k.((k gl x)=x22FRN(x2,n-(len(x)-k),)) ( 6 )

©

9 (1 glx)=xoFRN(x,n=(len(x)=1),f) (6)

10 (1 gl x)=x (5)

1 1 x-x:FRN(x,n-(-len(x)-l).f) (5 6)

1 2 (len(x)=~1)=0 (3)

1 3 x=x>FRN(x,n-0,f) (3 5 6)

1 4 (n-0)=n (4)

1 5 x=x>FRN(x,n,f) (3 4 5 6)

1 6 FRN(x,n,f) (3 4 5 6)

1 7 SUBT(x,f,n)=2FRN(x,nf) (3 4 5)

18 Vx f n{SUBT(x,f,n)oFRN(x,n,))} (3 4 5)

19 INVART(n,f 1 ,n,$2)=((GEB(nglf2,n,12)=GEB(nglf 1 ,n,f1))A((FRN(n gi {2,n,{2)=
FRN(nglt1 ,nf 1 DA(ngif2)=(ng 1))

20 INVARV(n,f 1 2)=((GEB(nglf2,n,f2)=GEB(n gI f 1,n,f1))A((FRN(n gl {2,n,§2)s
FRN(n glf 1 ,n,f 1 DA(nglf2)=(nglfl)))

2 1 INVART(n,f1,n,§2)=INVARV(n,{1 ,(2)

22 Vnf1{2.(INVART(n,f 1,n,{2)=INVARV(n,{1,2))

2 35SBT(x],x2,t1,{2) (23)

24 SBT(x1,x2,f1 ,42):¥Ynin2.(n2=((numbfreeocc(x!,nl,f1)%(len(x2)=1))+nl)>

((~INDVAR(nlglt 1 )a(nlglf1)=(n2glf2))A(INDVAR(n1 gl f 1)o((FRN(x1 ,nlf 1)>
SUBT(x2,2,n2))A(-FRN(x1,nl,f 1 }oINVART(n1,{1,n2,{2))))))

29
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25 Vnl n2.(n2=((numbfreeocc(xt,nl,f 1 )k(len(x2)=1))+nl)>((-INDVAR(nl gl f 1 )=
(nlglf1)a(n2gH2NA(NDVAR(nlglt 1 )2((FRN(x] ni ,f 1 )2SUBT(x2,{2,n2))A
(~FRN(x1,nl1,{ 1)oINVART(nl,f1,n2,f2)))))) (23)

26 nl =({numbfreeocc(x 1,nl,{ 1)k(len(x2)=1))sn1)o((~INDVAR(nlgif 1)>(nlglf 1)=
(nl gl f2))A(INDVAR(n1 gi £ 1)2((FRN(x1,n1,f 1)2SUBT(x2,f2,n1 ))A(~FRN(x1 ,nl { 1 )>
INVART(nLf 1,n1,§2))))) (23)

2 7 (numbfreeocc(x!,nl f1)*(len(x2)-1))=0 (1)

28 nl =(0+n1)>((~INDVAR(nl gl f 1)=(nl gl f1)=(nl gI f2))A(INDVAR(nl gl f 1 )>
((FRN(x1,n1,f 1)2SUBT(x2,i2,n1))A(-FRN(x1,n1,{ 1)2INVART(n1,{1,n1,§2))))) (1 23)

2 9(0¢nl)=nl(2)

30 SBV(x!,x2,f1,£2)=Vn.((~INDVAR(ngl f 1)>(ngl f 1)=(ngl £2))AINDVAR(n gl 7 1)
((FRN(x 1 ,n,f1 )2FRN(x2,n,12))A(-FRN(x { n,f 1 )2INVARV(n,f 1 ,§2))))

31 SUBT(x2,f2,n1)oFRN(x2,nl,f2) (3 4 5)
32 INVART(nlf1,nl,§2)=INVARV(nl {1 {2)

33 (~INDVAR(nlgif 1)o(nlglf 1 )=(nl gl {2)A(INDVAR{n] gl f1)>((FRN(x]1 ,nl ,f 1)
FRN(x2,n1,f2))A(-FRN(x1,nl,f1)2INVARV(nl f1,§2)))) (1 2 3 45 23)

34 VYn.((~INDVAR(n gl f1)2(n gl f 1)=(n gl {2))A(INDVAR(n gl f1)=((FRN(x!n,f1)>
FRN(x2,n,12))A(~FRN(x1,n,f 1)2INVARV(n,f 1,f2))))) (1 2 3 4 5 23)

3 58BV(xl,x2,f1,§2) (1 2 3 4 5 23)
36 SBT(x1,x2,t1,12)25B7(x] x2,{1,£2) (1 2 3 4 5)
37 Vxl x2 f112.(SBT(xI,x2,41,2)>5BV(x!,x2,1,f2)) (1 2 3 4 5)

4.3 FOL commands in the earlieraxiomatization

LABEL ARITHI ; ASSUME Vn x.((INTEGER(n) AINDVAR(x))=(n%(len(x)=1)=0));
LABEL ARITH2; ASSUME Vn. (INTEGER(n) 2(B+n=n));

LABEL ARITH3; ASSUME Vx. (INDVAR(x)> ({len(x)=-1)=8));

LABEL ARITH4; ASSUME Vn. (INTEGER(n) 2{n-8)=n);

LABEL STRING1; ASSUME Vx. (INDVAR(x}> 1 gl x=x);

Proof of the First Lemma:
vx n £L((INDVAR(X)A INTEGER(n) A FORM(f) A SUBT(x,f,n)) 2 FRN(x,n,f))

LABEL HPTLEM; ASSUME INDVAR(x)AFORM(f)AINTEGER(n)ASUBT(x,f,n);
LABEL FACT ; ASSUME INTEGER( 1);

Ve SUBSTDF | ,x,f,n;

TAUT =:#28208202 === -

Ve=x,1;

Ve STRING1 ,x; TAUT =:#2,HPTLEM:~;substr = in ===;

Ve ARITH3,xs TAUT -:#2,HPTLEM:-;substr = in ===;

30
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Ve ARITHA,n; TAUT -:42 HPTLEM:~;substr = in ===
TAUTEQ FRN(x,n,f},HPTLEM:=;

ol HPTLEM,=;

LABEL LEMMA 13Vi=x,4n;

Proof of the Second lemma : Vk fl1{2.(INVART{k,{]1 k,12) 2 INVARV (k{1 ,§2))

Ve SUBSTDF2 k{1 k,{2;

Ve SUBDEF 1 ,k,f1,{2;
TAUT ~=:#}a=:8] o=
LABEL LEMMAZ; Vi =k§1,i2;

Proof of the MainT heorem:
Vxl x 2 1112 ((INDVAR(x1) A INDVAR{x2) A FORM(f1) A FORM(f2) A SBT(x},x2,{1,f2))=

SBV(x1,x2,11,12))
LABEL HPT; ASSUME INDVAR(x 1 JAINDVAR(x2)AFORM(f1JAFORM(f2)ASBT (x1 x&f 1,12);

LABEL THTERM; ASSUME Vx2.(INDVAR(x2)2 TERM(x2));

VE THTERM,x2;
LABEL THNFRO; ASSUME Vx| nlf{}INTEGER(numbfraeacc(xl .l ,f 1));

Ve SUBSTDFO,x1 ,x2,f1,{2s
TAUT =~:#282020282 HPT:=;
VE =nl,nl;

LABEL AUX;ASSUMEINTEGER(nl);
VE THNFEOx 1 ,ni,f 1;

Ve ARITHI,numbfreeocc!x 1,n1,f 1 )x2; TAUT =:#2 HPT:=;substr = in - a
Ve ARITH2,n 1 ;TAUT ~:#2,HPT:=;SUBSTR=IN ===;

TAUTEQ =:42,HPT:=;

Ve SUBDEFO x 1,x2,{1,12;
Ve LEMMA | x2,{2,nl;

Ve LEMMAZ," 1 p' 1 1’23

-TAUTEQ ==~=:#2828]842[nenl], HPT 1=

ol AUX,-;

Vi=nls [
TAUTEQ ====== 1 HPT:=;

ol HPT,-;

VI = x1,x2,{1,62;

4.4  Printout o f the pronf in the carlier axiomatization
1V n x((INTEGER(n)AINDVAR(x))>(nk(len(x)=1))=0) (1)
2 Vn(INTEGER(n)>(0s+n)=n) (2)

3 Vx.(INDVAR(x)>(len{x)=1 )}=0) (3)
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4  VYn({INTEGER(n}={n-2j=n} (4)

5 ¥x./INDVAR(x)2(l g1 x)=x) (5)

6 INCYAR(x)A(FORM{IIA(INTEGER(n)ASUBT(x,f,n})) (6 )
7 INTEGER(1) (7)

8 SUBT(x,f,n)=(TERM(x)A(FORM(f)A(INTEGER(n)AVx2 k.{(INDVAR(x2)A(INTEGER(K)A(K g | x)
w2 ))2FBN(x2,n={lonix)=k),1)}))

9 Vx2 k{{INDVAR(x2)A(INTEGER(K)A(K gl x)=x2))>FRN(x2,n=(len(x)=k),f)) ( 6 )
10 (INDVAR()AUNTEGER(] JA( gl x)=x))>FRN(x,n=(len(x)=1),1) ( 6 )

11 INDVAR(X)>(1 gl x)=x (59

12 figlx)=x (5 6 7

13 UNCVAROGAINTEGER(1 )Ax=x)}oF RN(x,n=(len(x)=1),f) (5 6 7)

14 INDVARG)2{en{x)= 1 )=0 (3}

15 (len{xj=1)=0 (3 5 6 7)

16 (INDVAR{)AUNTEGER( 1 )Ax=x))=FRN(x,n=0,{) (3 56 7)

1 7 INTEGER(n}={=0)=n (4)

18 (n~0)=n(3 4 5 6 7)

19 (INDVAR(X)A(INTEGER( 1 )Ax=x))=FRN(x,n,f)} (3 4 5 6 7)

20 FRN(x,nf) (3 4 5 67)

21 (INDVAR(x)A(FORM(f)A(INTEGER(n)ASUBT(x,f,n))))>FRN(x,nf) (3 4 5 7)
22 Vx f n.((INDVAR{x}A(FORM({)A(INTEGER(n)ASUBT (x,f,n))))oFRN(x,n)} 3 4 57 )

23 INVART(k,f 1,k,§2)=(INTEGER(K)A(FORM(f 1 )A(INTEGER(K)A(FORM(f2)A((GEB (k gl {2,k,{2)=
GEB(kglf 1 k¢ 1 DAFRN(KgIF2,k,f2)-FRN(kglt 1 k{1 DAtk gl 12)=(k gi £ 1)))))))

24 INVARV(k,f 1,{2)=(INTEGER(K)A(FORM(f)A(FORM(f2)A{(GEB(k gl 2,k,f2)=GEB(k gl f 1 ,k,f1))a
((FRN(k gl f2,k,f2)=FRN(kglt 1 k{1 DAk gl f2)=(k g f 1))))))

25 INVART(K,f 1,k12):INVARV(K,f1,f2)
26 Vki1f2.(NVART(Kf 1 ,k{2):INVARV (k{1 {2))
27 INDVAR(x1)A(INDVAR(x2)A(FORM(f1)A(FORM(f2)ASBT (x1,x2,f 1 42)))) (27)

2 8 ¥x2.(INDVAR(x2)>TERM(x2)) (2 8)

32
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2 9 INDVAR(x2)>TERM(x2) (28)

30 Vx 1 nl f L.INTEGER(numbfreeoce(x |,nl,{1))(30)

31 SBT(x1,x2,{1,§2)z((INDVAR(x | JA(TERM(x2)A(FORM(f 1 JAFORM(f2))))>¥n1n2.((INTEGER(n] )a
(INTEGER(n2)An2=({numbfreeoce(x1,nl,f 1 )x(len(x2)=1))+n1)))2{(~INDYAR(ni gl f 1 )

(n 1glf 1)2{n2gH{2NA(INDVAR(nlglf [ )2((FRN(x I ,nl,f 1)2SUBT(x2,{2,n2))A
(~FRN(x 1,n1,f1)oINVART(n1,t1,n2,£2))))))

32 Vnl n2.({INTEGER(n1)A(NTEGER(n2)An2={(numbfreeocc(x!,nl,f 1 }%{len(x2)~1))+nl)))>
((-INDVAR(nlgl f 1 )a(nlglfl)=(n2glt2))A(INDVAR(nlgl f 1)2((FRN(x1,nl,f 1 )>
SUBT(x2,{2,n2))A(-FRN(x1,n1,{1)2INVART(n1,{ 1,n2,{2)))))) (27 28 30)

33 (INTEGER(n) JA(INTEGER(n1)Anl=({numbfreeccc(xl,nl,f1)*(len(x2)-1))+n1)))=(
(~INDVAR(nl gl f 1)2(nl gl f 1)=(nlglf2))A(INDVAR(nl gl f 1 )2{((FRN(x1,nl,f1)>
SUBT(x2,f2,n1))A(-FRN(x1,n1,f1)2INVART(nl,f 1,n1,£2)))))} (27 28 30)

3 4 INTEGER(nl) (34)

35 INTEGER({numbfreeocc(x1,nl,t1)) (30)

36 (INTEGER(numbfreeocc(x1,nl,f 1))AINDVAR(x2))>(numbfreeocc(x1,nl,f 1)*{len(x2)-1))=0 (1)

_ 37 (numbfreeocc(x1 ,nlf1)x{len{x2)=1))=0(1 27 28 30 34)

3 8 (INTEGER(n1)A(INTEGER(n1)An12(0+n1)))>((-INDVAR(nl g1 {1)2(nl g1 t1)x(nl gl £2))A
(INDVAR(nl gl f 1 )2((FRN(x1,nl fl }2SUBT(x2,f2,n1 )A(-FRN(x1,nl,{1)>
INVART(n1,f 1 ,n1,§2))))) 0 27 28 30 34)

3 9 INTEGER(n1)>(0+nl)=nl (2)

40 (0snl)=nl (1 2 27 28 30 34)

41 (INTEGER(n1)A(INTEGER(n1)Anl =nl ))>({(-INDVAR(n1 gl f1)2(nl gI #1)=(n] gl £2))A
(INDVAR(n1 glf 1)2((FRN(xI,nl,f1)2SUBT(x2,2,nI DA(-FRN(x1,nl f1)>
INVART(nl f 1,n1,§2))))) (1 2 27 28 30 34) '

42 (-INDVAR(nl gl f1)=(nl gl f1)=(n] gi 12))A(INDVAR(n] gl t1)2((FRN(x1,nl,{1)>
SUBT(x2,12,n1))A(-FRN(x1,n1 f1)2INVART(nl,f 1,n1,f2)))) (12 27 28 30 34)

43 SBV(x1,x2,11,§2)z((INDVAR(x)A(INDVAR(x2)A(FORM(f 1 )AFORM(£2))))=Vn.(INTEGER(n)>(
(~INDVAR(n gl f 1)a(n gl f 1)=(nglf2))A(INDVAR(n gl fl )2((FRN(x],n,¢1)>
FRN(x2,n,f2)A(~FRN(x 1,n,f 1 }2INVARV(n,f 1 ,£2)))))))

4 4 (INDVAR(x2)A(FORM(f2)A(INTEGER(n1 JASUBT(x2,f2,n1))))2FRN(x2,n1 ,§2) (3 4 5 7)

45 INVART(nl,f1,n],§2)=INVARV(n],f1,§2)

4 6 (~INDVAR(nl gl f 1 )2(nl gl {1)=(n] g £2)A(INDVAR(n1 gI 1 )>((FRN(x1,n1,1)>
FRN(x2,n1,12))A(-FRN(x1,n1,11)2INVARV(nl {1,2)))) (1 23 4 57 27 28 30 34)

47 INTEGER(n!1)=((~INDVAR(nlg! f 1 )2(nl gl f 1)=(nl gl f2))A(INDVAR(n1 gl f1)>
(FRN(x1,n1,{1)2FR N(x2,n1 12))A(-FRN(x1,nl,f1)2INVARV(n] #1,§2))))) (1 23 45




Checking metamathematical proofs 34

7 27 28 30)

48 Vnl (INTEGER(n1)=>((~INDVAR(nlgl f 1)2(nl gl f 1 )=(nl gl 2))A(INDVAR(nl gl f 1 )>
((FRN(x1,n1,f1)oFRN(x2,nl,12))A(-FRN(x1,nl,{1)2INVARV(n1 {1,62)))))) (1 2 3 4
5 7 27 28 30)

49 SBV(x1,x2,f 1 ,12)(1 2 3 4 5 7 27 28 30 34)

50 (INDVAR(x1)A(INDVAR(x2)A(FORM(f1)A(FORM{f2)ASBT(x1,x2,{1,{2)))))=SBV(x1,x2,f1,{2)
(1 23 457 28 30 34)

51 Vxl x2 f 1 f2.((INDVAR(x1)A(INDVAR(x2)A(FORM(f1 )A(FORM(f2)ASBT(x1,x2,f 1 ,f2)))))>
SBV(x1,x2,f1,2))(1 2 3 4 5 7 28 30)
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APPENDIX 5

THE PROOF THAT UNIVERSAL QUANTIFIER CAN BE INTERCHANGED

51 FOL commands for the main lemma in the many sorted logic

LABEL THI ; ASSUME VxI x2 f 112.(58T(x1,x2,f1,{2)> SBV(x1,x2,{1,{2));
Ve THI , x,x,f | ,sbt(x,x,f1);

VE SUBSTDF3 x,x, f 1,sbt{x,x,f1)s

Ve SUBDEFO x, x,f 1,sbt(x,x,fl);

tauteq =:%2,1:=3

Ve =,n;

VE FREEVO, x, n, f 1;

VE FREEVO, x, n, sbt{x,x,f1);

VE SUBDEF I n, fl,sbt(x,x,{1);

tauteq (n gl f 1)=(n gl sbt(x,x,f1)),11,17,18;
Vi =,n; -

VEEQSf 1 ,sbt(x,x,f1);

tauteq sbt{x,x,f 1)=f1,==,=3

Vi=x,f 143

5.2 Printout of the proof inthemany sorted logic
1 Vxl x2 1 $2.(SBT(x1,x2,{1,§2)2SBV(x1,x2,1,§2))(1)

2 SBT(xx,f1,sbt0x,x,f1 }3=5BV(x,x,f 1,sbt(x,x,f1)) (1)

3 SBT(x,x,f 1,8bt{x,x,f1))=sbt{x,x,f1)=sbt(x,x,{1)

IS

SBV(x,x,f1,5bt{x,x,f 1))=Yn.((<INDVAR(n gl f 1)>(ngl f1)=(n gl sbt{x,x,f1))A
(INDVAR(nglf 1 )2((FRN(x,n,f1)2FRN(x,n,sbt(x,x,f 1 )))A(~FRN(x,n,f 1 }2INVARV (n,
f1,sbt(x,x,{1))))))

5 Vn.((-INDVAR(n gl f 1)a(n gl f1)=(n gl sbt(x,x,f1)))A(INDVAR(n gl f1)>((FRN(x,
n,f 1 )9FRN(x,n,sbt(x,x,f 1)))A(-FRN(x,n,f 1)2INVARV(n,f1,sbt(x,x,f1)))))) (1)

6 (~INDVAR(nglf1)o(nglf 1 )=(nglsbtlx,x,f 1 )))AUINDVAR(n gl {1)2((FRN(x,n,{1)>
FRN(x,n,8bt(x,x,f 1 1))AFRN(x,n,f1)2INVARV(n,f1,sbt(xx,110))) (1)

7 FRN(x,n,f1)=(x=(n gl f 1)A~GEB(x,n,f1}) VEFREEVOx,n,f1

8 FRN(x,n,sbt(x,x,f 1))=(x=(nglsbl(x,x,{1A-GEB(x,n,sbt(x,x,{1)))

9 INVARV(n,f 1 ,sbt(x,x,f1))=((GEB(nglsbt(x,x,11),n,sbt{x,x,f1))=GEB(ngif 1 ,n,f1))A
(FRN(n glsbtx,x,f 1),n,sbt(x,x,f1))zFRN(ngi {1 ,n,f 1 ))A(n g sbi(x,x,f 1))s
(ngltl)))

10 (n gl f1)=(n gl sbt(x,x,f1)) (1)
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11 Vn(nglif1)=(n gl sbt{xxf1) (1)
12 VYn.(nglf1)=(nglsbt(x,x,f 1))sf1zsbt(x,x,f 1)
13 sbt(x,x,f1)= {1 (1)

14 Vx f.sbt(x,x,f)=f (1)

5.3 FOL commands for the theoremin the many sorted loéic

LABEL FIRSTLEMMA;
ASSUME Vx f.sbt(x,x,f) =f;

LABEL THEONI 3
ASSUME Vf sq.scar(f cc sq) = f3
LABEL THEON2;
ASSUME Vf sq.sedr(f cc sq)» sq;

Proof of the Lemma: BEW(x gen ) > BEW(f)

LABEL HPT;
ASSUME BEW(x gen f) ;

LABEL THTAUT;
Ve FIRSTLEMMA x, f;

Ve PROVABLE x gen f 3
TAUT =-:#2 - HPT;
LABEL HPAUX;

Je - ,5q ;

Ye GENRULO f cc sq ,5@XX;

LABEL THNI;

Ve THEONI  {, sq;

Ve THEON2 f, s q ;

TAUTEQ — ===:#2820281[fl1¢ (] [:=;
UNIFY — ====i#20282 , =;
TAUTEQ =====:#] , Li=g

Ve PROOF f cc §q;

LABEL GENE 1;

vi GENI(f cc sq,89,x,x) , ==, EXI{f cc 8q,8q,x,x)
UNIFY ==:8282828] =

LABEL PROOFTR;

TAUT ===:#1,]:=;

A@ HPAUX :#242;
Ve - ,fl;
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Ve DEPENDO f cc sq,sq,f 1;
UNIFY ~:4282428222 GENE];

TAUTEQ DEPEND(f cc sq,f 1) AXIOM (f 1) ,12=;.
Vi = flefl;

TAUTEQ THN1:#2 e THN1:#1 THN];

Ai PROOFTR, -, - ;

LABEL USEFUL;

Ve PROVABLE f;

UNIFY =:#2 ==

TAUT ==:#1,] :=;

LABEL Cl THI;

of HPT,=;

Proof of the Lemma: BEW(f) > BEW(x gen f)

LABEL HPT!;
ASSUME BEW(f):

TAUT USEFUL:#2, -HPT 1 USEFUL;
Je ~ 5q;

A@ =282

Ve -, fl;

Ye GENRUL2 x,sq;

Ve THEORY x,fl;

TAUTEQ ==:#2% 18 ][{=f1] HPT[:~;
Vi - Jlet];

TAUT ====:2] HPT|:=;

Ve GENRULI((xgenf) cc sq) , sq XX ;
LABEL THNZ;

Ve THEONI! x genf  sq ;

Ve THEON2 x gen f, sq

TAUTEQ  ---:#282u281[f1 «{) , THTAUTHPTI :~;
UNIFY — ==e=:#28202 , =
TAUTEQ =====:# 1 , THTAUT,HPT | :-;

Ve PROOF (x gen f) cc sq ;

LABEL GENI;

vi -- , GENE((x gen f) cc 8q,59,x,x) , EXI{{x g en 1) ¢cc 5q,5q,x,x) ;
UNIFY ==:#4282628] - .

LABEL PROOFTR 1;
TAUT ==-:#1, HPT 1 :=, THTAUT;

Ve DEPENDO {xgenf) cc sq, sq,{ | ;
31 GEN1 ,x~t OCC 3 6 9,x+x1 OCC 2 4 6;

TAUTEQ DEPEND((x gen f) cc sq,f 1) @ AXIOM (f 1) ,THTAUT,HPT!:=;
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Vi = flefl;

TAUTEQ THN2:42 = THN2:81 THN2;
Ai PROOFTRL - -

Ve PROVABLE x gen f;
UNIFY =:#42 ==:

TAUT ==:¢ 1 ,THTAUT,HPT ;=3
LABEL C2THI;

Sl HPT I ,=3

z| CITHL ,C2THI;

LABEL THI!;

VI =x,f;

VeTHI xIx2 gen f;

V e THIx2,f;

Ve THI x1,i;

Ve THI x2xl gen f;

TAUT ====:% 1 D=8 1, THl:~;
vi=x1,x2,f;

5.4 Printout of the proof of the theorem in the marry sorted logic

1 Vx f.sbtlxx,f)=f (1)

2 Vfsqscar(f cc sq)ef (2)

3 v isqsedr(f c c £q)=sq (3)

4 BEW(xgenf) (4)

5 sbt(x,x,f)=ft (1)

6 BEW(x gen f)=3sq.(PROOFTREE(sq)A((x gen f)=scar(sq)AVf 1 .(DEF:‘END(sq,H):AXIOM(f o)
7 3sq.(PROOFTREE(sq)A((x gen f)=scar(sq)aV{ 1 .(DEPEND(sq,f 1)2AXIOM(f 1)))) (4)

8 PROOFTREE(sq)a((x gen f)escar(sq)aVf1.(DEPEND(sq,f 1 JSAXIOM(f 1)) (8)

9 GENE(f cc 5q,50,%,x)~(scdr(f cc 5q)2sqA(PROOFTREE(sq)A3f 1 .(scar(sq)s(x gen f 1)A

scar(f cc sq)=sbt(x,x,f 1))))
10 scar(f cc sq)=f (2) |
11sedr(f cc sq)xsq (3)
12 scar(sq)=(x gen DAscar(t cc sq)=sbt(x,x,f) (1 2 3 4 8)
13 3f 1 .(scar(sq)=(x gen f 1 JAscar(f cc sq)=sbt(x,x,f 1)) (1 2 3 4 8)
14 GENE(f cc sa,sq,x,x) (1 2 3 4 8)

15 PROOFTREE(f cc $q)={FORM(f cc sa)v{3pf.(ORIf cc sq,pf)V(ANDE(f cc sq,pf)v
(FALSEE(f cc sq,pf)VINOTI(f cc sq,pf)VINOTE(f cc sq,pfIVIMPLIf cc sq,pf)))v
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(3pf x tAGENI{f cc sq,pf,x,)VIGENE(f cc sq,pf,x HIVEXI(f cc sq,pf,x,t)))v
(3pf | pf2.(ANDI{f cc sq,pt!,pt2)V(FALSEI(f cc sq,pfl,pf2)VIMPLE(f cc sq,pf | ,pf2)))v
3pt1  pf2 x LEXE( cc sq,pf 1,pf2,x,t)v3pf 1 pf2 pi3.ORE(f cc sq,pf 1,pf2,p3))))))
16 GENI(f cc sq,5q,%,x)V(GENE(f cc sq,sq,x,XIVEX!(f cc sg,5q,x,x}) (1 23 4 8)
17 3pf x LAGENI(f cc sq,pf,x,DV(GENE(f cc sq,pf,x,OVEXI(f cc sq,ptx,t))) (1 2 3 4 8)
18 PROOFTREE(f cc sq) (123 4 8)
19 Vi1 .(DEPEND(sq,1)2AXIOM(1)) (8)
20 DEPEND(sq,f 1 )2AXIOM{f1) (8)
21 PROOFTREE(f cc sq)=(PROOFTREE(sq)>({sq=scdr(f cc sq)>(DEPEND(f cc sq,f1)x
DEPEND(sq,f 1 )))=(ORI({ cc sq,5q)v(ANDE(f cc 59,5q)V(FALSEE(f cc sq,sq)v
(3. ((NOTID(f cc £q,59,)V(NOTED(! cc 59,59, )VIMPLID(f cc 5q,5q,1)))Afdf 1 v
3x LAGENIf cc sq,5q,x,)V(GENE(f cc sq,sq,x,)VEXHT cc sq,56,%,1)))))))))
22 IxL(GENI(f cc 89,59, )VIGENE({ cc sq,59,,)VEXI{f cc sqsqx 1)) (1 2 3 4 8)
23 DEPEND(fccsq,f 1 )SAXIOM(f1) (1 2 3 4 8)
24 Vi1 .(DEPEND(fcc sq,f 1)2AXIOM(f1)) (1 23 4 8)

25 f=scar({f cc sq) (2)

26 PROOFTREE(f cc sq)Alf=scar(f cc sq)AVS 1 .(DEPEND(f cc sq,f 1 )2AXIOM(f 1)) (1 2 3 4 8)

27 BEW(f)=35q.(PROOFTREE(sq)A(f=scar(sq)AVt1.(DEPEND(sq,f1)2AXIOM(f 1))))
28 3sq.(PROOFTREE(sq)A(f=scar(sq)aVi 1 .(DEPEND(sq,f 1 )2AXIOM(f 1)) (1 2 3 4)
29 BEW(f) (1 2 3 4)

3 0 BEW(x gen 1)2BEW(f) (12 3)

3 1 BEW(f) (31)

32 3sq.(PROOFTREE(sq)A(f=scar(sq)aVil.(DEPEND(sq,t1)2AXIOM( 1 )))) (31)
33 PROOFTREE(sq)A(f=scar(sq)A¥f 1 (DEPEND(sqf 1 )2AXIOM(f 1)) (33)

34 Vi1.(DEPEND(sq,f1)>AXIOM(f 1)) (33)

35 DEPEND(sq,f 1 )2AXIOM(f 1) (33)

3 6 APGENI(x,sq)=(V1.(DEPEND(sq,{)>~FR(x,{))APROOF TREE (sq))

37 AXIOM(f 1)2-FR(x,f1)

38 DEPEND(sq,f 1)2-FR(x,f 1) (3 1 33)
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39 Vi1.(DEPEND(sq,f1)o-FR(x,f1)) (3133)
4 0 APGENK(x,5q) (31 33)

41 GENI((x gent) c c sq,5q,%,x)3(scdr((x gen ) c c sq)2sqA(PROOFTREE(sq)A
3f1.(scar((x gen f) cc sq)=(xgent 1 )A(scar(sq)=sbt(x,x,f 1)AAPGENI(x,5q)))))

42scar{(x genf) ccsq)(xgen f)(2)

4 3 sedr({x gen f) cc sq)=sq (3)

4 4 sear((x gen 1) cc sq)=(x gen f)A(scar(sq)=sbt(x,x,{)AAPGENI(x,sq)) (1 2 3 31 33)

45 3f).(scar({x gen f) cc sq)=(x gen f 1 )A(scar(sq)=sbi(x,x,f 1 )JAAPGENI(x,sq))) (1 2 3 31 33)

46 GENI((x gen f) cc 5q,89,%,X) (1 2 3 31 33)

47 PROOFTREE((x gen f) cc sq)=(FORM({x gen f) cc sq)v(3pf.(ORI((x gen f) cc sq,pfIV
(ANDE((x gen f) cc sq,pf)V(FALSEE((x gen f) cc sq,pf)V(NOTI((x gen f) cc sq,pf)v
(NOTE((x gen f)-cc sq,pt)VIMPLI{(x gen ) cc sq,pf))Iv(3pt x| L(GENI((x gen f)
cc sq,pt,x1,V(GENE((x gen ) cc sq,pfx1,OVEXI((x gen 1) cc sq,pfx1,t)))v
(3pf I pt2.(ANDI((x gent) cc’ sq,pf!,pf2)V(FALSEI((x gen f) cc sq,pf 1 ,pf2)v
IMPLE((x gen ) cc sq,pf 1 ,pf2)))Vv(3ptl pi2 x| LEXE((x gen f) cc sq,pf 1 ,pf2,x1 t)v
3ptl pf2 pf3.ORE((x gen f) cc sq,pt1,pf2,pf3NN))

48 GEMNI((x gen ) cc s4,5q,X,X)V(GENE((x gen ) cc 59,5q,%,X)VEXI((x gen f) cc sq,
sqx,x)) (1 2 3 31 33)

49 3pf x| LAGENI((x genf) cc sq,pfx! HV(GENE((x gen ) cc sq,ptxl t)v
EXH({x gen f) cc sq,pf 1,t))) (1 2 3 31 33)

50 PROOFTREE((x gen ) cc sq) (1 2 3 31 33)
51 PROOFTREE({x gen f) cc sq)=(PROOFTREE(sq)=((sq=scdr{(x gen ) cc sq)=>(DEPEND(
(x gen 1) cc sq,f 1 )>DEPEND(sq,f 1)))=(ORI((x gon ) cc 5q,5q)V(ANDE((x gen f)
cc §q,5q)V(FALSEE({x genf)} cc 5q,5q)Vv(3f.((NOTID((x gen f) cc sq,59,f)v
(NOTED((x genf) c ¢ 59,59, )VIMPLID((x gen ) c c sq,sq,)))Afff]l)v
3x1 L(GENI((x gen f) cc sq,sq,xl,i)V(GENE((x gen f) cc sq,sq,xl,t«)vEXI(
(xgenf) ¢ ¢ sq,5q,x 1,1

52 3x1 L.(GENI({x gen f) cc 5q,59,x1 t)V{GENE((x gen f) cc sq,sq,xi t)v
EXi((x gen 1) cc sq,8qx1,1))) (1 23 31 33)

53 DEPEND((x gen 1) co sa,f 1 )SAXIOM(f1) (I 2 3 31 33)
54 vi 1 .(DEPEND((x gen 1) cc sq,f 1 JoAXIOM(f 1)) (1 2 3 31 33)
55(x gen f)=scar({x gen ) cc sq) (2)

56 PROOFTREE((x gen 1) cc sq)Al{xgent)=scar((x gen f) cc sq)A
Vi1 (DEPEND({x gen f) cc sq,f1)2AXIOM({1))) (1 2 3 31 33)

57 BEW(x gen 1)23sq.(PROOFTREE(sq)A((x gen f)=scar(sq)AV1.(DEPEND(sq,f 1 }SAXIOMI(f 1 ))))
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58 3sq.(PROOFTREE(sq)A((x )mscar(sq)AVS 1 .(DEPEND(sq,f1)2AXIOM(f1)))) (1 2 3 31)
59 BEW(x genf) (1 2 3 31)

60 BEW(f)>BEW(x gen f) (1 2 3)

61 BEW(x{JsBEW() (1 2 3)

62 Vx f.(BEW(x gen 1)=BEW(f)) (1 2 3)

63 BEW(x! gen (x2 gen 1))=BEW(x2 gen ) (1 2 3)

64 BEW(x2 HsBEW(f) (1 2 3 )

65 BEW(x! f)=BEW() ( 1 2 3)

66 BEW{(x2 gen (x| gen {))=BEW(xl gen f) (1 2 3)

6 7 BEW(x] gen (x2 gen f))2BEW(x2 gen (x| gen ) (12 3)

68 Vx1x2f (BEW(xl gen (x2 gen f))>BEW(x2 gen (x| gen (1 2 3)

5.5 FOL commands for the main lemma in the earlier axiomatization

LABEL HPT; ASSUMEINDVAR(x) A FORM(f!) ;

LABEL THI; ASSUME Vx| x2 f [12.((INDVAR(x!) AINDVAR(x2) AFORM(f 1) A FORM({2) a
SBT(x1,x2,{1,§2))2SBV(x1,x2,f 1,{2));

LABEL TH2 ; ASSUME Yx.(INDVAR(x)> TERM(x));

LABEL TH3 ; ASSUME vx.(FORM(x)> STRING(x));

Ve THIL x,x,f 1 ,sbt(x,x,f1);

Ye TH2, x;

Ve TH3, fl;

Ve TH3, sbt{x,x,f 1);

VE SUBSTDF3 x,x, f I,sbt(x,x,f 1);

VE SUBSTDF4 x,x, f 1;

Ve SUBDEFO x, x,f 1 ,sbt(x,x,f 1);

tauteq -:#42#2,1:=;

Ve -,n;

VE FREEVO, x, n, f 1;

VE FREEVO, x, n, sbt(x,x,f1);

VE SUBDEFI n,f1,sbt{x,x,fl);

tauteq INTEGER(n) 2({nglfl)=(n gl sbi(x,x,f1)))1:=;

Vi =,ns

VE EQS, f 1,sbt(x,x,f1);

taut =:#2#2,1:=3

i, 13

VI =x,flefs
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5.6 Printout of the proof of the mainlemma in the second axiomatization

1 INDVAR(X)AFORM(f1) (1) ASSUME

2 Vx| x2 fi 12.((INDVAR(x1)A(INDVAR(xZ)A(FORM(H)A(FORM(fZ)ASBT(xl,xZ,H,f2))))):
SBV(x1,x2,f 1 ,12)) (2) ASSUME

3 Vx.(INDVAR(x)>TERM(x)) (3) ASSUME
4 ¥x.(FORM(x)>STRING(x)) (4) ASSUME

5 (INDVAR(x)A(INDVAR(x)A(FORM{f1)A(FORM(sbt(x,x,f 1))ASBT (x,x,f1,sbt(x,x,{1)))))}=>
SBV(x,x,f 1 ,sbt(x,x,f 1)) @2 VE2x , x , fl, sbt(x,x,f1)

6 INDVAR(x)>TERM(x) (3) VE 3 x
7 FORM(f 1 )=>STRING(f 1) (4) VE 4 f 1
8 FORM(sbt(x,x,f 1 ))=STRING(sbt(x,x,f 1)) (4) VE 4 sbt{x,x,f 1)

9 (INDVAR(x)A(TERM(x)A(FORM(f1 )AFORM(sbt(x,x,f { 1))))=2(SBT(x,x,f 1 ,sbt(x,x,f1))=
sbt(x,x,t1)=sbt (x,x,f 1)) VE SUBSTDF3 x , x , f 1 , sbt{xx,f 1)

10 (INDVAR(x)A(TERM(x)AFORM({1)))=>FORM(sbt(x,x,f 1)) VE SUBSTDF4 x , x , fl

11 SBV(x,x,f1,5bt{x,x,f1)):((INDVAR(x)A(INDVAR(x)A(FORM(f 1 JAFORM(sbt(x,x,{ 1)))))>
Vn.(INTEGER(n)>((~INDVAR(ngl f1)a(nglf 1 )=(nglsbt{x,x,f 1 )))A(INDVAR(nglt 1)
S((FRN(x,n,f1)oFRN(x,n,sbt{x,x,f1)))A(-FRN(x,n,fI}2INVARV(n,f 1 ,sbt(x,x,f 1))))))

)) VE SUBOEFO x , x , f 1 ,sbt(xx,f 1)

12 VYn.{INTEGER(n)>((~INDVAR(nglf 1 )2(nglf 1 )=(n g sb{x,x,f 1 )))A(INDVAR(nglf 1)
S((FRN(x,n,f 1 )oFRN(x,n,sbt{x x,f1))A(-FRN(x,n,f1)>
INVARV(n,f1,sbt(x,x,f 1IN (1 234)1 :11

13 INTEGER(n)=((~INDVAR(ngli1)=2(nglf1 )=(nglsbt(x,x,f 1 ))A(INDVAR(ngl1)>
((FRN(x,n,f 1 )2FRN(x,n,sbt(x,x,f 1 )))A(-FRN(x,n,f1)2INVARV(n,f 1 ,sbt(x,x,f 1))))))
(1234) VE12n

14 FRN(x,n,f 1 )=(x=(nglf 1 JA-GEB{(x,n,f 1)) VEFREEVO x ,n,f 1

15FRN(x,n,sbt(x,x,f 1 ))=(x=(nglsbt(x,x,f 1 ))A-GEB(x,n,sbt(x,x,f1)))  VEFREEVO x , n, sbt(x,x,f1)

16 INVARY(n,f 1 ,sbtlx,x,f 1))=(INTEGER(n)A(FORM(f 1 )A(FORM(sbt(x,x,f 1 ))A({(GEB(n g!
sbt(x,x,f 1),n,sbt(x,x,f1))=GEB(
nglf1,mf1NA(FRN(nglsbt(x,x,fl),nsbt(x,x,f1))=FRN(nglf1,nf1))A(ngl
sbt(x,x,f 1 ))=(nglt1 NN))VESUBDEFLIn 1 | sbi{xx,f 1)

17 INTEGER(n)>(n g/ f 1 )=(n gl sbt{x,x,f 1)) (1 2 3 4) 1 : 16

18 Vn.(INTEGER(n)=(ngiil)=(nglsbtix,x,f1)}} (1 2 3 4) Vi17 n*n

19 (STRING(f 1 )ASTRING(sbt(x,x,f1)))2(Vn.(INTEGER(n)=(n gl 1 )a(n gl sbt(x,x,f1)))a
fl=sbi(x,x,0 1)) VE EQS f1, sbt{x,x,f1)
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20 f lasbi{x,x,f1)(12 3 4) 1 : 19
21 (INDVAR(x)AFORM(f1))=>f1=sbt(x,x,f1) (23 4) =i 1 20

22 V x L{(INGVAR(x)AFORM(f))>f=sbt{x,x,1)} (2 374) VI2I x « f fi & x

5.7 FOL commandsin the earlier axiomatization

LABEL FIRSTLEMMA;
ASSUME Vx f.((INBVAR(x)A FORM(f)) = sbt(x,x,{j=f);

LABIEL THEON 1;

ASSUME Vs $q.((STRING{s)A SEQUENCE(sq))> scar(s cc sq) =s);
LABIEL THEONZ;

ASSUL.E Vs sq.({STRING(s)A SEQUENCE(sq))osedr(s cc sq) = sq);
LABIEL THI;

ASSIME Vx 1.(INDVAR{x)AFORM(f))>FORM(x gen f):

LABIEL Th2; -

ASSWME V1.(FORM{f) > STRING(f)) ;

LABEL THS;

ASSLIME Vf sq.((FORM(t)ASEQUENCE(sq))>SEQUENCE(f cc sq));
LABEL TH4;

ASSIME Yx.(INDVAR(x)> TERM(X));

LABEL THS5;

ASSIWME Vp!.{PROOFTREE(pf)>SEQUENCE(pf});

Proof of the Lemma BEW(x gen 1)>BEW(f) Under the Assumption:INDVAR(x) A FORM(t)

LABEL HPTT;

ASSUME INDVAR(x)A FORM(f);
LABEL HPT;

ASSUME BEW(xgenf);

LABEL THTAUT;
Ve FIRSTLEMMA x, 3

Ve PROVABLE x gsn f §
V E THIx,f3

TAUT ==:4282, HPTT:=s
Ve TH2,f;

Ve TH3,1,5q;

VE TH4 x;

VE THB5,sq;

LABEL HPAUX;

3e ----- 59 3

Ve GENRULO f cc sq ,5Q,%,X3

LABEL THNI;

Ve THEON!I f, sq;

Ve THEON2 f, s q ;

TAUTEQ  ===:#202020202020 | [f 1« {],12=;
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UNIFY — ===-:828282820202 =
TAUTE Q=====:#%] , l:i=;

Ve PROOF f cc sq ;

LABEL GENE 1;

TAUTEQ PROOFTREE(sq)AINDVAR(X)ATERM(x)A(GENI(f cc sq,8q,%,x) v ==2 v
EXI(f cc 5q,59,x,x)) 1 :=;

UNIFY ==:#28282%] - .

LABEL PROOFTR;

TAUT ===t#1,1:=;

A@ HPAUX :#282;
Ve -~ fl;

Ve DEFEND f cc sq, sq,f 1;
AE GENE] :02;
UNIFY ==:8#282028242 -

TAUTEQ DEPEND(f cc 6g,f1)2 AXIOM (f1),1:=;
Vi -flefls

TAUTEQ f=scar(f cc sq) 1:=

Ai PROOFTR, -, - ;

LABEL USEFUL;

Ve PROVABLE f;

UNIFY =:#28#2 ==3

TAUT ==:%1,1:-;

LABEL C1THI;

S| HPT,=;

Proof of the Lemma BEW(f)>BEW(x g¢en f) Under the Assumption: INDVAR(x) A FORM(f)

LABEL HPTI;
ASSUME BEW({);

TAUT USEFUL:@2 , =HPT 1 ,USEFUL;
AE =102
Je - ,5q;

Ae -:M282;

Ve -, fl;

Ve GENRUL2 x,sq;

Ve THEORY x,f1;

TAUTEQ ==:82#) #2# 1 [fef 1], HPTT,HPTI:=;
Vi - ,flef];

TAUT ====:# 1 HPTT,HPT | :-;

Ye GENRUL 1 ((x gen f) cc sq) , sq xx ;
LABEL THNZ2;

Ve THEONI x gen f , sq ;

Ve THEON2 x genf, sq3

V E THI x ,f;

VE TH2 x gen {3

VE TH5 sq;
TAUTEQ ======:#02824281[f] « ] HPTT, THTAUT HPT]:~;
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UNIFY =m==n== M2H202 -
VE TH3, x gen {,sq;
TAUTEQ ========= 1, HPTT, THTAUT HPT|:=;

Ve PROOF (x gen f) cc sq;

Ve THA4 x;

LABEL GENI;

TAUTEQ PROOFTREE(sq) A INDVAR(x) A TERM(X) A (===: v GENE((x gen f) cc sq,5q,%,x) v
EXH(x gen ) cc 5q,5q,%,x)) HPTT,HPT | :=;

UNIFY =e=:0282420] -

LABEL PROOFTRI ;
TAUT ====:81, HPT 1:=,THTAUT HPTT;

Ve DEPEND (x gen f) cc¢ sq, sq,f 1
AE GEN1:#42;

3i= x+t0CC 258 11;

Ji-, x¢xlocc 1357

TAUTEQ DEPEND({(x gen f) cc sq,{ 1)  AXIOM (f 1) ,THTAUT HPTT,HPT] 2=,
Vi-flefl;
TAUTEQ x gen f =scar({x gen f) cc sq),HPTT,HPT]:~;
Ai PROOFTRY, -, -- ;
Ve PROVABLE x gen f;
UNIFY =:#8282 ==s
TAUT ==:# 1 , THTAUT HPT|:~3
LABEL C2THl;
SIHPTL =
z| Cl TH1,C2THI;
LABEL THGEN;
ol HPTT,-;
VI =x,f;
Ve THIx! x2 gen f;
Ve THI x2,f;
Ve THI xi,f;
-VeTHIxX2xlgen f;
VETHL,x 1 ,{;
V E THI x2,f;
TAUT (INDVAR(x 1) A (INDVAR(x2) A FORM(f))) 2 (BEW(x] gen (x2 gon f)) e
BEW(x2 gen (x| gen {))), THGEN:~;'
Vi =x1x2,1;

5.6 Printout of the proof in the earlier axiomatization
1 Vx £.((INDVAR(x)AFORM(f))>sbt(x,x,f)=f) (1) ASSUME
2 Vs5q.{(STRING(s)ASEQUENCE(sq))>scar(s cc sq)=s) (2) ASSUME

3 Vssq.((STRING(s)ASEQUENCE (sq))ascdr(s cc sq)=sq) (3) ASSUME
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4 Vx {.((INDVAR(x)AFORM(f))>FORM(x gen 1)) (4) ASSUME

5 V{.(FORM(#)>STRING(f)) (5) ASSUME

6 Vf sq.((FORM(f)ASEQUENCE(sq))>SEQUENCE(f cc sq)) (6) ASSUME
7 Vx.(INDVAR(x)>TERM(x)) (7) ASSUME

8 Vpf.(PROOFTREE(pf)>SEQUENCE(pf)) (8) ASSUME

9 INDVAR(x)AFORM(f) (9) ASSUME

10BEW(x gen f)(10) ASSUME

1 1 (INDVAR(x)AFORM({))asbt{x,x,f}=f (1) VE 1 x , f

12 BEW(x gen f)=(FORM(x gen f)A3sq.(PROOFTREE(sq)A((x gen f)escar(sq)AV{l .(DEPEND(
sq,f 1 )2AXIOM(f1)))))  VE PROVABLE x gen f

1 3 (INDVAR(x)AFORM(f))>FORM(x gen f) (4) VE 4 x , f

14 35q.(PROOFTREE(sq)A((x gen f)=scar(sq)AV{1.(DEPEND(sq,f 1 )2AXIOM(t 1)))) (1 4 9 10) 9 : 13

1 5 FORM(f)>STRING(f) (5) VE 5 f

16 (FORM(f)ASEQUENCE (sq))>SEQUENCE(f cc sq) (6) VE 6, sq

1 7 INDVAR(x)>TERM(x) (7) VE 7 x

1 8 PROOFTREE(sq)=>SEQUENCE(sq) (8) VE 8 sq

19 PROOFTREE(sq)A( (x gsn f)=scar(sq)AV{l.(DEPEND(sq,f 1 )2AXIOM(f 1))) (19) ASSUME

20 GENE(f cc 59,5q,x,x)=(SEQUENCE(f cc sq)A(INDVAR(x)A(TERM(x)A(sedr(f cc 8q)2sgA(PROOFTREE (sq)A
3t1.(FORM(f 1 )A(scar(sq)=(xgenfl)A
scar(fccsq)=sbt(x,x,f 1)))))))) VE GENRULO f cc sq, sq, x , X

2 1 (STRING(f)ASEQUENCE(sq))oscar(f c c sq)sf (2) VE2f ,8q

22 (STRING(f)ASEQUENCE(sq))=scdr(f cc sq)=sq (3) VE 3 f , sq

23 FORM(f)A(scar(sq)=(x gan f)Ascar(f cc sq)=sbt(x,x,f)) (1 2 3 456 78 9 10 19) 1 : 22

24 3f 1 .(FORM(f 1 )A(scar(sq)=(x genf1)ascar(f cc sq)=sbi{x,xf1)) (123456789 10 19) UNIFY 23

25 GENE(f cc sq,5q,x,x) (1 23456789 10 19) 1 : 24

26 PROOFTREE(f cc q) ({SEQUENCE(f cc sq)AFORM(f cc sq))v(3pf.(PROOFTREE (pf)A(ORI(f cc sq,pf)v
(ANDE(f cc sq,pf)V(FALSEE(f cc 5q,pf)VINOTI(f cc sq,pf)VINOTE(f cc sq,pf)v
IMPLI(f cc sq,pt)))N)v(3pf x t.(PROOFTREE(pf)A(INDVAR(Xx)A(TERM(t)A

(GENI(f cc sq,pf,x,t)V(GENE(f cc sq,pf,x,t)v
EXI(f cc sq,pt,x,1))))))v(3pt 1 pf2.(PROOFTREE(pf 1 JA(PROOFTREE(pf2)A(ANDI(f cc sq,pf 1 ,pf2)v



N\

Checking metamathematical proofs 47

(FALSE!fczsq.pfl,pt2)VIMPLE(! cc sq,pf 1,pf2)I))v(3pt 1 pi2 xI x2.(PROOFTREE(pf 1 )A
(PROOFTREE({pf2)A{INDVAR(x1)A(INDVAR(x2)AEXE(f cc sq,pt!,pf2,x1,x2)))))v3pt 1 pi2 pf3.
(PROOFTREE(pf1)A(PROOFTREE(pf2)A(PROOFTREE (pf3)AORE(f cc sq,pf 1,p12,p13)))))))))
VE PROOF f cc sq

27 PROOFTREE (sq)A{INDVAR(x)ATERMO)A(GENI(f ¢ ¢ sa,8q,x,x)V(GENE(f c c sq,8q,%,x)v
EXI(f cc sq,5a,xx))))) (1 2345678910 19) | : 26

28 3pf x L.{PROOF TREE (pt)A(INDVAR(x)A(TERM(BA(GENI(f cc sq,ptx,IVIGENE(f cc sq,pfx,t)v
EXI{f cc sq,pfxt)M)) (1 23 4567 &9 10 19) UNIFY 27

29 PROOFTREE(f cc sq) (1 2 3456 7 89 10 19) 1 : 28

30 Vf 1 .(DEPEND(sq,f 1 )2AXIOM(f 1)) (19)AE 19 :9282

31 DEPEND(sq,f 1 }2AXIOM(f 1) (19) VE 301 1|

32 ((FROOFTREE(f cc sq)A(PROOFTREE(sq)Asg=scdr(f cc $q)))=2(DEPEND(f cc sq,f 1 )=DEPEND(sq,{1)))=
(ORIf cc sq,sq)v(ANDE(f cc 59,5a)V(FALSEE(f cc sa,5q)v(3f.(FORM(f)A((NOTID( cc sq,5q,f)v
(NOTED(f cc sq;sq,f)VIMPLID( cc 5q,5q,f))AT411))vIx LINDVAR()A{TERM(t)A
(GENI(f ¢ ¢ 9,50, )V(GENE(f cc sq,5q,,)VEXI(f cc sq,5q,%,1))))))))
VE DEPEND { cc sq , sq, fl

3 3 INDVARM)A(TERMO)A(GENI(f cc sq,5q,%,x)V(GENE(f cc sq,59,x,x)VEXI(f cc sq,5q,x,x))))
(I 234567 8910 19) AE 27 :42

34 3x LINDVAR(X)A(TERMMA(GENI(f cc sq,sq,x,)VIGENE(f cc sq,sq,x,)VEX!{f cc sq,5q,%,1)))))
(1 2345678910 19) UNIFY 33

35 DEPEND(f cesq,f1)2AXIOM(f1) (1234567891019)1: 34
36 Vi1.(DEPEND(f cc sqf1)2AXIOM(f1))(12 34567 8 91019)VIast«fl
37 fescar(f cc sq) 1 234567891019 1: 36

38 PROOFTREE(f cc sq)A(f=scar(f cc sq)AVH 1.(DEPEND(f cc sq,{1)3AXIOM(f 1))
(123456789 1019) Al (29 (37 36))

39 BEW(f)=(FORM()AJsq.(PROOF TREE (sq)A(f=scar (sq)AVf .(DEPEND(sq,{ )SAXIOM({1)))))
VE PROVABLE f

40 3sq.(PROOFTREE(sq)A(f=scar(sq)AV{ | .(DEPEND(sq,f 1 )>AXIOM(f1)))) {123 456789 10) UNIFY 38
41 BEW(f)(12345678910) 9,39, 40

42 BEW(x gen f)2BEW(f) (1234567 89)»2 10 41

43 BEW(f) (43) ASSUME

44 FORM(f)A3sq.(PROOFTREE(sq)A(f=scar (sq)AV{ 1 .(DEPEND(sq,f 1 )2AXIOM(S 1)))) (43) 43 , 43 , 39

45 3sq.(PROOFTREE(sq)A(f=scar(sq)AViL(DEPEND(sq,f 1 )2AXIOM(f1)))) (43) AE 44 :#2
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46 PROOFTREE(sq)A(f=scar(sq)AV{|.(DEPEND(sq,f 1 }2AXIOM(f 1))) (46) ASSUME
47 Vi 1.(DEPEND(sq,f 1 )2AXIOM(f 1)) (46) AE 46 :#202
48 DEPEND(sq,f 1 )2AXIOM({1) (46) VE 47l
49 APGENI(x,5G)=((INDVAR(x)AV{.(DEPEND(sq,f)>-FR(x,{)))APROOFTREE(sq)) VE GENRUL2 x , sq
50 AXIOM(f 1 )2(=FR{x,f 1 )JAFORM(f1))  VE THEORY x , f 1
51 DEPEND(sq,f 1 )=~FR(x,f1)(1234567894346)9,43:50
52 Vi 1 .(DEPEND(sq,f 1 )>-FR(x,f 1)) (1 234567 8943 46) vi51 flef]
53 APGENI(x,sq) (1 234567894346)9,43:52
5 4 GENI((x g e n f) c ¢ 59,59,x,x) (SEQUENCE((x gen ) ¢ ¢ sq)A(INDVAR(x)A(INDVAR(x)A
(scdr((x gent) cc sq)=sqA(PROOFTREE(sq)A3f1.(FORM(f 1 )A(scar((x gen {) cc sq)=

(x gen f 1)A(scar(sq)=sbt(x,x,f1)AAPGENI(x,59))))))))
VE GENRUL1(x gen f) cc sq, sq, x , x

55 (STRING(x gen f)ASEQUENCE(sq))ascar((x gen f) cc 8q)=(x gen f)(2) VE 2xgenf, sq
56 (STRING(x g e n )ASEQUENCE(sq))=scdr((x gen f) cc $q)=sq(3) VE 3 x geni,s g

5 7 (INDVAR(x)AFORM({))>FORM(x gen f) (4) VE 4 x , f

58 FORM(x g en f)2STRING(x gent) (5) VE 5 x gen f

5 9 PROOFTREE(sq)>SFQUENCE(sq) (8) VE 8sq

60 FORM(f)A(scar((x gen f) cc sq)=(x gen f)A(scar(sq)=sbt(x,x,f)AAPGENI(x,5q)))
(1 234567894346) 11 43:59 9

61 3fL(FORM(f 1 )a{scar((x gen f) cc 5q)=(x gen f1)A(scar(sq)=sbt(x,x,f1)A
APGENI(x,59)))) (1 23456 7 8 9 43 46) UNIFY 60

62 (FORM(x gen f)ASEQUENCE(sq))>SEQUENCE((x gen ) cc sq) (6) VE 6 x gen f , §q
63 GENI((xgenf) ccsq,sqxx) (1234567 894346)9, 11,43 :62

6 4 PROOFTREE((x genf) cc sq) ({SEQUENCE({x ganf) c c sqQ)AFORM((x gen f) cc sq))v
(3pf.(PROOFTREE(pt)A(ORI{{(x renf) cc sa,pt)VIANDE((x gen 1) cc sq,pfv
(FALSEE((xgent) cc 5q,p)V(NOTI((xgenf) cc sq,pf)v(NOTE((x gen f) cc sq,pf)v
IMPLI((x gen f) cc sq,p)))N)Iv3pt x 11.(PROOFTREE(pf)A(INDVAR(x 1 }A(TERM()A
(GENI((xgenf) cc sq,pf,x] D)V(GENE((x gen ) c c sq,pf,x] HVEXI({x gen f)
cc sq,ptx 1 ,H))))Iv(3Ipf 1 pf2 (PROOFTREE(pf | )A(PROOF TREE(pf2)A(ANDI((x gen f)
cc sq,pf 1 ,pf2)V(FALSEI((xgon f) cc 5q,pf 1,pf2)VIMPLE((x gen f) cc sq,pf 1 ,pi2)))))V
(3pf 1 pf2 x1 x2.(PROOFTREE(pf1)A(PROOFTREE(pf2)A(INDVAR(x1)A(INDVAR(x2)AEXE(
(x gen 1) cc sq,pt 1 ,p2,x1,x2)))))v3pt | pf2 pt3.(PROOFTREE(pt 1 JA(PROOFTREE(pf2)A
(PROOFTREE(pf3)AORE((x gen f) cc sq,ptl,pf2,pt3)))M))  VE PROOF (x gen f) cc sq

6 5 INDVAR(x)>TERMI(x) (7) VE 7 «x
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6 6 PROOFTREE(sq)A{INDVAR(x)A(TERM(x)A(GENI{(x genf) c c sq,5q,x,x)V(GENE({x gen {)
cc $q,59,%,x)VEXI((x gen ) cc sq,sq ) (1 23 4567 8 943 46) 9,43: 65

6 7 Jpf xI L.(PROOFTREE (pf)AINDVAR(x 1 )A(TERM(DA(GENI((x g e n 1) ¢ ¢ sq,pfx], v
(GENE((x gen f) cc sq,pf,x1,)VEXI{(x gen f) cc sq,pf,x],t))))))
(1 234567 89 43 46) UNIFY 66

68 PROOFTREE((x gen f) cc sq) (1 234567 8943 46) 43 : 67 , 11, 9

69 ((PROOFTREE((x gen f) cc sq)A(PROOFTREE(sq)Asq=scdr{(x gen f) cc $q)))=>(DEPEND(
(x genf) cc sq,f1)=DEPEND(sq,f 1)))=(ORI{(x gent) cc sq,5q)V(ANDE((x genf) cc
sq,5q)V(FALSEE{(xgen ) cc 5q,5q)v(3.(FORMNA(NOTID((x gen f) cc sq,sq,f)V
(NOTED((x gen f) c c sq,5q,f)VIMPLID((x g e n t) cc5q,5q,{)))AtAf1)IvIx11.(
INDVAR(x 1 )A(TERM(tA(GENI((x gon{) cc sq,5q,x1 ,DVIGENE({x gen f) cc sq,5q,xl,
HVEXI((x gen {) cc sq,59,x1,1))))))))) VE DEPEND (x gen f) ccsq, sq, f 1

7 0 INDVAR(x)A(TERM(x)A(GENH(x gon f) ¢ c 5q,5q,x,x)V(GENE((x gen f) ¢ ¢ sq,5q,x,x)v
EXI(x gan f) cc 5q,5q,%,x)))) (1 23 4567 89 43 46) AE 66 :#2

71 3ILOINDVAR(X)A{TERM()A(GENI((x gen f) cc sq,59,x,t)V(GENE({x gen f) cc sq,5q9,x,})
VEXI{((x gen f) c€ sq,sqxt))))) 1 234567 8943 46) 70 x + t OCC

72 3x1 LINDVAR(x1)A(TERM(t)A(GENI((x gen f) cc sq,89,x1,1)V(GENE((x gen f) cc sq,
sq,x 1, t)VEXI((x gen ) cc 5q,5q,x1,t)))) (1 23 4567 89 43 46) 71 x+xl OCC

73 DEPEND({x gen ) cc sq,f 1 )2AXIOM(f | ) 1 234567 894346) 11,9, 43: 72
74 Vil (DEPEND((x gen f) cc sq,f 1 )2AXIOM(f1))(12 3 456 7 8 9 43 46) VI 73 fl+f 1
75(x gen f)=scar(x gen f)ccsq (1234567894346)9, 6 43: 74

7 6 PROOFTREE((x genf) c c sq)a((x genf)=scar{(x g e n f) c c 8q)AVH] .(DEPEND((x gen 1)
cc 8q,f1)2AXIOM(f1))) (1 23 4567 89 43 46) Al (68 (75 74))

77 BEW(x gen f)=(FORM(x gen {)A3sq.(PROOFTREE(sq)A((x gen f)=scar{sq)AV{ 1 .(DEPEND
(sq,f 1)=2AXIOM(f 1))))) VE PROVABLE x gen f

78 3sq.(PROOFTREE(sq)A{(x gen f)=scar(sq)AVfl (DEPEND(sq,f 1 J2AXIOM(f 1))))
(1 2345678910 19 43 46) UNIFY 76

79 BEW(x gen f) (1 2345678943 11,9 ,43: 78

8 0 BEW(f)>BEW(x genf) (1 23456 789)2143 79

81 BEW(xgenf)=BEW(f) 1 23 456789 =l 42 8

82 (INDVAR(x)AFORM(f))>(BEW(x gen f)=BEW({)) (1 23 456 7 8) =l 9 81

83 Vx f.((INDVAR(x)AFORM(f))>(BEW(x gen f)=BEW(f})) (1 23456 7 8) VI 82 x , f

8 4 (INDVAR(x1 JAFORM(x2 gen 1))>(BEW(x] gen (x2 gen 1))2BEW(X2 gen )
(1 234567 8) VEB83 x| ,x2gen f

49
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8 5 (INDVAR(x2)AFORM(f))=>(BEW(x2 gen 1):BEW(f)) (1 2 3 4 5 6 7 8) VE 83 x2 , f
8 6 (INDVAR(x1)AFORM(f))>(BEW(x1 gen {):BEW(f)) (1 2 3 4 5 6 7 8) VEg 3x],

8 7 (INDVAR(x2)AFORM(x1 g e n 1))2(BEW(x2 gen (xl gen 1)):BEW(xl gen 1))
(1 2345678) VEB83x2,xlgent

~ 8 8 (INDVAR(x1)AFORM({))oFORM(x1genf) (4) VE 4 xI , f
89 (INDVAR(x2)AFORM(1))>FORM(x2 gen f) (4) VE 4 x2 , f

90 (INDVAR(x1)A(INDVAR(x2)AFORM(f)))2(BEW(x! gen (x2 gen 1))=BEW(x2 gen (x| genf{)))
(12345678 84:89

91 Vxl x2 f.((INDVAR(x 1 )JA(INDVAR(x2)AFORM(f)))=2(BEW(x] gen (x2 gen §))zBEW(x2 gen (
xI gen))) (1 234567 8) Vviooxl,h x2,tf



—.m;:w-w— —

Checking metamathematical proofs

REFERENCES

Prawitz, D.,
1965 Natural deduction, A proof theoretical study
Almquist and Wiksell, Stockholm (1965).

Godel, K.,
1930 Die Vollstandingheit der Axiome ties logischen Funktionenkalkuls
Monatshefte fur Mathematik und Physik 37, (1930) 349-360.

Godel, K,
1931 Vber formal unentscheidbare Satzeder Principia mathematica und verwandter
Systeme 1, Monatshefte fur, Mathematik und Physik 38, (1931) 173498.

Weyhrauch, R.W., and Thomas, A.].,
1974 FOL: A Proof Checker for First-order Logic
Stanford Artificial Intelligence Laboratory, Memo AIM-235 (1974).

51






