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- Abstract:

. This is a report onsomeof the first experiments of any size carried out using the
new firstor der proof checker FOL. We present two different first order
axiomatizations of the metamathematics of the logic which FOL itself checks and
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Checking metamathematical proofs

SECTION 1 INTRODUCTION

This paper represents a first attempt at the axiomatization of the metamathematics of a first order
theory and at usingthe new proof checker FOL (First Order Logic). The logic which FOL checks
is described in detail in the usermanual for this program, Weyhrauch and Thomas 1974. It is based

on a system of natural deduction described in Prawitz 1965,1970.

Our motivation in axiomatizing the metamathematics of FOL was the desire to work on an
example which could be used as a case study for projected features of FOL and, at the same time,

had independent interest withiespect to 1epresenting the proofs of significant mathematical results
to a computer.

~ ng . . .
The eventual ability to clearly express the theorems of mathematics to a computer will require the
facility to state and prove theorems of metamathematics. There are several clear examples:

a. Axiom schemas. How exactly do we express that

N= P(8) A Vn.(P(n)>P(n+})) = Vn.P(n)

Is an axiom schema? We need to say: “If for any first order sentence P with one free variable y we

denote by P(n) the formula obtained from P by substituting n for y assuming n is free for y in P,
then the sentence

“ P(B) A Vn(P(n} = P(n+l)) = Vn.P(n)

is an axiom of arithmetic”.

— b.T heorem schemas. The following kind of “theorem” is sometimes seen in set theory books

C Vx! ... xn S. 3T. Vu. (<x| ,..., xn>€T 2 Jy (<x1,..., xn,y>€S)).

It asserts the existence of some particular projection of n+l-tuples. In its usual formulation this is
_ not a theorem of set theory at all, but a metatheorem which states that, for each n, the above

sentence is a theorem. We do not know of any implementation of first order logic capable of
expressing the above notion in a straightforward way.

Co

c. Subsidiary deductionrules.Below we show how to prove that if there is a proof of Vxy WFF then
. there is also a proof of Vy xWFF, where WFF is any well formed formula. We chose this task because

it seemed simple enoughtodo, and is a theorem which may actually be used. The use of
metatheoremsasrules of inference by means of a reflection principle will be discussed in a future

— memo by Richard Weyhranch Eventually we hope to check some more substantial
- metamathematical theot ems

_ d. Interesting mathematical theorems. We presenttwo examples. The first is any theorem about finite
groups. The notion of finite group cannot be defined in the usual first order language of group
theory. Thus many “theorems” are actually metatheorems, unless you axiomatize groups in set

theory. The second theorem is the “duality principle” in projective geometry.
pL.
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sy syl sy2sy3syl4sy5sy6¢ SYM (SYMs are logical symbols)

np npl np2 np3 np4 np5np6 (N_PLCSYM (N_PLCSYMs are symbols which have an arity)

CS — fn fnl fn2 fn3 fn4 fn5in6€¢ OPCONST, (OPCONSTs are function symbols)

! PPIP2 P3 P4 P5 P6 ¢ PRCDCONST; PREDCONSTs are predicate symbols)
- the partial order between these sorts is defined by the following FOL declarations:

&

MG SEQ > { STRING , PROOFTREE};
MC PROOFTREE 2{ FORM };
MG STRING 2 {| TERM , FORM , ATOM , VARSTRING};
MG TERM 2 { INDVAR} ;
MG FORM 2-{ ELF , SENTCONST , PREDPARB, AXIOM , BEW} ;

) — MG BEW 2 { AXIOM };
MG ATOM > {| INDCONST , SENTCONST , SYM, INTEGER , N,PLCSYM. |,

INDPAR ,INDVAR | AUXSIGN , PREDCONSTB , PREDPARB};

| MG INDCONST 2 { NUMERAL };
MG SYM > { QUANT , SENTCONN };

MG N,PLCSYM 2{ PREDCONST , OPCONST , PREDPAR} ;

Sorts are always predicates with one argument. The declaration

| M C SORTI2{ SORT2 , SORTn}
|-

should be read as SORT1 is more general than SORT2,.,SORTn and corresponds to the implicit axioms

. Vg. SORT 1(g)=SORTI(g),

Vg.SORTn(g)>SORT i(g)

The first declaration, forinstance, says that strings and derivations are particular sequences of
formulas. Stringsate in fact cequences of length | and derivations are those sequences satisfying the
predicate PROOFTREE.

Section 2.2 The domain of representation of the metamathematics

T h e basic notions of the metamathematics of first order logic have been axiomatized interms of

strings and sequencesof snings Theprimitive functions on them are concatenation (¢ for strings, cc.
for sequences) and selectors (car, cdr for stings and scar, sedr for sequences) ¢ and ccare infix
operators.
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SECTION 2 THE AXIOM SYSTEM

In this section we present two axiomatizations of the metamathematics of first order logic, The main

difference between them 1s that one is done in a many sorted first order logic and the other not.

These axjomatizations represent an attempt at experimenting with proofs about properties of
formulas and deductions. No effort has been spent on guaranteeing that the axioms are

indcpenden t. It would not only have been uninteresting but also contrary to our basic philosophy.
We wish to find axioms which naturally reflect the relevant notions. At the moment this

axiomatizationis far from being in its final form. Neither the extent of the notions involved nor the

best way of expressing them is considered settled.

Section 2.1 The sorts

The sorts we have defined correspond to the basic notions of the metamathematics i.e. terms,

formulas, individual variables, logical symbols, function symbols etc. and to the notions of the
domains (strings and -sequences of strings) in which the axiomatization has been defined. FOL (see

Weyhrauch and Thomas 1974) allows the declaration of variables to be of a certain sort. In the
formulas appearing in this paper the following declarations are assumed:

g gl g2 g3 gb gb gb range over the most general sort

sq sql sq2 sg3 sg4 sg5 sqb6 € SEQ (SEQs are sequences of strings)

of pfl pf2 pf3 pf4 pf5 pf6 € PROOFTREE (PROOFTREES are sequences represen ting
derivations in FOL)

8 Sl 82 3 s84 s5 s6 ¢ STRING (STRINGs are strings)

tt1t2t31415 16 ¢ TERM (TERMs are strings representing terms)

x xl x2 x3 x4 x5 x6 €INDVAR (INDVARs are strings representing individual
. variables)

el ellel2el3eldelSel6¢ ELF (ELFs are strings representing elementary I

formulas)

f §1f2 $3 4 15 16 ¢ FORM (FORMS are well formed formulas)

th thi th2 th3 th4 th5 thé¢ BEW (BEWs are theorems of a first order theory)

A Al A2 A3 A4 A5 A6 ¢ AXIOM (AXIOMsare axioms of a particular theory)

cO0 cl ¢2 ¢3 c84 ¢5 ¢6 € INDCONST | (INDCONSTs are individual constants)

aal a2 a3 a4 a5 ab €¢ ATOM (ATOMs are the individual constituents of a string)

Nn nl n2 n3 nd n5 k¢ INTEGER (INTEGERsare integers)

nc ncl nc2 nc3 nc4 nc5 nc6 € NUMERAL (NUMERALs are numerals)
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= _ The properties of wtfsrelevanttoourtheory have been defined by the predicates FR, FRN, GEB and
SBT.FR(x,f)1struerff thevariable x has atleastonefree occurrence in the wif f, while FRN(x,n,f)

and GEB(x,n,f)arerespectively true when the variable x occurs free or bound at the place ninthe
formula f. These predicates are definedi n appendix 1.6. In addition, some generalized selector
functions are defined, whichevaluate the first or the k-th free occurrence of a variable in a wff, or

- the number o f its free occurences. The predicate SBT is then defined. It axiomatizes the notion of
substitution of a termfor any freeoccurrence of a variable in a wff.

V x t#142.(SBT(x,t,t1,{2)=
Vnl n2.((n2=(numbfreeocc(x,nl,f 1 )x{len(t)=1))enl) >

_ ((-INDVAR(nlglf 1) 2 (nl gl f1)=(n2gl f2)) A

. (INDVAR(nlgl f 1) 2 ((FRN(x,nl,f 1 )oSUBT(t,{2,n2)) A
(~FRN(x,n1,f1)=INVART(n1,{1,n2,§2)))))))

. Vt £2 n2.(SUBT(1,f2,n2) = Vx2 k.{(k g | t)=x2 © FRN(x2,n2~(len(t}-k),f2))}),

Vn f1 nl f2.(INVART(n,f],nl,§2)={((GEB{(nlglf2,nl {2)=GEB(nglfl,nt1)) a
(FRN(nlglf2,n112) =FRN(n gl f 1 ,nf1))a (nl glf2)=(nglf 1)))

- In the previousdefinition, nlicanyposttionin the stringfl and n2 is the corresponding position in
f2. The auxtharypredicate SUBT statesthat the variables appearing in the term tsubstituted for a
freeoccurrence o f the variable x are still free. INVART defines which properties of flare still true
for f2.1f the term tisavariable, then S E Treducesto SB V :

a Vxlx 2 f112.(5BV(x] x1,{],2)=
— Vn ((~INDVAR{nglf 1) 2(nglfl)=(nglf2)A

(INDVAR(n glf1) 2((FRN(xl,n,f 1) 2FRN(x2,n,2))A
(-FRN(x 1,n,f 1) 2INVARV(n,{ 1,{2)))))),

vn f 1 f2.(INVARV(n,{1,12)- ((GEB(nglf2,n,f2)=GEB(n gi f 1 nf 1)) A
(FRN(hgi f2,ni2) = FRN(n gl fl ,nf1)) A (n glt2)=(ngl f1))),

-

The proof of the equivalence of SBT and SBY when t is a variable is very simple. It is based on the
fact that n2 coincides with nl when the term t has length | (see appendix 4). The function sbt (sbv)

. evaluates to the string representing the result of substituting a term (variable) for every free
occurrence of a variable in agiven wif. sbt and sbv are defined from the predicates SBT and $BV as
follows:

“

Vx tf1£2.(SBT(x,t,f1,2) = sbt(x,t,f])=f2)

Vxl x2 f 1f2.(SBV(x1,x2,f1 f2) = sbv(x |, x2,f 1 )=12)

The problem of finding the bestwayof defining functionsin FOLiscruciakint h eaxioms y stem
. given mthispaper a uniformwayhasnotheen followed. In defining the substitutionw e ar e

interested in properues of the functions sbt and sbv and in drawing conclusions from the fact that a
substitution hasheenmade. It is thususeful to have a predicate which defines the relation between

formulas before andafterasubstitutioninstead of infering it from the definitions of the functions
(stated for exampleasasystem o f equations, asin Kleene [952). One of the motivations of the
present experiment was to explore differentwaysof defining functions. We do not yet have enough

“ examples of proofs to make aclearstatementaboutthis matter.
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2.2.1 Formulas and terms

\ ]
Formulas and terms are represented by the string of symbols appearing In them. Terms are defined =

recursively as strings which either represent an individual variable or can be decomposed into n+!
substrings representing a function symbol of arity n, followed by n terms. The two predicates
defining terms are:

TERMSEQ(8,LAMBDA)

Ve.(TERM(s) = INDVAR(s) v 3n fn.(fn=car(s) A n=arity(fn) A TERMSEQ(n,cdr(s))))

V n 8.(TERMSEQ(n,s) = ((car(s)=LPARSYM) A ({len(s) gl )=RPARSYM) a
dnl (TERM(substring(s,2,n1)) A TERMSEQ(n=1,substring(s,nl +] len{s)=1 )))))

where the function substring(s,m,n) (see appendix 1.3) returns the substring of s starting from its m-th
element and ending with the n-th. len(s) computes the length of 8 and (ngls) selects the n-th element
of s.

Well formed formulas (wffs) are represented as strings which either are elementary formulas

(defined by the predicate ELF) or can be partitioned into substrings for formulas and logical oo
connectives. Formulas are defined by:

Vs.(ELF(s) = (s=FALSESYM v PREDPARO(s) v 3n P.(P=car(s) A n=arity(P) A TERMSEQ(n,cdr(s))))),

Ve.(FORM(s)® (ELF(s) v 3x f.(s=(x genf) v s=(xexf)) v
f112.(s=(f | Gis f2) v s=(fl con 12) v s=(f 1 implf2)) v It.s=neg(f) )) 33

genis the infix operator that maps its arguments x and { into the string (FORALLSYM c x) c f
representing the well formed formula ¥xf. The operator ex is used for the existential quantifier.

dis, con and impl are the infix operators for the disjunction, conjunction and implication of two BE
formulas. Finally, neg is the operator which maps a formula into its negation.

© We could possibly represent wifs as structured objects (lists, trees, etc.) which contain all the
information about the structure of the formula and do not require any parsing. This approach 0
amounts to axiomatizing metamathematics in terms of the abstract syntax of first order logic, instead
of strings of symbols. Both of these possibilities should be explored. We have chosen the first
alternative because: ~-

1) It is the most traditional, i.e. metamathematics, as it appears in logic books, is usually stated in

terms of strings.

2) Axioms in terms of abstract syntax are simply theorems of the theory expressed In terms of

strings. Thus the two representations look substantially the same with respect to “high level”

theorems. |

3) lll-formed formulas can be mentioned. This is of course impossible In an axiomatization in

terms of the abstract syntax.

— |
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~ Themain theoremwchaveprovedinthisaxiomatization of the metamathematics states that if vx
y.wif is provable in some theory, then Vy xwif is also provable. We have chosen this theorem
because, even if vet y simple, 1tinvolves basic notions of provability, substitution and universal

quantification. Its proofisfoundmappendices.1-2. The theorem depends on the first three lines
= of the proof. Thefiiststep is alemmastating that Vx wif.sbt(x,x,f)=wff, i.e. substituting a variable x

for any free occurrence of x mnwffdocsn’t change that wif. Steps two and three give simple facts
: a bout sequences. The theoiem is then provedbyinstantiating two other lemmas: 1) if Vx.wif is a

theorem, then wiffisalso athenrem;2) if wifis provable, then x cannot be free in the dependencies

of the proof of wif and so Vx.witis provable. This i1sof course true only for theories with no free
variables in their axioms.

- The only property of theinferencerulesused mthis proof involves universal quantification. The
restriction on the applicability of the V.ntroduction rule is, that the variable to be universally
quantified in a wff mustnotappear free any of its dependencies. This restriction is reflected in

= our axiomatization by the predicate APGENI Inthis proof APGENI 1ssatisfied because if wff is

provable, its dependenaes are axioms with nofree variables.

= The following is-an infonnalproof of the above theorems.If Vxwffis provable, thentherel s a
prooftiee pt whose tn st <tring is Vx wif. The sequence (Vewitf) cc pf 18 still aprooftree. It is obtained
b y applying the Y-ehimination ule Theapplication of this rule doesn’t add any dependency to the

- prooftree. As ats only dependencies areaxioms,it follows from the definition of BEW that wff is a
theorem.On the other hand, if wffis a theorem there exists a prooftree pf whose first element is wif,

B y applying t he V-intinduction rule top fweobtain the prooftree (Vx.wt) cc pf. Thisrule is
- applicable sincethevremshave n o free variables in their dependencies. ft follows that Vx.wiffis a
— theorem. If Vxy.wifisprovablethenVx.wif and wff are provable using the first lemma. Finally, we

can quantify first overxandthen over y, obtaining Vy x.wff as a theorem.

Section 2.4 Another axiomatization

%

_ A different asiomatirntion has beengivenuan earlier version of FOL where there was no facility
for creating sorts We presentithere as wewant to do some comparisons between proofs, and discuss

. some of thefeaturesof FOL. Some differencesbetween the two axiomatizations are due to the new
features available in FOL They will be discussed in the next section. Here we only discuss the
difference betweenthe definition of formulas and terms. The list of all the axioms can be found in

“ appendices 2f8

. In this axiomatization, formnlas and terms are still vepr esented as the string of + he symbols
appearing mm them They ate det ined as stringsthat can be decomposedinto a sequence o f
substrings tecorching the construction o f thatformulaor term from elementary formulas a n d

— individual variables, according to theusualformationrules (see appendix 2.5 for thelist of axioms).

hg These sequences arc detined bythe predicate TERMSEQ for terms and FRR for wffs. A sequence
satisfies the predicateTERMSEQ if ttrepresents thr history of the construction of its first element (the
term tobe defined), starting from symbols, functions and individual variables. Similarly, a string is a
wif if there exists a sequence whichsatisties the predicate FRR and represents the history of the
construction of that wff from elementary formulas and the logical connectives.

.

“
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2.2.2 Rules of inference, deductions and the notion of provability

The rules of inference are defined by the predicates in appendix 1.7. The rules with one premise,
are expressed by means of a binary predicate whose arguments are two sequences of wifs (sq, pf)
which satisfy PROOFTREE. The predicate is true iff pf is the sedr of sq and the first element of sq is a
wff obtained by applying that particular deduction rule to the first wff of pf. The rules with more
antecedents are defined in a similar way.

Derivations are recursively defined as sequences of wffs which either are a single wff or are

obtained from one or more derivations by applying one of the deduction rules. The recursion 1s

implicitly stated by saying that there exist objects of sort PROOFTREE which satisfy one of the
predicates defining the rules of inference. These sequences represent the linearization of a deduction-
tree and are defined as follows:

Vsq.(PROOFTREE(sq) =
(FORM(sq) v

3pt.(ORI(sq,pf) v ANDE(sq,pf) v FALSEE(sq,pt) v NOTi(sq,pf) v NOTE(sq,pf) v IMPLI{sq,pf)) Vv
3pf x L(GENI(sq,pt,x,t) v GENE(sq,pfx1) v EXI(sq,pf,x,1)} v
dpf 1 pf2.(ANDI(sq,pf| ,pf2) v FALSEI(sq,pt 1 ,pi2) v IMPLE(sq,pfl ,pf2)) v
3pf 1 pf2 x 1x2.EXE(sq,pf|,pf2,x] x2) v
pt | pf2 pf3.0RE(sq,pf!,pf2,pf3) )) 5s

A sequence of wffs is a prooftreeif either it consists of a single wff or one of the following
alternatives holds: there exists another prooftree and a one premise deduction rule has been applied;
there exist two prooftrees and one of the two premises rules has been applied; finally, there are three

prooftrees and the predicate defining the v-elimination rule is true. Note that the root of a prooftree
is not necessarily a theorem in a given theory. A predicate DEPEND has been defined which 1s true if

a given wff is a dependenceforthe root of aprooftree. The axioms about DEPEND allows to decide
all the dependencies of a prooftree.

Since some of the deductron rules (the implication introduction, for instance) eliminate dependencies,
not all the leaves of a prooftree pf are dependencies for a wff f such that fsscar(pf). The predicate
DEPEND is true only for those leaves of the prooftree which the formula f actually depends on, lis

- definition is shown in appenciix 1.8. The axioms DEPEND state which dependencies do not change by

applying the deduction rules and are transferred from one prooftree to the other. The axioms

NDEPND state which rules discharge dependencies in a given prooftree.

Using this notion of dependence the provability of a formula in a theory is defihed as follows:

Vi.(BEW(f) = 35q.(PROOFTREE(sq) af=scar(sq) a Vf 1.(DEPEND(sq,f 1) = AXIOM(f 1))));;

A wif f 1S a theorem in a given theory if there exists a prooftree whose first element 1s f and whose
only dependencies are axioms in that theory. We have limited our attention to theories in which
axioms have no free variables. This property is defined by the axiom:

V x §.(AXIOM(f) = -FR(x,{));;

Section 2.3 The main proof in themany sorted logic
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statements. Hence, the statements produced by them have quantifiers as main symbols or it is

necessary tointroduce aquantifier to proceed 1n the proof. After the right introductions or
eliminations have been done to them, the tautology commands are used again. This process is
iterated until the completion of’ the proof.

The command UNIFY decidesifa given wff can be obtained by instantiation of quantified variables
or introduction of them for free uccuirrences of variables or terms in a second wif. The code for this

command has beenwritten by Ashok Chandra and 1s still in an experimental stage. In the proofs
presented here, this command has been essentially used for the simultaneous introduction of the
existential quantifier. As an example, consider the following assumption:

1 ¥x.(P(x)=2(Q(f 1 ¢ 12)AVLR(1))) (I ) ASSUME

the command

unify Ix. (P{x)231.(Q{f)AR(g(t)))),1;

deduces in a single step
~ —

2 Ix. (P(x)=23 (QAR (1)))) (6) UNIFYI

A good example of acombineduse of thesefeatures is found in appendix 3.3:

19 FRR((xlgenf) cc SQ) (SEQUENCE((x1pgent) cc SQIA(({x1 gen f) cc U)p
SLAMBDAA(ELF (scar{{x1genf) c c SQ))V(FRR(scdr({xl gent) c c SQA
351 52(STRING(s1)A(STRING(6 2)A{(scar((s1 gant) ¢ c SQ)=NEG(s!)A

find(1,s1,scdr((x1 gent) c c SO)))v(scar((x]l pen f)cc SQ)=(s] dis s2)A
find(2,51 c s2,5cdr((x!zen f) cc SQ) )v((scar({xlgani) cc SQ)=(sl con s2)A
find(2,51 ¢ s2,5cdr{(x] zenf) c c SQ)))vi(scar((xlgenf) c c SQ)=(slimpl s2)A
find(2,s1 c s2,5cdr({xlgenf) c c SQ)))vi{scar((x] genf) cc SQ)=(sl g e n s2)A(INDVAR(s])A
find(1,s2,scdr((xl gan f) c c SQ))))viscar{(xl gent) c c SQ)=(sl ex s2)A(INDVAR(s])A

~~ find( 1,82,scdr{(x 1 gen f) cc SONNY — VEWFF I(x] gen f) cc SQ

20 STRING(x | JA(STRING(f)A((scar({xlgen{) cc SQ)=NEG(x1) A
find( 1 ,x 1 ,scdr((x| gant) cc SON Ivi(scar({xlpgant) cc SQ)=(x] dis f)A
find(2,x1 ¢ f,scdr((x! gent) c c SONIv((scar({x] genf)ccSQ)=(xl con f)A
find(2,x! ¢ f,scdr{(xlgent) c c SON Ivi(scar{(xl gent) cc SQ)=(xlimpl f)A

My find(2,xl c fscdr{{xlgant) c c SO))vi{scar((xl gan if) ce SQ)={xl g e n HA(INDVAR(x] )A
find(1 f,scdr((xl gent) c c SOM)viscar(ixl gent) c c SQ)=(x1 ex HA(INDVAR(x1 )A
find(1,f,scdr((x1gent) cc SONYN)))))) (1 23 456 7 8 11) --- TAUTEQ 1:19

2 1 3s 52. (STRING(s1 IA(STRING(s2)A{(scar({sl pen) ¢ ¢c SQ)=NEG(sl)A
find(1,51,scdr({(xl gent) c c SQ)))vilscar{{x] gon f) cc SQ)=(s] dis §2)A
find(2,51 c s2,5cdr{(xl gent) cc SO))Iv((scar({xlgenf) cc SQ)=(sl con s2)A

b\- tind(2,51 c s2,5cdr({xlgent) c c SO))Ivi(scar({xlgent) cc SQ)=(sl imp s2)A
find(2,51 c s2,scdr({xlgenf)c c SOQ)))v((scar({xlgenf)cc SQ)=(sl g e n s2)A(INDVAR(s1)A
find( 1 ,52,5¢dr({xlgenf) cc SQ) viscar{(xlgenf) c c SQ)=(sl ex s2)A(INDVAR(s1)A
find(1,s2,scdr({xI gen f) cc SQIMNMMIMMIM(1 23456 78 11) === UNIFY 20

Line 19 is the instantiation of anaxiom. Line 20 1s generated by the command,

~ TAUTEQ19:#2a282u2u28 0] sle{ : s2¢x1]1:19;
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note how the use of the FOL subpart designators allows us to mention the desired subpart of 19,

without having to retype tt. En addition we can do the appropriate substitutions. Line 21 is just a
use of UNIFY:

UNIFY 19:0242820242 20;

Because we can mention the conclusion, without writing It down explicitly, the amount of typing

necessary is severely reduced. Without UNIFY, line 21 would have required two 3-introductions and —
the commands would have been:

31 20 xl+-sl OCC 1,2,3,4,7,8,11,12,15,16,19,20,23,24;

31 20 f «s2 occ |,5,9,13,17,18,21,22;

We do not enter into a detailed discussion of the command UNIFY. It is our intension to do it

elsewhere. It should be thought of as the routine which handles quantifiers In “simple” inferences.

As seen above, the saving to a user can be large.

!

tm

€

4

a

n)
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LT ~ SECTION 4 CONCLUSION
|

The desire to represent mathematics ma computer in a feasible way certainly requires the facilityto
discuss metamathematicalnotions. The axiomatization presented here only treats the syntactic part
of the problem. Any mentionof the models involved needs the addition of set theory tothe

— axfomatization. However, it is clear from the simple theorems we proved that any practical system
needs more extensive featureseven to do a satisfactory job of writing down the theorems we might

. want.

An impottantpointforfutineworks how (in a practical way) to use these theorems. Consider for
instance:

| 4

Vxl x2 f(BEW(xl gen (x2 gen{))>BEW(x2 gen (xI| gen {)))

= What we mean by reflection principlesa rule of FOL which says:

 — /[BEW(f) //in meta FOL
[mmm

| /1/f / m FOL

L

That is, if in the axiomatization of the metamathematics of FOL, we can prove theexistence of an

| FOL proof of f, then we can assertf mFOL. Suppose we have a proof in FOL of Vx y.wff. Theninstantiating the above theoremypivesus

BEW(x gen (y g e n wif)) > BEW(y pen (x gan wif})

~ Since we started witha proof of Vxy.wif in FOL and BEW represents the proof predicate for FOL,
we can conchide BEW(x gen (y gen wif)). Using modus ponens we get BEW(y gen (x gen wif)) and
using; the aboverule we canconclude Vy xwifinFOL.

The exact form of such arulerequiresmore examples of proofs and is one of the main reasons for

“doing the example mthe memo. Jt snot justa proof checking exercise, but a case study for

fundamental questions of representing mathematical informationi na computer. Using
metamathematics also preparesthe way for more comprehensive systems which can formally discuss
how they reason. That is exactly what the metamathematics is good for.
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APPENDIX |

THE AXIOMS IN THE MANY SORTED LOGIC

1.1 Natural numbers

AXIOM NUMB:

Vnl n2 n3. (nl =n2>(nl=n32 n2=n3)),
Vnl n2. (nl =n2 2 succ(nl)=succ(n2)),
vnl. BAsucc(nl),
Vnl n2. (suce(nl)=succ(n2)> nl =n2)
vnl. nl+B=nl} |

Vnl n2. n1+succ(n2)=succinl @ n2),
Vnl. nixB=0
Vnl n2. nl *succ(n2)=(nl%n2)+nl ;;

A X | O MINDCT:

(F(B)AVN.(F(n)oF(n+1)))> Vn.F(n) ;;

AXIOM DEFN:

Vn. (succ(n)=] )=n |
Vnl n2. suce(nl)~n2=nl=(n2-1),

Vnl n2n3.(nl<n2=23n3.(n348 A ni+n3=n2)) ,

Vnl n2. (n1<n2= (n1<n2) v (nl=n2)) ,

Vnln2. (n2>nl = nl<n2) |
Vnl n2. (n22nl = ni¢n2) ; ;

1.2 The set of symbols

AXIOM SYM;

Vs. (SYM(a)® a=LPARSYM v a=RPARSYM v azQRSYM v a=ANDSYM v asiMPSYMv

azFALSESYM v a=FORALLSYM v a=EXISTSYM) 3

1.3 Strings

AXIOM STRING:

VS. s=car(s) c cdr(s),
Vsl s2. (sl =LAMBDA> car(sl c s2)=car(s2)) ,
Vs] s2. (s1 JLAMBDA > car(s] c s2)=car(sl)) ,

Vsl s2. (s| =LAMBDA2 cdr(s] c s2)=cdr(s2)) ,
Vsl s2. (sl {LAMBDA ocdr(s]l Cc s2)=cdr(sl)) ,

Vs. (s c LAMBDA=LAMBDA c s) ,
VS. s ¢c LAMBDA-=s |
Vel s2 83. (sl c (s2 c 83)=(s1 c 82) c 63),

Va. (len(a)=1 v a=LAMBDA) ,
Vs. len(s)20 |
Vsl s2. len(sic s2)=len(s 1 )¢len(s2) ,

VS. (len(s)=1> ATOM(s)) ,
VS. 8 gl se LAMBDA
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. VS. 1 gls=car(s),
 —- Vs n. ((m>1)2((n gl s)=((n=1)gl cdr(s)))) ; ;

AXIOM SUBSTRDEF:

_ Vnl n2 sl s2. (SUBSTP(s 1 ,52,n1,n2)=(len(s2)=n2=-nl+1 A{Vn.(n2nl An¢n2 >
nels! =(n-nl « 1)gls2)))),

4 Vnl n2 sl &2. (SUBSTP(s1,52,n1,n2) = substring(sl nl ,n2)=52) ,
Vsl s2. (SUBS(s1,52) = 3nl n2.SUBSTP(sl ,s2,nl ,n2))::

| The value of substring(sl,nl,n2)isthe substring of sl whose first element Is the nlthelementof
. sl and whose last element 1s the n2th element,

Co AXIOM DISEQ:
> Vel g2. (~(gl=g2)= glfp2) . :

. AXIOM EQS:
Vsis2 (Vn(nglsl=ngls2)=slz2s2);;

| — AXIOM COMP: :
VA. e(f)-(LPARSYM cf) ¢ RPARSYM ,
Vil 12. f 1 dis {2=(e({] ) ¢ ORSYM) c e{f2),
Vil t2. flimpl {2=(a(fl) c IMPSYM) c e(f2) ,

— 148 neg (f)=(fimp! FALSESYM) |,
Vii 2. f1 con 2=(a(f 1) c ANDSYM) c e(f2),
vx f2. x gen f2=(FORALLSYM c x) c 12,

. vx 12. x ox 12=(EXISTSYM c x) c 12 ::

— 1.4 Formulas

. AXIOM TERM:
TERMSCQ (1,LAMBDA) ,

— Vn s. (TERMSEQ(n,s)(3nl (TERM(substring(s,I ,nl)) A
TERMSEQ(n=1,substring(s,nl . 1 ,len(s)))))),

VS. (TERM(=) INDVAR(s) v dntn.(fn=car(s) A n=arity(fn) A TERMSEQ(n,cdr(s))})ss
AXIOM WFF:

— VS. (ELF (s) ~(s=FALSESYM v PREDPARO(s) v 3nP.(P=car(s) A n=arity(P) a
« TERMSEQ(n,cdr(s))))),

VS. (FORM(s) = (ELF(s) v

o 3 x f{s=x gon f) vis=xexf))V
3f12.((s =] dis 12) v(s=fl con 2) v (s =flimplf2)) v
3is=neg (1) ;;

L 1.b Sequences

_ AXIOM SEQ:
vs(. sq=5car (sq) cc scdr(sq) ,
Vsql sq2. (sq 1=SLAMBDA > scar(sql c c sq2)=scar(sq2)) ,
Vsql sq2. (sql #SLAMBDA > scar(sql c c sq2)=scar{sql)) ,

L Vsql sq2. (sql =SLAMBDA > scdr(sql c c sq2)=scdr(sq2)) ,

q
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Vsql sq2. (sq 1 /SLAMBDA >scdr(sq 1 cc 8q2)=sedr(sql) cc sq2) ,
Vsq. sq cc SLAMBDA=SLAMBDA cc sq,
vVsq. SQ cc SLAMBDA:=sq
Vsql sq2 sqs3. (sq 1 cc (sq2 cc sq3)=(sqlcc 892) cc £q3),
VS. (slen(s)=1vs=SLAMBDA),

vsq. slen(sq)26 ,
Vsql sq2. slen{sq 1 cc 592)=slen(sql)+slen(sq2) ,
VsqQ. 8 sgl sq=SLAMBDA
vs. 1 sglsq=scar(sq) ,
Vn sq. (m1) 2((n sgl sq)=({n=1) sgl sedr(sq)))) ::

AXIOM SUBSEQDEF:

Vnin2sql sq2. (SUBSEP(sql ,5q2,nl ,n2) = (slen{sq2)=n2=nl:! a
(Vn.(n2nl An¢n2 > n sglsgl=(n=nl+l) sgl sql)))) ,

Vnl n2 sql sq2. (SUBSEP(sql,sq2,n1,n2)s subseq(sql ni ,n2)=5q2) ,
Vsql sq2. (SUBSSE(sql ,sq2) 2 3n| n2.(SUBSEP(sql ,sq2,n1,n2))) :;

AX IOMEQSQ:

Vsql sq2. (Vn.in sgl sql=nsgl sq2) o2sql=sq2)33

1.6 Free and bound variables andthe substitution

AXIOM BOUNDV:

Vx nf. (GEB(x,n,f) = 3s 152 f 1.{len(s1)+1<n A n¢(len(f)-len(s2)) A
(x=n glf)A({f=(s] c ((x gen f 1) c 82)))v(fal(sl c ((x ox £1) c s2)))))) ;;

AXIOM FREEV:

Vx n f. (FRN{O nf) 2 (x=(n gl {) A ~GEB(x,n,f))) ,
vx f. (FR(x,f} = 3n.FRN(x,n,{ ));;

AXIOM FIRSTFRDF:

Vx nf. (FIRSTFREE(x,n,f) = (FRN(x,n,f) A Vnl.(x=nl g | f 2 (nl2n v GEB(x,n1,{))))) .
Vx nf, (FIRSTFREE(x,n,f) = firstfreeoce(x,f)=n) 53

- AXIOM KFREEOCCDF:

Vx k nf. (KTHFREEOCC(x,k,n,f) = ((k=0 A n=B) v

(n=len(f) A Vn2.(n2>kthfreeocc(x,k=1,{) © ~FRN(x,n2,{))) v
(FRN(x,n,f) A ¥nl .((nl <k A n1>8) > 3In2.(n2<n A KTHFREEOCC(x,n1,n2,{)))))),

Vx k n f§. (KTHFREEQCC(x,k,n,f) = kthfreeocc(x,k,f)=n) ,
Vx k nf. (KTHFREEQCC({x,k,n,f) » numbfreeocc(x,n,f)=k),
Vx k nf. (numbfreeocc(x,n,f)=k > (KTHFREEOCC(x,k,n,f) v

(n<kthfreeocc(x,k,f) A n>kthfreeocc(x,k=1,{)))):s
AXIOM SUBSTDF:

Vx tf12. (SBTt,11,i2)=Vnln2.((n2=(numbfreeocc(x,nt,f 1 }x(len(t)=1))+nl)>
((-INDVAR(nl gl fl)2nl gl tl = n2 gl f2)A
(INDVAR(nl gl f1) © ((FRN(x,nl ,f1) o SUBT(t,f2,n2))A

(~FRN(x,n1,{1)2INVART(n1,f 1,n2,{2))))))),
Vt f2 n2. (SUBT(t,2,n2) = Vx2 k.({(k gl t) = x 2) ® FRN{x2,n2~(len(t)=k),{2))),
Vn f 1 nl 2, (INVART(n,f 1 ,nl,f2)s ((GEB(nlglt2,nl,f2)e GEB(nglf 1 ,n,f 1 ))A

(FRN(n1 gi f2,n1,12) =FRN(n gl f I,n,f1)) A nl glf2snglf 1))
Vx L162. (SBT(xt,f1,i2)3sbi(xt,f1)=42) :
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LT AXIOM SUBDEF:

VXI x2 f1#24SBV(x1x2,{1,§2) 3 ¥n.((~INDVAR(n gl 11) > n gl fl = n gl f2)A
(INDVAR(n gl f 1) > ((FRN{x1 ,n,f | }SFRN(x2,n,£2)} A

(~FRN(x1 ,n,f1)2INVARV(n,f1,{2))))),

| Vn {112 (INVARV(nf1,f2)2 ((GEB(n gI f2,n,f2)= GEB(n gl f 1 ,nfl))A(FRN(ngl12,n,f2)2 FRN{(n gI fl nf1)) A n gt f2=n gl {1)),
— V x X | $112. (SBV{x,x1,{1,§2) = sbv(x,x],{1)=£2);;

1.7 Rules of inference

~ AXIOM ANDIRUL:

L Vaq pfl pf2. (ANDi(sq,pt |,pf2)=3f112 (sedr(sq)=(pfl cc pt2) Ascar(sq)=f 1 con 2 A
f1=gcar(ptl) Af2=acar(pf2))),

vsq pf. (ANDE(sq,pf) = 31 12.(scdr(sq)=pf A scar(sq)=t]l A ((fl c o n {2)=scar(pf))v
(f2conf 1 )=scar(pt))));s

AXIOM FALSERUL:

Vsq pfi1 pf2. (FALSEI(sq,pt1,pf2) = 31 .((scdr(sq)=(pf! cc pt2))A
—- (scar(sq)=FALSESYM)A(neg(f 1 )=scar(pfl))a(t 1 =scar(pf2)))),

vsq pf. (FALSEE(sq,pf) = 3f.({scar(pt)=FALSESYM) A f=scar(sq) A scdr(sq)=pf})s;

| AXIOM IMPLRUL:
Vsq pf 1pt2. (IMPLE(sq,pfl,pf2)= 3f 12 ((scdr{sq)=(pf 1 cC pi2))A

: (scar{pt 1 )={flimpl 2) A (scar(sq)=12A (scar(pf2) = fI))),

| | vsq pf f1.  (IMPLID(sq,pf, 1) = (scdr(sq)=ptA 32.((scar(sq)=(f 1 implf2))A
(f2=scar(pf)) A 3n.(fl=(n sgl pf))))),

vsq pf. (IMPLI(sq,pf)= 31.IMPLID(sq,pt,f 1);;

AX IOMNEGRUL:

- vsq pf I. (NOTID(sq,pt,f) = (scdr(sq)=pt A scar(sq)=f A (scar(pf)=FALSESYM) A
InAn sgl pf)=f)) ,

| vsq pf. (NOTi{sq,pt) = I{.NOTID(sq,pt,{),
vsq pf f. (NOTED(sq,pt,t) = (scdr(sq)=pf A (scar{pf) = FALSESYM)A

In.{{n sgl pt)=f) A (f=neglscar(sq))))),
vsq pf. (NOTE(sq,p!)= 3t NOTED(sq,pt,f);;3

AX IOM ORRUL:

vsq pf. (ORI(sq,pf)= (scdr(sq)=pt A If1{2.({scar{sq)=(f1 dis 2)) A
f 1=scar(pf)) v (f2=scar(pf))))),

V s q pil pf2 pf3 fl £2. (ORED(sq,pf1 ,pf2,pf3,f1 £2) = (scdr{sq)=(pfl cc (pf2 cc pf3)) A
(scar(pfl)=(t 1 dis f2) A 33.(scar(pf2)=13) A scar(sq)=f3 A
(scar(pt3)=13))A 3nl nl sgt pf2)=f1)A3n](nl sgt pt3)=f2)}),

vsq pfl pf2 pf3. (ORE(sq,pfl,pf2,pf3)=3f112.0RED(sq,pt1 ,pf2,p13,f1 ,2))33

AX IOM EXRUL:

vsq pf x t. EXHsa,pf,x,t)=3 1 ((sedr(sq)=pfl) A(scar(sq)=(xoxf1)) A
scar(pf)=sbt{x,t,f1))),

Vsq pf 1 pf2 xl x2 1. (EXED(sq,pf 1,p12,x1,x2,11)=({sedr(sq)=(pf 1 cC pf2)) A
(scar(pf 1 )=(xlexfl))A(scar(sq)=scar(pf2)) A
In.((nsglpf2)=sbt(x1,x2,f 1) A EXAPPL(x2,pf2,f1)))),

vq pof fl pf2 xl x2. (EXAPPL(x,pt,f3,% (-FR(x,scar{pfD(sq,pf 1,pf2,x1 x2,{1),
)) A ~FR(x,f) A Vi1.(DEPEND(ptf,t1) >

~FR(x,f1 3;
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AXIOM GENRUL:

Me hi sql x t. (GENE(sq,5q1 x,t) 5 (sedrisq)=sql A PROOFTREE(sql) A
3f.(scar(sql)=x gen f A scar(sq) = sbt{x,},{}))),

vsq sql xl x2. (GENI(sq,5q1 ,x | x2) = (scdr{sq)=sql A PROOFTREE(sq 1) A
3f.(scar(sq)=x] gen f Ascar(sql) = sbi(x] x2.) A APGENI(x2,sa1)))),

VX 54. (APGENI(x,sq) & (V{.(DEPEND(sq,{) > ~FR(x,f))) A PROOFTREE(sq)),
Vpt.3x. APGENI(x,pf)ss

1.8 Deduct ion

AXIOM PROOF:

Vsq. (PROOFTREE(sq) = (FORM(sq) v
3pf.(ORl(sq,pt) v ANDE(sq,pt) v FALSEE(sq,pf) v NOTI(sq,pt) v NOTE(sq,pt) v

~ IMPLI{(sq,pf )) v
Ipf x L(GENI(sq,pfx,t) v GENE(sq,pfx,t) v EXi(sq,ptx,t)) v
3pt | pt2.(ANDI{sq,pf1,pt2) v FALSEl(sq,pf 1 ,pt2) v IMPLE(sq,pf 1 ,pt2)) v
3pf | pf2 x 1 x2. EXE(sq,pt 1 pf2,x1 x2) Vv
3pf | pf2 pf2 pf3.0RE(sq,pt1,pt2,p13)))s3

AXIOM DEPNDG:

vsq f. (DEPEND(sq,{) ® SUBSSE(t,sq)) ,
vsq f. (f=sq = DEPEND(sq,)) 5;

AXIOM oe et of 1f. ((pt | =sedr(pf) > (DEPEND(pf,{) = DEPEND(pt1{))) =
(ORI(pt,pt1) v ANDE(pt,ptl) v FALSEE(pf,pfl) v
311. ((NOTID(p!,pf1,6 1 ) v NOTED(pt,pt 1,11) v IMPLIDIRERE ED) A, yyy
Ix t (GENHpt,pt 1 ,x,8) vGENE(pf,pt 1 x) v EXi(pt,ptl x,1)})),

Vpf pfl pf2 t. ((((pf 1 cc pi2=scdr(pf)) v (pt2 cc pf 1=scdr(pf)))2
(DEPEND (pf,f) = ((DEPEND(pt 1 {) v DEPEND(pt2,{)))) =
(ANDI (pf,p! 1 ,pi2) vFALSEl(pt,pf 1 ,pf2) vIMPLE(pf,pflpf2)v
3x1 x2f 1 .(EXED(pt,pt1,pf2,x1x2,f1)At4E1))),

vp! pfl pf2 pf3 f.  ({({(pflccipf2 cc pi3))=scdr(pt)) v
({pfl c c (pt3 c c pt2))=sedr(pf)) v
((pt2 c c (pflc c pt3))=scdript)) v
((pt2 cc (pf3 cc ptl))=sedripf))v
((pf3 cc (pfl cc pt2))=scdr(pt))v
((p13 cc (pf2 cc pf 1))=sedr(pf)))>
(DEPEND(pf,f) = (DEPEND(pt | 1) v DEPEND(pf2,f) v
DEPEND(p13,))))=
3 | 12.(ORED(pf,pfl pt2,pi3,11,12) A {461 A 1412) 4s

AXIOM NDEPND:

7 Vptl pf2 |. ((NOTID(pt1,pf2,1) v NOTED(pt 1 ,pf2,f) v MPLID(RY | 542 1)»
-DEPEND(pf1,{)),

vpfl pt2 pf3 xl x2 t{ EXED(pf 1 ,pt2,pf3x1 x2,1) 2-DEPEND(p! 1 ,1))
Vptl pf2 pf3 pfaf1 f 2 . (ORED(pf | ,pt2,pf3,pf4,f1 2) BEPEND(pt! f1) A

~DEPEND(pf1,12));;

Vi. (BEW({)= 3sq (PROOFTREE(sq) A 1 = scar(saq) A vi 1 (DEPEND(sq,f 1)
AXIOM(f1))));3

AXIOM THEORY:

vx f. (AXIOM(f) = =FR(x,t))s3
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— AXIOM INFVAR:
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APPENDIX 2

THE AXIOMS IN THE LOGIC

2.1 Natural numbers

AXIOM NUMB:

Vnl n2 n3. ((INTEGER(nl) a INTEGER(n2) A INTEGER(n3)) ® (nl12n2 > (n1=n3 o> n22n3))),
Vnl n2. ((INTEGER(n1) A INTEGER(n2)) 2 (nl=n2 2 suce(nl )=succ(n2))),
Vnl. (INTEGER(n! ) 2 84succ(nl),

Vnl ng. (INTEGER(n1) a INTEGER(n2)) = (succ(nl)se succ(n2) > n 1 = n2)),
Vnl. (INTEGER(n1) > nl +B=nl),

Vnl n2. ((INTEGER(n1)AINTEGER(n2))2 nl « suce(n2)= succ(n1 +n2)),
Vnl. (INTEGER(n1) > nl x0=0),

Vnl n2. ((INTEGER(n1) A INTEGER(n2))> nl %succ(n2)=(nl xn2)+nl);;

AXIOM INDCT: -

(F(0) A ¥x.(INTEGER(x)> (F(x) @F(x+1))))= Vx.(INTEGER(x) > F(x));;

AXIOM DEFN:

Vn. (INTEGER(n) 2 {succ(n)=1)=n)
Vnl n2. ((INTEGER(nl) A INTEGER(n2)) = succ(nl )=n2=nl =(n2=1)),
VYnin2 n3.((INTEGER(nI)A INTEGER(n2) A INTEGER(n3)) =

(n1<n2 = An3.{n340 A nl +n3z=n2))),
Vnin2. ((INTEGER(n1) a INTEGER(n2)) 2 (n1¢n2 = (n1<n2) v (nl1=n2))),
Vnl n2. ((INTEGER(nl) a INTEGER(n2)) 2 (n2>nl 2 nl<n2)),
Vnl n2. ((INTEGER(nl) A INTEGER(n2)) @ (n22nl 5 nl $n2)),

2.2 The set of symbols

AXIOM SYM:

Vs. (SYM(a)= a=LPARSYM v a=RPARSYM Vv azORSYM v a=ANDSYM v asiIMPSYM v
. a=FALSESYM v a=FORALLSYM v a=EXISTSYM) ;;

2.3 Strings

AXIOM STRING:

VS. (STRING(s) s=2car(s) c edr(s)),
Vs 62. ((STRING(s1) a STRING(s2)) = (s] =LAMBDA > cars! c s2)=car(s2))),
Vg! s2. ((STRING(s1) A STRING(s2)) = (s| JLAMBDA > car(s] c s2)scar(sl))}),
Vsl s2. ((STRING(s1) A STRING(s2)) = (s1 =LAMBDA > ¢dr(sl c s2)=cdr(s2))),
Vel s2. ((STRING(s1)A STRING(s2)) o (s1 JLAMBDA = cdr(sl c s2)=edr(sl))),
Vs. ((STRING(s) 2(s c LAMBDA=LAMBDA ¢ s)),
VS. (STRING(s) 2(s c LAMBDA=s)),
Vsl s2 s3. ((STRING(s1)A STRING(s2) a STRING(s3))2 (s1 c (s2 c £3)=(s] c 82) c 83)),
VS. (STRING(s) o (len(a)=l v a=LAMBDA)),

vs. (STRING(s) >len(s)>B),
Vsl s2. ((STRING(s1) A STRING(s2)) = len(sl c s2)=len(sl )+len(s2)),
vs. (STRING(s) 2(lenis)=1D2 ATOM(s)),
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Vs. (STRING(s) = 8 gl s=LAMBDA),
Vs. (STRING(s) = | gl s=ear(s)),
vs n. ((STRING(s) A INTEGER(n)) > ((n>1) 2 ((n gl s)=((n=1) gi cdr(s))))),

— AXIOM SUBSTRDEF:

| Vnin2 s 182.  (UNTEGER(nl) a INTEGER(n2) a STRING(s1) A STRING(s2)) =
- (SUBSTP(s1 ,s2,n1 ;n2) = (len(s2)=n2+-n1+1 A (Vn.(n2nl A n¢n2 =

n glst=(n=nl+ 1) gls2)))),
Vnl n2 sl s2. ((INTEGER{n1) A INTEGER{n2) A STRING(sl) A STRING(s2)) >

(SUBSTP(s1,52,nl ,n2) = substring(sl ,nl,n2)=s ,

Vsi 02. ((STRING(s1) A STRING{s2)) = (SUBS(s! ,s2) = 3n]l n2.SUBSTP(s1,52,nl ,n2)))s;

: AXIOM DISEQ: |
> Vel g2. (~(gl=g2) = gljg2) ;;

_ AXIOM EQS:

Vsl s2. ((STRING(s1) A STRING(s2)) = (Vn.(INTEGER(n) o> (n gl s 1 =n gl $2)) x sl *82))s3

AXIOM COMP: -
vf. (FORM(f) = (e{f)={LPARSYMc f) c RPARSYM),
vil (2. ((FORM(f 1) AFORM(f2))>(fl dis f2)=(e{fl) c ORSYM) c e(f2)),
Vil {2. ((FORM({{1) A FORM(f2)) = (f] impl {2)=(a(f1) c IMPSYM) c o(f2)),
vi. (FORM(f) 2 neg(f)={f impl FALSESYM)),

— Vil 2. ((FORM(f1)A FORM(f2)) > (f1 con f2)z(a{f1) c ANDSYM) ¢ e(f2)),
vx 12. ((INDVAR(x)A FORM(12)) ® (x gen 12)=(FORALLSYM c x ) c 2)

i vx f2. ((INDVAR(x) A FORM({2)) = (x 0 x 12)=(EXISTSYM ¢ x) c 2) 3
2.4 Sequences

AXIOM SEQ:

vsd. (SEQUENCE(sq) = sq=scar{sq) cc scdr(sq)) ,
Vsql sq2. ((SEQUENCE(sq!)A SEQUENCE(sq2)) » (sql *SLAMBDA

h scar(sq 1 cc sq2)=scar(sq2))),
Vsql 8q2. ((SEQUENCE (sql) A SEQUENCE(sq2)) » (sql #SLAMBDA =

scar(sql cc $q2)=scar(sql))),
Vsql sq2. ((SEQUENCE(sq! ) A SEQUENCE(sq2)) » (syl sSLAMBDA >

sedr{sql cc s92)=s¢dr(sq?))),
Vrgl sg2. ((SEQUENCE(sql) A SEQUENCE(sq2)) = (sql #SLAMBDA 2

scdr(sq 1 cc sq2)=scdr(sq 1) cc 5q2)),
voq. (SEQUENCE(sq)@ sq cc SLAMBDA=SLAMBDA cc sq),
vsq. (SEQUENCE(sq)® sq cc SLAMBDA=sq),
Vsql $92 sq3. ((SEQUENCE(sql)A SEQUENCE(sq2) A SEQUENCE(sq3)) @

(sql cc (sa2 cc 5q3)=(sql cc s42) cc £43))
VS. (STRING(s)  (slen(s)= 1 v s=SLAMBDA)),
vsq. (SEQUENCE(sq)  slen(sq)28),

Vsql sq2. ((SEQUENCE(sql)A SEQUENCE(sq2)) = slen(sql c c £42)=sten(sql )+slen{sq2))
Vsq. (SEQUENCE(sq) = 8 sgl sq=SLAMBDA),
Vs(Q. (SEQUENCE(sq) » 1 sglsq=scar(sq)),
Vn sq. ((INTEGER(n) A SEQUENCE(sq)) = ((n>1) 3 ((n sgl sq)=((n-1) sgl scdr(sq)))) ss

AXIOM SUBSEQDEF:

Vnl n2 sql sq2. ((INTEGER(n1) A INTEGER(n2) A SEQUENCE(sql) » SEQUENCE(sq2))
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(SUBSEP{sql,sq2,n1,n2)=(slen(sq2)=n2-nl « 1 A (Vn.(n2nianén2>
nsplsq2=(n=nl « 1) sgl sq NN),

Vnl n2 sql $q2.((INTEGER(nl)AINTEGER(n2)A SEQUENCE(sql) A SEQUENCE(sq2)) =
(SUBSEP(sql ,sq2,n1 n2) = subseq(sql ,nl ,n2)=5q2)),

Vsql sqg2. ((SEQUENCE(sql ) A SEQUENCE(s92)) » (SUBSSE(sql ,5q2) =
nl n2.(SUBSEP(sql ,sq2,n1 ,n2)))):s

AXIOM EQSQ:

Veql sq2. ((SEQUENCE(sql) A» SEQUENCE(sq2)) = (Vn.{nsglsqlansgl sq2) @ sql =8q2));;

2.5 Formulas

AXIOM FIND:

vsq. (FIND(8,LAMBDAsq): SEQUENCE(sq)),
Vn s sq. (FIND(n,s,5q)= INTEGER(n) A STRING(s) A SEQUENCE(sq) A

Insls2.(INTEGER(n) A STRING(s1) A STRING(s2) A (B<s A s<¢slen(sq)) A
(sl ={n sgl sq) a (s=(s] c §2)) AFIND(n~1,52,8q)));;

AXIOM FINDTOP:

vsq. (FINDTOP(8,SLAMBDA,sq)= SEQUENCE(sq)),
Vn s sq. (FINDTOP(n,5,5q)= INTEGER(n) a STRING(s) A SEQUENCE(sq) a

35162.(STRING(s1) ASTRING(s2) A (s] JLAMBDA) A (s=(s] c s2)) A
(s=scar(sq)) A FINDTOP(n-1,s2,5car(sq))));:

AXIOM TERM:

VsQ. (TERMSEQ(sq)= SEQUENCE(sq) A ((slen(sq)=] A INDVAR( 1 sgl sq)) v
(sten(sq)>1 A TERMSEQ(scdr(sq)) A (INDVAR(scar(sq)) v
Ins INTEGER(n) A STRING(s) A (s=car(scar(sq)) A OPCONST(s) a n=arity(s) a
FIND(n,cdr(scar(sq)),scdr (sq))))),

vi. (TERM) = STRING(t) A 35q.(TERMSEQ(sq) A t=car(sq)));;
AXIOM WFF:

vf. (ELF(f) = STRING(f) A (f=FALSESYM v PREDPARO(f) v 3n sq.{INTEGER(n) A
SEQUENCE(sq) A PREDPAR(car(f)) A n=arity(car(f)) » TERMSEQ(sq) A

FINDTOP(n,cdr(f),sq)))),

VsQ. (FRR(sq) = SEQUENCE(sq)A (sqfSLAMBDA) A (ELF(scar(sq)) v
(FRR(scdr(sq)) A 3s1s2.(STRING(sl) A STRING(s2) A
(((scar(sq)=neg(sl) A FIND{1 x1 scdrisq))) v
(scar(sq)=(sl dis 82) A FIND(2,(sl c s2),5¢dr(sq))) v
(scar{sq)=(s1 con s2) A FIND(2,(s1 c s2),5cdr(sq))} v

(scar(sq)=(s] impl s2) A FIND(2,(sl c s2),sedr(sq))) v
(scar(sq)=(s] gen 52) A INDVAR(sl) A FIND(l,s2,scdr(sq))) v
(scar(sq)=(sl1exs2) A INDVAR(sl) A FIND(1,s2,s¢dr(sq)))))}))),

vi. (FORM(f) = STRING(f) a 3sq.(FRR(sq)A fescar(sq)));;

26 Free andhound variables andthe substitution

AXIOM BOUNDV:

Vx n f.(GEB(x,n,)=INDVAR(x) A INTEGER(n) A FORM (f) A 3515211 .(STRING(s1)A
FORM(f 1) A STRING(s2) alen(sl)*i<n A n<(len(f}-len(s2)) a
(x=n gl )A({f=(s]1 C ((X genfl) C s2))) v (f=(s1 C ((xex f 1) C 3))))))ss
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kK

AXIOM FREEV:

Vx nf. (FRN(x,n,f) =INDVAR(x) A INTEGER(n) A FORM (f) ax=(nglf) a
~GEB(x,n,)),

vx f. (FR(x,f) = 3n.(INTEGER(n) A FRN(x,n,1)))s;

AXIOM FIRSTFRDF:

A Vx n f. (FIRSTFREE(x,n,f) = FRN(x,n,f) A» Vn] .(INTEGER(nl) A x=nl gl f 2
(nl 2n v GEB(x,nl ,})))),

Vx nf. (FIRSTFREE(x,n,a) = firstfraee(x,f)=n):;

AXIOM KFREEOCCDF:

Vx k nt. (KTHFREEOCC(x,k,n,f)= (INDVAR(x) A INTEGER(k) A INTEGER(n) A
= FORM(f) A (k=B A n=R) v

b (n=len() A Vn2.((INTEGER(n2) A n2>kthireeocc(x,k-1,{))2 ~FRN(x,n2,{))) v
(FRN(x,n,f}) A Vnl .((INTEGER(nl)A(nl<k A n1>8))>

3n2.(INTEGER(n2) A n2<n A KTHFREEQCC(x,n1,n2,{)))))),
Vx k nf. (KTHFREEQOCC(x,k,n,f) = kthfreeocc(x,k,f)=n),
Vx k n {. (KTHFREEOCC((x,k,n,f) © numbireeocc(x,n,f)=k),
Vx k nf. (numbfreeocc{x,n,f)=k> (KTHFREEOCC(x,k,n,f) v

Lo - (n<kthfreeocc(x,k,f) A n>kthfreeocc(x,k=1,{)))ss

AXIOM SUBSTDF:

V x t1§2.  (SBT(x,t,f 1 ,2)=((INDVAR{x) A TERM(t) A FORM{t 1) A FORM(f2)) 2
-- Vnl n2.((INTEGER(nl) A INTEGER(n2) A

n2=numbfrecocc(x,nlf 1 )k(len(t)=1))enl>
((<INDVAR(nlglfl)2 n | glfl=n2 g 112) A

\ (INDVAR(nlglf 1) o((FRN(x,nl {1)>SUBT(,f2,n2)) A
(-FRN(x,n1,{ 1) 2INVART(n1,f 1,n2,£2)))))),

Vt {2 n2. (SUBT(t,§2,n2)= (TERM(t) A FORM(f2) A INTEGER(n2) A
Vx2k.((INDVAR(x2) A INTEGER(k) A ((k glt)=x2))>
FRN(x2,n2=(len(t)=k),{2)))),

Vnl f 1 n2 2.(INVART(nlf 1 n2,§2)=(INTEGER(nl)A FORM(f 1) A INTEGER(n2) A

C FORM{{2)A (GEB(n2 gl12,n2,§2)=GEB(nlgifl,nl,f 1)) A
(FRN(n2 glf2,n2,12) =FRN(nl gl f1,n1,f1})) A
n 2gli2=nlgltl)),

vx tf1 2. ((INDVAR(x) A TERM(t) A FORM(f 1) A FORM(f2))>
(SBT (x,t, 1,{2)=sbt(x,t,{1)=12)),

v x tfl. ((INDVAR(x) ‘A TERM(t) A FORM(f 1)) oFORM(sbt{x,t,f 1)))ss

\ AXIOM SUBDEF:

Vxl x2 f 1 $2(SBV(x1l,x2,f 1,2) =((INDVAR(x1) A INDVAR(x2) A FORM(fl)A FORM(f2)) =
Yn.(INTEGER(n)> ((-INDVAR(nglt 1) on gl f 1 =ngif2) a
(INDVAR(n g | £1)2 ((FRN(x1,n,f1)> FRN(x2,n,{2)) A
(-FRN(x 1 ,n,f 1) 2INVARV(n,f1,{2))))))),

Vn fl f2. (INVARV(n,f 1 ,{2)= (INTEGER(n) A FORM(f 1) A FORM(f2) A
— (GEB(n glf2,n,f2)=GEB(nglfi,nfl)) A

\ FRN(n gl2,n,2)=FRN(n gl f1,n,f1)) A
n glf2=n gl f |),

Vxl x2 1 f2.((INDVAR(x])A INDVAR(x2) A FORMI{fl) A FORM({2))>
— (SBV(x1,x2,{1,{2)=sbv(x]x2,f 1)=2)),

vxl x2 f1.  ((INDVAR(x1) A INDVAR(x2)A FORM(f 1)) @FORM(sbv(x1,x2,f 1)));;

C_ :
2.7 Rules of inference

C
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AXIOM ANDIRUL:

vsq pfl pf2. (ANDI(sq,pt1,pt2)=(SEQUENCE(sq) A PROOFTREE(pf 1) A PROOFTREE(pf2) A
3f112.(scdr(sq)=(pf 1 cc pt2) A scar(sq)sf 1 con 2 A FORM(f 1) a
FORM(12) a f 1=scar(pfl) a f22scar(pt2)))),

vsq pf. (ANDE(sq,pf)= (SEQUENCE({sq) A PROOFTREE A 3fl .(scdr(sq)=ptA
FORM(f1) a (((scar(sq) con f 1 )=scar{(pf)) v
({(f 1 con (scar(sq))=scar{pf))))):;

AXIOM FALSERUL :

vsq pfl pf2. (FALSEl(sq,pt1 ,pt2)=(SEQUENCE(sq)A PROOF TREE(pf 1) A PROOFTREE(pf2) A
3f1.((sedr(sq)=(pf 1 cc pf2)) A (scar(sq)=FALSESYM)A FORM(f 1) A
(neg(x)=scar(ptl)) A (x| =scar(pi2))))),

vsq pf. (FALSEE(sq,pf)= (SEQUENCE (sq) A PROOFTREE(pf) A (scar(pt)sFALSESYM) a
scdr(sq)=pf));;

AXIOM IMPLRUL :

Vsq pfl pf2. (IMPLE(sq,pf1 ,pf2)=(SEQUENCE(sq) A PROOFTREE(pf 1) A
PROOFTREE(pf2) a Vf 1 .((sedr(sq)=(pf 1 cc pf2)) A FORM(f 1)
(scar(pf1)=(f1 impl (scar(sq))) A (scar(pt2)=t1)))),

vsq pf fl. ~  (IMPLID(sq,pf,f 1) = (SEQUENCE(sq) » PROOFTREE(pf) A scdr(sq)=pf a
FORM(f 1) a 3f2.((scar(sq)=(flimpl x2)) A FORM(f 1) A (f2=scar(pf))A
In. (INTEGER(n) A fl=(nsglp)))));s

vsq pf. (IMPLI(sq,pf) = IfIMPLID(sq,pf,f ))s3

AXIOM NECRUL:

vsq pf fl. (NOTID(sq,pf,f 1) =(scdr(sq)=pf A SEQUENCE(sq) A PROOFTREE(pf) A
FORM(f 1) A 3n.((scar(pf)=FALSESYM)A scar(sq)=neg(f 1) A
INTEGER(n) A ((n sgl pf)=f 1)))),

vsq pf. (NOTI(sq,pf) = I{.NOTID(sq,pt,)),
vsq pf tl. (NOTED(sq,pf,f 1) =(scdr(sq)=pt A SEQUENCE(sq) A PROOFTREE A

FORM(f) A 3n.((scar(pf)=FALSESYM) A INTEGER(n) A
(n Sg! pf )=neg (scar (sq)))))),

vsq pf. (NOTE(sq,pf) = 3{.NOTED(sq,pf,1));;

AXIOM ORRUL:

vsq pf. (ORI(sq,pf)= (scdr(sq)=pt A SEQUENCE(sq) A PROOFTREE A
) 3f142.((scar(sq)= (f 1 dis f2)) A FORM(f1) A FORM(f2) A (f 1 =scar{pf)) v

(f2=scar(pt))))),

Vsq pflpf2 pf3f 1 12.(ORED(sq,pf 1 ,pf2,pf3,f 1 ,§2)=2(SEQUENCE(sq) A PROOFTREE(pf 1) A
PROOFTREE(pf2) A PROOFTREE(pf3) A FORM(f 1) A FORM(f2) A
(sedr(sq)=(pt] cc (pf2 cc pf3)) A
(scar(pf 1)=(f1 dis 12))A(scar(pf2)=scar(sq)) A (scar(pf3)=scar(sq)) A
3nl .{nl sgl pf2)=f 1) A 3nl .(nl sgl pt3)=12)))),

Vsq pf 1 pf2 pf3. (ORE(sq,pf1,pf2,pf3)=31112.0RED(sq,pf 1 ,pf2,pf3,f 1,12));3

AXIOM EXRUL :

vsq pf x t. (EXI{sq,pf,x,t)2 (SEQUENCE(sq) A PROOFTREE(pf) A INDVAR(x) A TERM(t)A
3f1.((scdr(sq)=pf 1) A (scar(sq)=(x ex f 1)) AFORM(f 1) A
scar(pf)=sbt(x,i,f 1)))),

Vsq pf 1 pf2 xI x2 f1.(EXED(sq,pf 1 ,pf2,x1,x2,f 1) s(SEQUENCE(sq) A PROOFTREE(pf 1) A
INDVAR(x1)A INDVAR(x2)A (sedr(sq)=(pf 1 cc pf2)) A FORM( 1) A
(scar{pfl)=(xlexf1)) A (scar(sq)=scar(pt2)) A
In.((nsglpf2)=sbt{xl,x2,f1) A INTEGER(n) A EXAPPL(x2,p2,f 1))))),

Vsq pf 1 pf2 xl x2 (EXE(sq,pf 1,pf2,x1,x2)=EXED(sq,pf 1 x1,x2)),
vx pf {. (EXAPPL(x,pf,!)= (INDVAR(x) A PROOFTREE(pt)AFORM(f) A ~FR(x,scar(pf))A
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~FR(x,{)AVt 1 (DEPEND(pf,f1} > ~FR(x,f1))));:

AXIOM GENRUL.:

vsq sql x a. (GENE{sq,5qlx1) = (SEQUENCE(sq) A INDVAR({x} A TERM(t) A scdr(sq)=sqlA
PROCFTREE(sql) A 31.(FORM(f) A scarisql )=xgenf a
scar(sq)=sbi(x,1,{))}),

i vsq sql xI x2. (GENI(sq,sq1,x1,x2)= (SEQUENCE(sq) A INDVAR(x 1) A INDVAR(x2) A
scdr(sq)=sq 1 APROOFTREE(sq 1) A 3f.(FORM(f) A (scar(sq)sx1 gen f) A

— scar(sql )=sbt(x1,x2,f) A APGENI(x2,sq1)))),
VX Sq. (APGENI(x,5q) = (INDVAR(x) A Vi.(DEPEND(sq,{} = ~FR(x,f))) A

PROOFTREE (sq)),

vsq. (PROOFTREE(sq) = 3x.(INDVAR{x) A APGENI(x,sq})) 3;

C

2.8 Deduct ion

AXIOM PROOF:

Vsq. (PRCOFTREE(sq)= ((SEQUENCE(sq) A FORM(sq)) v
3pf.(PROOFTREE(pf) A (ORI(sq,pf) v ANDE(sq,pf) v FALSEE(sq,pf) v

 — NOTiH(sq,pl) v NOTE(sq,pt) v IMPLI(sq,pf))) v
3pf x t.(PROOFTREE(pt) A INDVAR(x) A TERM(t) A

(GENI(sq,pf,x,t) v GENE(sq,pfx,t) v EXl(sq,pf,x,1})) v
| 3pf 1 pf2.(PROOFTREE(pf 1) A PROOFTREE(pf2) A
L (ANDI{sq,pt!,pf2)v FALSEl(sq,pf 1,pf2) v IMPLE(sq,pt 1 ,pf2))) v

3pf 1 pf2 xl x2.(PROOFTREE(pt1)A PROOFTREE (pf2) A INDVAR(x1) A
INDVAR(x2) A EXE(sq,pf!,pf2,x1 x2)} v

3pf 1 pf2 pt3.(PROOFTREE(pfl) A PROOFTREE(pf2) A PROOFTREE(pf3) A
ORE(sq,pt 1 ,pf2,p13)))) 53

| AXIOM DEPNDG:Vsq |. (DEPEND{sq,f)= (SEQUENCE(sq} A FORM(f) A SUBSSE(f,sq))),
vsq f. ((SEQUENCE(sq) A FORM(f) A sq=f)= DEPEND(sq,f)) ;;

AXIOM DEPEND:

- Vpf pfl f. {({(PROOFTREE(pf) APROOFTREE(pf I) a (pf 1 =scdr(pt)))=
(DEPEND(pf,f) = DEPEND(pt! {))) =

(ORI(pf,pt 1) v ANDE(pf,pt 1) vFALSEE(pt,pf 1) v
3fL.(FORM(f I )A(NOTID(pf,pf 1 £1) vNOTED(ptpt1 £1) Vv

IMPLID(pt,pf 1 1) A f14f)v
3x t.(INDVAR{(x) A TERM(t) A GENKpf,pf 1 x,t) v

GENE (pf,pt 1 x,t) v EX)(pt,pt 1 ,x,1)0)) 5

AXIOM DEP:

Vpf pfl pf2 f. (((PROOFTREE A PROOFTREE(pf 1) A PROOFTREE(pf2)A
(pf 1 cc pt2=s5cdr(pf)) v (pf2 cc pfl =scdr(pf))))=> (DEPEND(pf f) =
(DEPENO(pf 1 ,f) vDEPEND(pf2,1)})))=(ANDI(pf,pf 1 ,pf2) v
FALSEI(pf,pf 1 ,pf2)vIMPLE(pf.pt 1 ,pf2)v
3x 1x21 1 (EXED(pt,pf 1 ,pf2,x1,x2,41)AEAE1)))s3

AXIOM DEPND:

Vpf pfl pf2 pf3f. (((PROOFTREE A PROOFTREE(pf 1) A
PROOFTREE(pf2) A PROOFTREE(pf3) A

({((pf! cc (pt2 cc pi3))=sedript)) v
({pf} cc (pf3 cc pi2))=scdr(pf)) v
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((pf2 cc (pfl cc pt3))=scdr{pf))v
((pf2 cc (pf3 cc pfl))=scdripf)) v
((pf3 cc (pfl cc pf2))=scdripf)) v
((pf3 cc (pf2cc pf 1))=sedr(pf))))=
(DEPEND(pf,f) =(DEPEND(pf 1,1) v DEPEND(pt2,{) v DEPEND(pt3,f))))=

3f1 12.(ORED(pf,pt] ,pf2,pf3,§1,12) A 41] A 142)

AXIOM NDEPND:

Vpfl pf2 f. ((NOTID(pf 1,pt2,f) v NOTED(pf 1 ,pf2,f) v tMPLtD(pf 1 ,pf2,f)) =
~-DEPEND(ptl,f)),

vpf 1 pf2 pf3 xI x 2 f(EXED(pfl,pf2,pt3,x1,x2,f)> ~DEPEND(pf 1 1) ,
Vpfl pf2 pf3 pi4 £1 12.(ORED(pf 1,pf2,pt3,pf4,{1,12)> . DEPEND(pf1,f1) » ~DEPEND(pt1 §2))ss

AXIOM PROVABLE:

vA. (BEW(f)= FORM(f) a 35q.(PROOFTREE(sq)A fsscar(sq) A
Vi 1.(DEPEND(sq,f1) => AXIOM(f 1))))s3

AXIOM THEORY:

vx f. (AXIOM(f) == FR(x,{)AFORM(f));;

AXIOM INFVAR:

Vs.3x.Vn. n gt 84x)
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~ APPENDIX3

THE PROOF OF “IF f IS A WFF ALSO .xf IS A WFF”

- 3.1 FOL commands and printoutin the many sorted logic
— commands

VE WFF1, x gen f;
TAUTEQ (x gen f= x gen f) v (x gen f= x ext);
UNIFY ==:82828] =:

~ TAUT ===} 3s

proof

t FORM(x gen £)=(ELF(x gen f)v(Ixlf1.{{x gen H)=(x] gen f 1 Iv(x gen f)=(xiexfl))v
(3f112.((x gen f)=(f1 dis f2)v({x gen f)=(fl con f2)v(x gen f)=(flimpl {2)))v

oe 3fl.(x gen f )=neg(fl))))

2 (xgenf)=(x gen f)vix gen f)=(x ext)

3 3x1fl.{{x gen f)s(xl gen fl)vixgenf)=(xl ex f1))

4 FORM(x gen f)
~

3.2 FOL commandsinthe earlier axiomatization

DECLARE INDVAR A U;

label hpt 1;

. ASSUME FORM(f) A INDVAR (x1) 3
label teol

ASSUME Vf 8.(SEQUENCE(sq)AsqF SLAMBDA 2 (STRING(s)=, (8s cc 8q) # SLAMBDA))s
label teo2 ;

. ASSUME Vs 8q.{STRING(s)ASEQUENCE(sq)s scar(s cc sq)=8);
label teo3 ;

ASSUME Vs 8q.(STRING(sJASEQUENCE(sq)= sedr(s cc sq)= sq);
g label te0d ;

A SS UME Vsq.(SEQUENCE(sq)AsqFSLAMBDA = find(1 ,scar(sq),sq));
label teob5 ;

"ASSUME Vi x.(FORM(f)AINDVAR(x) 2STRING(x g e n f))3
iabel teob;

ASSUME Vs $q.{STRING(sJASEQUENCE(sq) oSEQUENCE(s cc sq));

on label teo7 ;
ASSUME Vx.(INDVAR(x)> STRING(x));

Ve WFF2 f ;

LABEL ass! ;
taut 3sq.(FRR(sq)Af=scar(sq)) | :=;
ASSUME FRR(SQ) A tf =SCAR(SQ) ;

. Ve WFFI1 Ss Q ;
Vo teol SQ ,xl gen f;

.
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Ve teo2 x| gen f,5Q;
Ve teo3 x| gen {,5Q;
Ve teo4d SQ;

Ve teo5 f x1;
Ve teo7 xl;

Ve Wi 1 (x 1 gent) cc SQ;

TAUTEQ =-:w2u282u2u2%]0][sl+f : s26x]1] 1:=;
Unify ==:N282828282 =,

Ve teob x| gen f,5Q;
Ve WFF2 xl gent;
tauteq =:#282#1[sqe(x1 gen f) cc SQ] 1:=;
unify ==:4242 =;
taut FORM(x1 gen f) 1:=;
Je ass 1,-,5Q;

Di hpt!l,=y
VI =x];

3.3 Printout of-the proof in the earlier axiomatization

1 FORM(f)AINDVAR(x1) (1) === ASSUME

2 Vsqs.((SEQUENCE(sq)AsqfSLAMBDA)>(STRING(s)2(s cc sq)dSLAMBDA)) (2) --- ASSUME

3Vssq.((STRING(s)ASEQUENCE(sq))+scar(s cc sq)zs) (3) --- ASSUME

4 V8 8q.((STRING(s)ASEQUENCE(sq))=scdr(scc sq)=sq) (4) --- ASSUME

5 Vs5q.((SEQUENCE(sq)A~qfSLAMBDA)=find( 1 ,scar(sq),sq)) (5) --- ASSUME

6 Vi x.((FORM(f)AINDVAR(x))=>STRING(x gen f)) (6) --- ASSUME

7 V88q.((STRING(s)ASEQUENCE(sq))>SEQUENCE(s ¢¢ 6q)) (7) --- ASSUME

8 Vx.(INDVAR(x)>STRING(x)) (8) --- ASSUME

) 9 FORM(f)=(STRING(f)AJsq.(FRR(sq)Af=scar(sq))) --- VE WFF2 ¢

10 3sq.{(FRR(sq)Af=scar(sq)) (1 23456 7 8) --- TAUT 1:9

1 1 FRR(SQ)Af=scar(SQ) (1 1) -— ASSUME

12 FRR(SQ)=(SEQUENCE(SO)A(SOFSLAMBDAA(ELF(scar(SQ))V{FRR(scdr(SQ))Adsi
s2.(STRING(s 1)A(STRING(s2)A((scar(SQ)=NEG(s 1 )atind(1,51,5¢dr(SQ)))v{(scar(SQ)
=(sl dis s2)Afind(2,51 ¢ x2,5¢cdr(SQ)))v{(scar(SQ)=(s] c o n s2)Afind(2,s1 ¢ §2,
sedr(SQ)))v{(scar(SQ)=(s! impl s2)Afind(2,s1 c s2,5¢dr(SQ)))v((scar(SQ)=(sl gen
s2)A(INDVAR(s 1 )Afind( 1,82,5¢dr(5Q))))v(scar(SQ)=(s1exs2)A(INDVAR(s1)Afind(1,
§2,5¢dr(SQNNINIMNINN) - - - VE WFFI SQ

13 (SEQUENCE(SQ)ASQFSLAMBDA)>(STRING(x] gen f)=2((xl gen f) cc SQ)ASLAMBDA) (2)
--- VE 2SQ,xl gen f
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> _ 14 {STRING(x! gen f)ASEQUENCE(SQ))=scar((xl gen f) cc SQ)=(x] gen f)
(3) --- VE 3 x! gent,SQ

15 (STRING(x | genSEQUENCE(SQ))=scdr({x 1 f} cgenc SQ)=SQ ( 4 ) --- VE 4 x1 gen £,SQ

= i6 (SEQUENCE(SQ)ASQSSLAMBDA)=find(],scar(5QJ),5Q) (5) --- VE 5 SQ

17 (FORM(f)AINDVAR(x1))=¢etring(xl gen f) (8) --- VE 6 {,x]

18 INDVAR(x1)>STRING(x 1) (8) --- VE 8 «xI

1 9FRR((xt gen f) cc SQ)" (SEQUENCE((x1genf) cc SQ)A(((x1gen f) cc U)f

3 = SLAMBDAA(ELF(scar({xigenf) cc SQ))v(FRR(scdr((x| gsn f}ezSQ))A
3s 152.(STRING(s 1 )A(STRING(s2)A((scar((s] gant) cc SQ)=NEG(sl1)A
find(1,s1 ,scdr((xI gen f} cc SQ)))v((scar{(xlgan f) cc SQ)=(sl dis s2)A

_ find(2,51 c s2,5cdr({xlgenf) cc SQ)))v((scar({xl gen f) cc SQ)=(sl con s2)A
finc:2,81 c s2,scdr{(xlgenf) c c SON)v({scar{(x] g en f) c c SQ)=(s!limpis2)A
find(2,s1 c s2,scdr((xlgenf)cc SQN))v(lscar{(xlgenf) c c SQ)=(sl g e n s2)A(INDVAR(s] )a
find(1,s2,5¢cdr((x] gen f) c c SQ))))viscar{(x] geni) c c SQ)=(s]l ex s2)A(INDVAR(s1)A

L — find(1,s2,scdr{(xl gen f) cc SQN) --- VEWFFI (xl gent) ¢c c SQ

20 STRING(xI)A(STRING(f)A((scar((x] gen f) cc SQ)=NEG(x1)A
find(1,x1,scdr((xl gent) c c SONIv({scar((xlgant) cc SQ)={x1 dis f)A

— find(2,x1 c f,scdr({xigent) cc SQ)))vi(scar({xl gen f) cc SQ)=(xl con f)A
find(2,x1 c f,scdr{{x!gen f) cc SQ)))v((scar((x]l gan f) cc SQ)=(xl impl f)A
find(2,x1 ¢ f,scdr(ixigenf) c c SQ)NIv({scar({x]l gen f) cc SQ)=(xl g e n F)A(INDVAR(x1)A

. find(1,f,sedr((xl gent) c c SQ))))viscar((x] gent) c c SQ)=(xl ex )A(INDVAR(x1)A
tind(1,f,sedr((xl gen f) cc SQM 23 4567811) --- TAUTEQ 1:19

21351 s2.(STRING(s1 YA(STRING(s2)A{(scar({s]l pon f) ¢ c SQ)=NEG(s1)A

_ find(1,st,sedr{(x] germ 1) cc SQMv(scar({xigenf) cc SQ)=(sl dis s2)A
find(2,51 c s2,scdr{(xlgenf) cc SQ))vi(scar((xl gen f) cc SQ)={s! con s2)A

: find(2,51 c s2,5¢dr({xl gen f) cc SQNIv((scar({x] gen f) cc SQ)=(s] imp! s2)A
find(2,s1 c s2,scdr({xl gen f) cc SQ)))Ivi(scar{(xl gen f) cc SQ)=(sl gen s2)A(INDVAR(s1)A
find(1,52,5¢cdr((x] gen f) cc SQ)NIviscar((x] gen f) cc SQ)=(slex s2)A(INDVAR(s1)A
find(1,82,sedr((x1 gen f) cc SQN (1 23 456 78 11) --- UNIFY 20

] 2 2 (STRING(x1 g e n f)ASEQUENCE(SQ))>SEQUENCE((x1 g e n f) cc SQ) (7) ===VE 7 xI GEN ¢,5Q

LC 2 3 FORM(x1 g e n f)=(STRING(x | gen f)A3sq.(FRR(sq)A(x] g e n f)=scar(sq))) --- VE WFF2 x] gen f

24 FRR((x]1 gen f) cc SQ)A(xlgenf)=scar({xlgenf) cc SQI(1 23456 7811) TAUTEQ 1:23

2 5 3sa.(FRR(sg)A(xl gen f)=scar(sq))(1 23 456 7811) --- UNIFY 24

LC 26 FORM(x! gen f) (1 234567 8 il) === TAUT 1:25

27 FORM(x! gen f) 1 234567 8)---3E 10 26 U

2 8 (FORM(H)AINDVAR(x1))oFORM(xl genf) (2 3456 7 8) ---2ll27

29 Vf x|.((FORM(f)AINDVAR(x1 ))>FORMI(x] gen f)) 23 456 7 8) ---VI 28 xlex] fet

L_

.
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APPENDIX 4

THE PROOF OF THE EQUIVALENCE BETWEEN $BY AND SBT FOR VARIABLES

4.1 FOL commandsin the many sorted logic

LABEL ARITHI ; ASSUME Vn x.(nk(len(x)=1)=8);
LABEL ARITH2; ASSUME Vn. (B+n=n);

LABEL ARITH3; ASSUME Vx. (len(x)=~1)=8;
LABEL ARITH4; ASSUME Vn. (n=8)=n;
LABEL STRING1 ; ASSUME Vx. 1 gl x = x;

Proof of the First Lemma: Vx f n.(SUBT(x,f,n) 2 FRN(x,n,f))

LABEL HPTLEM; ASSUME SUBT(x,f,n);
Ve SUBSTDF Il,x,f,n;
TAUT =:82,==,=3
Ve-x, |;

Ve STRING1 ,x$ substr = in ==;

Ve ARITti3 x3 substr = in ==}
Ve ARITH4 ,n; substr = in ==}
TAUTEQ FRN(x,n,f),HPY LEM1 :=;
2) HPTLEM,=;
LABEL LEMMA 1 3Vi=,x,{,n;

Proof of the Second Lemma: Vnf 1 {2.(INVART(n,f 1 ,n,f2)2INVARV(n,f!,{2))

Ve SUBSTDF2,n,f1,n,{2;
Ve SUBDEF 1 ,n,f 1,2;
TAUT ==:#t] = =:8] =o= co
LABEL LEMMAZ2; Vi =,n,f1,{2;

Proof of the Main Theorem: xl x2f 1 f2.(SBT(x1,x2,f 1 ,{2)2SBV(x1,x2,f1,2))

LABEL HPT; ASSUME SBT(x1,x2,f1,{2);
Ve SUBSTDFO,x 1 ,x2,11,12;
TAUT =:#2,HPT,-;

VE =,nl,nl;
Ve ARITHI,numbfreeoce{x1,nlIl) x2; substr = in ==3

. Ve ARITH2,nl:

Ve SUBDEFO x I,x2,f1,{2;
Ve LEMMA1 x2,{2,nl;

VelLEMMA2,n 1 f1,f2:
TAUTEQ ===:#281[nenl},HPT+ | :=;
Vi=,nlen;
TAUTEQ ====~=:8] HPT+]|:=;

| HPT,=s
VI-x1x2,t1,f2

4.2 Printout of the proof in the many sorted logic
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mo lV nx.(nx(len(x)=1))=0 (1)

2 Vn(Oen)=n (2)

I 3 Vx.(len(x)-1)=0" (3)

~ 4 ¥Yn.(n=0)=n ( 4)

5 Vx.(l gl x)=x (5)

6 SUBT(x,f,n) (6)

N . 7 SUBT(x,f,n)=Vx2 k.((k gl x)=x225FRN(x2,n=(len(x)=k),f))
8 Vx2 k.{(k gl x)=x22FRN(x2,n-(len(x)=k),f)} ( 6 )

9 (1 glx)=xoFRN(x,n=(len(x)=1){) (6)

10 (1 gl x)=x (5)

= 1 1 xax>FRN(x,n=(len(x)=1),f) (5 6)

1 2 (len(x)=~1)=0 (3)

1 3 xax2FRN(x,n=0,f) (3 5 6)

~ 1 4 (n=0)zn (4)

1 5 x=x>FRN(x,nf) (3 4 5 6)

1 6 FRN(x,n,f) (3 4 5 6)

1 7 SUBT(x,f,n)oFRN(x,n,f) (3 4 5)

— 18 Vx f n{SUBT(x,f,n)oFRN(x,n,)) (3 4 5)

19 INVART(n,f 1 ,n,f2)=((GEB(nglf2,n,i2)=GEB(ngli1 ,n,f1))A((FRN(n gi {2,n,12)a
) FRN(nglt1 ,nf1 )A(ngif2)=(ngi 11)))

20 INVARV(n,f 1 12)=((GEB(ngl12,n,£2)=GEB(n gl f 1,0,11))A((FRN(n g1 12,n,§2)3
FRN(n gif1 ,nf 1 NA(nglf2)=(nglfl)))

B 2 1 INVART(n,{1,n,{2)-INVARV(n,f1,{2)
22 Vnf1l{2.(INVART(n,f1 ,n,{2):INVARV(n,{],{2))

y 2 3SBT(x1,x2,{1,{2) (23)

24 SBT(x1,x2,f1,42)¥niIn2.(n2=((numbfreeocc{xinl f1)k(len(x2)=1))+nl)>
((\INDVAR(nlglt 1 )a(nlglf1)=(n2 gl 12))A(INDVAR(nl gl f 1)a((FRN(x1,nl,f 1)
SUBT(x2,f2,n2))A(-FRN(x1,nl 1 )2INVART(nl,f1,n2,{2))))}))
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25 Vnl n2.(n2=((numbfreeocc(x,nl,f 1 )k{len(x2)=1))enl)a((<INDVAR(ni gl f 1 )>
(nlglf1)a(n2glf2))A(INDVAR(nlglf1 )2((FRN(x] nl ,f1 )2SUBT(x2,{2,n2))A
(~FRN(x1,nl,{ 1)2INVART(nl,{1,n2,i2)))))) (23)

26 nl =((numbfreeocc(x 1 nlf 1)%k(len(x2)=1))enl1)>((~INDVAR(nlgif 1 )2(nlglf 1)=
(nl gl f2)IA(INDVAR(n1 gi  1)2((FRN(x1,n1,f 1)3SUBT(x2,2,n1 ))A(-FRN(x1,nl f 1 )2
INVART(nl,f1 ,nl,12))))) (23)

2 7 (numbfreeocc(x] nl f1)*(len(x2)=1))=0 (1)

28 nl =(0+n1)=2((-INDVAR(n] gl f 1 )2(nl gl f1)=(nl gl {2))A(INDVAR(nl gl f 1 )>
((FRN(x],nl,f1)2SUBT(x2,f2,n1))A(~FRN(x1,nl,f 1)2INVART(nl ,f1,n1,§2))))) (1 23)

2 9 (0+nl)=nt (2)

30 SBV(x!,x2,f1,2)=Vn({~INDVAR(nglf 1)2(nglf1)=(ngl{2))A(INDVAR(n gl f1)}>
((FRN(x1,n,f1 )2FRN(x2,n,{2))A(-FRN(x{ ,n,f1)2INVARV(n,f1,{2)))))

31 SUBT(x2,{2,ni)>FRN(x2,nl,f2) (3 4 5)

32 INVART(n1,f1,nl 2)5INVARV(nl {1,2)

33 (~INDVAR(nlglf 1)=(nlglf 1 )2(nlgl {2))A(INDVAR(nIgi t1)>((FRN(x1 ,nl ,f1)=>
FRN(x2,n1,12))A(-FRN(x1,n1,f1)oINVARV(nl,t1,f2)))) (1 23 4 5 23)

34 VYn.((~INDVAR(n gl f1)2(n gl f 1)=(n gl {2))A(INDVAR(n gl f1)2((FRN(x},nfl)>
FRN(x2,n,{2))A(~FRN(x1,n,f 1)2INVARV(n,f1,{2))))) (1 2 3 4 5 23)

3 55BV(x!,x2,1,2) (1 2 3 4 5 23)

36 SBT(x1,x2,f1,§2)=258v(x1 x2,{1,f2) (1 2 3 4 5)

37 Vxl x2 t112.(SBT(x],x2,{1,2)>5BV(xl ,x2,{1,{2)) (1 2 3 4 5)

4.3 FOL commands in the earlier axiomatization

) LABEL ARITHI ; ASSUME Vn x.({INTEGER(n) AINDVAR(x))=2(nx(len(x)=1)=8));
~- LABEL ARITH2; ASSUME Vn. (INTEGER(n) 2(8+n=n));
LABEL ARITH3; ASSUME Vx. (INDVAR(x)>((len{x)~1)=8));

LABEL ARITH4; ASSUME Vn. (INTEGER(n) 2(n-8)=n);
LABEL STRING; ASSUME Vx. (INDVAR(x)> 1 gl x=x);

Proof of the First Lemma:

Vx n L.{{INDVAR{x)A INTEGER(n) A FORM(f) A SUBT(x,f,n)) =FRN(x,n,f))

LABEL HPTLEM; ASSUME INDVAR(x)AFORM(f)AINTEGER(n)ASUBT(x,f,n); |
LABEL FACT ; ASSUME INTEGER( 1);
Ve SUBSTDF 1 ,x,f,n;

TAUT =:8282082082=== =:
Ve=x,1;
Ve STRING1 ,x; TAUT =:#2,HPTLEM:~;substr= in ===;
Ve ARITH3,x; TAUT =-:42,HPTLEM:=;substr= in ===:
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Tall Ve ARITHA,n; TA UT ~:02,HPTLEM:=ssubsty = in ===;
TAUTEQ FRN(x,n,f),HPTLEM:=;
ol HPTLEM,=;
LABEL LEMMA 1:Vi=x{,n:

BN Proof of the Second lemma : Vk fl112{INVART{k,{]k,12) 2 INVARV(Kk,{1,f2))

Ve SUBSTDF2,k,{1,k,{2;
~= Ve SUBDEF 1 ,k,f 1,{2;

TAUT ==:#}e~:8] ==
LABEL LEMMAZ: Vi =k,{1,12;

C Proof of the Main Theorem:
Vxl x 2 112. ((INDVAR(x]) aA INDVAR(x2) A FORM(f1} A FORM(f2) A SBT(x1,x2,f},{2))>

SBV(xI,x2,{1,2))

LABEL HPT; ASSUME INDVAR(x 1 JAINDVAR(x2)AFORM(f1JAFORM(f2)ASBT(x1 x&f 1,12);

LABEL THTERM; ASSUME Yx2.(INDVAR(x2)2 TERM(x2));
y— VE THTERM,x2;

LABEL THNFRO; ASSUME VxI nl{LINTEGER(numbfraeoce(xl nl ,f 1));

| Ve SUBSTDFO,x1 x2,4 1,02;
TAUT =:#222028282 HPT:=3
VE =,nl,nl;

| LABEL AUX:ASSUMEINTEGER(n]);
VE THNFEO,x 1 ,nl,f 1;

Ve ARITH!I,numbfreaocc!x 1,n1,f 1 )x2; TAUT =:#2,HPT:=:substr= in a
~ Ve ARITH2,n 1 ;TAUT ~:#2,HPT:=:SUBSTR=IN ===;

TAUTEQ =:842 HPT:=;
Vo SUBDEFO x 1 ,x2,11,12;

Ve LEMMA | x2,{2,n!;

: Ve LEMMA2,n 1,£1,12;

-TAUTEQ ===:82828]|82[n&nl], HPT :=;
of AUX,=:

Vi=nl;
TAUTEQ ======:#]} HPT:=~s
>i HPT,=;
VI =x1,x2,f1,§23

4.4 Printout o f the pronf in the carlier axiomatization

1 Vn x.({(INTEGER(n)AINDVAR(x))>(nk(len(x)-1))=0) (1)

2  Vn(INTEGER(n)>(0+n)=n) (2)

3 Vx.{INDVAR(x)>(len{x)=1 }=0) (3)
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4  Yn{INTEGER(n}2ir-0j=n}) (4)

5 ¥Yx./INDVAE(x)=(l gI x)=x) (5)

6 INCYAR(x)A(FORM{{IA(INTEGER(nN)ASUBT(x,f,n})) ( 6)

7 INTEGER(1) (7)

8 SUBT(x,f,n)=(TERM(X)A(FORM()A(INTEGER(n)AVx2 k.((INDVAR(x2)A(INTEGER(K)A(Kk g | x)
ex2))2FRN(x2,n=(lanix)-k),1)))))

9 Vx2 kL{INDVAR(x2)A(INTEGER(K)A(K gl x)=x2))=oFRN(x2,n=(len(x)=k),f)) ( 6 )

iC (IMDVAR()AINTEGER(] JA(I gl x)=x))2FRN(x,n=(len{x)=1),§) ( 6 )

11 INDVAR(x)>(lgl x)=x (59

12 {igix)=x(5 6 7

13 UMCYARDGAINTEGER(] Jax=x)}oFRN(x,n=(len(x)=1){} (5 6 7)

14 INDVARx)2{en(x)= 1 )=0 (3)

15 (lenix;=1}=0 (3 5 6 7)

16 (INDYAROOAINTEGER(1 JAx=x))2FRN(x,n=0,f) (3 56 7)

1 7 INTEGER(n}={n=0)=n (4)

18 (n-0)=n(3 4 5 6 7)

19 (INDVAR(x)A(INTEGER( 1 )Ax=x))oFRN(x,nf) (3 4 5 6 7)

20 FRN{x,n{) (3 4 5 67)

21 (INDVAR(x)A{FORM(f)A(INTEGER(n)ASUBT (x,1,n))))oFRN(x,n,{) (3 4 5 7)

) 22 Vx f n.((INDVAR{x}A(FORM({)A(INTEGER(n)ASUBT(x,f,n))))=FRN(x,n,f)} 3 4 57 )

23 INVART(K,{ 1,k §2)=(INTEGER(K)A(FORM(f 1 )A(INTEGER(K)A(FORM(f2)A((GEB(k gl 2,k,12)s
GEB(kglf1 ,kf1 DA(FRN(kgI12,k,f2)=FRN(kght 1 kf1 DAKgl £2)=(k gl f 1)))))))

24 INVARV(K,{1,{2)=(INTEGER(k)A(FORM(f)A(FORM(f2)A((GEB(k gl 12,k12)=GEB(k gi f 1 ,kf1))a
((FRN(k gl f2,k,f2)=FRN(kgif1 kf 1 DA(k gl f2)=(k gl f 1))))))

25 INVART(k,f1,k,{2)=INVARV(k,f1,{2)

26 Vki1$2.(INVART(k,f1 k,f2):INVARV(k,{],12))

27 INDVAR{x1)A(INDVAR(x2)A(FORM(f 1)A(FORM(t2)ASBT (x1 ,x2,f 1 ,£2)))) (27)

2 8 Yx2.(INDVAR(x2)>TERM(x2)) (2 8)
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LT 2 9 INDVAR(x2)>TERM(x2) (28)

30 Vx 1 nl f LINTEGER(numbireeocc(x | ,nl,f1)) (30)

Vy e— 31 SBT(x1,x2,f1,§2)3((INDVAR(x]1)A(TERM(x2)A(FORM(f 1 JAFORM(f2))))oV¥nin2.((INTEGER(n! )A
(INTEGER(n2)An2=({numbfreeoce(x1,nl,f 1 )%{len{x2)=1))+n1)})2((~INDVAR(nigl f 1)
(n 1 glf1)2(n2gl{2))A(NDVAR(nlglf [)=2((FRN(xI,nl,f1)2SUBT(x2,{2,n2))A
(~FRN(x 1,n1,f1)=INVART(nl,f1,n2,(2))))))

32 Vnl n2.{(INTEGER(n1)A(NTEGER(n2)An2={(numbfreeocc(x!,nl,f 1 }xk(len(x2)=~1))*nl)))>
((~INDVAR(nlgl tf 1 )2(nlgifl)=(n2gl{2))A(INDVAR(nlgl f 1 )2((FRN{x1 ,nl {1 )>

SUBT(x2,2,n2))A(-FRN(x1,n1,{1)2INVART(nl { 1,n2,£2))))) (27 28 30)

L 33 (INTEGER(n) JA(INTEGER(nl)An]=({numbfreeocc(xlnl,f1)k(len(x2)=1))+nl)))>(
(~<INDVAR(nl gl f 1 )2(nl gl f 1)=(nlglf2))A{INDVAR(nlgif 1 )2((FRN(xl1,nl,f1)>

_ SUBT(x2,2,n1))A(=FRN(x1,n1,{1)2INVART(n]1 1,01,{2)}))) (27 28 30)

3 4 INTEGER(nl) (34)

Lo 35 INTEGER(numbfreeocc(x1,nl,tl})) (30)

36 (INTEGER(numbfreeocc(x1,nl,{ 1))AINDVAR(x2))>(numbfreeocc(x1,nl,f 1)%(len(x2)-1))=0 (1)

_ 37 (numbfreeocc(x1 ,nl,fl)k{len(x2)=1))=0(1 27 28 30 34)

3 8 (INTEGER(n1 )A(INTEGER(n1)An12(0+ni)))>((-INDVAR(nl g | f1)2(nl g | f1)=(nl gl £2))A
. (INDVAR(nl] gl f 1 )2((FRN(x1,nl fl )}>SUBT(x2,f2,n1 ))A(~FRN(x1,nl,f1)>
- INVART(n1,f 1,n1,12))))) 0 27 28 30 34)

| 3 9 INTEGER(n1)2(0+nl)=nl (2)
40 (0*nl)=nl (1 2 27 28 30 34)

41 (INTEGER(n1)A(INTEGER(n1)Anl =n1 ))>((-INDVAR(nlgl f1)2(nl gl 1)=(nlgl {2))A
L (INDVAR(n1 gif 1)>({FRN(x1,nl,{1)>SUBT(x2,12,n1))A(~FRN(x1,nl f1)>

INVART(nl ,f 1,n1,42))))) (1 2 27 28 30 34)

| © 42 (~INDVAR(nl gl f1)a(nl gl f1)=(nl gl 2))A(INDVAR(nI gl $1)2((FRN(x1,nl,f1)
SUBT(x2,2,n1))A(-FRN(x1,n1,f1)2INVART(nl,f1,n1,2)))) (12 27 28 30 34)

43 SBV(x1,x2,§1,§2)=((INDVAR(x1)A(INDVAR(x2)A(FORM(fI )JAFORM(£2))))2Vn.(INTEGER(n)>(
(~INDVAR(nglf 1)=(n gl f 1)=(nglf2))A(INDVAR(n gl fl }>((FRN(x1,n,{1)>

= ~ FRN(x2,n,2A(-FRN(x1,n,f 1)>INVARV(n,f1,12))))))

4 4 (INDVAR(x2)A(FORM(f2)A{INTEGER(n1)ASUBT(x2,12,n1 )))oFRN(x2,n} ,§2) (3 4 5 7)

} 45 INVART(n1,{1,n1,02)=INVARV(nl{1,{2)

4 6 (~INDVAR(nIgl f 1 )>(nlgl 1)=(n] gf £2))A(INDVAR(nI gI fI )o((FRN(x1,nl,1)>
. FRN(x2,n! 12))A(-FRN(x] n1,{1)2INVARY(n! 1,12)))) (1 23 4 57 27 28 30 34)

47 INTEGER(n1)>((~INDVAR(n1gl f 1 )2(n} gl f 1)=(n1gl 2))A(NDYAR(nIgl 1)
(FRN(x1,n1,f1)oFR N(x2,n1,12))A(~FRN(x{,nl f1)oINVARV(ni f1,§2))))) (1 23 45
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7 27 28 30)

48 Vnl .(INTEGER(nl)=>((~<INDVAR(nlglf 1)2(nl gl f 1 )=(nl gl f2))A(INDVAR(nlgl f 1)2

((FRN(x1,n1,f1)>FRN(x2,n1,f2))A(-FRN(x1,n1,{1)=INVARV(nl,f1,62)))))) (1 2 3 4
5 7 27 28 30)

49 SBV(x1,x2,f1,12){(1 2 3 4 57 27 28 30 34)

50 (INDVAR(x1)A(INDVAR(x2)A(FORM(fI)A(FORM(f2)ASBT(x1,x2,f1,{2)))))=SBV(x1,x2,{1,{2)
(1 23 457 28 30 34)

51 Vxl x2f 1 f2.((INDVAR(x1)A(INDVAR(x2)A(FORM(f1 )A(FORM(f2)ASBT(x1,x2,f 1 ,2)))))>
SBV(xl,x2,f1,f2))(1 2 3 4 5 7 28 30)
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i APPENDIX 5

THE PROOF THAT UNIVERSAL QUANTIFIER CAN BE INTERCHANGED

~ 51 FOL commands for the main lemma in the many sorted logic

LABEL THI ; ASSUME VxI x2 f 112.(58T(x1,x2,f1,{2)2 SBV(x1,x2,f1,2));
Ve THI, x,x,f | ,sbt(x,x,f1);
VE SUBSTDF3 xx, f I,sbt{x,x,f1);

= Ve SUBDEFO x, x,f 1,sbt(x,x,f1);
~ tauteq =:%2,1:=;

Ve =n;
VE FREEVO, x, n, f 1;

VE FREEVO, x, n, sbt{x,x,f1);
VE SUBDEF | n, fl,sbt(x,x,fl);
tauteq (n gl f 1)=(n gl sbt(x,x,f1)),11,17,18;

“ Vi =,ns -
VE EQSf 1 ,sbt(x,x,f1);
tauteq sbt{x,x,f 1)=f1,~=,=;
Vi =x,f 1 «fs

5.2 Printout of the proof inthemany sorted logic

I Vxl x2 £1 12.(SBT(x1,x2,f1,2)>SBV(x1,x2,{1,12))(1)

2 SBT(x,x,f1,8btx,x,f1 }}=25BV(x,x,f1 ,sbi(x,x,f1)) (1)

3 SBT(x,x,f 1,sbt{x,x,f1))=sbt(x,x,f1)=sbt(x,x,f1)

~ 4 SBV(x,x,f1,sbt{x,x,f 1))=Yn.((<INDVAR(n gl f1)>(nglf1)=(n gl sbt(x,x,f1))A
(INDVAR(nglf1 )2((FRN(x,n,f1)2FRN(x,n,sbt(x,x,f 1 )))A(-FRN(x,n,f 1 )2INVARV(n,
f1,sbt(x,x,f1)))))

5 VYn.((~INDVAR(n gl f 1)a(n gl f1)=(n gl sbt(x,x,f1)))A(INDVAR(n gl f1)>((FRN(x,
nf 1 )oFRN(x,n,sbt(x,x,f )))A(-FRN(x,n,f 1)2INVARV(n,f1,sbt(x,x,f1)))))) (1)

6 (~INDVAR(ng!f1)a(ngif1 )=(nglsbtix,x,f 1 ))IA(NDVAR(n gl f1)2((FRN(x,n,f1)>
FRN(x,n,sbt(x,x,f 1 )))A(-FRN(x,n,f)2INVARV(n,f1,sbt(x,x,f11)))) (1)

7 FRN(x,n,f1)z(x=(n gl f |)A-GEB(x,n,f1)) VEFREEVOXx,n,f1

8 FRN(x,n,sbt(x,x,f1 ))=(x=(nglsbt(x,x,f1))A-GEB(x,n,sbt(x,x,f1)))

9 INVARV(n,f 1 ,sbtix,x,f1))=((GEB(nglsbt(x,x,{1),n,sbt(x,x,{1))=GEB(nglf 1 ,n,f1))A
(FRN(n glsbt(x,x,f 1 ),n,sbt0x,x,f1))zFRN(n gl f 1,n,f 1))A(n gl sbi{x,x,f 1 ))s
(ngl £1)

10 (n gl f1)={n gl sbt(x,x,f1)) (1)
|
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11 Vn.ngif1)=(n gl sbt{x,xf1) (1)

12 Vn.(ngif 1)=(ngisbt(x,x,f 1))sfi=sbt(x,x,f 1)

13 sbtix,x,fl)= #1 (1)

14 Vx f.sbt(x,x,f)=f (1)

5.3 FOL cominands for the theoreminthemany sorted logic

LABEL FIRSTLEMMA;

ASSUME Vx f.sbt(x,x,f)=f;

LABEL THEONI 3

ASSUME Vf sq.scar(f cc sq) =f
LABEL THEONZ2;

ASSUME Vr sq.sedr(f cc sq)* sq;

Proof of the Lemma: BEW(x gen f) > BEW(f)

LABEL HPT;

ASSUME BEW(x gen f) ;

LABEL THTAUT;

Ve FIRSTLEMMA x, f3

Ve PROVABLE x gen f 3

TAUT =:#2 =HPT;
LABEL HPAUX;

3e = ,5q ; |

Ve GENRULO f cc sq ,5Q,XX} |
LABEL THNI;

) Ve THEONI f, sq;
Ve THEON2 f, s gq ;
TAUTEQ  ===:#2u2828][fle {] ,]:=;
UNIFY seeei@$28282 aH
TAUTEQ =====:#] , Lim

Ve PROOF f cc 89;

LABEL GENE 1;

vi GENI(f cc ¢q,8q,%,x) , ==, EXI{f cc 89,59,x,X)}
UNIFY ==:8282828] =~:
LABEL PROOFTR;

TAUT ===:#1,]:=:

Ae HPAUX 4282;
Ve =~ fl;
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I~ Ve DEPENDO f cc sq, sq,t 1;

UNIFY -:42u2u2%282, GENE];

TAUTEQ DEPEND(f cc sq,f 1) AXIOM (f 1) ,]:=5 .
_. Vi =flefl;

TAUTEQ THNI1:#2 = THN] :#] THN];
—~ Ai PROOFTR, =, — ;

LABEL USEFUL;

- Ve PROVABLE f;
UNIFY =~:#2 ==;

TAUT ==:#1,] t=
LABEL Cl THI:

{ - =>} HPT,=;
g Proof of the Lemma: BEW({f)> BEW(x gen f)

LABEL HPT! ;
ASSUME BEW(f);

TAUT USEFUL:#2  -HPT 1 USEFUL;
. Je - ,sq;

N@ =:18242.

Ve =, fl;
Ve GENRUL2 x,sq;
Ve THEORY x,fl

TAUTEQ ==:#2#18 |[{{]] HPTl:~;
Vi - let];

| TAUT ====:21HPT {:~;

Ve GENRULI((x genf) cc sq) , sq XX;
« LABEL THNZ;

Ve THEONI x genf sq ;
Ve THEON2 x gen f, sq
TAUTEQ  ==-:#282u28{[{1 «{], THTAUT,HPTIi=;

L UNIFY — ==e=:#28242 , =;
TAUTEQ =====:# 1 , THTAUT,HPT I :-;

Ve PROOF (x gen f) cc sq ;
LABEL GEN];

i vi -- , GENE((x gen f) cc sq,sq,x,x) , EXI{(x g en t) ¢c 5q,5q,%,x);
UNIFY ==:828282#] -

LABEL PROOFTR 1;

_ TAUT ==-:#], HPT1:=THTAUT;

Ve DEPENDO (xgent) cc sq, 8q,f | ;
: 31 GENl ,x~t OCC 3 6 9,x+x1 OCC 2 4 6;

TAUTEQ DEPEND((x gen f) cc sqf 1) 2 AXIOM (f 1) ,THTAUT HPT! :=;
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Vi =flefl;
TAUTEQ THN2:42 = THN2:#] THN2;
Ai PROOFTR! =~
Ve PROVABLE x gen f;
UNIFY =:42 =<:
TAUT ==:# 1 ,THTAUT,HPT I:=;
LABEL C2THI;
S| HPT 1 ,=

z| C1TH1 ,C2THI;
LABEL THI:

Vi=xf3

Ve THI x1 x2 gen f;
V e THI x2,f;
Ve THI x1,t;

Ve THI x2,xl gen f;
TAUT ====:% 1 D=:8 1 THI :=;

vi=,x1,x2,1;

5.4 Printout of the proof of the theorem in the marry sorted logic

1 Vx f.sbtl{x,x,f)=f (1)

2 Visq.scar(f cc sq)=t (2)

3 Visqsedr(f cc sq)=sq (3)

4 BEW(xgenf) (4)

5 sbt(x,x,f)=f (I)

6 BEW(x gen f)=3sq.(PROOFTREE(sq)A((x gen f)=scar(sq)AVf 1 .(DEPEND(sq,f1)=>AXIOM(f1))))

7 3sq.(PROOFTREE(sq)A((x gen f)=scar(sq)AV{ 1 .(DEPEND(sq,{ 1 )2AXIOM(f 1)))) (4)

. 8 PROOFTREE(sq)A((xgen f)=scar(sq)AV{].(DEPEND(sq,f 1 )=AXIOM(f1))) (8)

9 GENE(f cc sa,5q,%,x)"(scdr(f cc 5q)2sqA(PROOFTREE(sq)A3f 1 .(scar(sq)=(x gen f 1)A
scar(f cc sq)=sbt(x,x,f 1))))

10 scar(f cc sq)=t (2)

11sedr(f cc sq)esq (3)

12 scar(sq)=(x gen f)Ascar(f cc sq)=sbt(x,x,f) (1 2 3 4 8)

13 3f1 .(scar(sq)=(x gen f 1 JAscar(f cc sq)=sbt{x,x,f 1)) (1 2 3 4 8)

14 GENE(f cc sq,8q,x,x) (1 2 3 4 8)

15 PROOFTREE(f cc $q)=(FORM(f cc sq)v(3pf.(ORI{f cc sq,pf)V(ANDE(f cc sq,pf)v
(FALSEE(f cc sq,pf)VINOTI(f cc sq,pf)VINOTE(f cc sq,pf)VIMPLI(f cc sq,pf))))))v
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(3pf x {GENK cc sq,pf,x IVIGENE(f cc sa,pf,x,tIVEXIT cc sq,pf,x,t)))v
(3pf | pf2.(ANDI{f cc sq,pt!,pt2)V(FALSEI(f cc sq,pf1,pf2)VIMPLE(f cc sq,pf |,pf2)))Vv
pti pf2 x LEXE(f cc sq,pf 1,pf2,x,t)v3pf 1 pf2 pt3.ORE(f cc sq,pf 1,pf2,p13))))))

_ 16 GENI(f cc sq,5q,%,x)V(GENE(f cc sq,5q,%,X)VEXNf cc sq,5a,xx)) (1 2 3 4 8)

u 17 3pf x LAGENI(f cc sq,pf,x, )VIGENE(t cc sq,pf,x, )VEXI(f cc sq,pfx,t)) (1 2 3 4 8)
| 18 PROOFTREE(f cc sq) (1 2 3 4 8)

lo vi1.(DEPEND(sq,f 1)=AXIOM(1)) (8)

aE 20 DEPEND(sq,f 1 J2AXIOM{f1) (8)

- 21 PROOFTREE(f cc sq)>(PROOFTREE(sq)>((sq=scdr(f cc sq)>(DEPEND(f cc sq,f1)=
DEPEND(sq,f 1 )))=(ORI(f cc sq,5q)V(ANDE(f cc 5q,5q)V(FALSEE(f cc sq,5q)v

: (3f.((NOTID(f cc 5q,5q,f)V(NOTED(f cc sq,5q,f)VIMPLID(f cc 8q,5q,f)))AfAf 1 Iv
3x LAGENI{f cc sq,5q,x, )WW(GENE{f cc sq,sq,x,)VEXI(f cc sq,59,x,1))I))))))

22 Ix t(GENI(f cc $a,5q,x,)VIGENE({ cc £4,59,x,)VEXI(f cc sq,8qx1))) (1 2 3 4 8)
23 DEPEND(fccsq,f1 )SAXIOM(f1) (1 2 3 4 8)

L 24 Vi1.(DEPEND(fcc sq, 1)2AXIOM(11)) (1 23 4 8)

25 f=scar(f cc sq) (2)

L 26 PROOFTREE(f cc sq)A(f=scar{fcc sq)AVf 1 (DEPEND(f cc sq,f 1 )2AXIOM(t 1))) (1 2 3 4 8)
27 BEW(f)=3sq.(PROOFTREE(sq)A(f=scar(zq)aV{l.(DEPEND(sq,f1)>AXIOM(f 1))))

1 28 3sq.(PROOFTREE(sq)A(fzscar(sq)AVi 1 .(DEPEND(sq,f 1 )=>AXIOM{{ 1) (1 2 3 4)

29 BEW(f) (1 2 3 4)

” 3 0 BEW(x gen f)2BEW(f) (12 3)

© 3 1 BEW(f) (31)

| 32 3sq.(PROOFTREE (sq)A(f=scar(sq)AVil.(DEPEND(sq,t1)2AXIOM(f 1) (31)

33 PROOFTREE(sq)A(f=scar{sq)AVf1 (DEPEND(sqf 1 )2AXIOM(f 1))) (33)

34 Vil.(DEPEND(sq,f1)>AXIOM(f 1)) (33)

35 DEPEND(sq,f1 )2AXIOM(f 1) (33)

3 6 APGENI(x,sq)=(V{.(BEPEND(sq,{)>~FR{(x,))APROOFTREE (sq))

37 AXIOM(t1)>-~FR(x,f!)

38 DEPEND(sq,f 1)2~FR(x,f 1) (3 1 33)
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39 Vi1.(DEPEND(sq,f1)>-FR(x,f 1)) (3133)

4 0 APGENK(x,sq) (31 33)

41 GENI((x genf) c c sq,5q,x,x)7(scdr{({x gen) c c $q)2sqA(PROOFTREE(sq)A
3f1.(scar((x gen f) cc sq)=(xgent 1 JA(scar(sq)=sbt(x,x,f1) AAPGENI(x,5q)))))

42scar{{x gent) ccsq)lx gen (2)

4 3sedr({x gen f) cc sq)=5q (3)

4 4 gear((x gen f) cc sqQ)={x gen f)A(scar(sq)=sbt(x,x,{)AAPGENI(x,sq)) (1 2 3 31 33)

45 3f1 .(scar((x gen f) cc sq)=(x gen f 1 )A(scar(sq)=sbt(x,x,f 1 )JAAPGENI(x,sq))) (1 2 3 31 33)

46 GENI({x gen f) cc 59,89,%,%) (1 2 3 31 33)

47 PROOFTREE({x gen f) cc sa)=(FORM({x gen f) cc sq)v{(Ipf.(ORI{{x gen f) cc sq,pf)V
(ANDE((x gen f) cc sq,pf)VIFALSEE((x gen f) cc sq,pf)V(NOTI{((x gen f) cc sq,pf)v
(NOTE((x gen f)-cc sq,pf)VIMPLI({x gen 1) cc sq,pt)INv(3pf x| L.IGENI((x gen 1)
cc sq,pf,x1,t)v(GENE((x pent) ce sq,pf, x1 )VEXI{(x gen {) ce sq,pf,x1 tv
3pf 1 pt2.(ANDI((x gent) cc’ sq,pfl,pf2)V(FALSEI{(x gen f) cc sq,pf 1 ,pf2)v

_ IMPLE((x gen {) cc sq,pf 1 PE2Iv(Ipt] pro xI LEXE({x gen f) cc sq,pf 1 ,pt2,x1 ,t)v
3pfl pf2 pf3.ORE((x gen f) cc sq,pfl,pi2,pt3)))))

48 GEMI((x gen 1) cc 54,50, X)VIGENE((x gen 1) cc 89,5q,%,X)VEXI((x gen f) cc sq,
sq,%,x)) (1 2 3 31 33)

49 3pf xl t.(GENI((x gen f) cc sq,pf,x1,)V(GENE({x gen f) cc sq,pf,x1,t)v
EXi({x gen f) cc sq,pf 1,1) (1 2 331 33)

50 PROOFTREE((x gen f) cc sq) (1 2 3 31 33)

51 PROOFTREE((x gen f) cc £q)=>(PROOFTREE(sq)=>((sq=scdr{(x gent) cc sq)=>(DEPEND(
(x gen f) cc sq,f 1 ):DEPEND(sq,f 1)))=(ORI({x gon f) cc sq,5q)V(ANDE((x gen f)
cc §q,5q)V(FALSEE({x genf) cc 5q,5q)V(I.((INOTID((x gen f) cc sq,5q,f)v
(NOTED((x gen f) c c sq,5a,1)VIMPLID({x gen {) c c sq,5q,})))Afdfl )v
3x1 LAGENI((x gen f) cc 5q,5a9,x1,H)V(GENE((x gen f) cc sq,5q,x1,tIVEXI(
(xgenf) cc sq,5q,x1,1))MN

52 3x1 t.(GENI{(x gen f) cc sq,59,x1 )V(GENE((x gen f) cc sa,sq,xl,t}v
EXi((x gen f) cc 8q,5q,x1,1))) (1 2 3 31 33)

53 DEPEND({x gen f) cc sq,f 1 )>AXIOM(f1) (I 2 3 31 33)

54 vi 1 .(DEPEND((x gen f) cc sq,f 1 )2AXIOM(f 1)) (1 2 3 31 33)

55(x gen f)=scar({x gen f) cc 59) (2)

56 PROOFTREE((x gen f) cc sq)Al(xgent)=scar({x gen f) cc sq)A |
Vil .(DEPEND({x gen f) cc sq,f1)2AXIOM(f1))) (1 2 3 31 33)

57 BEW(x gen 1)23sq.(PROOFTREE(sq)A((x gen f)=scar(sq)AV{].(DEPEND(sq,f 1 )2AXIOM(f] ))))
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~ 58 3sq.(PROOFTREE(sq)A((x d)mscar(sq)AVf 1 .(DEPEND(sq,f1)2AXIOM(t1)))) (1 2 3 31)
| 59 BEW(x genf) (1 2 3 31)

60 BEW(f)>BEW(x gen f) (1 2 3)

61 BEW(x JsBEW() (1 2 3)

62 Vx f.(BEW(x gen )=BEW()) (1 2 3)

63 BEW(xI gen (x2 gen ))=BEW(x2 gen f) (1 2 3)

_ 64 BEW(x2 §sBEW({) (1 2 3 )
kf

65 BEW(x] f)zBEW() ( 1 2 3)

6 6 BEW(x2 gen (x| gen f)):BEW(xl gen f) (1 2 3)

67 BEW(x] gen (x2 gen ))2BEW(x2 gen (x| gen ))(1 2 3)

ad 68 Vx1x2{ (BEW(x] gen (x2 gen f))2BEW(x2 gen (x gen (1 2 3)

5.5 FOL commands for the main lemma in the earlier axiomatization

LABEL HPT; ASSUMEINDVAR(x)A FORM(f1) :

LABEL THI; ASSUME VxI x2 f 1{2.((INDVYAR(x1) AINDVAR(x2) AFORM(f 1) A FORM({2) a
SBT(x1,x2,f1,§2))2SBV(x1,x2,f 1 ,{2));

LABEL TH2 ; ASSUME Yx.(INDVAR(x)> TERM(x));
LABEL TH3 ; ASSUME ¥x.{FORM(x)=> STRING(x));
VeTHI x,x,t 1 ,sbt(x,x,f1);
Ye TH2, x:

Ve TH3, fl;

Ve TH3, sbt{x,x,f 1);
VE SUBSTDF3 xx, f1,sbt{x,x,f 1);
VE SUBSTDF4 xx, f 1;

Ye SUBDEFO x, x,f 1 ,sbt(x,x,f 1);
tauteq =:#282,1:=;
Ve -,n;
VE FREEVO, x, n, f 1;

VE FREEVO, x, n, sbt(x,x,f1);
VE SUBDEF! n,f1, sbt{x,x,f1);

tauteq INTEGER(n) 2{{nglfl)=(n gi sbt(x,x,f1)))1:=;
Vi =n

VE EQS, f 1,sbt{x,x,f1);
taut =:#2#2,1=;
Si,1 i=;

VI=xflefs

\
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56 Printout of the proof of the mainlemma in the second axiomatization

1 INDVAR(x)AFORM(f1) (1) ASSUME

2 Vxl x2 ff $2.((INDVAR(x 1 )JA(INDVAR{x2)A(FORMI(f 1 JA(FORM(f2)ASBT (x1 x2, 1,§2)))))>
SBV(x1,x2,f 1 ,£2)) (2) ASSUME

3 Vx.(INDVAR(x)>TERM(x)) (3) ASSUME

4 Vx.(FORM(x)>STRING(x)) (4) ASSUME

5 (INDVAR{x)A(INDVAR(x)A(FORM(f1 )A(FORM(sbt{x,x,f 1 ))ASBT(x,x,f1,sbt{x,x,f1))))))=>
SBV(x,x,f 1 ,sbt{x,x,f 1 )) @ VE2x , x , fl, sbt(xx,fl)

6 INDVAR(x)>TERM(x) (3) VE 3 x

7 FORM(f 1 )>STRING(f 1) (4) VE 4 f 1

8 FORM(sbt(x,x,f 1 ))=STRING(sbt(x,x,f 1)) (4) VE 4 sbt{x,x,f 1)

9 (INDVAR(X)A(TERM(x)A(FORMI(f1)AFORM(sbt(x,x,f1}))))2(SBT(x,x,fi,sbt(x,x,f1))=
sbt(x,x,f 1 )=sbt(x,x,f 1 )) VE SUBSTDF3 x , x , f 1 , sbt{x,x,f 1)

10 (INDVAR(x)A(TERM(x)AFORM(f1)))=>FORM(sbt(x,x,f 1)) VE SUBSTDF4 x , x , fl

11 SBV(x,x,f1,5bt(x,x,1)):({INDVAR(x)A(INDVAR{x)A(FORM(f1 JAFORM(sbt(x,x,f1 )))))>
Yn. (INTEGER(n)>((<INDVAR(ngif1)o2(ng!f 1)=(nglsbt(x,x,f 1 )))A(INDVAR(nglf 1)
>((FRN(x,n,f 1)2FRN(x,n,sbt{x,x,f1)))A(=FRN(x,n,f1})2INVARV(n,f1 ,sbt{x,x,f 1))))))
)) VE SUBOEFO x , x , f 1 ,sbtix,x,f 1)

12 Vn.{(INTEGER(n)>((~INDVAR(nplf 1)2(nglf1 )=(n gi sbtlx,x,f1 }))A(INDVAR(ng!f 1)
S({FRN(x,n,f1 )2FRN(x,n,sht{x x, f1))A(~FRN{(x,n,f1)>

INVARV(n,f1,sbt(x xf (1 2 34)1 : 11

13 INTEGER(n)=((~INDVAR(nglt1)2(nglt1 )=(nglsbt(x,x,t 1 )))A(INDVAR(ngl{1)>
((FRN{x,n,f 1 )oFRN(x,n,sbt(x,x,f1 )))A(<=FRN(x,n,f1 }2INVARV(n,f| ,sbt(x,x,f 1))))))

) (1234) VE 12 n

14FRN(x,n,f 1 )=(x=(nglf1 )A-GEB(x,n,f 1)) VEFREEVO Xx ,n,f 1

I SFRN(x,n,sbt(x,x,f 1 ))=(x=(nglsbt(x,x,f 1 ))A-GEB(x,n,sbt(x,x,f1))) VE FREEVO x , n, sbt(x,x,f1)

16 INVARY(n,f1 ,sbt(x,x,f1 ))=(INTEGER(n)A(FORM(f1 JA(FORM(sbt(x,x,f1 ))A((GEB(n gl
sbt(x,x,f 1 ),n,sbt{x,x,f1))=GEB(
nglf1,nf1 NAWFRN(nglsbt(x,x,f1),n,sbt(x,x,f1))zFRN(nglf1,nf1))A(ngl
sbt (x, x,f 1 ))=(ngli1 N))))VESUBDEFLIn 1 , sbi(x,x,f 1)

17 INTEGER (n)>(n gi f 1 )=(n gl sbtlx,x,f 1)) (1 23 4) 1 : 16

18 Vn. (INTEGER(n)=(ngifl)=(nglsbt(xx,fl))) (1 2 3 4) VI 17 n* n

19 (STRING(f1 )ASTRING(sbt(x,x,f1)))2(Vn.(INTEGER(n)>(n gl 11 )a(n gl sbt(x,x,f1)))a
fl=gbt(x,x,f 1)) VE EQS fl, sbt(x,x,fl)
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> 20 f tesbt{x,x,f!)(12 34) 1 : 19

21  (INDVAR(x)AFORM({1))=f1=sbt(x,x,f1) (23 4) ai 1 20

2 2 V x L.L(INDVAR(x)AFORM(f))>f=sbt(x,x,f)) (2 34) VI 2l x « { {i « x

[(

"5.7 FOL commandsin the earlier axiomatization

LABEL FIRSTLEMMA;

ASSUME Vx f.((INDVAR(x)A FORM(f)) = sbt(x,x,f}=f);

> LABEL THEON 1;
ASSUME Vs 5q.((STRING{s)A SEQUENCE(sq))> scar(s cc sq) =s);

N LABIEL THEONZ;

ASSUL.E Vs sq.((STRING(s)A SEQUENCE(sq))oscdr(s cc sq)= sq);
LABIEL THI;
ASSWME Vx f.{(INDVAR{x)AFORM(f))>FORM(x gen f));

—— LABIEL TH2; -.
ASSIME VY{.(FORM(f)> STRING(f)) ;
LABEL TH3;

ASSUME Vi sq.((FORM({)ASEQUENCE(sq))>SEQUENCE(f cc sq));
LABEL TH4;

ASSIME Vx.(INDVAR(x)> TERM(x));
LABEL TH5;

\ ASSWME Vpf.(PROOF TREE(pf)>SEQUENCE (pf));

Proof of the Lemma BEW(x gen 1)>BEW(f) Under the Assumption: INDVAR(x)A FORM(f)

LABEL HPTT;

ASSUME INDVAR(x)A FORM(f):;
LABEL HPT;

ASSUME BEW(x gent):

LABEL THTAUT;

: Ve FIRSTLEMMA x, fs

| Ve PROVABLE x gsn f §
\ V E THI x,fs

TAUT =~=-:42#2 HPTT:=;
Ve TH2,{;

. Ve TH3,,sq;
VE TH4x;
VE TH5,5q;

CT LABEL HPAUX;
Je ---== sq ;

= Ve GENRULO f cc sq ,5G,X,X}
LABEL THNI ;

Ve THEONI f, sq:

« Ve THEON2 f, s q ;
TAUTEQ  =-=:M2u2028202828 | [f 1&1] ,]:~;

.
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UNIFY — ====:#28242828282 =
TAUTE Q=====:%] _ |:=;

Ve PROOF f cc sq ;

LABEL GENE 1;
TAUTEQ PROOFTREE(sq)AINDVAR(X)ATERM(x)A(GENI(f cc sq,5q,x,x) v ==: v

EXI{f cc 5q,5q,%,x)) |:=;
UNIFY ==:426282%] -
LABEL PROOFTR;

TAUT ===:#],1:=;

A@ HPAUX #242;
Ve ~- fl;

Ve DEFEND f cc sq, sq, 1;
AE GENE] :#2;
UNIFY ==:82828284282 - ;

TAUTEQ DEPEND(f cc §9,f1)2 AXIOM (f1),1:=
Vi -flefls
TAUTEQ f=scar(f cc sq) 1:=3
Ai PROOFTR,=, —;

LABEL USEFUL;

Ve PROVABLE f;

UNIFY =:#28#2 ==:
TAUT ==:#1,}:=3
LABEL C1THI;

ol HPT,-;

Proof of the Lemma BEW({f)>BEW(x gen f) Under the Assumption: INDVAR(x)A FORM(f)

LABEL HPTI;

ASSUME BEW({);

TAUT USEFUL:@2 , =HPT 1 ,USEFUL;
AE =:82

. _ Je - sq;

AQ =:M242.

Ve =, fl;
Ve GENRULZ x,sq;
Ye THEORY x,fl;

. TAUTEQ --:#2#] 82% 1 [ff 1] HPTT,HPTl:=;
Vi - fleet];
TAUT ====:# 1 HPTT,HPT | :=3

Ve GENRUL1 ((x gen f) cc sq) , sq xx ;
LABEL THN2;

Ve THEONI x gen f , sq ;

Ve THEON2 x gen f, sq

V E THI x ,f;

VE TH2 x gen f;
VE TH5 sq;

TAUTEQ ======:42u2828][f] + {] HPTT, THTAUT, HPT:
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UNIFY  ====eme=:#2#282 , =;

VE TH3, x gen f,sq;
TAUTEQ =========:1, HPTT, THTAUTHPT {:~; .

| Ve PROOF (x gen {) cc sq;
he Ve THAx;

LABEL GENI;

TAUTEQ PROOFTREE(sq) A INDVAR(x) A TERM(x) A (===: v GENE({x gen f) cc 8q,8q,%,x) v
EXH((x gen f) cc sq,5q,x,x)) HPTT,HPT| i=;
UNIFY ===:828242u} «.

o LABEL PROOFTRI ;

TAUT ====:#}, HPT 1:=,THTAUT HPTT;

Ve DEPEND (x gen f) cc sq, sq,f 1;
AE GEN :#2;
i= xe«t0CC258 11;

Ji -, xxl occ 1357;

TAUTEQ DEPEND({(x gen f) cc sq,f 1) AXIOM (f 1) ,THTAUT,HPTTHPT] :=s
Vi =flefl

L TAUTEQ x gen f =scar({x gen f} cc sq),HPTT,HPT :=;
Ai PROOFTRY,=, -- ;
Ve PROVABLE x gen f;
UNIFY =:8282 =~

. TAUT ==: 1 ,THTAUT HPT1:~;
LABEL C2TH};
ol HPT! =

zl Cl TH1,C2THI;

LABEL THGEN:
>| HPTT,-;

VI=x,fs
Ve THIx1x2 gen f;
Ve THI x2,1;
Ve THI x1i.,f;

-Ve THIX2xlgen f;
VETHLx 1 5
VE THI ,x2,f;
TAUT (INDVAR(xI YA (INDVAR(x2)A FORM(f))) 2 (BEW(x] gen (x2 gon f)) e
BEW(x2 gen (x| gen 1))),THGEN:~;'
VI =x1,x2,fs

5.6 Printout of the proof in the earlier axiomatization

1 Vx f.((INDVAR(x)AFORM({))>sbt(x,x,f)=f) (1) ASSUME

2 V8 5q.((STRING(s)ASEQUENCE (sq))>scar(s cc sq)=s) (2) ASSUME

3 V8 5q.((STRING(s)ASEQUENCE(sq))=scdr(s cc sq)=sq) (3) ASSUME
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4 Vx £.((INDVAR(x)AFORM(f))>FORM(x gen f)) (4) ASSUME

5 V1.(FORM()>STRING(f)) (5) ASSUME |

6 Vf sq.((FORM(f)ASEQUENCE (sq))>SEQUENCE(f cc sq)) (6) ASSUME

7 Vx.(INDVAR(x)>TERM(x)) (7) ASSUME

8 Vpf.(PROOFTREE(pt)=>SEQUENCE(pf)) (8) ASSUME

9 INDVAR(x)AFORM(f) (9) ASSUME

10BEW(x gen f)(10) ASSUME

1 1 (INDVAR(x)AFORM(4))osbt(x,x,f)=f (1) VE 1 x , f

12 BEW(x gen f)=(FORM(x gen f)A3sq.(PROOFTREE(sq)A((x gen f)escar(sq)AVi].(DEPEND(
sq,f 1 )2AXIOM(f1))))) VE PROVABLE x gen f

1 3 (INDVAR(x)AFORM({))>FORM(x gen f) (4) VE 4 x , f

14 35q.(PROOFTREE(sq)A((x gen f)=scar(sq)AV{]l.(DEPEND(sq,f 1 )=2AXIOM(f 1)))) (1 4 9 10) 9: 13

1 5 FORM(f)>STRING(f) (5) VE 5 f

16 (FORM(f)ASEQUENCE(sq))>SEQUENCE(f cc sq) (6) VEG, sq

1 7 INDVAR(x)>TERM(x) (7) VE 7 x

1 8 PROOFTREE(sq)=>SEQUENCE(sq) (8) VE 8 sq

19 PROOFTREE(sq)A( (x gsn f)=scar(sq)AVf]1.(DEPEND(sq,f1 )2AXIOM(f 1))) (19) ASSUME

20 GENE(f cc 5q9,50,%,x)2(SEQUENCE(f cc sq)A(INDVAR(x)A(TERM(x)A(sedr(f cc sq)*sqA(PROOFTREE(sq)A
3f1.(FORM(f 1 )A(scar(sq)=(xgenfl)A
scar(fccsqg)=sbt(x,x,f 1 ))))))) VE GENRULO f cc sq , sq, X , X

) 2 1 (STRING(f)ASEQUENCE(sq))=scar(f c c sq)=f (2) VE2 ,8q

22 (STRING({t)ASEQUENCE(sq))=scdr{f cc sq)=sq (3) VE 3 f , sq

23 FORM(f)A(scar(sq)=(xgan f)ascar(t cc sq)=sbt(x,x,f)) (1 2 3 456 78 9 10 19) 1 : 22

24 3f 1 (FORM(f 1 )A(scar(sq)=(x gentl)ascar(f cc sq)=sbt(xx,f1))) (123456789 10 19) UNIFY 23

25 GENE(f cc sq,5q,%,x) (1 23456789 10 19) 1 : 24

26 PROOFTREE(f cc $9)({SEQUENCE(f cc sq)AFORM(f cc sq))v(3pt.(PROOFTREE(pf)A(ORI(f cc sq,pf)v
(ANDE(f cc sq,pfIV(FALSEE(f cc sq,p!)VINOTI(f cc sq,pt)VINOTE(f cc sq,pf)v
IMPLI(f cc sq,pf)))))))v(3pf x L(PROOFTREE(pf)A(INDVAR(X)A(TERMI(t)A
(GENI(f cc sq,pf,x,t)V(GENE(f cc sq,ptx,t)v
EXI(f cc sq,pt,x,1))))))V(3pt 1 pt2.(PROOFTREE(pf 1 )A(PROOFTREE (pf2)A(ANDI(f cc sq,pf 1 ,pf2)Vv
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Co (FALSEYfcz sq.pfl,pt2)VIMPLE( cc sq,pf 1,pf2)))))v(3pt 1 pi2 xi x2.(0PROOFTREE(pt 1)A
(PROOFTREE{pt2)A{INDVAR(x1 )A(INDVAR(x2)AEXE(f cc sq.pti,pf2,x1,x2)))))v3pf 1 pf2 pf3.
(PROOFTREE(pf1)A(PROOFTREE(pf2)A(PROOFTREE(pf3)AORE(f cc sq,pf 1,p12,p13))))))))
VE PROOF f cc sq

2 7 PROOF TREE (sq)A{INDVAR(x)A(TERMOOA(GENI(f cc sa,5q,%,x)VIGENE(f cc sq,8q,%,x)v
EXKf cc sq,5a,%%x))))) (1 23456789 10 19) 1 : 26

28 Jpf x L.{PROOF TREE (pf)A(INDVAR(X)A(TERM(BA(GENI(f cc sq,pf,X,IVIGENE( cc sq,pf,x t)v
EXI(f cc sq,pf x,t) (1 23456789 10 19) UNIFY 27

B 29 PROOFTREE(f cc sq) (1 2 3456 7 8 9 10 19) 1 : 28

~ 30 Vi 1.(DEPEND(sq,f 1 )2AXIOM(f 1)) (19)AE 19 #282

31 DEPEND(sq,f 1 )>AXIOM(f 1) (19) VE 301 |

32 ((FROOFTREE(f cc sq)A(PROOFTREE(sq)Asq=scdr(f cc 5q)))2(DEPEND(f cc sq,f 1 )=DEPEND(sq,f1)))=
(ORI{f cc sq,sq)v(ANDE(f cc 54,59)V(FALSEE(f cc sa,5q)Vv(3f.(FORM(f)A((NOTID(f cc sq,59,f)Vv

“ (NOTED(f cc sq;sq,f)VIMPLID{ cc 5q,5q,0))A1#11))vIx t(INDVAR(x)A{TERM(t)A
(GENL{f c c sq,50,)V(GENE(f cc sq,sq,%x,)VEXI{f cc sq,5q,%,))))IM)))
VE DEPEND { cc sq, sq, fl

3 3 INDVAR()A(TERMOX)A(GENKS cc sq,5q,x,x)V{GENE(f cc sq,5q,x,x)VEXI(f ce sq,5q,x,x))))
(1 23 4567 8 910 19) AE 27 :#2

~ 34 3x L(INDVAR(OA(TERMA(GENI(f cc sq,sa,x,DV(GENE(f cc sq,5q,%, VEX! cc sq,5q,x,1))))) |
_ (1 234567891019) UNIFY 33

35 DEPEND(f cc¢sq,f1)=2AXIOM(f1) (1234567891019) 1 : 34

36 Vf1.(DEPEND(fcc sq,f1)2AXIOM(f1))(12 3 4567 8 91019)VI35f 1 «tl

37 f=scar(f cc sq) 1 234567891019 1: 36

38 PROOFTREE(f cc sq)n(f=scar(fccsq)AV{1.(DEPEND(f cc sq,f1)2AXIOM(f 1)))
_ (1 23456728910 19) al (29 (37 36))

39 BEW(f)=(FORM(f)A3sq.(PROOFTREE(sq)A(f=scar(sq)AVf .(DEPEND(sq,f )oAXIOM({1)))))
VE PROVABLE f

40 3sq.(PROOFTREE(sq)A(f=scar(zq)aV{] .(DEPEND{sq,f1)>AXIOM(f1))N (12345678910) UNIFY 38

4] BEW(f) (12345678910)9,39, 40

42 BEW(x gen f)oBEW(f) (1 234567 89)>1 10 41

43 BEW(f) (43) ASSUME

44 FORM(f)A3sq.(PROOFTREE (sq)A(f=scar(sq)AV 1.(DEPEND(sq,f 1 )2AXIOM(f 1)))) (43) 43 , 43 , 39

45 38q.(PROOFTREE(sq)A{f=scar({sq)AVil(DEPEND(sq,f 1 )2AXIOM(f1)))) (43) AE 44 :42

[N
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46 PROOFTREE(sq)A(f=scar(sq)AV{].(DEPEND(sq,f 1 )>AXIOM(f 1))) (46) ASSUME

47 Vi 1 .(DEPEND(sq,f 1 )2AXIOM(f 1)) (46) AE 46 #282

48 DEPEND(sq,f 1 )2AXIOM(fl) (46) VE 471]

49 APGENI(x,sq)=((INDVAR(x)AV{.(DEPEND(sq,f)>~FR(x,f)))APROOFTREE(sq)) VE GENRUL2 x , sq

50 AXIOM(f 1 )=(~FR(x,f 1 JAFORM(f1)) VE THEORY x , f 1

51 DEPEND(sq,f 1 )=>~-FR(x,f1)(1 2345678943 46)9,43:50

52 Vf 1 .(DEPEND(sq,f 1 )=>-FR{(x,f 1)) (1 234567 89 43 46) vI51 {i+fl]

53 APGENI(x,sq) (1 234567 8943 46)9 , 43 :52

5 4 GENI((x g en f) c c 5q,50,%,x) (SEQUENCE((x gen f} c c sq)A(INDVAR(x)A(INDVAR(x)A
(scdr((x gent) cc 8q)=sqA(PROOFTREE(sq)A3f1.(FORM(f 1 )A(scar((x gen f) cc sq)=
(x gen f 1)A(scar(sq)=sbt(x,x,f1)AAPGENI(x,59)))))))))
VE GENRULI(x gen f) cc sq, sq, x, x

55 (STRING(x gen f)ASEQUENCE(sq))>scar((x gen f) cc 89)a(x gen f)(2) VE 2xgenf , sq

56 (STRING(x g e n {)ASEQUENCE(sq))=sedr{(x gen f) cc $9)=8q(3) VE 3 x gen, s q

5 7 (INDVAR(x)AFORM(f))>FORM(x gen f) (4) VE 4 x , f

58 FORM(x gen f)2STRING(x genf) (5) VE 5 x gen f

5 9 PROOFTREE(sq)>SFQUENCE(sq) (8) VE 8 sq

60 FORM(f)A(scar((x gen f) cc sq)=(x gen f)A(scar(sq)=sbi(x,x,f)AAPGENI(x,sq)))
(1 234567894346) 11 , 43:599

61 3f1.(FORM(f 1 )a{scar((x gen f) cc sq)=(x gen f1)A(scar(sq)=sbt(x,x,f1)A
APGENI(x,sq)))) (1 23 456 7 8 9 43 46) UNIFY 60

’ 62 (FORM(x gen f)ASEQUENCE(sq))>SEQUENCE((x gen f) cc sq) (6) VE 6 x gen f , 89

63 GENI((xgenf) ccsq,saxx)(12 3 4567 894346) 9, 11 ,43 : 62

6 4 PROOFTREE((x gent) cc sq)((SEQUENCE({x anf) cc sq)AFORM((x gen 1) cc sq))Vv

(FALSEE((x gent) cc 5q,pl)V(NOTI({xgenf) cc sq,pf)v(NOTE((x gen f) cc sq,pflv
IMPLI{(x gen f) cc sq,pH)IN)v(3pf x 1L.(PROOFTREE(pf)A(INDVAR(xI )A(TERM(1)A
(GENI((x gent) cc sq,pf,x1)V(GENE((x gen f) cc sq,pf,x] tWVEXI({x gen f)
cc 8q,pf,x 1 ,1)))))v(3pf 1 pf2.(PROOFTREE(pf| )A(PROOFTREE(pf2)A(ANDI{(x gen f)
CC sq,pf 1 PI2)WV(FALSEI{((x gon f) cc sq,pf 1 pf2)VIMPLE((x gen f) cc sq,pf 1 PIZN))v
(3pf 1 pf2 x1 x2.(PROOFTREE(pfI)A(PROOFTREE (pf2)A(INDVAR(x1)A(INDVAR (x2)AEXE(
(x gen f) cc sq,pf 1 ,pf2,x1,x2)))))v3pf | pf2 pt3.(PROOFTREE(pf 1 JA(PROOFTREE(pf2)A
(PROOFTREE (pf3)AORE((x gen f) cc sa,pfl,pf2,pf3)N))) VE PROOF (x gen f) cc sq

6 5 INDVAR(x)>TERM(x) (7) VE 7 «x
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- 6 6 PROOFTREE(sq)A(INDVAR(X)A(TERM(x)A(GENI({x gen) c c sq,sq,x,x)V(GENE((x gen f)
cc $q,59,%,X)VEXI{{x gen f) cc sq,sqx, x) (1 23 4567 8 943 46) 9,43: 65

6 7 pt x| t.(PROOFTREE(pf)A(INDVAR(x1)A(TERM()A(GENI((x gen f) c c sq,pf,x! t)v
(GENE((x gen 1) cc sq,ptxL,Y)VEXI{(x gen 1) cc sq,ptx1,1)))))
(1 2345678943 46) UNIFY 66

v 68 PROOFTREE((x gen f) cc sq) 1 234567 89 43 46) 43 : 67 , 11 , 9

69 ((PROOFTREE((x gen f) cc sq)A(PROOFTREE(sq)Asqg=scdr{(x gen f) cc $q)))=>(DEPEND(
(x genf) cc sq,f1)=DEPEND(sq,f 1 )))z(ORI{(x genf) cc sq,5q)V(ANDE((x gent) cc
sq,5qQ)V(FALSEE{(x gen) cc 5q,5q)V(IL.(FORMf)A((NOTID((x gen f) cc sq,8q,f)v
(NOTED((x gen f) c c 5q,5q,f)VIMPLID({(x g e n f)ccsq,5q,f))AfA1))vIx1t.(

g INDVAR(xI)A(TERM()A(GENI({(x gan{) cc sq,sq,x! IVIGENE((x gen f) cc 8q,8q,x],
tVEXI((x gen 1) cc sq,59,x1,1)))))))))VE DEPEND (x gen f) cc sq, sq, f 1

7 0 INDVAR(x)A(TERM(x)A(GENK(x pont) c c 5q,59,%,x)VIGENE((x gen f) c c sq,59,x,x)V
EXI((x gan {) cc 8q,59,%,x)))) (1 23 4567 89 43 46) AE 66 :42

| 71 It (NDVAR(X)A(TERM()A(GENI({(x gen f) cc sq,59,x,})V(GENE({x gen {) cc sq,59,x,t)
> VEXI({x gen f) c€ sq,sq,x,))))) 1 23 4567 8943 46) 70x + t OCC

72 3x1 LNDVAR(x1)A(TERM(t)A(GENI((x genf) cc sq,59,x1 ,)VIGENE((x gen f) cc sq,
sq,x1 ,H)VEXI((x gen f) cc sq,sqx1,t))))) (1 23 4567 89 43 46) 71 x+x1 OCC

73 DEPEND({x gen f) cc sq,f 1 })2AXIOM(f | ) 1 234567894346) 11 , 9, 43 : 72

> 74 Vil (DEPEND((x gen f) cc sq,f 1 )2AXIOM(f1))(12 3 456 7 8 9 43 46) VI 73 flef 1

75(x gen f)=scar((x gen f) cc sq) 1 2345678943486) 9 43: 74

7 6 PROOFTREE((x gen f) c c sq)Al((x genf)=scar((x gen f) c c sq)AV{] (DEPEND((x gen {)
cc 8q,f1)2AXIOM(f1))) (1 23 4567 89 43 46) Al (68 (75 74))

77 BEWI(x gen f)=(FORM(x gen i)A3sq.(PROOFTREE(sq)A{(x gen f)=scar{sq)AVf 1 (DEPEND
(sq,f 1 )2AXIOM(f 1))))) VE PROVABLE x gen f

78 3sq.(PROOFTREE(sq)A((x pen f)=scar(sq)AV{] (DEPEND(sq,f 1 )2AXIOM{f1))))
(1 2345678910 19 43 46) UNIFY76

~ 79 BEW(x gen f) 1 23 4567 8943) 11, 9, 43 : 78

— © 80 BEW(f)>BEW(xgent) (1234567 89)2143 79

81 BEW(xgenf)=BEW(f) 1 23456789 = 42 8

- 82 (INDVAR(x)AFORM(f))=>(BEW(x gen )=BEW({)) (1 23 456 7 8) = 9 81

83 Vx f.((INDYAR(x)AFORM(f))>(BEW(x gen f)=BEW(f))) (1 23456 7 8) VI 82 x, f

8 4 (INDVAR(x1 )AFORM(x2 gen {))=>(BEW(x] gen (x2 gen f))2BEW(x2 gen f))
(1 2345678) VEB83xl, x2 genf

b_

\
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8 5 (INDVAR(x2)AFORM(f))>(BEW(x2 gen 1):BEW(f)) (1 2 3 456 7 8) VE 83 x2, f

8 6 (INDVAR(x1)AFORM({))=(BEW(x1gen {):BEW(f)) (1 2 3 4 5 6 7 8) VE8 3 xl, ¢

8 7 (INDVAR(x2)AFORM(x1 gen f))=2(BEW(x2 gan (x| gen )):BEW(xl gen 1))
(1 2345678) VE 83 x2, xl gen f

= 8 8 (INDVAR(x1)AFORM({))oFORM(x1genf) (4) VE 4 xI , f

89 (INDVAR(x2)AFORM())>FORM(x2 gen f) (4) VE 4 x2 |, f

9 0 (INDVAR(x1)A(INDVAR(x2)AFORM(f)))=(BEW(x]! gen (x2 gen 1))=BEW(x2 gen (xI genf{)))
12345678) 84:89

91 VxI x2 f.((INDVAR(x 1 JA(INDVAR(x2)AFORM(f)))2(BEW(x1 gen (x2 gen f))=BEW(x2 gen (
xl gen) (1 234567 8) VvIooxl,h x2,
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