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EDGE-DISJOINT SPANNING TREES, DOMINATORS,

AND DEPTH-FIRST SEARCH

by

Robert Endre Tarjan

Definitions

A graph G = (V,8&) is an ordered pair consisting of a set of

vertices V and a multiset of edges € . Let V be the number of

vertices and E be the number of edges in G . In an undirected

graph, each edge is an unordered pair (v,w) of distinct vertices; in a

directed graph, each edge is an ordered pair (v,w) of distinct vertices.

(This definition allows multiple edges but not loops in graphs.) An edge

(vow) is incident to v and w . A directed edge (v,w) leaves v

and enters w . If Gy = (Vy g) 1s a graph and Vv, cv / €¢ € , then

G, is a subgraph of G . We define G-G, = G-€, = (V,€-€.) If Vv, CV

and ¢&, = {(1,3)|(4,3) € € and 1i,] eV, (&, is a multiset), then

G, = (V,5 85) is the subgraph of G induced by the vertices V,

A sequence of edges (v1575)5 (Vp v2) 5 o tis (Vv, _12vy,) in G is a

path from wv; to v, oe This path contains vertices Vises V and

avoids all other vertices. .There is a path of no edges from every

vertex to itself. A path is simple if all its vertices are distinct

except possibly vi and Vo oe A cycle 1s a path such that vy = vo

A cycle must contain at least two edges. Vertex w 1s reachable from

vertex v 1f there 1s a path from wv to w . A directed graph is

strongly connected 1f every vertex 1s reachable from every other.

A flow draph, r ) 1s a graph with a distinguished vertex r such
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| | that every vertex in G 1s reachable from r . Vertex v domlnates
| vertex w in flow graph (Gyr) if v # w and every path from + to

w contains v . An edge (Vv,Ww) is a bridge of a flow graph if every

path from r to w contains (v,w) .

A tree T 1s a graph with a vertex r such that there 1s a

unique simple path from r to every vertexin T . If T is directed,

r 1s unique and is called the root of T ; if T is undirected, r 5p

be any vertex of T . If T, 1s a tree and T, is a subgraph of T ,

I, 1s called a subtree of T . If T is a subgraph of a graph G

and T contains all the vertices of G , then T is a spanning tree

of G . If T is a directed tree, the notation v - w means (v,w)

| is an edge of T ; in this case v is the father of w and w ig

a son of v . The notation v uw means there 1s path from v to w

L in T; Vv is an ancestor of w (proper if v # w) and w is a
| descendant of v (proper if wv # Ww) , Using these conventions, every

vertex1s a (non-proper) ancestor and descendant of itself.

History

> Let G be an undirected graph. Suppose we wish to find

(i) a maximum number of spanning trees in G which are pairwise

edge-disjoint, or (11) a minimum number of spanning trees whose union

contains all the edges of G , or (111) a set of k spanning trees

such-that the fewest possible edges are outside the union of the trees

(for some fixed constant k ). Problem (iii) for k = 2 has applications

in the solution of Shannon switching games and in the "mixed" analysis

of electrical networks. Many researchers, including Tutte[26],

~ Edmonds [4,5], Nash-Williams [16,17], and others [3,9,10,15,18] have
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studied one or more of these problems and have given efficient

algorithms for solving them. The best algorithm known has a time bound

of O(EY) for problems (1) and (11) and a time bound of O(K“V")

for problem (iii) [25].

Less 1s known about analogous problems in directed graphs.

Edmonds has considered the problem of finding k mutually edge-disjoint

spanning trees rooted at a fixed vertex r . He has shown that there

exist k disjoint spanning trees rooted at r 1f and only 1f there

exist at least k edge-disjoint paths from r to any other vertex v

[7]. Based on this result, one can use a network flow algorithm to

find k disjoint spanning trees, if they exist, in O(K°ES) time [24].

In this paper we consider faster ways of finding exactly two

directed spanning trees with fewest common edges.

Lemma 1: Let (G,r) be a flow graph. Each bridge in G 1s 1n every

spanning tree rooted at r . There exist two spanning trees with only

the bridges 1n common.

In



: We can prove Lemma 1 using the algorithm below, which finds two spanning

| trees ofa directed graph with only the bridges in common.

(1) find a spanning tree Ty rooted at r ;
find a tree Ts rooted at r in G-T, with as many vertices

as possible;

while I, is not a spanning tree do begin

a: find an edge v =» w 1n I, such that vel, » WET, , and

no descendants x, y of w in I satisfy x = vy in i) ,

xeT, , and VET, 5

b: if w is not reachable from r in G-T,-{(v,w)} then

duplicate (v,w) ;

comment (v,w) must be a bridge;

| replace T, by a spanning tree rooted at r in G-T,={(v,w)] ;

) c: find a tree Ts rooted at r in G-T, with as many vertices
. as possible;

end;

|

| Lemma 2: Step (1) finds two spanning trees rooted at r which have
only bridges of G in common.

i Proof; At least one vertex (w) gets added to Is during each execution
of the while loop in step (1), so the while loop can be executed at most

} V-1 times. Thus the algorithm terminates. Clearly the algorithm works

correctly if the test in statement b fails whenever (v,w) is not a bridge.

Suppose (v,w) 1s not a bridge and the test in statement b 1s performed

for some T, . There is a path p = (255) (Vis va) so ees (15) in



G-{(v,w)} . Let (Vi5viq) be the last edge on this path such that

v,€T,, Then (VisViiq) eT; ; otherwise (VisViiq) would have been

added to I, during the last execution of statement a. Since

Vii £ To » Vi 1s nota descendant of w in T, by the condition

in statement a. Then w must be reachable from r in G-T,={(v,W) }

by a path of edges from r to Vy in T, followed by the path

(VioViiq)s ome (V _15W) Thus the test in statement b fails. It

follows that step(l) computes two spanning trees with only bridges in

common.

Q.E.D.

Lemma 2 implies the second half of Lemma 1; the first half of

Lemma 1 1s obvious. Lemma 1 also follows from Edmond's more general

result [7].

Statements a, b, and c¢ clearly require O(E) execution time if

a set of adjacency lists 1s used to represent the graph, so the whole

algorithm requires O(VE) time and O(V+E) space. We can improve the

method's time bound to 0(V") by first finding a set of edges

partitionable into two disjoint spanning trees and then applying step (1).

However, depth-first search gives an even faster algorithm.

Depth-First Search

If T is a directed tree rooted at r , a preorder numbering [11]

of the vertices of T 1s any numbering which can be generated by the

following algorithm:

| ] _
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procedure PREORDER(vV); begin

| number v greater than any previously numbered vertex;

comment 1f v =r, Vv may be numbered arbitrarily;

| for w such that v -» w do PREORDER (w);

| end;

PREORDER(r) ;

end;

Lemma J: Let ND(v) denote the number of descendants of a vertex v

in a directed tree T . If T has V vertices numbered from 1 to V

in preorder and vertices are 1dentified by number, then 7 - win T

iff v <w <v+ND(v) .

Proof: See [21].

Let (G,r) be a flow graph, and let T be a spanning tree of G

rooted at r which has a preorder numbering. T 1s a depth-first

spanning tree (DFS tree) if the edges in G-T can be partitioned 1nto

three sets:

(i) a set of edges (v,w) with w >v in T , called cycle arcs;

(ii) a set of edges (v,w) with v —-W% in T , called forward arcs;

(iii) a set of edges (v,w) with neither 7 nor w Jy , and

w <V , called cross arcs.

A DFS tree 1s so named because 1t can be generated by starting at r

and carrying out a depth-first search of G , numbering the vertices 1n

increasing order as they are reached during the search. A properly
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implemented algorithm [19,21] requires O(V+E) time to execute step (2)

below.

(2) Carry out a depth-first search of G , finding a DFS tree, numbering the

vertices 1n preorder, calculating ND(v) , and finding sets of

cycle arcs, forward arcs, and cross arcs.

Henceforth assume that step (2) has been applied to flow graph

(Gyr) , that T is the resulting DFS tree, and that vertices are identified

by number. An s-order numbering s(v) of the vertices of T 1s a

preorder numbering such that w - Wp op WW, and wy < W, imply

s(w,) > s(w,) An s-order numbering of T can be calculated during

step (2).

Lemma 4: Let s(v) be an s-order numbering of T . Then s(v) < s(w)

© if (v,w) is a tree arc, forward arc, or cross arc, and s(v) > s(w)

if (v,w) is a cycle arc.

Proof: See [21].

If G is acyclic, s(v) defines a topological sorting of the

vertices (an ordering such that all arcs run from smaller numbered to

larger numbered vertices). . By examining the vertices of G in s-order,

from largest to smallest, we can compute the strong components[19],

the period [13], or the weak components [25] of G , each in O(V+E)

time. By examining the vertices of G 1n preorder from largest to

smallest we can compute the dominators and bridges of G in O(V log V+ E)

time, as discussed in the next section. A third systematic method of

exploring a DFS tree allows us to find pairs of disjoint spanning trees

efficiently.
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| Let S be a set of vertices in G and let v£S . By collapsing

S into v we mean forming a new graph G' by deleting all vertices

in S and all edges incident to vertices 1n S , adding a new edge

(vsx) for each deleted edge (w,x) with x¢ SU {v} , and adding a

new edge (X,v) for each deleted edge (x,w) with x£S U {v} . Each

edge of G' corresponds to an edge of G , and each edge of G either

disappears or corresponds to an edge of G' .

For any vertex w , let C(w) = {v|(v,w) is a cycle arc} and let
*

P(w) = (v | w - v and dz eC (w) such that there 1s a path from v to z

which contains only proper descendants of w} . Let w be the largest

vertex of G such that C(w) #@ . Let G' be formed by collapsing

P(w) into w . Let T' be the subgraph of G' whose edges correspond

to the edges of T .

Lemmas: The subgraph of G induced by the vertices P(w)U {w} is

strongly connected.

Proof: Obvious.

Lemma 6: T' , with numbering the same as that of T , is a DFS tree

of G' with root r . Cycle arcs of G' correspond to cycle arcs

of G, forward arcs of G' correspond to forward arcs Or Cross arcs

of G, and cross arcs of G' correspond to cross arcs of G .

Proof: See [22].

Suppose we calculate P(V) in G and collapse P(V) into V

to create a new graph G' , calculate P(V-1) in G' and collapse

P(V-1) into V-1 , and so on, until we reach vertex 1 . Eventually

9



we collapse G into an acyclic graph whose vertices correspond to the

| maximal strongly connected subgraphs of G . This idea gives a way to

test the reducibility of G efficiently [22], and to efficiently find

| a palr of edge-disjoint spanning trees (as we shall see).

| Dominators

Lemma 7: Let (G,r) be a flow graph with G = (Vv, 3) and let T be

| a DFS tree of G with root r . Edge (v,w) is a bridge of G iff
| (v,w) is a tree arc, w has no entering forward arcs or cross arcs,

| and there is no cycle arc (x,w) such that w does not dominate x .

| Proof: If (v,w)is not a tree arc, or w has an entering forward arc
or cross arc, or there is a cycle arc (X,w) such that w does not

_ dominate x , then there is a path from r to w which avoids (v,w),

| and (v,w) is not a bridge. If (v,W) is not a bridge, there must

| be a simple path fromr to w which avoids (v,w) . If the last

edge on this path 1s a tree arc, (v,w) 1s not a tree arc, if it is

| a forward arc or a cross arc then w has an entering forward arc or

cross arc, and if it 1s a cycle arc (x,W) then w does not dominate x .

| 0.E.D.

If v dominates w and no vertex larger than v dominates w ,

then v 1s called the immediate dominator of w , denoted v = d(w) .

| By-convention d(l1) = 0 .
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Lemma 8: The edges {(d(w),w)| w ¢V-{1}} form a tree, called the

dominator tree of G , such that v dominates w if and only if

*-

v —- Ww 1n the dominator tree.

Proof: See [2].

If we calculate d(w) for all vertices w , then we can use

Lemmas 7 and 8 to find the bridges of G . Here is an O(V log V+E)

algorithm for calculating d(w) values. The method is a greatly

simplified and improved version of [21]. We calculate d(w) by processing

the vertices 1n preorder from largest to smallest. Let

Cy, = (V5 {(v,w) | (v,w) € € and w > k}) . Gy «oo Gp (V,8) . L e t

d, (w) = min{v | w is reachable from v in Gy, } . Clearly d, (w) < k

for all w , and d, (w) <k if k<w and w>1.

Lemma 9: d, (k) = min({v | (v,k) is a forward arc or tree arc]

U td, (V) | (v,k) is a cross arc or cycle arc)
if k>1.

Proof: Obvious.

I *

Lemma 10: Suppose w # k . If k-w and dy 1 (W) > d, (k) , then

Co d,(w) = 4(k) . Otherwise a, (w) =d, (Ww) .

Proof: If w>k, then any path from k to w must contain a

common ancestor of w and k . This result is proved in [21]. Thus

*

WwW 1s reachable from k in Gye iff k »w . Hence
. - *

Q.E.D.
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Lemmall: Suppose W # k and d(w) < k . If dW) = k then
d(w) = k . Otherwise d(w) < k .

Proof: If k does not dominate w , there 1s some path fram 1

to w which avoids k . Let (x,y) be the last edge on this path

with x<k. Then a, (W) < x < k . Thus if dq (W) =k,

! w dominates k , and since d(w) < k , d(w) =k . If dq (W) # k ,

then dp q(W) < k , and w is reachable from 1 by a path of tree

arcs, to dy pq (W) followed by a path in G_, . Since this path

avoids k , k doesn't dominate w , and since d(w) < k ,

d(w) < k .

Q.E.D.
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| We use Lemmas 9, 10, and 11 to calculate dominators, working from
| k=Vto k=1. The algorithm appears below in an Algal-like notation.

| At the end of an execution of for loop d below, each vertex w > k

| will be contained in a unique set. All vertices w in the same set

will have the same value of a, (w) . Each set will have a distinguishing

| name and a priority whose value 1s d, (w) for all elements w of the

| set. In addition, given a set, either all its vertices have known

| immediate dominators or none have known immediate dominators. Associated

'with each vertex w > k such that v -» w implies v < k will be a

| priority queue named w containing all sets which have descendants of
| WwW as elements.

| We use the following set operations:

| FIND (w) returns the value (x,p) where x is the name and p is

the priority of the set containing w as an element;

UNION(x,y) adds the elements in set x to set y (destroying x) .

The new set y remains 1n the same priority queue with the same

| priority as the old set y .

We use the following priority queue operations:

HIGH(q) returns the value (X,p) where x 1s the name and p the

priority of a set in queue qq with highest priority (by convention

HIGH(q) returns (0,0) if queue g is empty);

DELETE (x,q) deletes the set named x from queue gq ;

B QUNION(q,r) adds the sets in queue g to queue r (destroying

queue qd ).
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(3) d: for k:=V step -1 until 1 do update: begin

d(k) :=0;

e: p :=min((v | (v,k) is a forward arc or a tree arc)

U (p' | 3x, such that (y,k) 1s a cross arc or cycle arc

and (x,p') = FIND(y)} U {k-1});

comment p = d (k) if k £1, p= 0 if k = 1;

create a set {k} with name 2k-l1 and priority p;

create a set i) with name 2k and priority p;

create a queue named k containing the sets named 2k-l1 and 2k;

for w such that k = w do QUNION(w,k)

(x,p') :=HIGH(k);

f: while p' > p do begin

g: > kifad all vertices w in set x have d(w) = 0 then

for each vertex w in set x do d(w) :=k;

DELETE(X,k) ;

if all vertices w in set x have d(w) = O_then UNION(x,2k-1)

else UNION(xX, 2K) ;

(x,p') :=HIGH(k);

end;

if the set named. 2k is empty then DELETE(2k,k);

end;

Steps (2) and (3) will compute d(w) for every vertex w . Statement e

implements Lemma 9, statement f (minus statement g) implements Lemma 10,

and statement g implements Lemma 11. The total time required by steps (2)

and (3) is O(V+E) plus time for O(V) set unions, O(E) FIND's,

and O(V) priority queue operations. The set operations require
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O(V log V + E) time using a method given in [8,20]. The priority

| queue operations require O(V log V) time using Crane's method [12].

The total time is thus O(V log V + E) . The storage space required

is O(V+E) . (See [21] for further details.)

If the graph has no cross arcs, the priority queues are unnecessary

and dominators can be calculated faster, using only disjoint set union

operations. (See [21] for details.)

Disjoint Branchings

The dominators algorithm above forms an important part of an efficient

algorithm for finding two spanning trees having only bridges in common.

We use the dominators algorithm to find all the bridges of G . We duplicate

the bridges and discard all but the edges which will form the spanning trees.

| The following lemma forms the basis for this calculation.

Lemma 12: Let w # 1 be a vertex of G . Suppose the tree arc

entering w 1s not a bridge. There must exist a non-tree arc

(x,w) with d 1 (x) = d_(w) . Form G' by deleting all edges

entering w except the entering tree arc and (x,w) . Let

d; (v) = min{x|v is reachable from x in Gy J where

Gy = (Vv, { (x,y)|(x,y) is an edge of G' and y > k}) . Then

a; (v) — a, (v) for all v and for all k .

Proof: Clearly d; (v) > d, (v) for all k and a; (v) = d, (v) for

- all k >w . Suppose there is some k <w and some v such that

a; (v) > a, (v) Then there is a simple path containing w from a, (v)

to v in G . Let p be the part of this path from d, (v)
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to w . If there is a vertex y on p with y <w , vy # a, (v)

and y # WwW , then some common ancestor z of y and w lies on p

by Lemma 8 of [21]. But the path of tree arcs from z to w is

in G} , and there is a path from d, (v) to v in Gy. , a contradiction.

If every vertex y on p other than 4, (v) and w has y >Ww,

then p is a path in G_, and d, (v) = d, (w) = d_(w) . But clearly

a (w) = a; (w) , and thus there is a path from d, (v) = d; (w) to w

to v in Gy. , a contradiction. Q.E.D.

To find two spanning trees with fewest common edges, we execute

step (2), which carries out a depth-first search of the problem graph G .

Next we execute step (4) below, which uses statement "update" of step (3).

(4) for k:=V step -1 until 2 do begin

m :=min{x|(x,k) is a forward arc} U

U {p' |3x,y such that (y,k) is a cross arc or a cycle arc

and (x,p') = FIND(y)} U {k};

comment m = min{d, , ,(x)|(x,k) is a non-tree arc] U [k);

ifm = k then begin

comment the tree arc entering k 1s a bridge;

duplicate the tree arc entering k;

delete all other edges entering k;

end else begin

let (X,k) be a non-tree arc with d, 1 (x) = m;

delete all edges entering k except the tree arc and (x,k);

calculate dy. values from dy iq values using statement "update"
in step (2);

comment statement "update" may actually be simplified somewhat

since dominators are not needed, only dy values;
16



| delete all edges entering vertex 1;

= It 1s easy to prove by induction using Lemmas 7 and 12 that during

the k-th iteration of the for loop in step (4), m = k if the tree

| arc entering k is a bridge, m = a, (k) otherwise; and that after

: step (U4) 1s completed, the graph remaining 1s a bridgeless graph with

exactly 2(V-1) edges, containing two copies of each bridge of the

| . original graph. Exccution of step (4) requires O(V log V + E) time.
| Henceforth assume that G is a bridgeless flow graph with 2(Vv-1)

| | | edges.

| The 1dea of the remaining part of the disjoint spanning trees algorithm 1s

| | to collapse strongly connected regions of G until we create a bridgeless
acyclic graph. We can easily find two disjoint spanning trees in the

resulting graph. Then we expand the collapsed regions, modifying the

spanning trees accordingly, to produce two disjoint spanning trees of

the original graph.
|

| Let {71 = G . For 2 <k <V , let ok) be formed from
ql) by computing P(k) in glk) and collapsing P(k) into k .

| Fork = 2,%5,...,V*+1 , (kK) has a DFS tree p(k) corresponding to
: the DFS tree T of G . gl2) is acyclic. The following lemmas show

that d,. values are preserved during this collapsing process, and that

(7) gD 63) have no bridges.

| » Lemma 13: Let G be a bridgeless flow graph and let w be the highest
vertex of G with entering cycle arcs. Tet @¢' be formed from G by

collapsing P(w) intow . Suppose d; (v) is defined in G'. Then

dy (v) = d, (v) for allv in G' and for all k < w .
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Proof: If k<w, every path in G/ (possibly containing Ww)

corresponds to a path in Gy (possibly containing one or more vertices

of P(w) U{w} ) and vice-versa. It follows that d; (v) = a, (v) :

Q.E.D.

+

Lemma 1h: Let G be a bridgeless flow graph. Let a7 1) a), Co Lal?)

be defined as above. Then for k = 2,3,...,#1l , (k) has no bridges.

(V+1)
Proof: G has no bridges by assumption. Suppose for some k > 2 ,

( k+l) (k)
G has no bridges. We show that G has no bridges. The lemma

then follows by induction.

From Lemma 12 we have alk) (x) = al®) (x) for all x . Let
(v,w) be a tree arc of (1) . By hypothesis the tree arc entering w
. (k+1)
in G is not a bridge; we wish to show that (v,w) is not a

~ bridge in c(¥) . Two cases arise from Lemma 7.

(k+1)
(1) Vertex w has an entering forward or cross arc 1n G

Then w has an entering cross or forward arc in ok) , and (v,w)

is not a bridge by Lemma 7.

(ii) Vertex w has an entering cycle arc (y,w) with y not

+

dominated by w 'in GE 1) + Then w < k .

a) If w=k, let (1,v,), (vp, v3), o **Y (v,_129) be a path

from 1 to y 1in okt) which doesn't contain k . Let (VirViyq)

be the last edge on this path with vs not a descendant of k 1n the
+

DFST-of at 1) . Then vip € P(k) , SO (vow) is a forward or
cross arc of (8) , and (v,w) 1s not a bridge.

18



(k) k+1b) If w < k and y£P(k) , dy) = alk ) (y) < w by
Lemma 12 and the fact that w doesn't dominate y in g(k1) . Thus

(k)
w doesn't dominate y in G end (v,w) is not a bridge.

c) If w < k and ye¢ P(k) , (k,w) is a cycle arc of

(k) (k) ~ (k+1) _ (k+1)
G , and a. (k) = dy (k) = dq (y) < w , by Lemma 12, the

— +

fact that P(k) U {k} induces a strongly connected subgraph of gE 1) ,
| (rl)

and the fact that w doesn't dominate y in G It follows

that (v,w) is not a bridge.

Thus c(E) contains no bridges. |
Q.E.D. |

Now we have a systematic way to collapse the bridgeless flow graph

+ 2— G = gv 1) into an acyclic bridgeless flow graph ! ) . We need to find
2two disjoint spanning trees of ! ) and to systematically expand them

to give two disjoint spanning trees of G .

2

For any edge (v,w) in a ) let h(v,w) = 0 . For any edge
Co (k+1) | |

(v,w) in G , let h(v,w) = k if veP(k) U{k} and weP(k) Uk} .

— Otherwise let h(v,w) = h(v',w') , where (v',w') is the edge in o(%)

corresponding to (v,w) . According to this inductive definition,

” h(v,w) is the largest vertex into which both v and w are collapsed
4

when forming ov 1) «W), - a8) 5s 1f v and w are never collapsed

together, h(v,w) = 0 . The value h(v,w) 1s defined for all edges
k

(vow) in all graphs a ) yr kK = 2,0,...,#1 .
2

Since (3) has no bridges, each vertex except 1 1n a ) has
— 2 2 2

at least two entering edges. Let rl ) _ 7 ) (x ) 1s the DFS tree
of (3), and let 2) be any subgraph of 58) (2) containing
exactly one arc entering each vertex except vertex 1 .
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For some k , 2 <k <V , suppose that ri) and r(k) "have
2

k

been defined. rl ) and rik) will be edge-disjoint subgraphs of
0) which together contain all the p(%) —arcs of c(K) . Without
1 £ lit rik) (k) _0sS OL generalily, Suppose contains the T arc entering k .

kt1

Let (Vivp)s (Voss). 5 (Vv 10K) be a simple path in ox )
such that

(i) v, £ P(k) and vs e P(k) for j = 2,3,...,n-1 ;

(ii) either (v157,) corresponds to an edge of rik) or
(vys7,) 1S a non- p (k+l) —arc of gl) such that the
(k) | |

Is —arc entering h(vy,v,) 1s not a cycle arc; and,

(iii) for all j = 3,4,...,n-1 , there is a non- 1 (k+1) are
+

(x, 5) of ols 1) such that either x e¢ P(k) U {k} or
k

the r! ) arc entering h(x,v,) 1s not a cycle arc.
. (k+1)There must be such a path since there 1s an edge (X,7) in C

with x £P(k) Uf{k} , yeP(k) U {k} , corresponding to the p(X) arc
( k+l)entering k ; and there 1s a simple path from y to k in G

which contains only vertices in P(k) U{k} . Some final part of this

path plus some initial edge (vysv,) must satisfy (i), (ii), and (iii).

Let p(k) and p(k) be defined as follows:
. k+1

For i = 1,2 let r! ) contain all arcs 1in gL) corresponding
(

to arcs in i) .
(k+1)

Let (vp Vp) 5 (Vora) sees (vi 15K) be in T, . (If (v35v,)

corresponds to an arc of 7) , 1t is already in p(k+1) .)
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B For each vertex w in P(k) with an entering arc (x,w) in

i r(k*L) » let (y,w) be another entering arc, g p(k+1) —arc if possible,
such that either yeP(k) U{k} or the T, (k) —arc entering h(y,w) is

not a cycle arc. Add (y,w) to peed) :
For each vertex w in P(k) which still has no entering arcs 1n

pik) or rik) r let (X,w) be the entering p(k) —arc and let
(y,w) be any other entering arc. 1f yfP(k) U {k} and the pik) —arc
entering h(y,w) is a cycle arc, then add (y,w) to pid) and
(x,w) to pik) . Otherwise, add- (x,w) to p{k+1) and (y,w)
to pik) .

We need to show that, for all 2 <k < Wl, r{k) and rik) ——
edge-disjoint spanning trees of o(k) . Clearly rik) and 7%) are
edge-disjoint subgraphs of 5K) . It is easy to show by induction that

pik) and rk) each contain exactly one edge entering every vertex
of c(K) except vertex 1 , and that 7 {) and rE) together contain
all the p (K) —arcs of c(k)

1 Because of the way the o(%) 's are constructed, if (v,Jj) is
a cycle arc of ae) , then for all k > Jj there is a corresponding

L cycle arc (w,Jj) of g(k) .
Consider-:

~

(A) Let (x,y) be an edge of gle) which corresponds to an edge

~ (x',y') of pl) TLIC for some j < k but not to any edge of
r{d) urd) , and such that x' ¢P(j) U {j} . If h(x,y) has an entering

cycle arc in 7 () for i =1 or 2, then (x,y) is not in ro) :
|
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Lemma 15: For k = 2,5,...,V*+1 , p(k) and rk) satisfy property (A)
above and are edge-disjoint spanning trees of c(K)

Proof: The lemma is clearly true for k = 2 since (2) 1s acyclic.
Suppose the lemma holds for integers from 2 to k . We prove the

lemma for k*1 . To prove that (A) holds, let (x,y) be an edge of

g(E+1) which corresponds to an edge of p{J*1) U {31 for some
J < k+l but not to any edge of r{d) urd) , and such that
x" #P(3)U {3} . If 7 = k , (A) holds for (x,y) because of the

way T (+1) and p(s) are constructed. If Jj <k, let (x',y')
in ck) correspond to (x,y) in o (+1) . Then h(x',y') = h(x,y) < k

and any cycle arc in pik) SLICE entering h(y,z) corresponds
to a cycle arc in r{k) ur{®) entering h(y',z') , so (A) holds for
(x,y) by the induction hypothesis and the way p{+1) and p(k)
are constructed.

Now we must show that r{k1) and pl) are spanning trees;
that 1s, that neither p (E+) nor p(s) contains a cycle. Suppose
to the contrary that for some 1ice€ {1,2} , p{F+L) contains a cycle.
This cycle must contain sane vertex of P(k)U {k} , since p(k) contains
no cycles.

Suppose the cycle contains only vertices in P(k) U {k}. Then the

cycle must contain a cycle arc entering k , which means the cycle 1s

in p(k) But every vertex of okt 1) has only one edge of +L)
entering it, and there 1s a path of p{k+1) —arcs from outside
P (k) U {kx} to k . This is impossible, so no {ED cycle containing
only vertices in P(k) U {k} can exist.
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2 Suppose the cycle contains one or more vertices outside P(k) U{k} .
| The cycle must contain a cycle arc (v,w) such that all vertices on the

| cycle are descendants of w 1n (k+l) :oo . (This follows from Lemmas

in [21].) Let (x,y) be any edge of the cycle. We will show that in

(wrl)
G elther x and y are collapsed together or there 1s an edge

. (w+1)
in T, corresponding to (X,y).Clearly, h(x,y) > w , since x

and y are descendants of w (in 7 (k+l) and in p(w) ), there is
th from x to to w in (k+1)a pa y G which contains only descendants

oI Ww, and some path in G corresponds to this path. If x and

y are not collapsed together in (wl) , then h(X,y) = w .If in

addition (x, y) corresponds to no edge in p(w) , then for some
| wtl < J < k , (x, ¥) must correspond to an edge in r{j+1) with

x' £P(3) U {J}, and to no edge in (3) . But this is impossible, since
i then property (A) would imply that (x,y) is not an edge of 7{k+1) ,

| since a cycle arc entering w 1s 1n p{k+1) |k+

Thus the cycle of 1! 1) —arcs corresponds to a cycle of Tow)
| arcs, since v and w are not collapsed together in (wl) i»
- wl k+1

J ) has no cycles. Thus r ) can have no cycles, and p (etd)
ktl

- and r! ) are spanning trees. The lemma follows by induction.
Q.E.D.

We now have a very delicate but direct way to construct two edge-

disjoint spanning trees in a bridgeless flow graph. We must still find a way

to implement this construction so that it is efficient. There are two

steps to be implemented. First, we must collapse the graph, calculating

P(V) , P(V-1),...,P(2) and successively forming WD (VM) 6)
During this process we gather enough information about each P(k) to
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enable us to later construct the paths necessary to give the spanning

trees. Then we must expand the graph, constructing spanning trees for

¢(@ 0B) aD) from the previously gathered information.

The algorithm needs several arrays and other data structures. For

each edge (v,w) , h(v,w) is the first vertex into which both v and

Ww are collapsed, as defined previously. If v 1s a vertex, s(v) 1s

the s—number of v , as defined in the section on depth-first search.

With each vertex v 1s associated a p—set with name v , containing

all those vertices currently collapsed into v . We use the following

operations on p-sets:

PFIND(W) returns the name of the p-set containing vertex w ;

PUNION(x,y) adds the elements in p-set x to p-set y , temporarily

destroying p-set y ;

~ SPLIT(x,y) undoes the operation PUNION(X,y) , if PUNION(X,y) is the

most recent PUNION not yet undone.

SPLIT(xX,y) 1s necessary when we begin expanding the graph; we must

undo each collapsing operation. The Appendix to this paper describes

a way to implement PFIND, PUNION, and SPLIT so that each PFIND requires

O(log V) time and each PUNION or SPLIT requires constant time independent

of v .

With each vertex v 1s also associated an _s—-queue with name v .

This s-queue is a priority queue containing each original edge (x,y)

corresponding to an edge entering v in the currently collapsed graph.

The priority of edge (X,¥) in the queue is s(x) . We use the

following operations on s-queues:
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SHIGH(q) returns an edge (X,y) with highest priority in s—-queue gq ;

i SDELETE( (x,y),q) deletes edge (%,y) from s—-queue gq ;
SUNION(q,r) adds all elements in queue gq to queue r , destroying queue q .

We order s—-queues by s—-number for the following reason: Suppose

k A Vv . Then all edges (x,y) such that k 2 x will be deleted from

s—queue vv before edges (X,7v) such that = (k x Xx) . This fact

facilitates determining the P(k) 's and makes the algorithm's running

time linear except for set and priority queue operations.

Each vertex v can be 1n at most one P(k) . The array p 1s computed

so that p(v) = k iff veP(k) .If v is in no P(k) , p(v) = 0 .

If v£#1, T(v) is the p (+1) -arc entering v . If veP(k) for
some k, N(v) is an arc in | v1) corresponding to a non- r ket1) ~arC
entering v in ay . If v£P(k) for any k , N(v) is an arc in

¢! v1) corresponding to a non- r(2) '-arc entering v in (2) .

Suppose Ve P(k) . Then there is some path from v to k through

i vertices in P(k) . E(v) will be a (+1) -edge corresponding to the ,

I first gl) —edge on some such path. That is, some path
(Vs vp) s (Vs v3) 5 veer (Vy 15K) in g(E1) through vertices in P(k) will

i correspond to edges E(V),E(vy)s-. ,E(v, 1) in o(V+1) E(v) is
necessary to calculate the-paths used in constructing the edge-disjoint

_ spanning trees.

Step (5), appearing below in Algal-like notation, collapses G - o(V1)

into a(V) g(V-1) Co! a2) .It calculates the sets P(k) , in addition to

| various data items described above. Tt yses as a procedure SEARCH, which
1s a recursively programmed depth-first search for exploring any

particular P(k) .
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| (5) begin

| procedure SEARCH(k,Vv); begin

| add v to P(k);

| p(v) :=k;
| (x,y) += SHIGH(v) ;

if (Nv) = 0) ang. (T(v) # (x) then N(v) := (x,3);

| while k — x do begin |
| SDELETE( (x, ¥) » ¥) ;

h(x,y) :=k;

Ww := PFIND(x)

| comment 1f w has not been reached before, search from w;

if (p(w) # x) and (w # k) then begin

E(w) := (XY);

SEARCH (k,w) ;

end;

(x,y) :=SHIGH(V);

| if (N(v) =0) and (T(v) £(%¥)) then N(v) :=(%Y);

| end end;

comment 1nitialization;

for v:i=1 until V do begin

create a p-set {v} with name v;

if v #1 then let T(v) be the tree arc entering v;

create an s-queue named v containing all arcs (u,v)

entering v, each with priority s(u);

N(v) :=0;

P(v) :=f;

p(v) = 0;

end;
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ES

comment collapsing;

for k=V step -1 until |
— — 2 do begin

(X,¥) :=SHIGH(K);

comment k has at most one entering cycle arc;

if k 5

SDELETE( (%,¥), k) ;

h(x,y) :=k;

comment find P(k);

SEARCH(k, PFIND(x)) 7

Comment collapse P(k) into k;

for veP(k) do begin

- SUNION(v, k) ;

PUNION(v,k) ;

a end end end end;

| Step (6) below takes the information calculated by step (5) and
i Uses it to construct edge-disjoint spanning trees of (8) 4(3) A(T)

In the Process it undoes the PUNION operations performed in step (5) using’

_ operation SPLIT. The list "path".
1s a list °F e9 ges used to find a

path from outside P(k) through P(k) to k of the type necessary

- for the spanning tree construction.

(6) gomment compute edge-disjoint spanning trees for “ 2

for k :=2 until V do

———= = if p(k) = 0 then begin
T,(k) :=T(k)

(x,y) *=SHIGH(k) ;
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if (%,¥) = T(k) then begin

SDELETE ( (x, y) , k) ;

(x,y) := SHIGH(Kk);

end;

T,(k) = (X,Y)

end;

comment compute edge-disjoint spanning trees for

cM (WD _ g,

for k = 2 until V do if P(k) #§ then begin

for ve P(k) do SPLIT(v,k);  -

if T, (k) = T(k) then i:=2 else i :=1;

(x,7) :=T, (Kk);

w := PFIND(Y);

1, (W) i= (%,7);3

7, _; (w) =7(0);3

path :=@;

add (x,y) to front of path;

(x,y) :=E(w);

Ww :=PFIND(y);

end;

T, (k) := (x9);

let (x,y) be first edge on path;

delete (x,y) from path;

while (p(PFIND(x)) = k) and ((h(N(PFIND(y)) = k) or

(T5_; (h(N(PFIND(y) ) )) is not a cycle arc)) do begin

T, (PFIND(y)) := (%,¥);
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if (xy) # T(PFIND(y))thenT,, (PFIND(y)):=T(PFIND(y))

else T,_(PFIND(y)) :=N(PFIND(y));
let (x,y) be first edge on path;

delete (x,y) from path;

end;

T,_s (PFIND(y)) :=T(PFIND(y)); |

if p(PFIND(x)) # k then T,(PFIND(y)) := (x,y)

else T,(PFIND(y)) :=N(PFIND(3));

for veP(k) do if 7, (v) is undefined then begin

g (h(N(v)) # k) and I, ; (B(N(v)) is a cycle arc) then begin
Ty (v) 1=N(Y) ;

7,(v) :=1();3

end else begin

T,(v) :=T(v);

T, 4 (v) =N(v);

comment i) and T, now give two edge-disjoint spanning trees of G;

It is an elementary if tedious exercise to verify that steps (5)

and (6) correctly construct two edge-disjoint spanning trees of any

bridgeless flow graph with exactly two edges entering each vertex except

vertex 1 . It is also easy to show that the algorithm requires 0O(V)

time, plus time for O(V) set operations and O(V) priority queue

operations. The set operations require O(V log V) time using the method

oo described in the Appendix and the priority queue operations require

O(V log V) time using Crane's method [12].
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The total time required to execute steps (2), (4), (5), and (6),

which together construct two spanning trees containing only the bridges

of an arbitrary flow graph G , is thus O(V log V + E) . The total

space required is O(V+E) . Figures 1-6 illustrate the application

of this algorithm to a flow graph.

Conclusions

This paper has presented a very simple O(VE) algorithm and a much

more sophisticated O(V log V + E) algorithm for finding two spanning

trees with fewest common edges in a directed graph. The latter method

applied depth-first search, a highly simplified and streamlined version

of an efficient dominators algorithm (presented for the first time here),

and a systematic cycle-shrinking method. The data structures necessary,

disjoint sets and priority queues, are sophisticated but quite easy to

. implement. The 0(V log V + E) algorithm, although more complicated

than the O(VE) algorithm, is theoretically better by a factor of

V/1log v . Computational experience with similar algorithms suggests

that the O(V logV + E) algorithm will be competitive with or superior

to the O(VE) algorithm for practical problems. Both algorithms can be

generalized to find two minimally intersecting spanning trees with

possibly different roots.

The depth-first search technique and the data manipulation methods

used here are applicable to a variety of other graph problems. An

interesting open problem is whether the methods used here (or other

methods) can be combined to give an ~ O(E) algorithm for finding two

spanning trees with fewest common edges in an undirected graph. Such

an algorithm could be used to efficiently solve Shannon switching games

and to do "mixed" analysis of electrical networks.
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Appendix: Implementation of Reversible Set Unions

Suppose we are initially given n disjoint sets, each a singleton

and each with its own name. We wish to implement sequences of operations

of three types:

FIND (z) returns the name of the set containing z as an element;

UNION(x,y) adds the elements in set x to set y , temporarily

destroying set x ; and,

SPLIT(x,y) splits set y into two parts, one part corresponding to

the old set x and the other corresponding to the old set y .

Any SPLIT(X,¥) operation must follow a UNION(X,y) operation and be

separated from it only by FIND's and paired UNION and SPLIT operations.

To implement these operations, we represent each set as a directed

tree. Each vertex 1n a tree corresponds to an element 1n a set; a

vertex contains the name of the corresponding element, a pointer to

its father (1f any) in the tree, and a count of its descendants in

the tree. In addition, the root of a tree contains the name of the

set corresponding to the entire tree.

To carry out FIND(z) , we locate the vertex corresponding to z

and follow father pointers to the root of the tree, there finding the

name of the set containing z .

To carry out UNION(x,y) , we locate the roots corresponding to

X andy . If set x has more elements than set y , we combine the

— trees by making the root corresponding to y a son of the root corres-

ponding to x . Otherwise, we make the root corresponding to y a son

of the root corresponding to x . We update the number of descendants
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of the new root and change the name in the root to y 1f necessary.

The new edge created corresponds to the UNION operation.

To carry out SPLIT(X,y) , we break the edge corresponding to the

UNION(xX,y) operation which precedes SPLIT(X,y) . We update the names

and numbers of descendants of the new roots as necessary.

Clearly each UNION and each SPLIT operation requires constant time.

It 1s easy to prove by induction that any path in a tree with k

vertices created by this algorithm has length <log k . (See [20].)

Thus each FIND operation requires 0(log n) time.

In the application of this algorithm considered in the text, all

the SPLIT operations follow all the UNION operations. In this gpecial

case it is possible to devise a slightly faster but much more complicated

set union method, based on results in [8]. However, the method presented

here 1s simple and 1s efficient enough for our purposes.
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Figure 1: A flow graph, with start vertex 1 . Edge (1,2) is a bridge.
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Figure 2: Depth-first search of graph 1n Figure 1. Tree arcs are

marked T , forward arcs F , cycle arcs Cy , and

cross arcs Cr . Vertices are numbered in preorder;

numbers 1n parentheses give an s-order numbering.
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-Figure 3: Graph after step (2%¥%) applied. Bridge has been duplicated;
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{ur (3) _5(3) withtwo edge-
Figure 4: Completely collapsed graph © =G Wl wo edge

disjoint spanning trees, marked by “ae and Nn
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Figure 5: Partially expanded graph o(®) with two edge-disjoint
spanning trees.
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Figure 6: Completely expanded graph (3) = G with two edge-disjoint
spanning trees.
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