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and simulations of systems using memory references from real programs.

The model results provide a very good indication of.the performance we

should expect from real systems of this type,

KEY WORDS: Mcmory, Memory Interference, Multi-Processing, Interleaved

Memory, Trace Driven Simulation

COMPUTING REVIEWS CATEGORIES: L.32, 6.21, 6.34, 8.1

+*

The author's current address is: Department of Electrical Engineering
and Computer Science, University of California, Berkeley, California.

This work was pariially supported by the Joint Services Electronics
Program contract N-0001h-67-A-0112-004k, National Science Foundation Grant
GJ 35720, and by Mr. Smith's National Science Foundation Fellowship.

/



I. INTRODUCTION

Computer systems with multiple, {(ndependent memory modules and

multiple, independent processors have been available for a number

of years. Recent proposals for systems with a large number of

primary processors as well as a large number of memory modules

(Bell, 1972; Flynn, 1972], give added importance to the general

question of the amount of memory interference caused by independent

processors. In a system with N CPUs and M memory modules,

independent programs may make simultaneous requests to the same

memory module and interference will occur. If the memory modules

are selected by low order bits of the addresses, as in typical

interleaving, the memory interference could be severe. Our aim is

to develop an abstract model of the operation of a multiple

processor, nultiple memory module system, determine the degree of

memory interference in that model, and to assess the degree to

which results from the model would correspond to actual system

behavior. |
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11. SIMPLE MODEL |

A simple model of N processors using K interleaved memory

modules is the following Markov chain. All processors and memories

are synchronized. At the beginning of each memory cycle, all the

processors whose memory request from the previous memory cycle were

satisfied make a new memory request. The request of each processor

1s directed to a particular memory module chosen at random, with

all memory modules being equally likely to be chosen. Several

requests may be for the same memory module. Each module will

| service exactly one request during the memory cycle if it has any

) requests before it. Any remaining requests are held for future

memory cycles. }

It should be clear that ve are considering a system that is

bound by the speed of its memory; that is, each processor alvays

has a request waiting for the memory ss soon as the memory is able

t«¢ accept it, The system in question is also synchronous; ell N

processors make requests at the same time, and receive their data

at the same time. Although such an organization will exactly

describe only a minority of current or proposed multiprocessor

systems (e.g., the Honeywell 645 has a slower processor cycle time

than memory cycle time, and does not run its processors in |
synchrony [Sekino, 1972 and private communications] ), it

will be shown that one can use the results in this paper to obtain

very close approximations to the true degree of memory interference

in other systems,
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We can define a complete set of states as follows: a 2N-tuple

(my, kom kK, ced mk) vhere =, 1s the memory at which the
reference from processor i 1s directed, and Kk, is its position

in the queue at that memory. Since all processors are assumed to

have thc same reference pattern (uniform random over the set of

integers 1 ... M), and since we are interested solely in the overall

rate of memory access, not in the relative performance of one

processor over another, both the queuing discipline and the position

of each processor in each memory queue become irrelevant, Nor is

it important to specify which processor is queued for which memory,

rather we need specify only how many processors are queued for each

memory. The state can now be represented as an M- tuple

| K = (ky ‘oo keds where k, is the number of requests queued for
memory 1 . -

The number of such states K = (k, coo k,) is the same as

the number of ways of distributing N balls (processors) into M

boxes (memories) [Feller, 1966] (® . - 1 1) . At the end of a
memory cycle, (before new memory requests are issued), the state

of the system is represented by H = (hn, rN» where

h, ™ k, - 1 1 , > 0 , O otherwise. Another state G = CH oe gy)

is reachable in one step trom (k, ces x,) if g, > h, for all 1.
If d =k -h , and x= % d, , then P(K,G), the probability
of transition from state K to state G 1s

x: 1X

P(X,G) = —3yp O51 oe Gy (3)
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as discussed by BhLandakar and Fuller [1973].

It should be clear without proof that this stochastic system

is a Markov chain, since the choice of next state is affected

only by the current state, is aperiodic, since from any state a

transition to itself in onc step 1s possible,and is irreducible,

since any state can reach any other state in a finite number of

steps. ,

It is possible to reduce the number of states again without

losing useful information. Because the memory modules are identical,

it is not necessary to associate queue lengths with spacific memory

modules. For example, a state (3,2,1,1) is equivalent to a state

(1,2,1,3). We can thus deal with equivalence classes, where, for

exsmple, (2,1,1) would represent the states (1,1,2), (2,1,1) and

(1,2,1). The number of states is now equal to the number of ways

to partition N objects into M groups, where one or more of the

groups may be empty. There is no closed form expression for this

number, but for large N, M (M > N) , it 18 asymptotic to

1 -

——— exp (fa )ux 3 3

[ Beckenbach, 1964] , which grows much less quickly for large M,

N than does ("e¥3%) .
Baskett has devised a method of enumerating all of these

(equivalence class) states and calculating the transition proba-

bilities in an efficient manner. This calculation has been

performed and described elsewhere [Chewning, 1973; Fuller and
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Bhandarkar, 1973]; the results for a number of cases are displayed

in Figures 1, 2, and 3,

It is easy to solve either the N x 2 or the 2 x M cases

for all Nor M .

(a) & Processors, M memories

1

p= 2-—F

(b) N Processors, 2 Memories

,

SE

All attempts to find a simple closed form solution for the

system described with finite M , N(M > 2, N> 2) have failed, and

the authors are of the opinion that such a solution is unlikely, |

Two items lend support to this opinion -- the failure of the

decomposition method (see Section IV), and the disproval of the

following conjecture-- "that the throughput of an N x N

(N processor , M memory) system is the same as the throughput of

an M x N (M processor , N memory) system." This conjecture holds
t-

for either M =2 or N= 2, for M = N, and in the limit as

N—oo  , M-o 6 with MWN constant. It fails to hold, however,

for the next most complicated case, the 3 x 4 system, :

It should be noted that the model above is similar to a model

proposed and partially analyzed by Skinner and Asher [1969] . They

use a larger collection of states; since they are interested in

which processor's memory request is satisfied, the model contains

6



tie breaking pruoabilities in the case of memory usage conflict.

This more detailed model only allows them to solve a very small |
number of cases, unfortunately. Other authors that have considered

the memory interference problem (although with sowewhat different

models) are Budnick and Kuck [1971] and Flores [1964].
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I11. ASYMPTOTIC RESULTS

A. The Simple Model

As N—~® Moo  N/M-L, a constant, there exists an

exact solution, We can view each memory as the server in a queue,

which operates in discrete time, At the end of each time interval,

one service is completed if eny customer is waiting for service

(1.e., 1f any processor is waiting for the contents of a location
in this memory). At the same time zero or more customers arrive.

Let L, be the equilibrium probability of heing in state 1 ,

i.e., with 1 customers in the queue, and let Py be the probability
of having J customers in the queue, given 1 customers there

during the previous interval. Then, in equilibrium
- |

t

L, =D LP, | (1)
1=0

For very large M and N , Psy becomes a function of J-1 , Let

Ag be the probability of {i customers arriving at the end of

ab interval.

Then

Pog = 43
and

Pig = Agena» 321-1

Pys =0, J<1i«l,

. |



Thus ‘

J+l

L, >> Lid saat Lo,
i=]

Define

© ® ) .

.3=0 30

as the generating functions of the arrivals (per interval) and the |

queue length, respectively. We then have

© J+

J

L(z) = ) ) LA nn? + LyA(2)
J=0 1=1

By interchanging the order of summation and simplifying, we

obtain

L,A(Z)(Z = 1) ,
L(z) = Zaz) (2)

By differentiating this expression with respect to Zz , and

evaluating at Z = 1 , we obtain L , the mean queue length,

-1

 L(z) = LyA(z)(z-1)(z-A(2)) (3)

o -1
= L(2) = L,A'(2)(2-1)(z-A(2))

-1

+ Loa(2)(2-a(2))

- LoA(2)(2-1)(2-A(2))"%(1-4" (2) (4)0 J

As this expression is undefined at 2 = 1 , we collect terms and

then apply L'HOpital's rule twice. |
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We obtain

- A" (1)+2a' (1)-24'2(2)
L = Ly 5 (5)

2-4A' (1)+2A' <(1)

A reader familiar with queueing theory will have noticed that the

equations above are exactly the same as those used in obtaining

results for the M/G/1 (Poisson arrival, general service time,

single server) queue [Cox and Smith, 1961] . We can thus replace

L, » the fraction of time that the queue 1s empty, by (br - 9p),

where p is the symbol for the utilization of a server.

When N and M are finite, and the number of busy servers

(memories) is known (and equal to b ), the arrivals sre binomially

distributed as |

P {d arrivals} = (2)@) (x - 3)
Qcd<b

When N , M = « , the number of busy servers will become a constant

fraction of the total number, equal to p . The distribution cf |

the number of arrivals will become Poisson in the limit [Feller,

1966], 1i.e.,

i -pt

P (1 arrivals] = Ltr (6)

10 |



and the generating function of this distribution is

AZ) = oP (2-1) . |
We can obtain an expression for L etither directly from equation

(5) or by referring to any queueing theory text [Saaty, 1961],

which gives

L = P+ TT) | (7)

From the structure of the problem, we know L, the mean

queue length (!) , it is simply N/M; since every processor is

queued at exactly one memory, there are N customers among M

servers, Thus

M P 2(1 - p)

Solving for p , we obtain

2 1/2

uw) - (3)p= +] (& +) (8)
The fraction of time then that a given memory is idle (due to

interference between processors which are queued elsewhere) .is:

| 2 \1/2
_ ) Nidle time= 1 - p - (( v1) yc

We will show later that this asymptotic result is quite accurate

even for systems in Which N and M are as small as 8 or 16. We will

also shown in Section IV that a slight modification of this expression

will yield even more accurate expressions for finite N and M.
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B. Jllternate Models

It is interesting to note that we have obtained exactly the

same results as for an M/D/1 (Poisson arrivals, constant service

time) queue which differs from the current problem in two important

respects:

(a) arrivals are Poisson distributed, but arrive rontinuously,

not in batches at the start of an interval, and

(b) service starts at exactly the time of an arrival to an

empty queue, not at the beginning of an interval,

This model is almost equivalent to that of a paging drum with

one sector and an infinite source Poisson arrivel process. The

differcnce is that the drum model has arrivals occurring continuously

in time, rather than at discrete intervals, although services are

synchronized in time and constant in duration, This drum model

has been analyzed [Coffman, 1969; Skinner, 19671, and the result,
using our previous notation is

2

L = o(3)* sp
Letting

L x as before,

N ( oN © Np = seed - i] (9)
Another variant of this model is to view it as a queueing

network, Customers (processors) are served at a server (memory)

and then branch with equal probability to one of the other servers,

| | 12 |



Since every server is identical to every other, every branching

probability is the same (uniform over all servers), and all

customers are identical, in two special cases we can obtain a

result. If either the service times are exponential (with mean 1

as before) [Jackson, 1963; Gordon and Newell, 1967] or constant,

with LCFS preemptive service [Muntz and Baskett, 1972], we have

iL 2X .
l~-0p M

NN

P = T+ NM (20)

This approach has also been examined in Bhandarkar and Fuller

[1973] for finite numbers of customers. As should be clear,

a8 N, M - ®» , esch server in the queuing network becomes indepen-

dent of every other; thus if each server is FCFS with constant

service time, the previous M/D/1 queue result holds.

In Table 1 the results for a few simple examples using

formulas 8, 9 and 10 are shown,

13



TABLE 1

MEMORY UTILIZATION (p) FORM ~ ®, N — =,

N/M = L, A CONSTANT

OUR MODEL QUEUEING
b M/D/1 MODEL DRUM MODEL NETWORK MODEL

1/2 -LO455 .29289 «3333

1.5 6972 .63397 .6

2 .7639 .T192 6666

14



IV. APPROXIMATIONS

Because it is extremely time consuming in terms of computer

time, as well as in programming effort, to calculate exact values

for our simple model for finite M and N , it was considered

~ desirshle to find a useful approximation. A number of different

approaches are considered and are discussed below; the binomial

approximation jg found to work well in all cases and is displayed

in several tables and illustrations. °

A. Balls and Boxes

The simplest and most obvious spproximation to the simple

model discussed in Sections II and III was used by Strecker [1970].

+ In his model the probability that K processors are queued for

a specific memory is . |
| ‘

K N-K

P{k=K}] = (5)G) (-13) (11)
This is equivalent to the probability of a box having K balls,

given that N balls are distributed randomly among M boxes.

The probability that a memory is busy is just

1 N

l1-P{K=0] = ro (1-2) =p |
The value obtained here is consistently low compared to the correct

solution, and it is not hard to see why, Initially, the processor

requests are described as indicated. In the next cycle, those

processors serviced during the first cycle generate requests

randomly, but those requests may find substantial queues in front

15



of them. Thus longer queues tend to build up, lowering the

overall utilization

B. The Decomposition Approximation

It was suspected that the model under consideration could be

decomposed and analyzed piecemeal in some manner, Specifically,

we tried analyzing a single (memory) queue, based on the a8 5ump-

tion that all customers, (totaling K ) not queued at the memory
in question were distributed among the other (M - 1) memories

with preciscly the same distribution that would occur at equili-

brium in a K x (M - 1) system. Results for some N x 3 systems

| were calculated in this manner and are compared with the exact

results in Table 2, The numbers are ‘rery close, but not exact,

These results are only marginally easier to obtain than the exact |

results. The failure of the system to decompose in this manner

does add weight (as mentioned above) to our feeling that a closed

form solution to this problem (if any such exists) will be very

complex,

C. The Binomial Approximation

Earlier, in equation 5, we obtained an expression for the mean
queue length L , as a function of the moments of the arrival

distribution, A(n) .

= "(1) + 24'()) - 2a'%(1)L = v(2)] - L, A ‘ 5 (12)
201 2(2 - a'(2))

16 |



TABLE 2

DECOMPOSITION APPROXIMATION IN THE N PROCESSOR,

| 3 MEMORY SYSTEM

FRACTIONAL MEMORY IDLE TIME

DECOMPOSITION

PROCESSORS APPROXIMATION SIMPLE MODEL

2 July RIT

3 .3162 3175

4 2426 2433

5 1962 .1966
6 . 1644 1647

T | 1415 1426
8 - 12506 .1242
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A'(1) 1s simply the mean number of arrivals per interval,

or p . Lo = 1p and L = N/M as before. Thus

’  ] 2N A'(1) + 2A' (1) - 2A" (1

LE (13)
2(1 - a'(1))

If we assume that the arrivals are binomially distributed

(instead of Poisson distributed), i.e.,

(IN) _K N-K
P {K arrivals} = Ay = (x) p (1 -p)

with

P(z) = (1 -p + pz)" , and mean np = p

then

A"(1) = n(n -1)p° and A'(1) = np |

p here is simply 1/M , the probability of an arrival entering

the queue in question, Solving for np = p , the mean arrival

rate, we obtain

| >

p = Np = (14)
2

It is possible to extend the use of the binomial approximation

beyond the simple model. In the simple model each CPU issues a |

memory request immediately on the completion of service by the

memory of its previous request. Oonsider instead a CPU which,

after receiving the desired information, "thinks" for a period of

time with mean T and arbitrary distribution. The binomial

18 |



approximation can be used for this model also, provided we are

able to obtain an expression for the mean queue length at the

memories, which is no longer N/M .

The mean cycle time of a customer (processor request) in the

system will be F(L) + 1 + T , where T is the mean think time

of the processor, 1 1s the memory service time, and F(L) is

the mean queue length observed by a customer arriving at a memory,

given that L is the equilibrium queue length as measured at an

arbitrary time. Note that F(L) 1s not necessarily equal to L ,

since the arrival of a customer is not independent of the state

of the system. For example, an arriving customer will never see

more than N - 1 customers in the queue ahead of him, although

measured at arbitrary times, the queue length will at times be

equal to N ,

An expression for L then 's

(L) +1

F(L) +1 + T

In general, an expression for F(L) 1s very difficult to

obtain, and as a simple approximation F(L) will be set equal to

LAL L . Then
2

L = (16)

N-1

2 (5)

19



and

2

(3-2-2) [3-2 -8Lp = — (17)

Comparisons of the binomial approximation to measured trace

driven simulation results and/or simple model results are shown :

in Figures 1, 2, 3 and 4, and also in Table 3. As can be seen in

these figures and tables, formulas (14) and (17) provide very accurate

estimates of the interference we can expect in a real multiprocessor

system with interleaved memory.

20
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TABLE 3

INTERFERENCE WITH CPU'S USING THINK TIME

% MEMORY IDLE
THINK TIME

CPU'S MEMORIES MEASURED BINOM. APPROX. ~~ MEAN DISTRIBUTION

2 2 4081 .3738 .5 Exponential
2 2 .3906 .3738 5 Constant

2 2 14109 .3738 | 5 Hyper Exponential
+ (oval)

2 2 4079 .3738 5 Erlang 2

2 2 4065 .3738 .5 Erlang 3

2 2 4050 .3738 5 Erlang k
h L 4519 4392 5 Exponential

4 by Jl 31 4392 5 Constant

4 l L540 4392 “5 Hyper Exponential
(cval)

k b 4505 4392 5 Erlang 2

4 by 1506 k392 5 Erlang 3
h b 487 4392 5 Erlang 4

8 8 AT34 4654 ed Exponential

16 16 4848 ATT 5 Exponential

32 32 4921 4883 5 Exponential

32 32 4905 4883 5 Constant

32 32 4923 4883 .5 Hyper Exponential
(cv=l)

32 32 .4908 .4883 5 Erlang 2

32 32 4888 4883 .5 Erlang 3

32 32 4916 1883 5 Erlang 4

bh 4 .3255 .3560 .01  Exponentiel

h L 3479 3727 .1 Exponential

b 4 3777 " .3695 .2 Exponential
by L 4269 4230 Ab Exponential

b 4 . +5160 4876 .8 Exponential
h L .5530 5176 | Exponential

: by i 6265 5842 1.5 Exponential

Lh L .6823 .6385 2 Exponential
25



¥. VALIDATION OF RESULTS, .A TRACE DRIVEN SIMULATION

In order to test both the assumptions upon which our model

is based and the results we have predicted, four different memory

address traces were analyzed. Each of four different programs

were interpreted, and a tape of the memory addresses referenced

was produced. The programs interpreted include WATFIV, a Watfiv

compiler, WATEX, the execution of a "typical" scientific computa-

tion program compiled under Watfiv, APL, the execution of a plotting

program in APL, and FFT]1l, a fast Fourier transform program written

in Fortran. The memory was assumed to be interleaved, and to be

64 bits (8 bytes) wide in each module, thus if the least signifi-

cant bit of the address is referred to as bit O, then bits 3-5 would

give the module number in the case of an eight way interleaved

memory.

To simulate an N processor system, N different sections

of the same trace were used for each processor. In order to

compensate for a non-uniformity within a trace of the modules most

favored (receiving the largest number of memory requests) a linear

offset was added to each address in a given section of each trace.

Thus, the section of the trace belonging to processor 1 would

have all the module numbers k translated to k+ 4 mod M . As

can be seen in Table 4, the interference observed when no offset

was used was generally considerable higher than with an offset.

A random (uniform [1,M]) offset (instead of linear) was also used,

and as can be seen also in Table4, when the number of modules M

26



TABLE 4

MEASURED INTERFERENCE USING DIFFERENT OFFSETS

NUMBER OF ‘NUMBER OF PERCENT IDLE

PROCESSORS MEMORIES IDLE OFFSET

2 2 .2156 None

2 2 .2158 Linear

b 4 .3260 None

Toh bh 3274 Random

4 4 .3252 Linear

8 8 .3721 None

8 8 .3703 Linear

| 8 8 3724 Random
16 16 4019 None

16 16 .3932 Linear

16 16 .3928 Random

32 32 4405 None

32 32 .3996 Linear

32 32 4017 Random

C1



was large enough, the effect was indistinguishable from that

of the lincar offset. In Table 5 some results when two

different traces were used instead of just one are shown, and no

significant difference between the single and multiple trace

simulations is evident. The remainder of the simulation results

used one trace and a linear offset.

Figures 1. 2, and 3 show the results of trace driven simula

tions of our simple model structure, using the WATFIV trace, As

can be seen, both the exact solution to the simple model and the

binomial approximation are very close to the simulated measured

results, In Table 6 the fraction of memory idle time in the

| N x N system is tabulated for simuletionsof each of the four

memory address traces. There is no noticeable difference observed
between the different traces; for this reason unless otherwise

noted, all simulation results were obtained using the WATFIV

trace. With some confidence we feel that the results are

generally applicable.

Table 3 and Figure 4 show the results of trace driven simula-

tions when the processor uses "think time’, Six different distribu-

tions of think time were used, exponential, hyperexponential with

coefficient of variation L4.b, constant, and Erlang with parameters

2, 3 and 4. The binomial approximation is again quite accurate,

and the results seem to be insensitive to the distribution of

think time.
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TABLE 5

MEASURED INTERFERENCE IN SPECIAL CASES

NUMBER OF NUMBER OF PERCENT

PROCESSORS MEMORIES IDLE TIME SITUATION

2 2 «2156 No offset

2 2 .2141 No offset, ‘exact same trace on
each processor

2 2 .2178 No offset, different traces
op each processor

2 2 .2180 Linear offset, different
traces on each processor

bh ly «3300 No offset, exact same trace on
all processors

4 Lh .3263 ' Linear offset, two different
traces

4 4 .3166 Random offset, same trace

8 8 3593 Random offset, same trace

8 8 «3941 No offset, sgme trace on all
processors
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TABLE 6

MEMORY INTERFERENCE IN SYMMETRIC N x N SYSTEM

MEMORY IDLE TIME

PROGRAM TRACE

PROCESSORS MEMORIES WATFIV WATEX APL  FFT1

2 2 .2158 2332 .2163 .2137

4 Ll 3252 .3362 .3287 3329

8 8 .3703 .3809 .3712 . 3654

| 16 16 .3932 .3972 4119 .3832

32 32 © 43996 L4oTh O48 3947
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One of the basic assumptions in our simple model was that

the memory contention effect could be accurately modelled by

assuming that the memory reference strings generated by each

processor were uniformly random over the set of memory modules

and that each reference was independent of the preceding one(s).
From the results discussed sbove (Figures 1-4 and Tables °

3,'L 5 and 6), this can be seen to be an adequate assumption,
but it was found worthwhile to test this assumption further, A

number of simulations were run using "sequential" processors.

These processors generated entirely sequential memory reference

strings, i.e., 1,2,3,4,5,6,7,8,9 etc. This, in a four way inter-

leaved memory system would become memory modules 1,2,3,4,1,2,3,4,1 ... .

Although it was expected that the interference would decrease

substantially due to the sequential processor(s) becoming synchron-

ized, it is evident from Table7 that this decrease is rather small.

These sequential processors operate in much the same manner as
input/output devices such as disks and drums which produce just

such sequential reference patterns; 1/0 devices seldom constitute

a very significant fraction of the load on the memory, however,

Clearly, then, the memory interference is not very nrensitive to

the degree of sequentiality in the memory module traces,

Other authors, such as Burnett and Coffman [1973] and Burnett

[1970] have analyzed the memory interference problem by explicitly

considering the degree of sequentiality in memory address traces.

In order to measure the degree of sequentiality that did in fact

: .



| TABLE 7

INTERFERENCE WITH CPU'S AND SEQUENTIAL PROCESSORS

CPU's SEQUENTIAL % MEMORY |
MEMORIES PROCESSORS IDLE

2 0 .2158 |
2 So .1700
b 0 .3252
4 1 3058

4 2 .2680 |

8 0 | 3703

8 1 .3605 |
8 2 .3533 |

8 3 .3419

8 h « 2904

8 6 -51
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occur, additional analysis was performed on the memory address

traces. If in the memory address trace, module 1 was referenced,

and then next module Jj , a transition of Jj - 1 mod M was

recorded, For all J , j£i+l mod M , references were found to

occur reasonably evenly. In Table 8 the fraction of transition

J=1 + 1 mod 32 is shown, and it is clearly larger than any other

transitions. The degree of sequentiality varied substantially

among different programs, though, and no general figure can be

stated.

The autocorrelation coefficient [Cox and Lewis, 1966] of the

memory module trace was computed as a further test of sequentiality

and patterns, It was found that whatever patterns that exist

within each trace are not commnn between the traces, First

order autocorrelations of up to .35 were found. This is further

confirmed by the results displayed in Figures 5 and 6 where

Fourier transforms of the memory module traces for WATFIV and

FFT1 are shown. Clear and strong patterns are evident in the

FFT program, which has a tight loop structure; that of WATF.V

shows a different set of patterns, which are less prominent.

One further simulation was performed. Two, four, and eight

processors were run, each with exactly the same trace. With a

| linear offset, clearly there is zero interference; with random

and no offsets, the effects are comparable to either using

different portions of the same trace or different traces, as

can be seen in Table 5,
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TABLE §

Probability that if reference J is
to module 1 then reference Jj+1 is

TRACE to module i+l1 mod 32 .

WATFIV ) . 2650 |

WATEX 1245

APL . 2815

FFT] .1376

FFT2 1349
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| VI. IMPLICATIONS AND CONCLUSIONS

We have proposed a simple model for a multiprocessor sysiem

with interleaved memory, which when modified using the binomial

approximation can adequately represent many real computer systems,
We have demonstrated with trace driven simulations that .our

analytic results are quite accurate and relatively insensitiveto

departures from our model. Such interference has been observed

in real systems, such as Multics [Sekino, 1972] which running on the

GE 645 lost about 5% of its memory cycles to interference, and the

Honeywell 6000 series [private communication]. One major manu-

facturer uses as a rule of thumb that additional processors are

to be considered as only .9 in processing power due to memory

interference. Both of these results are compatible with our

model.

Many modern computer systems use a cache memory [Conti, 1969],

which is not shared between processors. One would expect that the

address string arriving at the shared memory would have lost almost

all of its sequentiality, and that our model would further improve

in accuracy. | .

An issue not addressed here is the problem of mewory lockout

due to contention for serially but not concurrently accessible

system tables. This problem has been considered briefly by Madnick

(1968) and could easily be a problem of substantial magnitude if

adequate stops are not taken to guard against it. Multics reports

about the same degree of interference from table lockout as from

| memory conflict [Sekino, 1972].
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Also not considered here is the possibility of organizing

the contents of memory in some other manner than interleaving

80 as to minimize interference.
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