STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO A IM-24]
STAN-CS-74-446

LCFsmall: an implementation of LCF

BY

LUIGIA AIELLO

and

RICHARD W. WEYHRAUCH

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2495

AUGUST, 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

ARTIFICIAL INTELLIGENCE LABORATORY AUGUST 1974
MEMO AIM No.241

COMPUTER SCIENCE DEPARTEMENT REPORT
STAN CS 74-446

LCFsmall: an implementation of LCF

by
Luigia Aiello
and
Richard W. W eyhrauch

Abstract:

This is a report on a computer program implementing a simplified version of LCF.
It is written (with miner exceptions) entirely in pure LISP and has none of the user
oriented features of the implementation described by Milner. We attempt to represent
directly in code the metamathematical notions necessary to describe LCF, We hope
that the code is simple enough and the metamathematics is clear enough so that
properties of this particular program (e.g. its correctness) caneventually be proved,
The program is reproduced in full.

Authors’ addresses
L. Aiello, Istituto di Elabaraaione dell’Informazione, via S. Maria 46, 56100 Pisa, Italy;
R. Weyhrauch, A.I. Lab. Computer Science Dept., Stanford University, Stanford, California 94305.

This research is supported (in part) by the Advanced Research Project Agency of the Office of the Secretary
of Defense (DAHC 15-73-C-0435).

The views and conclusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the Advanced Research
Project Agency, or the U.S. Government.

Reproduced in USA. Available from the National Technical Information Service, Springfield, Virginia 22151.

| Introduction
2 Description of LCFsmall
2.1 Infcrence commands
2.2 Auxiliary commands
2.3 Messages from LCFsmall
2.4 How to use LCFsmall
2.5 Examples of proofs
3 Description of the program
3.1 The Parser
3.1.1 Scanning primitives
3.1.2 The wff parser
3.2 Top level driver
3.3 Printing routines
3.4 Commands

3.5 Auxiliary functions

3.5.1 Predicates on free and bound occurrences of variables
3.5.2 Functions used in INCL, CUT, CASES, SHOW

3.5.3 Conversion and substitution routines

3.6 The Data Structure
References
Appendix 1 THE PARSER
1.1 Special variables
1.2 Scanner for LCFsmall

1.3 Parsing primitives

TABLE OF CONTENTS

i
'
I
j

LS

LCFsmall

1.4 Parser
Appendix 2 TOP LEVEL ROUTINES
Appendix 3 PRINTING ROUTINES
Appendix 4 INFERENCE COMMANDS
Appendin5 AUXILIARY COMMANDS

Appendix 6 AUXILIARY FUNCTIONS

6.1 Predicates on Free and Round Occurrences of Variblcs on Terms, Awffs, etc.

6.2 Misccllancous Functions Used in INCL, CUT, CASES, SHOW
6.3 Conversion and Substitution Routines
Appendix T MANIPULATION OF THE DATA STRUCTURE
7.1 Constructors
7.2 Selectors
7.3 Predicates
7.4 Miscellaneous Functions

Index

20

23

25

27

34

35

35

36

37

39

39

39

40

40

42

r—

—-

LCFsmall 1

SECTION 1 Introduction

LCFsmall is a case study. It was designed to shed light on several aspects ‘of current research in the
mathematical theory of computation and representation theory. As a side benefit it is a program
which can be used to do experiments using the typed X-calculus to interpret programming languages.
This approach was first discussed by D. Scott in 1969. For us it was also an exercise in writing such
a system without the aid of the MLISP2 extendible parser (Smith and Enea 1973).

LCFsmall is an implementation of a proof-checker for the unadorned logical calculus. LCF itself
augments this basic logic with additional rules and user aids in an attempt to make the actual
checking of proofs more feasible. These include the simplification rule, a facility for using theorems,
and the subgoal structure. LCFsmall has an entirely different motivation. First, anatural question
about LCF has always been “but who checks the checker?”, ie. have you proved that LCF is correct?
This task is simply too big to be considered given our present capabilities for proving the
correctness of programs. LCF uses backtracking and- is about 35 pages of MLISP2 code. With no
extra free storage, it is a 48K (PDP10 36 bit word) program. We think that is the long run the
reliability (or correctness if you wish) of such large programs needs to be considered.

Several things happened to make us look at this task at different levels. First we had learned a lot
about constructing proof checkers while experimenting with LCF and a new cleaned up version was
envisioned. Secondly, M. Newey 1974 has presented an LCF axiomatitation of LISP, and done
several extremely large proofs. This led us to consider the idea of writing a new version of LCF
entirely in LISP, which had some hope of being proved correct. Moreover, using pure LISP
increases its portability. In actual fact it is written and printed here in. MLISP2. The translation
into pure LISP, however, is straight forward and we felt this was easier to read. A copy of the LISP
code can be gotten by writing to Richard Weyhrauch.

In order that a proof of correctness be at all feasible we decided only to include those rules originally
suggested by D. Scott in 1969. These are explained in detail in Milner 1972 and Weyhrauch and
Milner 1972. For the purpose of this note we expect familiarity with one of these papers.

Another motivation was our interest in seeing just how straightforward it was to translate the
“metamathematical description” of LCF directly into code. That is we tried to write the program in
terms of the notions involved.

A typical metamathematical description of a logical calculus involves some general inductive
definitions of- sentences in the language; together with a description of the rules and an inductive
definition of derivations. These definitions suggest code directly. A reasonable question is: is this
“code” usable and does it do the job, i.e. is it correct? The problem of changing inductive
definitions (i.e. most frequently context free grammars of one sort or another) into parsers has been
discussed a lot. We do not go into it here. One result of this work, however, was the recognition for
a kind of control structure which we would have found very helpful. It is related to the notion of
updaters for data structures (see Hoare 1973).

Consider the following description of substitution of a term t for a variable v, in an expression e.

LCFsmall 2

subst(t,v,e) = IF isfreefor(tv,e) THEN replace(tv,e) ELSE e

isfreefor(t,v,e) = IF atomic(e) THEN true
ELSE IF isquantwff (e)
THEN IF boundvarof(e)sv THEN true
ELSE IF boundvarof(e)¢freevarofthaoccursfreein(v,e) THEN false
ELSE Vx¢PART(e).isfreefor (t,v,x)
ELSE Vx¢PART(a).isfreefor(t,v,x)

occursfreein (v,e) = IF vee THEN true
ELSE IF atomic(e) THEN false
ELSE IF isquantwff(e)aboundvarof(e)sv THEN false
ELSE 3x€PARTS (e).occursfreein(v,x)

replace(t,v,e) = IF vee THEN
ELSE IF atomic(e) THEN e
ELSE REBUILD e USING replace(t,v,x) FOR x¢PARTS (e)

This code is almost a direct translation of the first order description of the notions involved,
However, there appear constructs which are not generally available in existing programming
languages and are not implementable simply or efficiently by a macro facility,

Consider for example the following four constructs:

Vx€A.B[x)]
x¢A B[x]
PARTS(e)
REBUILD e USING F(x) FOR x¢PARTS(e)

Each of them represents a kind of mapping function on different data structures.

Vx€A.B[x]

is interpreted as: if A is a “set” then for each element of A, bind it to x and evaluate B. When you
are finished return the value of the conjunction of the results. In MLISP2 this function can be
realized by

FOR NEW X IN A DO :AND B[X)

but we do not use this construct in the code below as its translation into LISP is not immediate.

3x€AB[x]
is the same as above replacing disjunction for conjunction.

The other two constructs are more difficult as they require a new look at the definition of data
structures. For PARTS(e), the program must be able to decide what kind of thing e is, and how to
canonically take it apart. In our example REBUILD returns the homomorphic image of e with respect
to replace and the basic constructors of e. This type of updating data structures is considered in

Hoare 1973,

Y.

LCFsmall 3

The above examples show that the direct translation of metamathematics into code requires
programming language features not yet generally available, and show that these features arise
naturally in applications. These examples of course do not use assignment statements to “remember”
certain facts and possibly are computed several times, making this code inefficient. We do not
believe, however, that it is too bad. This kind of redundant computation can be detected by a

compiler.

The code below is a compromise using only those features available in pure LISP, rather than
defining these constructs in LISP and then writing code in terms of them.

In all cases the code has been written abstract syntactically and the actual data structures are not
mentioned. The ones we have chosen are found in appendix 7.

!
b
i

—

LCFsmall 4

SECTION 2 Description of LCFsmall

In this section we describe LCFsmall and compare it with LCF as described in Milner 1972. In
LCFsmall no restriction has been imposed on the logic, all the inference rules described in Milner
1972, section 2 are included in it. On the contrary, restrictions have been imposed on the
commands. LCFsmall has none of the facilities included in LCF to help the user in making proofs.
It has no subgoaling mechanism, no simplifications facilities, no possibility of declaring axioms and
using theorems. Steps of the proofs cannot be labeled, so the only way of referencing them is by
their stepnumber. Proofs can only be carried out by a forward deduction without any abbreviation.
In addition, restrictions have been imposed on the syntax of terms. In LCFsmall parentheses can
never be omitted.

LCF has no CASES and INDUCT commands, because the corresponding subgoaling tactics are
more useful in making proofs. We have included these commands in LCFsmall since it has no
subgoaling mechanism. Moreover, LCFsmall has a ALPHACONYV command absent in LCF. It is

used for changing names to bound variables. This command is not included in LCF, since it
automatically renames conflicting variables,

Section 2.1 Inference commands

In the description of commands, as well as in the code presented in the appendices, the following
metavariables will be used:

L,Lt,L2.. denote stepnumbers,

N, NI, N2.. denote nonnegative integers,

V, V1, V2.. denote identifiers,

TRM, TRM1... denote terms.

AWF, AWF1... denote atomic well formed formulas (awff),

WF, WF1 . . . denote well formed formulas (wff),
To facilitate the comparison with LCF, commands are listed in the same order as in Milner 1972. As
a general remark, note that commas are never used as delimiters in LCFsmall, blanks are used
instead.
Without worrying about the data structure (it will be described in 3.6) we note that a LCF proof is a
sequence of steps. Each of them is generated by one of the following commands and it consists of a
stepnumber, a wff (possibly consisting of only one awff), the list of stepnumbers it depends upon,
and the reason, i.e. the command by which it has been obtained.

ASSUME AWEF;

generates a new step in the proof. The AWF is added to the proof as a new step depending
on itself.

-

LCFsmall .5

INCL LI N;

generates a new step whose awff is the N-th awff in the step LI, and whose dependencies are
the same as LI

CONJ LiLy

the wffs in LI and L2 are unioned and put in a new step whose dependencies are the union
of those of L1 and L2.

CUT LI L2;

if L1 and L2 are steps in the proof and if each awff appearing in the dependencies of L2
appear in L1, then a new step is generated. Its dependencies are those of L1 and its wff is

. that of L2;
HALF LI;

If the first awff in LI contains the "=" symbol, then a new step is generated. Its awff is
obtained from the first awff of L1 replacing "=" by "<". The dependencies of the new step
are those of LI .

SYM Li;

This command is similar to the previous one. In this case the two terms of the first awff in
Ll are interchanged.

TRANS LI L2;

If the first awff in Ll is of the form TRM1=zTRM2 and the first awff in L2 has the form
TRM2=TRM3, a new step is generated. Its awff is TRM1=TRM3 and its dependencies are the
union of those of LI and L2. If in one (or both) of the above awffs the symbol "e" appears,
then "e" will appear in the new step.

APPL LI TRM;

APPL TRM LI;

In the first case, both sides of the first awff of LI are applied to TRM. In the second case TRM
is applied to both sides of the first awff of L1. The dependencies of the new step are those of

LL

ABSTR Ll v;

If Vis an identifier not occurring free in the dependencies of LI, then a X-abstraction is done
on both terms of the first awff of L1. The dependencies of the new step are those of LL

CASES L1L2 L3 TRM;

LCFsmall 6

Given 3 stepnumbers L1, L2 and L3 with the same wff, if one of the dependencies of L11is
TRM=TT, one of the dependencies of L2 is TRM=UU and one of the dependencies of L3 is
TRM=FF, then a new step is generated. Its wff is that of L1 and its dependencies are those of
Lt,L2 and L3 after having removed the three above dependencies regarding TRM.

INDUCT LI1L2 L3 L4 Vi,

Given four stepnumbers L1, L2, L3 and L4, if the first awff of L11is a fixpoint definition, 1. e.
if it has the form FiX=[ecG.FUN(G)], if the wff of L2.is obtained replacing UU for Vi in the wff
of L3, if the wff of L4 is obtained replacing FUN{V1) for VI in the wff of L3, and moreover,
L.3 appears in the dependencies of L4, then a new step is generated. Its wff is obtained
replacing FIX for V1in the wff of L3. The command fails if one of the above conditions is
not met or if there is some variable conflict in one of the substitutions. The dependencies of
the new step are the union of those of L1, L2, L3 and L4, minus L3.

CONV LI;
CONV TRM;

The conversion command has two forms: in the first one it takes a stepnumber L1 as
argument. In this case, both terms of the first awff of L1 are converted and the resulting awff
becomes a new step in the proof. Its dependencies are those of L1. If the argument of CONV
is a term TRM a new step without dependencies 1s generated. Its awff is TRM=CONYV T(TRM).
CONVT is a function which converts terms. Its definition is given in appendix 6.3.
LCFsmall has no automatic mechanism for changing the names of conflicting bound
variables. If there is some variable conflict, X-conversions aren’t performed. So the term
[hy.[ax.y(x)]](x) is not converted in LCFsmall, while it is converted to [Ax1.x(x1)] in LCF.

ETACONV TRM;

TRM is etaconverted. Suppose TRM has the form [Ax.F(x)] with x not free in F, then a new step
is generated, without dependencies, whose awff is [Ax.F(x)])sF.

ALPHACONV L1V1 V2;
ALPHACONV TRM V1 V2;

If the first argument of ALPHACONYV- is a stepnumber L1, then V1 replaces V2 in its first
bound occurrence in the first awff of L1. The resulting awff is put in a new step whose
dependencies are those of L1. If the first argument is a term, then a new step is generated,
without dependencies. Its awff 1s TRM=TRMI, where TRMI1 is obtained from TRM by replacing
vl for V2 in its first bound occurrence.

EQUIV L1L2;

Given two step numbers L1 and L2 if the first awff of L1 has the form TRM1eTRM2 and the
first awff of L2 has the form TRM2eTRMI, then a new step is generated. Its awff is
TRM1=TRM2 and its dependencies are the union of those of Lt and L2.

LCFsmall 7

REFL 1 TRM;
REFL2 TRM;

The first command generates a new step whose awff is TRM=TRM, .without any dependency,
The awff generated by the second command is TRMcTRM.

MINI TRM;
MIN2 TRM -

In the first case a new step is generated, without dependencies, whose awff is UUeTRM. In the
second case the awff is UU(TRM)=UU.

CONDT TRM,;

If TRM has the form TT-TRMI,TRM2 then CONDT generates a new step whose awff is
TRM=TRM1 with no dependency.

CONDF TRM;

If TRM has the form FF-TRMI,TRM2 then CONDF generates a new step whose awff is
TRM=TRM2 with no dependency.

CONDU TRM;

If TRM has the form UU-TRMI,TRM2 then CONDU generates a new step whose awff is
TRM=UU with no dependency.

FIXP CI;

If the first awff in L1is a fixpoint definition, i.e. if it is of the form FiX=[«G.FUN(G)], and if
FIX may be substituted for G in FUN(G) without variable conflicts, then a new step is
generated. Its awff is FIXsFUN(FIX) and its dependencies are those of L1.

SUBST L1 OCC NIN L2;

SUBST Lt OCC NIN TRM™;

SUBST has two forms. In the first one, if the first awff of L1is TRMI=TRM2, then TRM2 is
replaced for the N-th free occurrence of TRMI in the firt awff of L2. The resulting awff is put
in a new step, whose dependencies are the union of those of L1 and L2.

In the second form the command SUBST operates on a TRM. If the above hypotheses hold
for L1, a new step is generated. Its dependencies are those of LI and its awff is
TRM=SUBSTTT(TRMI1,TRM2,TRM,N). The function SUBSTTT, defined in appendix 6.3,
substitutes TRM2 for the N-th free occurrence of TRMI in TRM.

™

r.r.__.

LCFsmall 8

Section 2.2 Auxiliary commands

Besides the commands for carrying out deductions, LCFsmall has the following commands:

SHOW LINE LI;

SHOW LINE tt: L2;

In the first case the step L1 is printed. In the second case all the steps between L1 and L2 are
printed.

FETCH FILENAME;

All the LCFsmall commands contained in the file FILENAME are executed. Each command
. is treated exactly as if typed at the console. So the user may prepare all the commands on a
file and then generate a proof by fetching this file.

CANCEL;

CANCEL L1;

In the first case the last step in the proof is deleted. In the second case all the steps from the
last one to L 1 (included) are deleted. If L1 is less or equal to one, the entire proof is cancelled!

Section 2.3 Messages from LCFsmall
The following list includes all the messages printed by LCFsmall:
SYNTAX ERROR; TRY AGAIN
This is printed whenever acommand is improperly typed.
NASTY COMMAND
This error message is printed by any command whenever it cannot be executed because some
condition isn't satisfied. For instance, if ‘you are trying to FIXP a nonexisting step or a step whose
first awff is not a fixpoint definition you will get NASTY FIXP.
THE LAST LINE IN THE PROOF IS N
YOU HAVE DEMOLISHED YOUR PROOF
One of the above sentences is the answer of the system after executing a cancel command.

You may also obtain something like

3246 ILL MEM REF'FROM ATOM

LCFsmall

if you have messed up something with LISP! However this shoudn’t happen.

Section 2.4 How to use LCFsmall

If you want to prove something use LCF! Anyway, if you really want to use LCFsmall type:
R LCFSML

you are at LISP level and you will get a star. If you type
(INIT)

you "Il get some stars and then you are ready to prove. To stop a proof type
)

You'll receive the message END OF PROOF. Now you are again at LISP level. Typing
(RESUME)

will make you to go on with the old proof. If you want to start a new proof, type
(INIT)

Your core image may be saved for later use by the command
tC

SAVE FILENAME

Section 2.5 . Examples of proofs

Two sample LCFsmall proofs are given here. They concerns the CASE and INDUCT commands.
The corresponding LCF proofs are very different. In fact, they are done using the subgoaling

mechanism.

The first statement we have proved is the following property of conditional expressions:

(P(X)=(P(X)=C1,C2),(P(X)-C1,C2))=(P(X)-C1,C2)
All the commands have been typed in the file TSTCS. They are:

CONDT- (TT=(P(X)=C1,C2),(P(X)~C1,C2));
CONDU (UU-(P(X)=C1 ,C2),(P(X)~C1,C2));
CONDU {UU=C1,C2);

CONDF (FF=(P(X)~C1,C2),(P{X)=C],C2));
SYM 3;

SUBST 5 OCC 2 IN 2;

LCFsmall 10

ASSUME P(X)=TT;
ASSUME P(X)=UU;
ASSUME P(X)=FF;
SYM 7;

SYM 8;

SYM 9;

SUBST 10 OCC1 IN 1;
SUBST 11 OCCt IN 6;
SUBST 11 OCC 1 IN 14;
SUBST 12 OCC1 IN 4;
CASES 13 1516 P(X);

The file is then fetched and the proof is done. The printout of LCFsmall is

L R LCFSML
(INIT)
FETCH TSTCS:

xxkxl (TT=(P(X)=CI,€2),(P(X)2C1,C2))=(P(X)~C1,C2)
C *kk%x2 (UU-(P(X)=C1,C2),(P(X)-C1,C2))=UU
*x%%3 (UU-CI ,C2)=UU
¥xkk4 (FF-(P(X)=~C1,C2),(P(X)=C1,C2))=(P(X)=Cl ,C2)
*%k%kx%x5 UU=(UU-C1 ,C2)
*%%x%x6 (UU-(P(X)=C1,C2),(P(X)=C1,C2))=(UU~CI ,C2)
*kxk? P(X)=TT (7)
xxx%8 P(X)=UU (8)
.- *k%k%k3 P(X)=FF (9)
kxxx10 TT=P(X) (7)
*kxkxk]l] UP(X) (8)
‘ kkxk]2 FF=P(X) (9)
" *kkk] 3 (P(X)—-)(P(X)-OCI,CZ),(P(X)-*CI.CZ))E(P(X)'*CI,CZ) (7)
. **%k14 (P(X)-(P(X)=C1,C2),(P(X)-C] ,C2))=(UU-C1,C2) @)
! xxxx15 (P(X)-=(P(X)-C1,C2),(P(X)>C1,C2))=(P(X)~C1,C2) (8)
L *kkk16 (P(X)=(P(X)=C1,C2),(P(X)-C1,C2))=(P(X)>C1,C2) (9)
sakkxk]l7 (P(X)={P(X)=C1,C2),(P(X)=C1,C2))=(P(X)~CI ,C2)
Ak Ak
L KEKKKS

END OF PROOF
‘ NIL
L *tc

1TC

The next example is taken from Milner 1972, section 3. I. The statement to be proved is:

~

FeG A S S UM E Fz[ocF.FUN(F)], G=FUN(G).

. The commands, typed in the file TSTIND are:

g ASSUME Fs[«cF.FUN(F)];
- ASSUME G=FUN(G);
ASSUME FleG;

LCFsmaII 1

MINI G;

APPL FUN 3;

SYM 2;
suBsTeocc 1 IN 5;
INDUCT1 437FlI;

The printout of LCFsmall is:

R LCFSML
(INIT)
FETCH TSTIND;

xxxx 1 F=[ocF FUN(F)] (1)
*kk%k2 G=FUN(G) (2)
*%x%x%3 Fl <G 3)

*%%x4 UUcG

*%%kx5 FUN(F 1)eFUN(G) (3)
*kxk6 FUN(G)=G (2)
*%k%x%7 FUN(F1)G (2 3)
*x%%kx8 FeG (12)

Aok sk ok

KEKKKKS

END OF PROOF
NIL

*tc

1C

The length of the two above LCFsmall proofs is comparable with that of their corresponding LCF
proofs. However, as soon as the proof becomes more complex and a considerable amount of
substitutions and conversions have to be done, the subgoaling mechanism and -more important- the

simplification algorithm of LCF become vital.

v

LCFsmall 12

SECTION 3 Description’ of the program

The MLISP2 program for LCFsmall is completely listed in the appendices 1 through 7. In the
following sections, the various components of the program are described. They are:

1) parser

2) top level driver

3) printing routines

4) commands

5) auxiliary functions

6) functions manipulating the data structure

Section 3.1 The Parser

3.1.1 Scanning primitives

This code implements a backupable scanner. It uses an array, TSTACK, to store “tokens” as they
are scanned. Actually the scanner returns both a type and a value, where “value” is the atom

scanned and “type” is:

IDENT if the value is an identrfier
NUMBER if the value is a number
DEC if the value is a delimiter.

Two global variables are used to keep track of what token we are looking at in the input stream,
They are PC and ENDSTACK. PC points into TSTACK at the place the LCFsmall scanner is
looking. ENDSTACK is the last location in TSTACK that has been filled from the current input,

TSTACK is necessary because scan destroys the input stream, and the LCFsmall parser, being top
down, needs to back up over the input. The main accessing routine for TSTACK is the function

tstack which calls scan if not enough tokens have been read.
scan(): returns a pair consisting of the token scanned and its type.
setup(): sets PC=0 and ENDSTACK =0 and declares the array TSTACK.
token: simply advances the LCFsmall scanner.
tokenv(): advances the scanner and returns the value of the new thing pointed to.
tokent(): advances the scanner and returns the type of the new thing pointed to.
tstack(n): finds the n-th element of TSTACK, if its not there it calls scan until it is.

peekv(n): returns the n-th token ahead of PC.

peekt(n): returns the type of the n-th token ahead of PC.

LCFsmall 13

flush(): starts the LCFsmall scanner over by setting PC-O and ENDSTACK =0.
nextv(x): returns T if the value of the next token is x, NIL otherwise.
nextt(x): returns T if the type of the next token is x, NIL otherwise.

The function scan was not written with efficiency in mind. It uses ordinary LISP functions whose
properties we know about. This is because we hope someday to prove the correctness of this
program. Note that the only functions not definable in pure LISP are READLIST, ASCII, TYI,
and TSTACK. Arrays could easily be eliminated in favor of lists. The array TYPE stores the type
of a character, O for letters, 1 for digits, 2 for delimiters, 3 for characters to be ignored when
building tokens (like form feeds). The special global variables can be eliminated from the code in
favor of pure LISP in the standard way.

3.1.2 The wff parser

Rather than describing everything in detail we Will explain the parser by explaining some examples.
Consider

EXPR TERM();
BEGIN NEW START,REP,X,Y;START«PC;
IF X SIMPLTERM() THEN REP«X ELSE RETURN NIL;
A; START«PC;
IF LPAR()A(Y+TERM())ARPAR() THEN REP«('?!APPLY CONS REP CONS Y) ALSO GO A;
PC~START;
RETURN(REP);END;

The local variable START is to remember where the global variable PC was pointing when the
function was entered, i.e. START«PC. The convention for a parsing function is that either it exits
successfully with anon NIL value and leaves PC pointing to the next token to be looked at or it
returns NIL and leaves the value of PC as it was when the function was entered. The code

IF X~SIMPLTERM() THEN REP«X ELSE RETURN NIL;

checks if a SIMPLTERM is scanned. In this case REP gets it as a value. If not (by our convention)
SIMPLTERM returns NIL, and PC is left as it was, so TERM returns NIL and PC remains unchanged.
If we have found a SIMPLTERM, TERM has succeeded and we enter a loop, update the place in the
input stream we backup to when we exit TERM and look for repetitions of a left parenthesis (LPAR),
followed by e TERM, followed by a right parenthesis (RPAR).

A; START«PC;
IF LPAR(A{Y~TERM())ARPAR() THEN REP«('?!APPLY CONS REP CONS Y) ALSO GO A;

After each successful repetition REP gets the internal representation of an application term, i.e.

F(x)=(APPLY! F x). When the loop test eventually fails we restore PC and return the term stored in
REP.

Section 3.2 Top level driver

LCFsmall 14

LCFsmall is started by the INIT function. This and the other top level functions are listed in
appendix 2. INIT sets the base for numbers to 10, initializes the scanner and then initializes the
proof. PROQF, the global variable which keeps record of the proof, is set to NIL and PFLENGTH,
the proof length, is set to 0. Then RESUME is called. It takes into account the fact that the input
commands may be read from the console or from a fetched file. It calls the function LCFPROOF
which builds up the proof by a read-execute-write loop.

LCFPROOF makes a test on the content of the input buffer. If its first character is §, then an end
of proof message is typed and the proof is stopped. If a command is parsed and executed the loop
goes on. The function LINE controls the execution of LCF commands. After a command has been
successfully parsed and executed, if the value returned is a proof step, then it is added to the proof.

If none of the expected command is parsed, the input buffer is scanned by the function BADLINE
until the first semicolon is met. Then an error message is printed.

Section 3.3 Printing routines

The printing routines are listed in appendix 3. They depend on the internal representation of terms,
awffs, wffs and proof steps, which 1s described in section 3.6.

PRINTAWEFF is the printing routine for terms and awffs. They are transformed from the internal
prefix form to a parenthetized form.

PRINTMES prints messages, it takes the string to be printed as argument. PRINTM is used to
print a message when some steps in the proof have been canceiled. The string to be written is fixed,
the argument of PRINTM is the proof-length after the cancellation.

PRINTNEWLINE prints the newly generated line, whenever a command is successfully executed.
The stepnumber, the wff and its dependencies are printed. PRINTLINE is like PRINTNEWLINE,
but it may print any step in the proof, not necessarily the last one. It prints also the reason of the

step.

PRINTLST is an auxiliary printing routine which prints a list of awffs separated by blanks.

Section 3.4 Commands

The commands are shown in appendices 4 and 5. They are listed in the same order as they are
describd in sections 2.1 and 2.2. Every command is realized by two functions. The first one performs
a check on the syntax of the input sentence. If the expected command is successfully parsed then the
corresponding semantic function is called, otherwise the pointer is restarted in the input buffer. This
allows the input sentence to be tested again to see if we are faced with another command or if there
is a syntax error in the input. Each semantic function performs a series of tests to see whether or not
the conditions for the applicability of the corresponding rule are met. In this case it returns a new
step to be added to the proof, otherwise it returns the message NASTY COMMAND.

We think that ail the syntactic and semantic functions realizing the LCFsmall commands are
sufficiently clear, after having read the description of the commands given in sections 2.1 and 2.2.

LCFsmall 15

Section 3.5 Auxiliary functions
The auxiliary functions and predicates used in defining the commands are listed in appendices 6
and 7. Appendix 7 contains the predicates and functions directly dealing with the data structure,

they will be described in the next section. The functions and predicates listed in appendix 6 have
been divided into three groups and will be discussed in the three following subsections.

3.5.1 Predicates on free and bound occurrences of variables

NOTBNDVT(V,TRM) is a predicate true if V has no bound occurrences in TRM. BOUNDV is its
negation.

NOTFRVT(V,TRM) is a predicate true if V has no free occurrences in TRM. FREEV is its negation.

NOTFREV W(V,WF) is true if V has no free occurrences in the wff WF. NOTFREE(V,LN) is true if
V doesn’t occur free in the wiffs associated with the stepnumbers in the list LN.

ISFREEFORT(X,V,TRM) is true if X (a term or a variable) may be substituted for V in the term TRM
without conflicts of bound variables. ISFREEFORW(X,V,WF) is the anaiogue for wffs.

3.5.2 Functions used in INCL, CUT, CASES, SHOW
The functions described in this section are listed in appendix 6.2. -
PICKUP is used in the command INCL for selecting the n-th awff in a wff.

INCLTEST(LN,WF) uses TESTM. It is used in CUT to check if every wff associated with the
stepnumbers in the list LN appears in WF.

TESTCASES and TESTC are used in testing the applicability of the cases rule. FIND and
REMOVE are used in building up the dependency part of the step generated by the CASES
command.

OPT is used in the SHOW command to parse an optional part in the input string.

3.5.3 Conversion and substitution routines

The conversion and substitution routines are listed in appendix 6.3.

CONVT(TRM) performs ail the possible lambda-conversions on TRM. If it is an identifier, no
conversion can be done. If it is composed of various parts, then the conversion is recursively done
on them. If it is an application term, then tests are performed to see if a conversion can be done and

if the resulting term can be further converted.

SUBSTG(TRM,X,V1) is the “general” substitution routine. X, a variable or a term, replaces V1in all its

LCFsmall 16

free occurrences in TRM. A test is done on TRM and X is recursively substituted in all the components
of TRM. When faced with a lambda-term or a mu-term a test is done to detect conflicts of variables.

ACONV(TRM,V1,V2) performs an alpha-conversion on TRM. V1 replaces V2 in its first bound
nonconflicting occurrence.

SUBW(AWF1,AWF2,N) is an auxiliary function used in the command SUBST, when it is applied to
two stepnumbers. AWFI is the awff in which the substitution takes place. The term at the left hand
side of AWF2, denoted as TRMI, replaces the term at the right hand side of AWF2, denoted as TRMZ2,
in its N-th occurrence. The global variable SUBCOUNT is set to N, it will mark the occurrence
where the substitution must be done. The substitution is first attempted on the term at the left hand
side of AWF1. If not performed there, then it is attempted in the term at the right hand side of
AWF1.

SUBSTTT(TRMI1,TRM2,TRM3,N) is used by the command SUBST when its last argument is a term,
TRM?2 replaces TRM3 in its N-th occurrence in TRMI.

DOSUBST(TRMI,TRM2,TRM3) is the auxiliary function that performs the substitution of TRM2 for
TRMI1in TRMI. A test is done on TRM! and the substitution is recursively attempted on its various
parts. SUBCOUNT is decremented whenever an occurrence is found and, when its valueis 0 the
substitution takes place. Occurrences where conflicts arise among .variables are not counted.

Section 3.6 The Data Structure
-All the functions directly manipulating the data structure are listed in appendix 7.

In appendix 7.1 all the constructors are listed. By constructor we mean afunction that assembles
structured data.

MKCONDTERM, MKAPPLTERM, MKLAMBDATERM and MKMUTERM define the internal
representation of terms. They are represented as LISP S-expressions whose first element denotes the
nature of the term and is followed by the components of the’ term. Awffs are assembled by
MKAWFF. They are S-expressions whose first element is the relation symbol = or . MKWFF
assembles wffs of just one awff. In general wffs may be lists of more than one awff. For instance
those produced by the function UNIONW (see appendix 7.4) used in the command CONJ.’

The proof is represented as alist, initially it is set to NIL. Each step is added to this list by the
function ADDLINE (see appendix 7.4) and is assembled by the constructor MKPROOFSTEP.
Proof steps have the form of a list of three elements: a wff, a list of dependencies and a reason
assembled by the constructor REASON. The function ADDLINE puts the stepnumber in front of
each proof step.

Appendix 7.2 contains the list of all the selectors used in retrieving the various components of the
terms, awffs and the proof.

Appendix 7.3 contains a list of predicates used in the program. These predicates are tests on the
nature of terms, awffs etc.

e

LCFsmall 17

Some miscellaneous functions are listed in appendix 7.4: UNIONOF is the set theoretic union for
lists of numnbers, UNIONW is the set theoretic union for wffs, manely for lists of awffs. ADDLINE
(see above) increments the variable PFLENGTH (proof length) by 1 and adds a new step to the
proof. SEARCH is used to search steps in the proof, LNT gives the length of a list,and finally
SUBW V(wF x,v) substitutes X for each occurrence of V in WF. It is used in the command INDUCT.

LCFsmali

REFERENCES

Hoare, C AR,
1973 Recursive Data Structure
Artificial Intelligence Memo No. 223, Stanford University (1973).

Milner, R.,
1972 Logic for computeble functions, description of @ machine implementation
Attificial Intelligence Memo No. 169, Stanford University (1972).

Newey, M.,
1974 Formal Semantics of L1S P with Applications to Program Correctness
Forthcoming Ph. D. Dissertation, Stanford University, 1974,

Smith, D.C. and Enea H.J.,
1973 MLISP2
Artificial Intelligence Memo No. 195, Stanford University (1973).

Weyhrauch, R.W. and Milner, R.,
1972 Program Semantics and Correctness in a M echanized Logic,
Proc. 1st USA- Japan Computer Conf., Tokyo (1972).

18

LCFsmall

APPENDIX 1

THE PARSER

1.1 Special variables

PC,
ENDSTACK,
PROOF,
PFLENGTH,
SUBCOUNT;

1.2 Scanner for LCFsmall

EXPR readlist(X);
READLIST(ASCI(OCTAL 57) CONS X);

EXPR scan(:X);
IF EQX+TYPE(CHAR),O0) THEN idscan(}
ELSE IF EQ(X,1) THEN numscan()
ELSE IF EQ(X,2) THEN delscan()
ELSE CHAR«TYI() ALSO scant);

EXPR dscan();
BEGIN NEW TOKEN,X;
TOKEN«<ASCII{CHAR)>;
A; IF EQ(X~TYPE(CHAR«TYI()),0)VEQ(X,1)
THEN TOKEN«ASCIH(CHAR) CONS TOKEN ALSO GO A;
RETURN(readlist(REVERSE(TOKEN)) CONS 'IDENT); END;

EXPR numscan();
BEGIN NEW TOKEN,;
TOKEN«<ASCI(CHAR)>;
A; IF EQ(TYPE(CHARETYI()),1)
THEN TOKEN«ASCII(CHAR) CONS TOKEN ALSO GO A;
RETURN(readlist (REVERSE(TOKEN)) CONS ‘NUMBER); END;

EXPR delscan();
BEGIN NEW TOKEN;
TOKEN«<ASCH(CHAR)>;
CHAR«TYI();
RETURN(readlist (TOKEN) CONS ‘DEL);END;

EXPR setup(}; .
BEGIN NEW X;
ARRAY (TYPE,36,CONS(0, 127));
ARRAY(TSTACK,T,CONS(0,500));

19

S
.

LCFsmall

FOR X0 TO 127 DO TYPE(X)«2;

FOR X«OCTAL 011 TO OCTAL 015 DO TYPE(X)«3;

FOR X«OCTAL 060 TO OCTAL 07 1 DO TYPE(X)«1;

FOR X«OCTAL 101 TO OCTAL 132 DO TYPE(X)«0;

FOR X+~OCTAL 141 TO OCTAL 172 DOTYPE(X)«0;

TYPE(OCTAL 040)«3; fYPE(OCTAL 175)¢3; TYPE(OCTAL177)+3; END;

1. 3 Parsing primitives

EXPR token(); PC«PC-+ 1;

EXPR tokenv{); CAR tstack(PC+PC+1);
EXPR tokent(); CDR tstack(PC~PC+1);

EXPR tstack(N);
IF ENDSTACK LESSP N
THEN FOR NEW |<{ENDSTACK+1) TO N DO TSTACK(I)escan()
ALSO ENDSTACK«N
ALSO TSTACK(N)
ELSE TSTACK(N);

EXPR peekv(N); CAR tstack(PC+N);
EXPR peekt(N); CDR tstack(PC+N);

EXPR flush{(}; BEGIN PC«0; ENDSTACK«0Q;END;

EXPR nextv(X); EQ(X,CAR tstack(PC+1));
EXPR nextt(X); EQ(X,CDR tstack(PC+1));

1.4 Parser

EXPR TERM();
BEGIN NEW START,REP X,Y;START«PC;
IF X<SIMPLTERM() THEN REP«X ELSE RETURN NIL;

A; STARTePC;
IF LPAR()A(Y«TERM())ARPAR()
THEN REP«(*?tAPPLY CONS REP CONS Y) ALSO GO A;
PCeSTART;
RETURN(REP);END;

EXPR CONDTERM(); ,
BEGIN NEW START,X,Y,Z; START«PC;

20

LCFsmall

IF LPAR(A(X+TERM())ARARROW ()A(Y+TERM())ACOMMA ()A(Z+TERM())ARPAR()
THEN RETURN('?'COND CONS X CONS Y CONS 2);
PC«START;END;

EXPR LAMBDATERM();
BEGIN NEW START,X,Y; START«PC;
IF LSQBRACKET()Alambda()A(X«<IDENT())APERIOD()A(Y«TERM())ARSQBRACKET()
THEN RETURN('?!LAMBDA CONS X CONS Y);
PC-START;END;

EXPR MUTERM();
BEGIN NEW START,X,Y; START+PC;
IF LSQBRACKET()AMU()A(XIDENT())APERIOD()A(Y+TERM())ARSQBRACKET()
THEN RETURN{'?IMU CONS X CONS Y);
PC«START;END;

EXPR SIMPLTERM();

BEGIN NEW START,X;START«PC;

| F (X«IDENT()) v
(X<CONDTERM()) v
(X~LAMBDATERM()) v
(X<MUTERM()) v
(LPAR()A(X+TERM())ARPAR())

THEN RETURN X;

PC+START;END;

EXPR AWFF();
BEGIN NEW STARTX,R,Y;START«PC;
IF (X TERM())A(REREL()A(Y+TERM())
THEN RETURN(R CONS X CONS Y);
PCeSTART;END;

EXPR WFF();
BEGIN NEW START,REP,X;START+PC;
IF X AWFF () THEN REP«<X> ELSE RETURN NIL;
A; START«PC;
IF COMMA ()A(X+~AWFF()) THEN REP&<X>@REP ALSO GO A
PC+START;
RETURN(REP);END;

EXPR IDENT(); IFEQ(peekt{ 1),'IDENT) THEN tokenv() ELSE NIL;

EXPR NUMBER(); IF EQ(peekt(1),'’NUMBER) THEN VALUE(tokenv()) ELSE NIL;
EXPR REL(); IF nextv('?=)vnextv('?c) THEN tokenv() ELSE NIL;

EXPR CHECK(X); IF nextv(X) THEN token() ELSE NIL;

EXPR SC(); IF nextv('?;) THEN token() ELSE NIL;
EXPR LPAR(); IF nextv('?() THEN token() ELSE NIL;
EXPR RPAR(); IF nextv('?)) THEN token() ELSE NIL;

EXPR RARROW(); IF nextv('?=) THEN token() ELSE NIL;
EXPR COMMA(); IF nextv('?,) THEN token() ELSE NIL;
EXPR COLON(); IF nextv{'?:) THEN token() ELSE NIL;
EXPR DOLLAR(); IF nextv('?$) THEN token() ELSE NIL;
EXPR PERIOD(); IF nextv('?.) THEN token() ELSE NIL;
EXPR LSQBRACKET(); IF nextv('?[) THEN token() ELSE NIL;
EXPR RSQBRACKET(); IF nextv('?]) THEN token() ELSE NIL;

LCFsmall

EXPR fambda(); IF nextv(’?x) THEN token{() ELSE NIL;
EXPR MU(); IF nextv(’?e¢) THEN token() ELSE NIL;

EXPR VALUE(X);
(READLIST(CDR(EXPLODE X)));

22

LCFsmall

APPENDIX 2

TOP LEVEL ROUTINES

EXPR INIT();
BEGIN
LISPINIT();
SCNINIT();
LCFINIT();
END;

EXPR LISPINIT();
BEGIN
?7%NOPOINT«T;
BASE «10.
IBASE «10.;
END;

EXPR SCNINIT();
BEGIN
CHAR ¢ 40;
PCe1;
ENDSTACK«0;
setup();
END;

EXPR LCFINIT();
"BEGIN
PROOF «NIL;
PFLENGTH ¢« 0;
RESUME();
END;

EXPR RESUME(),
BEGIN NEW X;
A; X+ERRSET(LCFPROOF());

IF EQ(X,'?$EOF ?¢) THEN INC(NIL,T) ALSO flush() ALSO GO A;
END;

EXPR LCFPROOF();
BEGIN
A; PRINC(TERPRI("x%%x"));
IF DOLLAR() THEN PRINTMES("END OF PROOF”)
ALSO flush()

AL SO RETURN(PRINC(""));
IF LINE() v BADLINE() THEN flush() ALSO GO A;
END;

EXPR LINE();
BEGIN NEW NC:
IF (NCeFETCH()) v (NC&SHOW()) v (N&CANCEL()) THEN RETURN(NC);
| F (NC+ASSUME()) v (NCINCL()) v
(NC-REFL1()) v (NC=REFL2()) v

23

LCFsmall

(NCMIN1()) v (NC=MIN2()) v
(NCeALPHACONV()) VINCESUBST()) v
(NC<ABSTR()) v (NCHFIXP()) v
(NC+CONDT()) v (NC<CONDF () v
(NC=CONDU()) v (NC-EQUIV()) v
(NCEHALF()) v (NCSYM()) v
_ (NC+TRANS()) v (NCAPPL()) v
N (NC-CONJ()) v (NC+CUT()) v
(NC=CASES()) v (NC~INDUCT()) v
(NC+ CONV()) v (NC~ETACONV(})
THEN (IF ISLINE(NC) THEN ADDLINE(NC) ALSO PRINTNEWLINE());
RETURN (NC);
END;

L EXPR BADLINE();
BEGIN
A; IF- ~nextv('?;) THEN token() ALSO GO A;
PRINTMES(“SYNTAX ERROR;TRY AGAIN’); -
RETURN (PRINC(""));
END;

24

LCFsmall

APPENDIX 3

PRINTING ROUTINES

EXPR PRINTAWFF(AWF);

BEGIN NEW CR;

IF ATOM(AWF) THEN RETURN PRINC(AWF);

CR<CAR(AWF);

IF EQ(CR,'?=) v EQ(CR,'?c)

THEN BEGIN PRINTAWFF(CADR AWF);
PRINC(CR);
PRINTAWFF(CDDR AWF); END;

IF EQ(CR,’?IAPPLY)

THEN BEGIN PRINTAWFF(CADR AWF);

PRINC('?();
PRINTAWFF(CDDR AWF);
PRINC('?)); END;

IF EQ(CR,'?{COND)

THEN BEGIN PRINC('?();
PRINTAWFF(CADR AWF);
PRINC('7-);
PRINTAWFF(CADDR AWF);
PRINC('?,);
PRINTAWFF(CDDDR AWF);
PRINC('?)); END;

IF EQ(CR,'?!LAMBDA)

THEN BEGIN PRINC('?[?\);
PRINTAWFF(CADR AWF);

PRINC('?.);
PRINTAWFF(CDDR AWF);
PRINC('?]); END;

IF EQ(CR,'7!MU)

THEN BEGIN PRINC("?[?0¢);
PRINTAWFF(CADR AWF):
PRINC('2.);
PRINTAWFF(CODR AWF);
PRINC('?]); END;

END;

EXPR PRINTMES(X):
TERPRI(PRINC(TERPRI(X)));

EXPR PRINTM(N);
BEGIN
PRINC(TERPRI("THE LAST LINE IN THE PROOF IS: "))s
RETURN(TERPRI(PRINC(N)));
END;

EXPR PRINTNEWLINE();
BEGIN NEW X;
X«PROOF[1];
PRINC(X[I1,; IF (X[1]210) THEN PRINC("") ELSE PRINC(" "),
PRINTLST(X[2]); PRINC(* ");
RETURN PRINC(IF NULL(X[3]) THEN " " ELSE X[3}); END;

25

LCFsmall

EXPR PRINTLINE(X);
BEGIN
PRINC(X[11); IF (X[1 210) THEN PRINC(" ") ELSE PRINC(" ");
PRINTLST(X[2]); PRINC(" ")
PRINC(IF NULL(X[3]) THEN " " ELSE X[3]); PRINC(" ")s
IF ATOM(X[4]) THEN RETURN PRINC(X[4]) ELSE RETURN PRINTLST(X[4]);
END;

EXPR PRINTLST(X);
IF NULL(CDR X) THEN PRINTAWFF(X[1)) ELSE
BEGIN PRINTAWFF(X[1]);
PRINC(" ");
RETURN PRINTLST(CDR X);END;

26

LCFsmall

APPENDIX 4

INFERENCE COMMANDS

EXPR ASSUME();
BEGIN NEW AWF,START; START«PC;
| F CHECK('ASSUME) A (AWF«AWFF()) A SC()
THEN RETURN ASSUMESEM(AWF); PC+START;
END:;

EXPR ASSUMESEM{AWF);
MKPROOF STEP(<AWF>,<PFLENGTH + | >,'ASSUME);

EXPR INCL();
BEGIN NEW L1,N,START; START«PC;
IF CHECK(" INCL) A (Ll-—NUMBER()) A (N«-NUMBER()) A SC()
THEN RETURN INCLSEM(L1 ,N);PC«START;
END;

EXPR INCLSEM(L1,N:WF);
IF ISPROOFSTEP(L 1) AISINCL(N,WF<WFFOF(L1))
THEN MKPROOF STEP(PICKUP(WF,N),DEPOF (L 1),REASON('INCL,<L 1,N>))
ELSE PRINTMES("NASTY INCL");

EXPR CONJ();
BEGIN NEW L 1,L2,START; START'-PC;
| F CHECK(’CONJ) A (L1+«NUMBER()) A (L2=NUMBER()) A SC()
THEN RETURN CONJSEM(L1 ,L2);PC+START;
END;

EXPR CONJSEM(L1,L2);

IF ISPROOFSTEP(L1) AISPROOFSTEP(L2)

THEN MKPROOF STEP(UNIONW(WFFOF (L 1),WFFOF(L2)),
UNIONOF (DEPOF (L 1),DEPOF(L2)),
REASON(’CONJ<L1,L2>))

ELSE PRINTMES("NASTY CONJ");

EXPR CUT();
BEGINNEWL 1 ,L2,START;START«PC;
| F CHECK('CUT) A (L1<NUMBER()) A (L2-NUMBER()) A SC()
THEN RETURN CUTSEM(L1 ,L2);PC~START;
END;

EXPR CUTSEM(L1,L2);
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) AINCLTEST(DEPOF(L2),WFFOF(L1))
THEN MKPROOFSTEP(WFFOF(L2),DEPOF(L1),REASON('CUT<L1,L2>))
ELSE PRINTMES("NASTY CUT’);

EXPR HALF();
BEGIN NEW L1 ‘START; START«PC;
IF CHECK('HALF)A (Lb-NUMBER()) A SC()
THEN RETURN HALFSEM(L |); PC~START;
END;

27

LCFsmall

EXPR HALFSEM(LI:AWF);
IF ISPROOFSTEP(L 1) AISEQUIVAWFF (AWF~AWFFOF(L 1))

THEN MKPROOF STEP(MKWFF ('7<,FSTERMOF (AWF),SNTERMOF (AWF)),DEPOF (L1 »
REASON('HALF <L 1))
ELSE PRINTMES("NASTY HALF");

EXPR SYM();
BEGIN NEW L1 ‘START; START«PC;

| F CHECK('SYM) A (L1«NUMBER()) A SC()

THEN RETURN SYMSEM(L!]);PCSTART;
END;

EXPR SYMSEM(L1:AWF);
IF ISPROOFSTEP(L 1) A ISEQUIVAWFF(AWF~AWFFOF (L1))

THEN MKPROOF STEP(MKWFF ('?=, SNTERMOF (AWF),F S TERMOF (AWF)),DEPOF (L1)
REASON(’SYM,<L1>))

ELSE PRINTMES("NASTY SYM");

EXPR TRANS();
BEGINNEWL 1 ,L2,START;START«PC;

| F CHECK('TRANS) A (L1=NUMBER()) A {L2¢NUMBER()) A SC()

THEN RETURN TRANSSEM(L!,L2); PC+START;
END;

EXPR TRANSSEM(L 1 L2 :AWFI ,AWF2 REL);
IF ISPROOFSTEP(L 1) A ISPROOFSTEP(L2)
AEQUAL(SNTERMOF(AWF | ~AWFFOF (L 1)),FSTERMOF (AWF 2+ AWFFOF (L2)))
THEN (IF ISEQUIVAWFF(AWF1)A ISEQUIVAWFF(AWF2)
THEN REL «('?=) ELSE REL «(?¢))
AL SO MKPROOF STEP(MKWFF (REL,FSTERMOF (AWF 1 ,SNTERMOF (AWF 2)),
UNIONOF (DEPOF (L 1),DEPOF(L2)),

REASON{'TRANS <L1,L2)))
ELSE PRINTMES("NASTY TRANS");

EXPR APPL():,
BEGIN NEW L 1,TRM,START;START«PC;
| F CHECK('APPL) A (TRMeTERM()) A (L1«NUMBER()) A SC()
THEN RETURN APPLSEMI(TRM,L1); PC<START;
| F CHECK('APPL) A (L1 «NUMBER()) A (TRMeTERM()) A SC()

THEN RETURN APPLSEMZ2(L1,TRM); PC+START;
END;

EXPR APPLSEM 1 (TRM,L 1 :AWF);
IF ISPROOFSTEP(L1) THEN

MKPROOF STEP(MKWFF (RELOF (AWF « AWFFOF (L 1)),MKAPPLTERM(TRM,FSTERMOF (AWF)),
MKAPPLTERM(TRM,SNTERMOF (AWF))),

DEPOF(L 1),REASONCAPPL,CTRM,L1>))
ELSE PRINTMES("NASTY APPL");

EXPR APPLSEM2(L1,TRM:AWF),)
IFISPROOFSTEP(L1) THEN

MKPROOF STEP(MKWFF (RELOF (AWF « AWFFOF (L 1 }),MKAPPLTERM(FSTERMOF (AWF), TRM),
MKAPPLTERM(SNTERMOF (AWF),TRM)),

DEPOF(L 1),REASON('APPL<L 1 ,TRM>))
ELSE PRINTMES (“NASTY APPL");

28

LCFsmall

EXPR ABSTR();
BEGINNEWL 1,V 1,START;START«PC;
| F CHECK{'ABSTR) A (L1=NUMBER()) A (VI+IDENT()) A SC()
THEN RETURN ABSTRSEM(L1,V1); PC+START;
END;

EXPR ABSTRSEM(L 1,V 1:AWF);
BEGIN
IF ISPROOFSTEP(L 1) A NOTFREE(V 1 ,DEPOF(L 1)) THEN
AWF~AWFFOF(L1) ALSO RETURN(MKPROOFSTEP(MKWFF (RELOF (AWF),
MKLAMBODATERM(V 1,F STERMOF (AWF)),
MKLAMBDATERM(V1,SNTERMOF (AWF))),

DEPOF(L 1),REASON('ABSTR<L 1,V 1>)))
ELSE RETURN(PRINTMES("NASTY ABSTR’)); END;

EXPR CASES();
BEGIN NEW L 1,L2,L3,TRM,START;START+PC;)
| F CHECK('CASES) A (L1=NUMBER()) A (L2+NUMBER()) A
(L3<NUMBER()) A (TRM~TERM()) A SC()

THEN RETURN CASESSEM(L1,L2,L3,TRM); PC~START;
END;

EXPR CASESSEM(L 1,L2,L3,TRM:WF 1,WF2,D],02,03);

IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) A ISPROOFSTEP(L3) A
EQUAL(WF | «WFFOF(L1),WF2«WFFOF(L2))A
EQUAL(WF2,WFFOF(L3)) A

TESTCASES(D1+DEPOF (L 1),02+DEPOF (L2),D3«DEPOF (L3),TRM)
THEN MKPROOQF STEP(WF I ,UNIONOF (REMOVE(D1,FIND(D1,TRM,'TT)),
UNIONOF (REMOVE (D2,FIND(D2,TRM,'UU)),
REMOVE(D3,FIND(D3,TRM,'FF)))),
REASON('CASES,<L1,L2,L3,TRM>))
ELSE PRINTMES("NASTY CASES");

EXPR INDUCT();
BEGIN NEW L 1,L2,L3,L4,V 1,START;START«PC;
| F CHECK("INDUCT) A (L1=NUMBER()) A (L2¢NUMBER()) A (L3«NUMBER()) A
(LA-NUMBER()) A (VI=IDENT()) A SC()
THEN RETURN INDUCTSEM(L1 ,L2,L3,L4,V1); PC<START;
END;

EXPR INDUCTSEM(L 1,L2,L3,L4,V1);
BEGIN NEW AWF I, WF3,FIX,MT,BV,MAT,FUNVI;
IF ISPROOFSTEP(L1) AISPROOFSTEP(L2) A ISPROOFSTEP(L3) AISPROOFSTEP(L4) A
ISMUTERM(MT«SNTERMOF (AWF | « AWFFOF(L1))) A
ISFREEFORT (FIX«FSTERMOF (MT),BV-BVAROF (MT),MATMATRIXOF (MT)) A
ISFREEFORW('UU,V 1 \WF3«WFFOF(L3))A
ISFREEFORT(V1,BV,MAT) a
ISFREEFORW(FUNV] «SUBSTG(MAT,V1,BV),V1 WF3) A
ISFREEFORW(FIX,V1 ,WF3) A
EQUAL(WFFOF(L2),SUBWV(WF3,'UU,V1)) A
EQUAL(WFFOF(L4),SUBWV(WF3,FUNVI,VI)) A
MEMQ(L3,DEPOF (L4))
THEN RETURN MKPROOFSTEP{SUBWYV(WF3,FSTERMOF(AWF1),V1),
UNIONOF (UNIONOF (DEPOF (L1),DEPOF (L2)),
REMOVE(UNIONOF (DEPOF (L3),DEPOF (L4)),L3)),

29

[29

LCFsmall

REASON(INDUCT,<L 1,L2,L3,L4,V1>))
ELSE PRINTMES("NASTY INDUCT");
END:

EXPR CONV({);
BEGIN NEW L 1,TRM,START;START«PC;
| F CHECK{'CONV) A (L1+NUMBER()) A SC()
THEN RETURN CONVSEM I (L 1); PC+ START:;
IF CHECK(‘CONV) A{TRMeTERM()) A SC()
THEN RETURN CONVSEM2(TRM); PC+START;
END;

EXPR CONVSEMI (L1:AWF);
IF ISPROOFSTEP(L 1)
THEN MKPROOFSTEP(MKWFF (RELOF(AWF«AWFFOF(L1))
CONVT(FSTERMOF (AWF)),CONVT(SNTERMOF (AWF))),
DEPOF(L 1),REASON('CONV <L1>))
ELSE PRINTMES("NASTY CONV);

EXPR CONVSEM2(TRM);
MKPROOFSTEP{MKWFF (’?E,TRM,CONVT(TRM)).'NODEP,REASON('CONV,(TRM)));

EXPR ETACONV();
BEGIN NEW TRM,START:START«PC;
IF CHECK(‘ETACONV) A {TRMeTERM())A SC()
THEN RETURN ETACONVSEM(TRM); PC«START;
END:;

EXPR ETACONVSEM(TRM);
| F ISLAMBDATERM(TRM) A ISAPPLTERM(MATRIXOF (TRM)) A
EQ(BVAROF (TRM),ARGOF (MATRIXOF (TRM))) A
NOTFRVT(BVAROF (TRM),FNOF (MATRIXOF (TRM)))
THEN MKPROOF STEP{MKWFF ('?=, TRM,FNOF (MATRIXOF (TRM))),
"NODEP REASON(‘ETACONV XTRM>))
ELSE PRINTMES("NASTY ETACONV’);

EXPR ALPHACONV();
BEGIN NEW L 1,TRM,V1,V2,START;START«PC;
IF CHECK(*‘ALPHACONV) A (L1 «NUMBER{))A (VI «IDENT()) A (V2¢IDENT()) A SC()
THEN RETURN(ACONVSEMI (LI ,\V1,¥2)); PC+START;
| F CHECK(*ALPHACONV) A (TRMeTERM()) A (VI«IDENT()) A (V2+IDENT()) A SC()
THEN RETURN(ACONVSEM2(TRM,V1,V2)); PC-START;
END;

EXPR ACONVSEM 1{L 1,V 1,V2 :AWFFS);
IF ISPROOFSTEP(LI)
THEN MKPROOFSTEP(MKWFF (RELOF (AWFAWFFOF (L1)),F S« ACONV(FSTERMOF (AWF),V1,V2),
IF EQUAL(FS,FSTERMOF (AWF)) THEN ACONV (SNTERMOF (AWF),V1,V2)
ELSE SNTERMOF (AWF)),
DEPOF (L 1), REASON('ALPHACONV, <L 1,V 1,V2>))
ELSE PRINTMES("NASTY ALPHACONV”);

EXPR ACONVSEM2(TRM,V1,V2);
MKPROOF STEP(MKWFF (7=, TRM,ACONV(TRM,V1,V2)),'NODEP,REASON('ALPHACONYV,<TRM,V1,V2>));

30

LCFsmall

EXPR EQUIV();
BEGINNEWL 1 ,L2,START;START«PC;
| F CHECK(’EQUIV) A (L1+NUMBER()) A (L2-NUMBER()) A SC()
THEN RETURN EQUIVSEM(L 1 ,L2); PC~START;
END;

EXPREQUIVSEMIL 1 L2:AWF 1,AWF2);

IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2)
AISLTAWFF(AWF 1 “AWFFOF (L 1)) AISLTAWFF (AWF2¢ AWFFOF(L2))
AEQUAL(FSTERMOF (AWF 1), SNTERMOF(AWF2))
A EQUAL(FSTERMOF(AWF2), SNTERMOF(AWFI))

THEN MKPROOFSTEP(MKWFF ('?=,F STERMOF (AWF 1), SNTERMOF (AWF 1)),

UNIONOF (DEPOF (L 1),DEPOF (L2)),REASONCEQUIV <L1,L2>))
E L S E PRINTMES("NASTY EQUIV"); *

EXPR REFL 1 ()3
BEGIN NEW TRM,START; START«PC;
| F CHECK('REFLL) A (TRMeTERM()) A SC()
THEN RETURN REFL 1 SEM(TRM); PC+START;
END;,

EXPR REFL1SEM(TRM);
MKPROOF STEP(MKWFF('?=,TRM,TRM), ‘NODEP , REASON('REFL! <TRM>));

EXPR REFL2();
BEGIN NEW TRM,START; START«PC;
IF CHECK(‘REFL2) A(TRMeTERM())A SC()
THEN RETURN REFL2SEM(TRM); PC+START;
END;

EXPR REFL2SEM(TRM);
MKPROOF STEP(MKWFF ('?<,TRM,TRM), ‘NODEP , REASON('REFL2,<TRM>));

EXPR MIN1();
BEGIN NEW TRM,START; START«PC;
| F CHECK('MINI) A (TRM«TERM()) A SC()
THEN RETURN MIN]ISEM(TRM); PC~START;
END;

EXPR MIN1SEM(TRM);
MKPROOF STEP(MKWFF ("?<,'UU,TRM),'NODEP , REASON(‘MIN1 ,<TRM>));

EXPR MiN2();
BEGIN NEW TRM,START; START«PC;
| F CHECK('MIN2) A (TRM«TERM()) A SC()
THEN RETURN MIN2SEM(TRM); PC<START;
END:;

EXPR MIN2SEM(TRM);

MKPROOF STEP (MKWFF ('?=,MKAPPLTERM('UU,TRM),'UU),'NODEP , REASON("MIN2,<TRM>));

EXPR CONDT();
BEGIN NEW TRM,START; START«PC;
IF CHECK(‘CONDT) A (TRM+CONDTERM())A SC()

31

LCFsmall 32

THEN RETURN CONDTSEM(TRM); PC+~START;
END;

EXPR CONDTSEM(TRM);
IF ISTTCOND(TRM)
THEN MKPROQF STEP(MKWFF ('?=, TRM,TRUCASOF (TRM)),'NODEP - REASON('CONDT,<TRM>})
ELSE PRINTMES("NASTY CONDT");

EXPR CONDF();
BEGIN NEW TRM,START;START«PC;
IF CHECKOCONDF) A (TRM&CONDTERM()) A SC()
THEN RETURN CONDFSEM(TRM);PC+START;
END;

EXPR CONDFSEM(TRM);
IF ISFFCOND(TRM)
THEN MKPROOF STEP(MKWFF ("=, TRM,FALCASOF (TRM)),'NODEP . REASON('CONDF ,<TRM>))
ELSE PRINTMES("NASTY CONDF");

EXPR CONDU();
BEGIN NEW TRM,START;START+PC;
| F CHECK('CONDU) A {TRM«CONDTERM()) A SC{)
THEN RETURN CONDUSEM(TRM); PC+START;
END;

EXPR CONDUSEM(TRM);
IF ISUUCOND(TRM)
THEN MKPROOFSTEP(MKWFF ('?z, TRM,’UU),'NODEP , REASON('CONDU,<TRM>))
. EL S E PRINTMES("NASTY CONDU");

EXPR FIXP{):
BEGIN NEW L 1,START;START«PC;
| F CHECK('FIXP) A (L1 «NUMBER()) A SC()
THEN RETURN FIXPSEM(L1); PC~START;
END;

EXPR FIXPSEM(L 1 :AWF,MT FIX,BV,MA);
| F ISPROOFSTEP(L1) A ISMUTERM(MT« (SNTERMOF (AWF~AWFFOF(L1)))) A
ISFREEFORT (FIX«FSTERMOF (AWF),BV+BVAROF (MT),MA-MATRIXOF (MT))
THEN RETURN(MKPROOF STEP(MKWFF (*7= FIX, SUBSTG(MA, FIX,BY)),
DEPOF (L 1),REASON('FIXP <L 1 >)))
ELSE RETURN(PRINTMES("NASTY FIXP"));

EXPR SUBST();
BEGIN NEW L 1,N,L2,TRM,START;START«PC;
| F CHECK('SUBST) A (L1=NUMBER()) A CHECK('OCC) A (N~NUMBER())
A CHECK('IN) A (L2¢NUMBER()) A SC()
THEN RETURN SUBSTSEM I (L 1,N,L 2); PCe START:;
| F CHECK('SUBST) A (L1-NUMBER()) A CHECK('0CC) A (N~NUMBER())
A CHECK('IN) A (TRM«TERM()) A SC()
THEN RETURN SUBSTSEM2(L1,N,TRM); PC<START;
END;

EXPR SUBSTSEMI(LI,N,L2);

r r—

LCFsmall

BEGIN NEW AWF 1 ,AWF2,DEP;
IF ISPROOFSTEP(L 1) A ISPROOFSTEP(L2) AISEQUIVAWFF(AWF1+<AWFFOF(L1))
THEN AWF2«AWFFOF(L2) ALSO
DEP«UNIONOF(DEPOF (L 1),DEPOF(L2)) ALSO
RETURN MKPROOF STEP(SUBW(AWF2,AWF | ,N),DEP,
REASON('SUBST,<L 1,"OCC,N,"IN,L2>))
ELSE RETURN PRINTMES("NASTY SUBST");
END;

EXPR SUBSTSEM2(L1,N,TRM);

BEGIN NEW AWF REL,SNT;

IF ISPROOFSTEP(L1)

THEN AWF«AWFFOF(L1) ALSO REL«RELOF(AWF) ALSO

SNT«SUBSTTT(TRM,SNTERMOF (AWF),F STERMOF (AWF),N) ALSO
RETURN MKPROOF STEP(MKWFF (REL,TRM,SNT),DEPOF(L1),
REASON('SUBST,<L 1,'OCC,N,"IN,TRM>))
ELSE RETURN(PRINTMES("NASTY SUBST"));)
END;

33

LCFsmalil 34

APPENDIX 5

AUXILIARY COMMANDS

EXPR SHOW();

BEGIN NEW N1,N2,START;

START«PC;

| F CHECK('SHOW) A CHECK('LINE) A (N1 &NUMBER()) A
OPT(COLON() A (N2«NUMBER())) A SC()

THEN RETURN SHOWSEM(NI ,N2);
PC«START;
END;

EXPR SHOWSEM(NI N2);
BEGIN
IF NULL(N2) THEN N2&NI;
TERPRI(PRINC(TERPRI(" ")));
A; IF(NISN2) THEN
(IF ISPROOFSTEP(N!)
THEN TERPRI(PRINTLINE(SEARCH(N1 ,PROOF))) ALSON1¢N1+]1 ALSO GO A
ELSE RETURN PRINTMES("NONEXISTING STEP"))
ELSE RETURN PRINC("");
END;

EXPR FETCH();
BEGIN NEW ID, START;
START+ PC;
IF CHECK(’FETCH) A (ID€IDENT()) ASC() THEN RETURN FETCHSEM(ID);
PC«START;
END;

EXPR FETCHSEM(ID);
INC(EVAL(<'INPUT,'FO0,'DSK?:>@<ID>),NIL);

EXPR CANCEL();
BEGIN NEW N,START; START«PC;
| F CHECK('CANCEL) A OPT(N~NUMBER()) A SC()
THEN RETURN CANCELSEM(
PC«START; END;

EXPR CANCELSEM(N);
BEGIN
IF NULL(N) THEN NePFLENGTH;
IF (N<1)
THEN (PFLENGTH0)
ALSO (PROOF«NIL)
ALSO RETURN (PRINTMES("YOU HAVE DEMOLISHED YOUR PROOF"));
A; IF- (PFLENGTH LESSP N) THEN RETURN(PRINTM(PFLENGTH));
PFLENGTH «{(PFLENGTH=1);
PROOF«CDR PROOF;
GO A;
END:;

LCFsmall

APPENDIX 6

AUXILIARY FUNCTIONS

6.1 Predicates on Free and Bound Occurrences of Varibles on Terms, Awffs, etc.

EXPR NOTBNDVT(V,TRM);

BEGIN

IF ISIDENT(TRM) THEN RETURN T;

IF ISAPPLTERM(TRM) THEN RETURN (NOTBNDVT(V,FNOF (TRM))A
NOTBNDVT(V,ARGOF(TRM)));

IF ISCONDTERM(TRM) THEN RETURN (NOTBNDVT(V,PREDOF (TRM))A
NOTBNDVT(V,TRUCASOF (TRM))A
NOTBNDVT(V,FALCASOF (TRM)));

IF(ISLAMBDATERM(TRM) v ISMUTERM(TRM)))

THEN (IF EQ(BVAROF(TRM),Y) THEN RETURN NIL

ELSE RETURN NOTBNDVT(V,MATRIXOF (TRM)));
END;

EXPR BOUNDV(V,TRM); ~NOTBNDVT(V,TRM);

EXPR NOTFRVT(V,TRM);
BEGIN
IFISAPPLTERM(TRM) THEN RETURN (NOTFRVT(V,FNOF (TRM))ANOTFRVT(V,ARGOF (TRM)));
IF ISCONDTERM(TRM) THEN RETURN (NOTFRVT(V,PREDOF{TRM))A
NOTFRVT(V,TRUCASOF (TRM)) A
NOTFRVT(V,FALCASOF (TRM)));
IF ISLAMBDATERM(TRM) v ISMUTERM(TRM)
THEN RETURN (EQ(V,BVAROF(TRM)) v NOTFRVT(V,MATRIXOF (TRM)));
RETURN(~EQ(V,TRM));
END;

EXPR FREEV(V,TRM); (~NOTFRVT(V,TRM));

EXPR NOTFRVW(V,WF);
IF EMPTY(WF) THEN T
ELSE NOTFRVT(V,FSTERMOF (FSTOF (WF))) A
NOTFRVT(V,SNTERMOF (FSTOF (WF))) A
NOTFRVW(V,RMDR(WF));

EXPR NOTFREE(V,LN);
IFEMPTY(LN) THEN T ELSE
(IF NOTFRVW(V,WFFOF (FSTOF (LN))) THEN NOTFREE(V,RMDR(LN)));

EXPR ISFREEFORT(X,V,TRM);

BEGIN

IFISIDENT(TRM) THEN RETURN T; _

IFISAPPLTERM(TRM) THEN RETURN ISFREEFORT(X,V,FNOF(TRM))A
ISFREEFORT(X,V,ARGOF (TRM));

IF ISCONDTERM(TRM) THEN RETURN ISFREEFORT(X,V,PREDOF (TRM))A
ISFREEFORT(X,V,TRUCASOF (TRM)) A
ISFREEFORT(X,V,FALCASOF (TRM)) 3

35

LCFsmali

IF ISLAMBDATERM(TRM) v ISMUTERM(TRM) THEN
IF EQ(V,BVAROF (TRM)) v FREEV(BVAROF(TRM),X) THEN RETURN NIL
ELSE RETURN ISFREEFORT(X,V,MATRIXOF (TRM));
END;

EXPR ISFREEFORW(X,V,WF);
IFEMPTY(WF) THEN T
ELSE ISFREEFORT(X,V,F STERMOF (FSTOF (WF))) A
ISFREEFORT(X,V,SNTERMOF (FSTOF (WF))) A
ISFREEFORW(X,V,RMDR(WF));

6.2 Miscellaneous Functions Used in INCL, CUT, CASES, SHOW

EXPR PICKUP(WF,N);
IF EQ(N, 1) THEN <FSTOF (WF)> ELSE PICKUP(RMDR(WF),N-1);

EXPR INCLTEST(LN,WF);
BEGIN
IFEMPTY(LN) THEN RETURN(T);
IF TESTM(WFFOF (FSTOF (LN)),WF) THEN RETURN(INCLTEST(RMDR(LN),WF));
END;

EXPR TESTM(WF1 ,WF2);
IFEMPTY(WF1) THEN T
ELSE MEMBER(FSTOF (WF.1),WF2) A TESTM(RMDR(WF 1),WF2);

EXPR TESTCASES(LN1 ,LN2,LN3,TRM);

- TESTC(MKWFF("?=,TRM,'TT),LN1) A
TESTC(MKAWF ('?=,TRM,’'UU),LN2) A
TESTC(MKAWF ('?=,TRM,'FF),LN3);

EXPR TESTC(WF,LN);
IF EMPTY(LN) THEN NIL ELSE
IF EQUAL(WF,WFFOF (FSTOF(LN))) THEN T
ELSE TESTC(WF,RMDR(LN));

EXPR FIND(LN,TRM1,TRM2);
IFEMPTY(LN) THEN NIL ELSE
IF EQUAL(MKWFF ('?=, TRMI,TRM2),WFFOF (FSTOF (LN)))
THEN FSTOF(LN) ELSE FIND(RMDR(LN),TRM1,TRM2);

EXPR REMOVE(LN,N);
IF EQ(LN,NIL) THEN NIL ELSE
(IF EQ(N,FSTOF(LN)) THEN RMDR(LN)
ELSE (FSTOF(LN) CONS REMOVE(RMDR(LN),N)));

EXPR OPT(X);
IF X THEN X ELSE T;

6.3 Conversion and Substitution Routines

36

LCFsmall

EXPR CONVT(TRM);
BEGIN NEW BV,MAS,MA,FNEW;
IFISIDENT(TRM) THEN RETURN TRM;
IF ISCONDTERM(TRM) THEN RETURN MKCONDTERM(CONVT(PREDOF (TRM)),
CONVT(TRUCASOF (TRM)),CONVT(FALCASOF (TRM)));

IF ISLAMBDATERM(TRM) THEN RETURN MKLAMBDATERM(BVAROF(TRM),CONVT(MATRIXOF(TRM)));

IF ISMUTERM(TRM) THEN RETURN MKMUTERM(BVAROF (TRM),CONVT(MATRIXOF (TRM)));
IF ISAPPLTERM(TRM) THEN ‘
(IF ISLAMBDATERM{FNOF(TRM))
THEN BV«BVAROF(FNOF(TRM))
ALSO MA«MATRIXOF (FNOF(TRM))
ALSO MAS+SUBSTG(MA,CONVT(ARGOF (TRM)),BV)
ALSO RETURN IF EQUAL(MA ,MAS) THEN TRM ELSE
CONVT(MAS)
ELSE RETURN IF ISLAMBDATERM(FNEW«~CONVT(FNOF (TRM))) THEN
CONVT(MKAPPLTERM(FNEW,CONVT(ARGOF (TRM))))
ELSE MKAPPLTERM(FNEW,CONVT(ARGOF(TBM))));
END;

EXPR SUBSTG(TRM,X,V1);
BEGIN
IF ISIDENT(TRM) AEQ(TRM,V1) THEN RETURN X;
IF ISIDENT(TRM) THEN RETURN TRM;
IFISAPPLTERM(TRM) THEN RETURN MKAPPLTERM(SUBSTG(FNOF(TRM),X,V1),
SUBSTG(ARGOF(TRM), X, V1))
IF ISCONDTERM(TRM) THEN RETURN MKCONDTERM(SUBSTG(PREDOF (TRM),X,V1),
SUBSTG(TRUCASOF(TRM),X,V1),
SUBSTG(FALCASOF(TRM),X,V1));
. | FISLAMBDATERM(TRM)
THEN RETURN (IF EQ(V1,BVAROF(TRM)) v FREEV(BVAROF(TRM),X)
THEN TRM
ELSE MKLAMBOATERM(BVAROF (TRM),SUBSTG{MATRIXOF (TRM),X,V1)))s
IF ISMUTERM(TRM)
THEN RETURN (IF EQ(V1,BVAROF(TRM)) v FREEV(BVAROF(TRM),X)
THEN TRM

ELSE MKMUTERM(BVAROF (TRM),SUBSTG(MATRIXOF (TRM),X,V1)));
END;

EXPR ACONV(TRM,V1,V2:X);
BEGIN
IF NOTBNDVT(V2,TRM) THEN RETURN TRV,
IF ISCONDTERM(TRM) THEN BEGIN
IF BOUNDV(V2,PREDOF (TRM)) THEN RETURN MKCONDTERM(ACONV(PREDOF(TRM),V1,V2),
TRUCASOF (TRM),FALCASOF (TRM));
IF BOUNDV(V2,TRUCASOF (TRM)) THEN RETURN MKCONDTERM(PREDOF (TRM),
ACONV{TRUCASOF (TRM),V1,V2),FALCASOF (TRM));
IF BOUNDV(V2,FALCASOF(TRM)) THEN RETURN MKCONDTERM(PREDOF (TRM),
TRUCASOF (TRM),ACONV (FALCASOF (TRM),V1,V2));END;
| F ISAPPLTERM(TRM) A BOUNDV(V2,FNOF (TRM))
THEN RETURN MKAPPLTERM(ACONV(FNOF (TRM),V1,V2),ARGOF(TRM));
IF ISAPPLTERM(TRM) ,
THEN RETURN MKAPPLTERM(FNOF (TRM),ACONV{ARGOF (TRM),V1,Y2));
| F ISLAMBDATERM(TRM) A EQ(V2,BVAROF (TRM))
THEN RETURN (IF FREEV(V 1 ,MATRIXOF (TRM)) v

EQUAL(X~SUBSTG(MATRIXOF (TRM),V1,Y2),MATRIXOF (TRM))
THEN TRM

LCFsmall 38

ELSE MKLAMBDATERM(VA ,X));
IF ISLAMBDATERM(TRM)
THEN RETURN MKLAMBDATERM(BVAROF (TRM),ACONV (MATRIXOF (TRM),V1,V2));
| F ISMUTERM(TRM) A EQ(V2,BVAROF(TRM))
THEN RETURN (IF FREEV(V1,MATRIXOF(TRM)) v
EQUAL (X«SUBSTG(MATRIXOF (TRM),V1,V2),MATRIXOF (TRM))
THEN TRM
ELSE MKMUTERM(V1,X));
IF ISMUTERM(TRM)
THEN RETURN MKMUTERM(BVAROF (TRM),ACONV(MATRIXOF (TRM),V1,V2));
END;

EXPR SUBW(AWF1,AWF2,N);

BEGIN NEW TRM1,TRMZ2;
C SUBCOUNT«N;
TRM1 «DOSUBST(FSTERMOF (AWF |), SNTERMOF (AWF2),F STERMOF (AWF2));
TRM2«(IF EQ(SUBCOUNT,0) THEN SNTERMOF(AWF1)
~ ELSE DOSUBST(SNTERMOF (AWF |),SNTERMOF (AWF 2),F STERMOF (AWF 2))

RETURN MKWFF(RELOF (AWF1), TRMI ,TRM2);
END;

L EXPR SUBSTTT(TRM1,TRM2,TRM3,N);
BEGIN
SUBCOUNTN;
N RETURN DOSUBST(TRMI,TRM2,TRM3);
END;

EXPRDOSUBST(TRM 1,TRM2,TRM3);
™~ ~BEGIN NEW AUX1,AUX2,AUX3;
IF EQUAL(TRM1 ,TRM3) THEN (SUBCOUNT<SUBCOUNT=1) ALSO
(IF EQ(SUBCOUNT,0) THEN RETURN TRM2 ELSE RETURN TRMI);
L IF ISIDENT(TRM1) THEN RETURN TRMI;
IF ISCONDTERM(TRM1) THEN
AUX1«DOSUBST(PREDOF (TRM1),TRM2,TRM3) ALSO
L AUX2+(IF EQ(SUBCOUNT,0) THEN TRUCASOF(TRM1)
ELSE DOSUBST(TRUCASOF(TRM1),TRM2,TRM3)) ALSO
AUX3«(IF EQ(SUBCOUNT,0) THEN FALCASOF(TRMI)
ELSE DOSUBST(FALCASOF(TRM1),TRM2,TRM3)) ALSO
RETURN MKCONDTERM(AUX1,AUX2,AUX3);
- IF ISAPPLTERM(TRMI]) THEN ‘
AUX 1 «DOSUBST(FNOF(TRM1),TRM2,TRM3) ALSO
AUX2«(IF EQSUBCOUNT,O) THEN ARGOF(TRML)-
ELSE DOSUBST(ARGOF (TRM1),TRM2,TRM3)) ALSO
: RETURN MKAPPLTERM(AUX 1,AUX2);
IF ISLAMBDATERM(TRMI) v ISMUTERM(TRM1) THEN
IF FREEV(BVAROF(TRM 1 },TRM2) v FREEV(BVAROF(TRM1),TRM3) THEN
RETURN TRM! ELSE RETURN
(IF ISLAMBDATERM(TRM1)
‘THEN MKLAMBDATERM(BVAROF (TRM1),DOSUBST(MATRIXOF (TRM1),TRM2,TRM3))
ELSE MKMUTERM(BVAROF(TRM1),DOSUBST(MATRIXOF (TRM1),TRM2,TRM3))):
END;

LCFsmall 39

APPENDIX 7

MANIPULATION OF THE DATA STRUCTURE

7.1 Constructors

EXPR MKCONDTERM(PR,TC,FC); ('?!COND CONS PR CONS TC CONS FC);
EXPR MKAPPLTERM(FN,ARG); (‘?!APPLY CONS FN CONS ARC);

EXPR MKLAMBDATERM(V,TRM); ("?!'LAMBDA CONS V CONS TRM);

EXPR MKMUTERM(V,TRM); ('?'MU CONS V CONS TRM);

EXPR MKAWF(X,Y,Z);s (X CONS Y CONS Z);

EXPR MKWFF(X,Y,2); <(X CONS Y CONS Z)»;

EXPR MKPROOFSTEP(X,Y,2);IF EQ(Y,'NODEP) THEN <X,NIL,2> ELSE <X,Y,2>;

EXPR REASON(X,Y);(X cons Y);

7.2 Selectors

‘EXPR PREDOF(TRM); CADR TRM 3
EXPR TRUCASOF(TRM); CADDR TRM ;

EXPR FALCASOF(TRM); CDDDR TRM ;

EXPR DEPOF (X:P); BEGIN P«~SEARCH(X,PROOF);RETURN(P[3 });END;
EXPR RELOF(X); CAR X;

EXPR FSTERMOF (X); CADR X;

EXPR SNTERMOF(X); CDDR X;

EXPR AWFFOF(X); (CAR WFFOF(X));

EXPR WFFOF(X:P); BEGIN P+~SEARCH(X,PROOF); RETURN(P[2]);END;
EXPR FSTOF(X); CAR X ;

EXPR RMDR(X); CDR X 3

EXPR FNOF(X);CADR X;

LCFsmall

EXPR ARGOF(X); CDDR X;
EXPR BVAROF(X); CADR X;

EXPR MATRIXOF(CDDR X;

7.3 Predicates

E X P R ISEQUIVAWFF(AWF); EQ(RELOF (AWF),'?=),
EXPR ISLTAWFF(AWF); EQ(RELOF (AWF),"?7¢);
EXPR ISINCL(N,WF); (LNT(WF)2N);

EXPR ISTTCOND(TRM); EQ(PREDOF (TRM),'TT);
EXPR ISFFCOND(TRM); EQ(PREDOF (TRM),'FF);
EXPR ISUUCOND(TRM); EQ(PREDOF (TRM),'UU);

EXPR ISPROOFSTEP(L); (PFLENGTHXL);

EXPR EMPTY(X); EQ(X,NIL);
EXPR ISLINE(X); ~(ATOM({X));
EXPR ISIDENT(X); ATOM(X);

EXPR ISAPPLTERM(TRM); EQ{{CAR TRM),"?!APPLY);
EXPR ISCONDTERM(TRM); EQ({CAR TRM), '7!COND);
EXPR ISLAMBDATERM(TRM); EQ((CAR TRM) ,’?!LAMBDA);
EXPR ISMUTERM(TRM); EQ((CAR TRM), '?'MU);

7.4 Miscellaneous Functions

EXPR UNIONOF(LN{,LN2);
BEGIN
IF EQ(LN1 ,'NODEP) v EQ(LNI,NIL) THEN RETURN LN2;
IF EQ(LN2,'NODEP) v EQ(LN2,NIL) THEN RETURN LNI;
IF MEMQ({(CARLN1),LN2) THEN RETURN(UNIONOF ((COR LN1),LN2))
ELSE RETURN((CARLNI) CONS (UNIONOF({CDRLNI HLN2)));
END:

EXPR UNIONW(WF 1, WF2);
IF EQUAL(WF1 ,NIL) THEN WF2 ELSE

40

LCFsmall

(IF MEMBER((CAR WF1),WF2) THEN UNIONW((CDR WF1),WF2)
ELSE ((CAR WF1) CONS UNIONW((CDR WF1),WF2)))s

EXPR ADDLINE(X);
BEGIN PFLENGTH & PFLENGTH ¢+ 1;
PROOF « ((PFLENGTH CONS X) CONS PROOF); END:

EXPR SEARCH(X, P);
IFEQ(P[1,1},X) THEN P[1] ELSE SEARCH(X,(CDR P));

EXPR LNT(X);
IF EQ({CORX),NIL} THEN 1 ELSE (LNT(CDRX)+1);

EXPR SUBWV(WF,X,V:FS);
IF EQ(WF,NIL) THEN NIL ELSE
(MKAWF (RELOF (FS«FSTERMOF (WF)}, SUBSTG(FSTERMOF (F S)1.X,Y),
.SUBSTG(SNTERMOF(FS),X,V)y TONTS SUBWV(RMDR(WF),X,V));

41

LCFsmall 42

In this index all the functions appearing in the program are listed in alphabetic order, Each name
is followed by the number of the appendix where the function is defined.

ABSTR 4
ABS TRSEM 4
ACONV 6.3

ACONVSEM1 4
C ACONVSEM2 4
ADDL I NE 7.4
APPL 4
APPLSEM1 4
APPLSEM2 4
ARGOF 7.2
ASSUME 4
ASSUMESEM 4
AWFF 14
ALFFOF 7.2

BADL INE
BOUNDV
BVAROF

s

2
.1
2

N

CANCEL 5

CANCELSEM 5

L_ CASES 4
CASESSEM

CHECK 1.44

COLON 14

COMMA 14

- CONDF 4

CONDFSEM 4

CONDT 4

i COND TERM 14

CONOTSEM 4

CONDU 4

CONDUSEM 4

CONJ 4

CONJSEM 4

CONV 4

CONVSEM1 4

CONVSEM2 4

CONVT 6.3

cut 4

CUTSEM 4

2

2

4

3

delscan
DEPOF
DOLLAR
DOsuBST

g\»—-ﬂ»—-

EMPTY
ETACONV

E TACON VSEM
EQUIV
EQU I VSEM

FALCASOF
FETCH
FETCHSEM
FIND
FIXpP

F | XPSEM
flush
FNOF
FREEV
FSTERMOF
FSTOF

HALF
HALFSEM

[DENT
idscan
INCL

| NCLSEM
INCLTEST
INDUCT
INDUC TSEM
INIT

| SAPPL TERM
ISCONOTERM
ISEQU I VAWFF
| SFFCONO

| SFREEFOR T
ISFREEFORW
ISIDENT
ISINCL

| SLAMBDATERM

ISLINE
ISLTAWFF
ISMUTERM
ISPROOFSTEP
I STTCOND
ISUUCONO

| ambda

LAMBDA TERM

LCFINIT

LCFPROOF

LINE
LNT

LPAR

LSPINIT

LSQBRACKET

MATRIXOF 7

MKAPPL TERM

~

~

[e)]

o
- = NN

R .
LN E NN mm—‘r\)w#\br\)mm;o

NN~
WL = = wowownesas .

-
~ -

- = - NNNNNN N
. . - . . \I O) m

PR ARAPODOD A W W W w w w -l

—_

N
.
N

LCFsmal

43

MKAWFF

7.

1

MKCONDTERM 7.1
MKLAMBDA TERM 7.1
MKMUTERM 7.1
MKPROOFSTEP 7.1

MINI
MIN2
MKWFF
MIN1SEM
MIN2SEM
MU
MUTERM

nextt
nextv
NOTBNOVT
NOTFREE
NOTFRVT
NOTFRVW
NUMBER
numscan

OPT

peek t
peekv
PERIOD
PICKUP
PREDOF
PRINTAWFF
PRINTLINE
PRINTLST
PRINTM
PRINTMES

2]

PRINTNEWLINE

RARROW
read! ist
REASON
REFL 1
REFL2
REFL1SEM
REFL2SEM
REL
RELOF
RMDR
REMOVE
RESUME
RPAR
RSQBRACKET

SC

scan
SCNINIT
SEARCH
setup
SHOW

e

O NN

e

_L—LG)G)G)G)_L_L
#-P-h-h-—‘-h-h

N

N O o

BPEOMOOMN SRS SRS LR

w w

N

LCFsmall

44

-~

~

-

SHOWSEM
SIMPLETERM
SNTERMOF
SYM

SYMSEM
SUBST
SUBSTG
SUBSTSEML
SUBSTSEM2
SUBSTTT
SUBW

SUBWV

TESTC
TESTCASES
TESTM

TERM

token

tokent

t okenv
TRANS
TRANSSEM
TRUCASOF
tstack

UNIONOF
UNIONW

VALUE

WFF
WFFOF

1.
7.

o
PO OWESEPSTORAPAPRANDPA~O

N oo

e > R)
. - . o
WM AR OWWENODODN

|

NIEN
TGN

~N = —_
S-S

LCFsmall

45

