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Abstract

. One of the chief difficulties associated with the so-called

backtracking technique for combinatorial problems has been our inability

- to predict the efficiency of a given algorithm, or to compare the

| efficiencies of different approaches, without actually writing and running

| the programs. This paper presents a simple method which produces
| reasonable estimates for most applications, requiring only a modest
| .— ~

amount of hand calculation. The method should prove to be of considerable

utility in connection with D. H. Lehmer's branch-and-bound approach to

combinatorial optimization. |
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| _ Estimating the Efficiency of Backtrack Programs |

Bh The majority of all combinatorial computing applications can |

| apparently be handled only by what amounts to an exhaustive search
through all possibilities. Such searches can readily be performed

by using a well-known "depth-first" procedure which R. J. Walker [21]

| has aptly called backtracking. (See Lehmer [16], Golomb and Baumert [6],

LC and Wells [22] for general discussions of this technique, together with
| numerous interesting examples.)

i Sometimes a backtrack program will run to completion in less than

_ a second, while other applications seem to go on forever. The author

: | once waited all night for the output from such a program, only to
— discover that the answers would not be forthcoming for about 10° |

centuries. A "slight increase" in one of the parameters in a backtrack

| ) routine might slow down the total running time by a factor of a thousand;
| conversely, a "minor improvement" to the algorithm might cause a
| hundredfold improvement in speed; and a sophisticated "major improvement"

~ might actually make the program ten times slower. These great discrepancies

in execution time are characteristic of backtrack Programs, yet it is

| ) usually not obvious what will happen until the algorithm has been coded
| and run on a machine. | :

| Faced with these uncertainties, the author worked out a simple

| - estimation procedure in 1962, designed to predict backtrack behavior in
| any given situation. This procedure was mentioned briefly in asurvey

- article a few years later [8]; and during subsequent years, extensive

| computer experimentation has confirmed its utility. Several improvements

| | on the original idea have also been developed during the last decade.

- :
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The estimation procedure we shall discuss is completely | oo

| unsophisticated, and it probably has been used without fanfare by many

people. Yet the idea works surprisinglywell in practice, and sane of

its properties are not immediately obvious, hence the present paper |

might prove to be useful.

Section 1 presents a simple example problem, and Section 2 formulates

backtracking in general, developing a convenient notational framework;

this treatment is essentially self-contained, assuming no prior

knowledge of the backtrack literature. Section 5 presents the

estimation procedure in its simplest form, together with some theorems

that describe the virtues of the method. Section 4 takes the opposite

approach, by pointing out a number of flaws and things that can go wrong.

| Refinements of the original method, intended to counteract these |

difficulties, are presented in Section 5. Some computational experiments |

“are recorded in Section 6, and Section 7 summarizes the practical

experience obtained with the method to date.

1. Introduction to backtrack. |

It is convenient to introduce the ideas of this paper by looking

first at a small example. The problemwe shall study is actually a

rather frivolous puzzle, so it doesn't display the economic benefits

of backtracking; but it does have the virtue of simplicity, since the

complete solution can be displayed in a small diagram. Furthermore

the puzzle itself seems to have been tantalizing people for at least oo

sixty years (see [19]); it became extremely popular in the U.S.A. about

1967 under the name Instant Insanity. |
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: Figure 1 shows four cubes whose faces are colored red (R) ,

| white (W) , green (G) , or blue (B) ; colors on the hidden faces
| | are shown at the sides. The problem is to arrange the cubes in such a |
| way that each of the four colors appears exactly once on the four back
| faces, once on the top, once in the front, and once on the bottom.

| Thus Figure 1 is not a solution, since there is no blue on the top
nor white on the bottom; but a solution is obtained by rotating each

cube 90° .

: Cube 1 Cube 2 Cube 3 Cube 4

L R G B Ww
CLES LR LS Ln

R R G B

L

| Figure 1. Instant Insanity Cubes.

- We can assume that these four cubes retain their relative left-to-right
] order in all solutions. Each of the six faces of a given cube can be

” on the bottom, and there are four essentially different positions having
& given bottom face, so each cube can be placed in 24 different ways;

| therefore the "brute force" approach to this problem is to try all of

the out = 321776 possible configurations. If done by hand, the brute
force procedure might indeed lead to insanity, although not instantly.

IT is not difficult to improve on the brute force approach by

considering the effects of symmetry. Any solution clearly leads to seven

| Other solutions, by simultaneously rotating the cubes about a horizontal |
5



3 axis parallel to the dotted line in Figure 1, and/or by rotating each
cube 180° about a vertical axis. Therefore we can assume without loss of

generality that Cube 1 is in one of three positions, instead of considering

| all 2h possibilities. Furthermore it turns out that Cube 2 has only 16 |
essentially different placements, since it has two opposite red faces;

| see Figure 2, which shows that two of its 2L positionings have the same
colors on the front, top, back, and bottom faces. The same observation

applies to Cube 5. Hence the total number of essentially different ways

to position the four cubes is only 3.16.16.24 = 18432 ; this is

substantially less than 331776 , but it might still induce insanity.

Cube 2 Cube 2

R3 Ry |

| Figure 2. Rotation by 180° in this case leaves the relevant

colors unchanged.

A natural way to reduce the number of cases still further now

suggests itself. Given one of the three placements for Cube 1, some

| of the 16 positionings of Cube 2 are obviously foolhardy since they cannot
possibly lead to a solution. In Figure 1, for example, Cubes 1 and 2

4 |
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oT both contain red on their bottom face, while a complete solution has no

| repeated colors on the bottom, nor on the front, top, or back; since

| this placement of Cube 2 1s incompatible with the given position of

ae Cube 1, we need not consider any of the 16.24 = 384 ways to place |

Cubes 3 and 4. Similarly, when Cubes 1 and 2 have been given a compatible

placement, it makes sense to place Cube 3 so as to avoid duplicate

colors on the relevant sides, before we even beginto consider Cube Lk.

| Such a sequential placement can be represented by a tree structure,

- as shown in Figure 3. The three nodes just below the root (top) of this

tree stand for the three essentially different ways to place Cube 1.

TT Below each such node are further nodes representing the possible

; placements of Cube 2 in a compatible position; and below the latter are |

the compatible placements of Cube 3 (if any), etc. Note that there is

] only one solution to the puzzle, represented by the single node on

Level L.

| Level O

| 16 16
16 | Level 1

_

| {16 16 16 16 16 16 16 16 & 16 16 Level 2
| ~ } |
| 2h Ye 2h 2L  ¢2L 2h 2h 2L  e2h 624 S24 e2k 24 L Level 3
|

|

| ~ 1 Level 4

Figure 3. The Instant Insanity Tree.
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| This procedure cuts the number of cases examined to |

| 5+ 5-16+10-16+13-24 +1 = 524 ; for example, each of the 10 nodes

on Level 2 of the tree involves the consideration of 16 ways to place

| Cube 5. It 1s reasonable to assume that a sane person can safely

remain compos mentis while examining 524 cases; thus, we may conclude |

that systematic enumerationcan cut the work by several orders of i

magnitude even in simple problems like this one. (Actually a further :

refinement, which may be called the technique of "homomorphism and

lifting", can be applied to the Instant Insanity problem, reducing the

total number of cases examined to about 50, as shown originally in [1];

see also [7] for further discussion and for a half-dozen recent

| references. But such techniques are beyond the scope of the present

paper.) |

The tree of Figure 5 can be explored in a systematic manner, |

| requiring comparatively little memory of what has gone before. The

idea 1s to start at the root and continually to move downward when

possible, taking the leftmost branch whenever a decision is necessary; |

but 1f it is impossible to continue downward, "backtrack" by considering

the next alternative on the previous level. This is a special case of

the classical Trémaux procedure for exploring a maze [17, p. 47-50; |

15, Chapter 3]. |

. - ’



| 2. The general backtrack procedure.

| Now that we understand the Instant Insanity example, let us

_ consider backtracking in general. The problem we wish to solve can

be expressed abstractlyas the task of finding all sequences

so | (X 5X55 eves) which satisfy some property P (X5%55 05%) . For

example, in the case of Instant Insanity, n = 4 ; the symbol x, denotes

a placement of the k-th cube; and P(Xq5%55%5,%)) is the property

3 that the four cubes exhibit all four colors on all four relevant sides.

The general backtrack approach consists of inventing intermediate

to properties P (%q5.-05%) such that

. Pq (Xs enx% 1) implies P, (Xq5-005%) , for 0<k<n. (1)

In other words, if (25-00%) doesn't satisfy property Py , then no |

extended sequence (X50 xox 0) can possibly satisfy Pri ; hence

_ by induction, no extended sequence (Xqs en enXys ee nX ) can solve the

original condition Pl . The backtrack procedure systematically

- enumerates all solutions (x5 005%) to the original problem by

considering all partial solutions (%q5 +0 05%) that satisfy P, ,

using the following general algorithm: |

- Step Bl. [Initialize.] Set k to O .

Step B2. [Compute the successors.] (Now PL (Xq5 005%) holds,

and 0 <k<n .) Set S, to the set of all x _ , such that

_ Pq (Xs oX 5x 0) is true.

- Step BS. [Have all successors been tried?] If Sic is empty,

= go to Step B6. |

Step Bi. [Advance.] Choose any element of S , call it Xi 1 2

| and delete it from Sy . Increase k by 1.



| Step B5. [Solution found?] (Now P (x50 05%) holds, and

0<k<n.) If k<n, return to Step B2. Otherwise output the

solution (x50 5%) and go on to Step B6.

| Step B6. [Backtrack.] (All extensions of (x15 005%) have now

been explored.) Decrease k by 1 . If k > 0 , return to Step B3;

otherwise the algorithm terminates. |

J

Condition (1) doesn't uniquely define the intermediate properties

Po s SO We often have considerable latitude when we choose them. For

example, we could simply let P_ be true for all (21500 05%,) , When
k <n ; this is the weakest possible property satisfying (1), and it

corresponds to the brute force approach, where some ot possibilities

would be examined in the cube problem. On the other hand the strongest |

| property is obtained when P (Xq5 05x) is true if and only if there

exist SET RREPE satisfying NC TERETE WE EPRPRFE 3) . In our |
example this strongest property would reduce the search to the examination

of a trivial twig of a tree, but the decisions at each node would require

considerable calculation. In general, stronger properties limit the

search but require more computation, so we want to find a suitable

trade-off. The solution adopted in our example (namelyto use symmetry

considerations when placing Cubes 1, 2, and 3, and to let P (Xy5.-5x%)
mean that no colors are duplicated on the four relevent sides) is fairly

obvious, but in other problems the choice of P is not always so
self-evident.

. ;



— 3. A simple estimate of the running time. |

For each (X50 000%) satisfying P. with O <k <n, the

| - algorithm of Section 2 will execute Steps B2, BL, B5, and B6 once, and
| Step B3 twice. (To see this, note that it is true for Steps B2, BS, |

| and B6, and apply Kirchhoff's law as in [12].) Let us call the associated

running time the cost (%q5 + 005%) . When k =n , the corresponding
cost amounts to one execution of Steps B3, BLY, B5, and B6. If we also

let c() be the cost for k = 0 (i.e., one execution of Steps Bl, B2,

: B3, and BO), the total running time of the algorithm comes to exactly

| > > Claysen orx,) (2)
— k >0 P, (X50 005%))

_ This formula essentially distributes the total cost among the various |

| nodes of the tree. Since the time to execute Step 2 can vary from node

- - to node, and since the time to execute Step 5 depends on whether or not

| k =n , the running time is not simply proportional to the size of the
tree except in simple cases.

Let T be the tree of all possibilities explored by the backtrack

| method; i.e., let |

| B T = {(xq,.0 05x) | k >0 and P(x,...,%,) holds} . (3)
Lo - Then we can rewrite (2) as

cost(T) = 2 c(t) . (4)
oo teT |

| a. Our goal is to find some way of estimating cost(T) , without knowing
a great deal about the properties Py ’ since the example of Section 1

| - indicates that these properties might be very complex.
|



.

| A natural solution to this estimation problem is to try a Monte
Carlo approach, based on a random exploration of the tree; for each |

partial solution CIPRERFS for 0 <k <n , we can choose Xi

| at random from among the set Sy of all continuations, as in the

following algorithm. (A related procedure, but which is intrinsically

different because it is oriented to different kinds of estimates, has |

been published by Hammersley and Morton [10], and it has been the

subject of numerous papers in the literature of mathematical physics;

see [5].)

Step El. [Initialize.] Set k «0, D«1, and C « c() .

(Here C will be an estimate of (2), and D is an auxiliary variable

used in the calculation of C , namely the product of all "degrees" | |

encountered in the tree. An arrow "<'" denotes the assignment operation

+ equivalent to Algol's " :="; and c() denotes the cost at the root of

the tree, as in (2) when k =0 .)

Step E2. [Compute the successors.) Set 5S, to the set of all |

X,,7 Such that Pry (Xs eoxox 0) is true, and let d, be the

number of elements of Sy . (If k =n, then Sy is empty and a, =0 .)

Step E3. [Terminal position?] If d, = 0 , the algorithm

terminates, with C an estimate of cost(T) .

Step EL. [Advance.] Choose an element X01 € 5% at random, each

element being equally likely. (Thus, each choice occurs with probability

1/a, .) Set D « dD , then set C = CHe(xy, 5%, 1)D . Increase Xk

by 1 and return to Step E2.
CJ

10 |



FT This algorithm makes a random walk in the tree, without any

backtracking, and canputes the estimate |

C = c() + dye(xy) + dydqe(x,%,) + dyd de (X 5X0, Xz) + oe , (5) |

| where 4d, is a function of (x50 5%) , namely the number of X01

| satisfying Pap (Xo er oXox 0) . We may define d =0 for all
large k , thereby regarding (5) as an infinite series although only

finitely many terms are nonzero.

"The validity of estimate (5) can be proved as follows.

| Theorem 1. The expected value of C , as computed by the above

| algorithm, is cost(T) , as defined in (kL).

Proof. We shall consider two proofs, at least one of which should be

| _ ] convincing. First we can observe that for every +t = (x5 +-05%,) €T ’
1 the term

oo dnd cody 10X50 sx) (6) |

occurs in (5) with probability 1/dgdy +d, ,» Since this is the

chance that the algorithm will consider the partial solution (X50 05%,) :

. Hence the sum of all terms (6) has the expected value (4).

| The second proof is based on a recursive definition of cost(T) ,

oo namely

| . cost (T) = c() + cost(T,) +... +cost(T,) | (7)

where d = d, is the degree of the root of the tree and TyseeenTy
| are the respective subtrees of the root, namely

- Ts = {t = (%q5+-05%,) eT | x, is the j-th element of 54} .

) 11



We also have

— 1

C = c() +d,C

where C' = c(xy) + dex) +d d,e(X XX) + oe has the form of

(5) and is an estimate of one of the T, . Since each of the 4d = dq |
values of Jj 1s equally likely, the expected value of C is

E(C) = c()+dE(C') =c() +a, ((E(C))+... +E(Cy))/a) |

where E(C) = cost (T,) by induction on the size of the tree. Hence
E(C) = cost(T) .

] J

This theorem demonstrates that C 1s indeed an appropriate

statistic to compute, based on one random walk down the tree. As an

example of the theorem, let us consider Figure 5 in Secticn 1, using the |

costs shown there (since they represent the time to perform Step B2,

which dominates the calculation). We have cost(T) = 524 , and if the

estimation algorithm is applied to the tree it is not difficult to

determine that the result will be C =243 , or 291, or L335, or 531,

or 54% , or 819 , or 1107 with respective probabilities 1/6 , 1/6,

1/6 , 1/6 , 1/12, 1/6 , and 1/12 . Thus, a fairly reasonable

approximation will nearly always be obtained; and we know that the mean

of repeated estimates will approach - 524 , by the law of large numbers.

Since the proof of Theorem 1 applies to all functions c(t) defined

over trees, we can apply it to other functions in order to obtain further

information:

Corollary 1. The expected value of D at the end of the above algorithm

is the number of terminal nodes in the tree.

12 |



Be Proof. Let c(t) =1 if t is terminal, and c(t) = 0 otherwise;

| then C =D at the end of the algorithm, hence E(D) = E(C) = 2 c(t)

is the number of terminal nodes by Theorem 1.
J

| Corollary 2. The expected value of the product dydy «+.4, 4 for |

=» fixed k , when the d's are computed by the above algorithm, is the
number of nodes on level k of the tree. |

Proof. Let c(t) = 1 for all nodes on level k , and c(t) = 0

| otherwise; then C =d.d, ...d,, at the end of the algorithm. (Note

| _ that d,dq cee dy 4 is zero if the algorithm terminates before reaching

level k .) =

Corollary 2 gives some insight into the "meaning" of the individual

Lo - terms of our estimate (5); the term dd, cee dy ICIPRPRPES

| represents the number of nodes on level k times the cost associated

with a typical one of these nodes.

; L. Some cautionary remarks.

The algorithm of Section 3 seems too simple to work, and there are

| many intuitive grounds for skepticism, since we are trying to predict

_ the characteristics of an entire tree basedon the knowledge of only

one branch! The combinatorial realities of most backtrack applications

— make it clear that different partial solutions can have drastically

different behavior patterns.



|

Just knowing that an experiment yields the right expected value |
is not much consolation in practice. For example, consider an experiment

which produces a result of 1 with probability 0.999 , while the

result is 1,000,001 with probability 0.001 ; the expected value

is 1001 , but a limited sampling would almost always convince us that

the true answer is 1 .

There is reason to suspect that the estimation procedure of |

Section 3 will suffer from precisely this defect: It has the potential |

to. produce huge values, but with very low probability, so that the

expected value might be quite different from typical estimates.

Let N, be the number of nodes on level k of the tree (cf.

Corollary 2). In most backtrack applications, the vast majority of

all nodes in the search tree are concentrated at only a few levels, so |

that in fact the logarithm of N_ (the number of digits in Ny ) has |
a bell-shaped curve when plotted as a function of k :

log Ny - NN ] | (8)
k

. -

On the other hand our estimate (5) is composed of a series of estimates

Ny = d,dq ee dy 4 which are never bell-shaped; since the d's are

integers, the Ny grow exponentially with k , until finally dropping

| to zero: | oo

oo 14 |



1

tog Ny A : (9)
k

Although these two graphs have completely different characteristics,

oo we are getting estimates which in the long run produce (8) as an average

: of curves like (9). |

CT Consider also Figure 3, where we have somewhat arbitrarily assigned

| a cost of 1 to the lone solution node on Level 4. Perhaps our output

routine is so slow that the solution node should really have a cost

of 10° ; this now becomes the dominant portion of the total cost, but
it will be considered only 1/12 of the time, and then it will be

F - multiplied by 12 . |

There is clearly a danger that our estimates will almost always be

| low, except for rare occasions when they will be much too high.
:

| = 5. Refinements.
| Our estimation procedure can be modified in order to circumvent
| i the difficulties sketched in Section 4. One idea is to introduce
| systematic bias into Step EL, so that the choice of Xi isn't

completely random; we can try to investigate the more interesting or

ne more difficult parts of the tree. |
|

] The algorithm can be generalized by using the following selection

— procedure in place of Step Ek.

.

| |



Step E4'. [Generalized advance.] Determine, in any arbitrary |

| fashion, a sequence of d, positive numbers P, (1)>p, (2). .5p, (d)) :
whose sum is unity. Then choose a random integer Jy in the range

1 <J, <4, in such a way that J. = J with probability p, (J) |

Let x,,, be the J-th element of §, , and set D = D/p (J) ,

C SCHe(xy,- x, 1)D . Increase k by 1 and return to Step E2.

(Step EI is the special case p, (J) = 1/4, for all j .) Again we

can prove that the expected value of C will be cost(T) , no matter

how strangely the probabilities p, (3) are biased in Step Ebk'; in fact,
both proofs of Theorem 1 are readily extended to yield this result.

It is interesting to note that the calculation of D involves a posteriori

probabilities, so that it grows only slightly after a highly probable

choice has been made. The technique embodied in Step Ek' is generally

known as importance sampling [9, pp. 57-59]. |

Some choices of the P, (3) are much better than others, of course, and

the most Interesting fact is that one of the possible choices is actually perfect:

Theorem 2. If the probabilities p, (Jj) in Step EM' are chosen

appropriately, the estimate C will always be exactly equal to cost(T) .

Proof. For 1 <j <4, , let Pp, (3) be

x, cost (T (Xs «++» %pn%, (3)
ns) = ———LKR (10)

] cost (T(x, 5%.) =c(Xy, 005%) |

where ICOPRETTS is the set of all teT having specified values |

(x5 ++ 5%) for the first k components, and where X01 (3) is the |

oo 16 |



| ~ j-th element of 5, . Now we can prove that the relation

| _ C+ (cost(T(xys+--5%)) C(x, 005%. ))D = cost(T)

] is invariant, in the sense that it always holds at the beginning and |

u end of Step E4'. Since cost (T (xy, 45%, )) = c(Xqs.eer%,) when d; =O ,
| } the algorithm terminates with C = cost(T) .

Alternatively, using the notation in the second proof of Theorem 1,

= we have

- | C =c() + Src,
| J -

for some Jj , and Cs = cost (T,) by induction, hence C = cost(T) . |

| Of course we generally need to know the cost of the tree before |

| we know the exact values of these ideal probabilities p, (J) , SO We

| = - can't achieve zero variance in practice. But the form of the p, (3)
shows what kind of bias is likely to reduce the variance; any information

N or hunches that we have about relative subtree costs will be helpful. |

| (In the case of Instant Insanity there is no simple a priori reason

| to prefer one cube position over another, so this idea doesn't apply;

EE perhaps Instant Insanity is a mind-boggling puzzle for precisely this

reason, since intuition is usually much more valuable.) |

- Theorem 2 can be extended considerably, in fact we can derive a

_ general formula for the variance. The generating function for C

satisfies |

_ cz) = 200% bc.(z Ph (11)
1<j<a 99

_ and from this equation it follows by differentiation that |



|

2

var(C) = C"(1)+C'(1) -C'(1)

| _ cost (T,) cost (T.) \°
= 2 var(C.)/p,+ 2 b;Ps\ —5 ° —— : (12) |
1<j<d Jd 1<i<i<a HY i i

| Iterating this recurrence shows that the variance can be expressed as |

1 t,t cost (T(t,1)) cost (T(t,3))Y
var(C) = 2 20) 2. p (i)p (J) r— - ro , (13)tel 1<i<j<a(t) p (1) p (3)

where P(t) is the probability that node t is encountered, d(t) is

the degree of node t , oo (3) is the probability that we go from +t

to its j-th successor, and T(t,j) is the subtree rooted at that

successor.

| From this explicit formulawe can get a bound on the variance, if

| the probabilities are reasonably good approximations to the relative

subtree costs:

Theorem 3. If the probabilities p, (J) in Step E4' satisfy

cost (T(%ys «+X %, (J) - cost (T(Xqs +x sX 5%, (1)
p, (3) = p, (1)

for all i,j and for some fixed constant « >1 , the variance of C

is at most | |

2 H |
a teatl 2

(Lr) 1) cost (T)™ (1h)

Proof. Let a; = cost (T,)/p; , and assume without loss of generality |

that 4d; <a, < coo < dq < a4 . From elementary calculuswe have,

under the constraints cost (T;) >0 and 225 = 1,
oo 18



oo 2
| cost(T,) P+ oat 1 2

: 2. —— < —/g 2. cost(T.) 5
} 1<i<a Fs 1<j<d y

equality occurring when d = 2 and dp = aa, . Furthermore |

oo | _ 5 cost (T.)" | 2
2 ppiag-a)” = LT ———— - > cost(T:)

l<i<j<a *Y J 1<j<da Pj 1<j<d J

: Letting 8 = (0° + 2a + 1)/4a , we can prove (14) by induction since

| (12) now yields ]

~ var(C) < p> var(C.)/p. + (B=-1) cost (T)° |
l<j<a 90

| | < 2. (8% 1-1) cost (T.)%/p. + (B-1)cost(T)°
| 1<j<d So

|

= 2 2n

| < (Bp -B)cost(T)” + (B-1)cost(T) . B
mn

| Theorem 3 implies Theorem 2 when « = 1 ; for a > 1 the bound
| in (14) isn't especially comforting, but it does indicate that a few

| runs of the algorithm will probably predict cost(T) with the right

| order of magnitude.
- Another way to improve the estimates is to transform the tree

| into another one having the same total cost, and to apply the Monte Carlo

| - procedure to the transformed tree. For example, the tree fragment

oC 19 |



Cy |

Cy Cx Cy, Cs

a B 7 8 CN

with costs Cys eeesCo and subtrees Q,...,7 can be replaced by |

Ci¥Cp* C+ Cy +Cy

a By © ee C MN

by identifying five nodes. Intermediate condensations such as

Ci+Cy+Cy | |

Co yet Cs

a B C

are also possible.

One application of this idea, if the estimates are being made by a

computer program, is to eliminate all nodes on levels 1, 3, 5, 7, ...

of the original tree, making the nodes formerly on levels 2k and 2k+l

into a new level k . For example, Figure 4 shows the tree that results

when this idea is applied to Figure 5. The estimates in this collapsed

tree are C =211, or L451 , or 461, or 691 , or 931 , with

respective probabilities .2, .3, .1, .3, .1 , so we have a slightly

better distribution than before.
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Figure 4. Collapsed Instant Insanity Tree.

Another use of this idea is to eliminate all terminal nodes having

- nonterminal "brothers". Then we can ensure that the algorithm never

moves directly to a configuration having d, = 0 unless all possible

moves are to such a terminal situation; in other words, "stupid" moves

. can be avoided. | |

Still another improvement to the general estimation procedure can

- ) be achieved by "stratified sampling" [9, p. ]. We can reduce the

|
| variance of a series of estimates by insisting for example that each

experiment chooses a different value of xX,

~ 6. Computational experience.

| The method of Section 3 has been tested on dozens of applications;

~ and despite the dire predictions made in Section U4 it has consistently

performed amazingly well, even on problems which were intendedto serve

as bad examples. In virtually every case the right order of magnitude

“— for the tree size was found after ten trials. Three or four of the

| ten trials would typicallybe gross underestimates, but they were |

- generally counterbalanced by overestimates, in the right proportion.
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We shall describe only the largest experiment here, since the

| method is of most critical importance on a large tree. Figure 5

illustrates the problem that was considered, the enumeration of

uncrossed knight's tours; these are nonintersecting paths of a knight

on the chessboard, where the object is to find the largest possible

tour of this kind. T. R. Dawson first proposed the problem in 1930 [2],

and he gave the two 55-move solutions of Figure 5, stating that "il est

probobablement impossible de dénombrer la quantité de ces tours ... |

vraisemblablement, on ne peut effectuer plus de 35 coups." Later

[3, p. 203 4, p. 35] he stated without proof that 35 is maximum.

LTT 1 TL |

— dP 5.8 dB — AS A SR

| | ‘\_| |

Figure 5. Uncrossed knight's tours.

The backtrack method provides a way to test his assertion; we may

begin the tour in any of 10 essentially different squares, then continue

by making knight's moves that do not cross previous ones, until reaching

an impasse. But backtrack trees that extend across 30 levels or more -

can be extremely large; even if we assume an average of only 3 consistent

choices at every stage, out of at most 7 possible knight moves to new
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© squares, we are faced with a tree of about 520 = 205,891, 132,094, 649

nodes, and we'd never finish. Actually 320 = 3,486,784,401 is nearer

| the upper limit of feasibility, since it isn't at all simple to test

Co whether or not one move crosses another. Therefore it is not clear |

a priori that an exhaustive backtrack search is economically feasible.

i The simple procedure of Section 5 was therefore used to estimate

the number of nodes in the tree, using c(t) = 1 for all t . Here are

the estimated tree sizes found in the first ten independent experiments:

~ 1571717091 ] 209749511

| 315291281 58736818301
_ 8231 511

1793651 259271 |

| 59761491 6071489081 |

The mean value is 6,696,688,822 . The next sequence of ten experiments

gave the estimates

= 567911 238413491

| 111 | 6697691 |

. 569585831 5848873631

| 111 161 |

: 411 140296511

| for an averageof only 680,L43,586, although the four extremely low

“estimates make this value look highly suspicious. (We could have avoided

_ the "stupid moves" which lead to such low estimates, by using the technique

explained at the end of Section 5, but the original method was being

— followed faithfully here.) After 100 experiments had been conducted,

| the observed mean value of the estimates was 1,653,634,783.8 , with an

observed standard deviation of about 6.7 x 10° .



The first few experiments were done by hand, but then a computer

program was written and it performed 1000 experiments in about 50 seconds. |

The results of these experiments were extremely encouraging, because they

were able to predict the size of the tree quite accurately as well as

its "shape" (i.e., the number N, of nodes per level), even though the

considerations of Section 4 seem to imply that N, cannot be estimated |

well. Table 1 shows how these estimates compare to the exact values

which were calculated later; there issurprisingly good agreement,

although the experiment looked at less than 0.00001 of the nodes of

the tree. Perhaps this was unusually sood luck. |

This knight's tour problem reflects the typical growth of backtrack

trees; the same problem on a 7 x7 board generates a tree with |

10,874,674 nodes and on a 6x6 board there are only 88,467 . On

a 9x9 board we need another method; the longest known tour has 47

moves [18]. It can be shown that the longest reentrant tour on an

nxn board has at least n° - 0(n) moves, see [11].

7. Use of the method in practice.

There are two principal ways to apply this estimation method,

namely by hand and by machine. |

Hand calculation is especially recommended as the first step when

embarking on any backtrack computations. For one thing, the algorithm

is great fun to apply, especially when decimal dice [20] are used to

guide the decisions. The reader is urged to try constructing a few

random uncrossed knight's tours, recording the statistics d, as the |

2h |



Co

(

Table 1. Estimates after 1000 random walks.

| k Estimate, N} True value, N_ |

| 0 1.0 1
1 10.0 10

— 2 L2.8 Lo

3 255.0 251

| L 901.4 968
_ 5 4352.2 L215

6 1601kL. 4 15646
f 59948.8 56435
8 190528.7 182520

. 9 580450.8 5Th555
10 1652568.7 1606L22
11 Loh h03.9 376153

a 12 9897781.4 10396490
13 220L47261.5 23978392

Co 1h Lh1392865.5 LW7667686
Lo 15 92464977. 5 91377173 |

16 145815116.2 150084206
17 238608697 .6 235901901

| 18 253061952.9 315123658
"= ) 19 555460520.9 599772215
| 20 3485L2887.6 LoT7209856
| 21 328849873 .9 429189112
— 22 34068220k .1 35886830kL

23 429508177 .9 2783831518 |
2h 318416025.6 | 177916192
25 38610432.0 103894319

o 26 75769344 .0 493%0257h
| 27 74317824 .0 21049968
| 28 0.0 7153880

- 29 0.0 2129212
30 0.0 522186
51 0.0 | 109254

. 32 0.0 188662
33 0.0 2710

3h 0.0 346
| 35 0.0 50
= 36 0.0 8 | |

Total 5125575511.1 3157517290
L
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| tours materialize; it is a captivating game that can lead to hours of

enjoyment until the telephone rings. |

Furthermore the game is worthwhile, because it gives insight into

the behavior of the algorithm, and this insight is of great use later |

when the algorithm is eventually programmed; good ideas about data

structures, and about various improvements in the backtracking strategy,

usually suggest themselves. The assignment of nonuniform probabilities

as suggested in Section 5 seems to improve the quality of the estimates,

and adds interest to the game. Usually about three estimates are enough

to give a feeling for the amount of work that will be involved in a full

backtrack search.

For large-scale experiments, especially when considering the best

procedure in some family of methods involving parameters that must be

selected, the estimates can be done rapidlyby machine. Experience |

indicates that most of the refinements suggested in Section 5 are

unnecessary; for example, the idea of collapsing the tree into half as

| many levels does not improve the quality of the estimates sufficiently |

to justify the greatly increased computation. Only the partial collapsing

technique which avoids "stupid moves" is worth the effort, and even this

makes the program so much more complex that it should probably be used

only when provided as a system subroutine. (A collection of system

routines or programming language features, that allow both the estimation

algorithm and full backtracking to be driven by the same source language

program, is useful.) |
Perhaps the most important application of backtracking nowadays

is to combinatorial optimization problems, as first suggested by

. _ i»



D. H. Lehmer [15, pp. 168-169]. In this case the method is commonly

3 called a branch-and-bound technique (see [14]). The estimation procedure
of Section 3 does not apply directly to branch-and-bound algorithms;

— however, it is possible to estimate the amount of work needed to test |

any given bound for optimality. Thus we can get a good idea of the

- running time even in this case, provided that we can guess a reasonable

_ bound. Again, hand calculations using a Monte Carlo approach are

| recommended as a first step in the approach to all branch-and-bound

- procedures, since the random experiments provide both insight and

| enjoyment.
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