ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS

by

Donald E. Knuth

STAN-CS-74-442
AUGUST 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY







Estimating the Efficiency of Backtrack Programs

by Donald E. Knuth

To Derrick H. Lehmer on his 70th birthday, February 23, 1975

Abstract

One of the chief difficulties associated with the so-called
backtracking technique for combinatorial problems has been our inability
to predict ‘the efficiency of a given algorithm, or to compare the
efficiencies of different approaches, without actually writing and running
the programs. This paper presents a simple method which produces
reasonable estimates for most applications, requiring only a modest
amount of hand calculation. The method should prove to be of considerable
utility in connection with D. H. Lehmer's branch-and-bound approach to

combinatorial optimization.

Keywords and phrases: backtrack, analysis of algorithms, Monte Carlo

method, Instant Insanity, color cubes, knight's

tours, tree functions, branch and bound.

AMS (MOS) subject classifications (1970): Primary 68420, 05-Okj
Secondary 05A15, 65C05, 90B99.

This research was supported in part by the Office of Naval Research
under contract NR O4LL4-LO2 and by the National Science Foundation under
grant number GJ 36473X. Reproduction in whole or in part is permitted
for any purpose of the United States Government.






N S e T T T R TR TR TR e 0 g S e T T L o e R T T R R T AT AR Sy T e

Estimating the Efficiency of Backtrack Programs

The majority of all combinatorial computing applications can
apparently be handled only by what amounts to an exhaustive search
through all possibilities. Such searches can readily be performed
by using a well-known "depth-first" procedure which R. J. Walker [21]

has aptly called backtracking. (See Lehmer [16], Golomb and Baumert (6],

and Wells [22] for general discussions of this technique, together with
numerous interesting examples.)

Sometimes a backtrack program wiIl run to completion in less than
a second, while other applications seem to go on forever. The author
once waited all night for the output from such a program, only to
discover that the answers would not be forthcoming for about 106
centuries. A "slight increase" in one of the parameters in a backtrack
routine might slow down the total running time by a factor of a thousand;

conversely, a "minor improvement" to the algorithm might cause a

hundredfold improvement in speed; and a sophisticated "major improvement"

might actually make the program ten times slower. These great discrepancies

in execution time are characteristic of backtrack programs, yet it is
usually not obvious what will happen until the algorithm has been coded
and run on a machine.

Taced with these uncertainties, the author worked out a simple
estimation procedure in 1962, designed to predict backtrack behavior in
any given situation. This procedure was mentioned briefly in a survey
article a few years later [8]; and during subsequent years, extensive
computer experimentation has confirmed its utility. Several improvements

on the original idea have also been developed during the last decade.

1



The estimation procedure we shall discuss is completely
unsophisticated, and it probably has been used without fanfare by many
people. Yet the idea works surprisingly well in practice, and sdame of
its properties are not immediately obvious, hence the present paper
might prove to be useful.

Section 1 presents a simple example problem, and Section 2 formulates
backtracking in general, developing a convenient notational framework;
this treatment is essentially self-contained, assuming no prior
knowledge of the backtrack literature. Section 3 presents the
estimation procedure in its simplest form, together with some theorems
that describe the virtues of the method. Section L takes the opposite
approach, by pointing out a number of flaws and things that can go wrong.
Refinements of the original method, intended té counteract these

difficulties, are presented in Section 5. Some computational experiments

are recorded in Section 6, and Section 7 summarizes the practical

experience obtained with the method to date.

1. Introduction to backtrack.

It is convenient to introduce the ideas of this paper by looking
first at a small example. The problem we shall study is actually a
rather frivolous puzzle, so it doesn't display the economic benefits
of backtracking; but it does have the virtue of simplicity, since the
complete solution can be displayed in a small diagram. Furthermore
the puzzle itself seems to have been tantalizing people for at least
sixty years (see [19]); it became extremely popular in the U.S.A. about

1967 under the name Instant Insanity.

2



r—

Figure 1 shows four cubes whose faces are colored red (R) ,

white (W) , green (G) , or blue (B) ; colors on the hidden faces
are shown at the sides. The problem is to arrange the cubes in such a
way that each of the four colors appears exactly once on the four back
faces, once on the top, once in the front, and once on the bottom.
Thus Figure 1 is not a solution, since there is no blue on the top

nor white on the bottom; but a solution is obtained by rotating each

cube 90°
Cube 1 Cube 2 Cube 3 Cube 4
G W W B B R R o
------ B * o e e se v R . - - w - G .. .
R R G B

Figure 1. Instant Insanity Cubes.

We can assume that these four cubes retain their relative left-to-right
order in all solutions. Each of the six faces of a given cube can be
on the bottom, and there are four essentially different positions having
a given bottom face, so each cube can be placed in 24 different ways;
therefore the "brute force" approach to this problem is to try all of
the th = 331776 possible configurations. If done by hand, the brute
force brocedure might indeed lead to insanity, although not instantly.

It is not difficult to improve on the brute force approach by

considering the effects of symmetry. Any solution clearly leads to seven

other solutions, by simultaneously rotating the cubes about a horizontal

3



axis parallel to the dotted line in Figure 1, and/or by rotating each

cube 180° about a vertical axis. Therefore we can assume without loss of
generality that Cube 1 is in one of three positions, instead of considering
all 24 possibilities. Furthermore it turns out that Cube 2 has only 16
essentially different placements, since it has two opposite red faces;

see Figure 2, which shows that two of its 24 positionings have the same
colors on the front, top, back, and bottom faces. The same observation
applies to Cube 5. Hence the total number of essentially different ways

to position the four cubes is only 3.16.16.24 = 18432 ; this is

b

substantially less than 331776 , but it might still induce insanity.

Figure 2. Rotation by 180° in this case leaves the relevant

colors unchanged.

A natural way to reduce the number of cases still further now

suggests itself. Given one of the three placements for Cube 1, some

of the 16 positionings of Cube 2 are obviously foolhardy since they cannot

possibly lead to a solution. In Figure 1, for example, Cubes 1 and 2

|
|
|
i
j



haiaihiit AR el e st e I e b

2k

both contain red on their bottom face, while a complete solution has no

repeated colors on the bottom, nor on the front, top, or back; since

this placement of Cube 2 is incompatible with the given position of

Cube 1, we need not consider any of the 16-2L4 = 384 ways to place

Cubes 3 and 4. Similarly, when Cubes 1 and 2 have been given a compatible

placement, it makes sense to place Cube 3 so as to avoid duplicate
colors on the relevant sides, before we even begin to consider Cube L.
Such a sequential placement can be represented by a tree structure,

as shown in Figure 3. The three nodes just below the root (top) of this

tree stand for the three essentially different ways to place Cube 1.

Below each such node are further nodes representing the possible

placements of Cube 2 in a compatible position; and below the latter are
the compatible placements of Cube 3 (if any), etc.

only one solution to the puzzle, represented by the single node on

Level L.

16

16 16 16 16

2k 2L ¢24 24

Figure 3.

16 16
16 16 16 16 &

2k 2k é24 € 2L 2L

The Instant Insanity Tree.

16

2L

2L

Note that there is

16

Level O

Level 1

Level 2

Level 3

Level L



This procedure cuts the number of cases examined to
5+ 3-16+10-16+ 132k + 1 = 524 ; for example, each of the 10 nodes
on Level 2 of the tree involves the consideration of 16 ways to place
Cube 3. It is reasonable to assume that a sane person can safely

remain compos mentis while examining 524 cases; thus, we may conclude

that systematic enumeration can cut the work by several orders of
magnitude even in simple problems like this one. (Actually a further
refinement, which may be called the technique of "homomorphism and
1lifting", can be applied to the Instant Insanity problem, reducing the
total number of cases examined to about 50, as shown originally in [1];
see also [7] for further discussion and for a half-dozen recent
references. But such techniques are beyond the scope of the present
paper.)

The tree of Figure 3 can be explored in a systematic manner,
requiring comparatively little memory of what has gone before. The
idea is to start at the root and continually to move downward when
possible, taking the leftmost branch whenever a decision is necessary;
but if it i1s impossible to continue downward, "backtrack" by considering
the next alternative on the previous level. This is a special case of
the classical Trémaux procedure for exploring a maze [17, p. 47-50;

13, Chapter 3].



2. The general backtrack procedure.

Now that we understand the Instant Insanity example, let us
consider backtracking in general. The problem we wish to solve can
be expressed abstractly as the task of finding all sequences
(xl,xg,...,xn) which satisfy some property Ph(xl’XQ""’Xn) . For
example, in the case of Instant Insanity, n = L4 ; the symbol Xy denotes
a placement of the k-th cube; and Pr(xl’XQ’XB’Xh) is the property
that the four cubes exhibit all four colors on all four relevant sides.

The general backtrack approach consists of inventing intermediate

properties Pk(xl,...,xk) such that

Pk+l(xl""’xk’xk+l) implies Pk(xl,...,xk) , for 0O<k<n . (1)

In other words, if (xl,...,xk) doesn't satisfy property Pk s> then no

extended sequence (x can possibly satisfy P hence

K+l >

by induction, no extended sequence <Xl""’xk""’xn) can solve the

l""’xk’xk+l)

original condition Ph . The backtrack procedure systematically
enumerates all solutions (xl,...,xn) to the original problem by
considering all partial solutions (xl,...,xk) that satisfy Pk s

using the following general algorithm:

Step Bl. {Initialize.] Set k to O .
Step B2. [Compute the successors.] (Now Pk(xl,...,xk) holds,

and O <k <n .) Set §  to the set of all x  , such that

Pk+l(xl""’xk’xk+l) is true.
- SteE B3. [Have all successors been tried?] If Sk is empty,
go to Step B6.
Step Bk. [Advance.] Choose any element of Sk , call it Xipl o
and delete it from Sk . Increase k by 1.



Step B5. [Solution found?] (Now Pk(x ble holds, and

l""’ k)
0<k<n.) If k<n, return to Step B2. Otherwise output the
solution (xl,...,xn) and go on to Step B6.

Step B6. [Backtrack.] (All extensions of (xl,...,xk) have now
been explored.) Decrease k by 1 . If k >0 , return to Step B3;

otherwise the algorithm terminates.

Condition (1) doesn't uniquely define the intermediate properties
Pk » 8o we often have considerable latitude when we choose them. For

example, we could simply let P, be true for all (xl,...,xk) , When

k <n ; this is the weakest possible property satisfying (1), and it
corresponds to the brute force approach, where some Ehh possibilities
would be examined in the cube problem. On the other hand the strongest

property is obtained when Pk(xl,...,x is true if and only if there

»)

exist SR ERPRPE satisfying Pn(xl""’xk’xk+l’""xn) In our

example this strongest property would reduce the search to the examination
of a trivial twig of a tree, but the decisions at each node would require
considerable calculation. 1In general, stronger properties limit the
search but require more computation, so we want to find a suitable
trade-off. The solution adopted in our example (namely to use symmetry
considerations when placing Cubes 1, 2, and 3, and to let Pk(xl,...,xk)
mean that no colors are duplicated on the four relevant sides) is fairly

obvious, but in other problems the choice of P, is not always so

k

self-evident.



5. A simple estimate of the running time.

For each (xl,...,xk) satisfying Pk with 0 <k <n, the
algorithm of Section 2 will execute Steps B2, B4, B5, and B6 once, and
Step B> twice. (To see this, note that it is true for Steps B2, BS5,
and B6, and apply Kirchhoff's law as in [12].) Let us call the associated

running time the cost (xl,...,x When k = n , the corresponding

)
cost amounts to one execution of Steps B3, B4, B5, and B6. If we also
let c() be the cost for k =0 (i.e., one execution of Steps Bl, B2,

B3, and B6), the total running time of the algorithm comes to exactly

2 Z c(xl,...,xk) . (2)
k >0 Pk(xl, .. .,xk)

This formula essentially distributes the total cost among the various
nodes of the tree. Since the time to execute Step 2 can vary from node
to node, and since the time to execute Step 5 depends on whether or not
k = n , the running time is not simply proportional to the size of the
tree except in simple cases.

Let T be the tree of all possibilities explored by the backtrack

method; i.e., let

T = {(xl,...,xk)l k >0 and Pk(xl,...,xk) holds} . (3)

Then we can rewrite (2) as

cost(T) = X c(t) . (%)
teT

Our goal is to find some way of estimating cost(T) , without knowing

a great deal about the properties Pk » since the example of Section 1

indicates that these properties might be very complex.



A natural solution to this estimatién problem is to try a Monte
Carlo approach, based on a random exploration of the tree; for each
partial solution (xl,...,xk) for 0 <k <n, we can choose xk+l
at random from among the set Sk of all continuations, as in the
following algorithm. (A related procedure, but which is intrinsically
different because it is oriented to different kinds of estimates, has

been published by Hammersley and Morton [10], and it has been the

subject of numerous papers in the literature of mathematical physics;

see [5].)

Step E1. [Initialize.] Set k« 0, D+<1, and C «c() .
(Here C will be an estimaté of (2), and D is an auxiliary variable
used in the calculation of C , namely the product of all "degrees"
encountered in the tree. An arrow "+<" denotes the assignment operation
equivalent to Algol's " :="3; and c() denotes the cost at the root of
the tree, as in (2) when k =0 .)

Steg E2. [Compute the successors.] Set Sk to the set of all

X such that P

K1 k+l(xl""’xk’xk+l) is true, and let d, be the

number of elements of Sk . (If k =n, then Sk is empty and dk =0 .)

Step E5. [Terminal position?] If dk =0 , the algorithm
terminates, with C an estimate of cost(T) .

:Step E4X. [Advance.] Choose an element xk*l_esk at random, each

element being equally likely. (Thus, each choice occurs with probability

1/d, .) Set D « d,D , then set C «C+ec(x,.. )D . Increase k

k "xk”'l

by 1 and return to Step E2.
a

10



This algorithm makes a random walk in the tree, without any

backtracking, and canputes the estimate

C = c()4—d0c(xl)4-dodlc(xl,x2)*-dodldgc(xl,xg,x5)4-... s (5)

where dk is a function of (xl,...,xk) s> namely the number of X1

satisfying We may define d4 =0 for all

LW C PRRRVESE NS,
large k , thereby regarding (5) as an infinite series although only
finitely many terms are nonzero.

The validity of estimate (5) can be proved as follows.

Theorem 1. The expected value of C , as computed by the above

algorithm, is cost(T) , as defined in (L).

Proof. We shall consider two proofs, at least one of which should be

convincing. First we can observe that for every t = (x X, ) eT ,

Loeeeoky)

the term
dody "dk-lc(xl""’xk) (6)

occurs in (5) with probability l/dodl"'dk-l , since this is the
chance that the algorithm will consider the partial solution (Xl”"’xk)
Hence the sum of all terms (6) has the expected value (k).

The second proof is based on a recursive definition of cost(T) ,

namely

cost(T) = c()d—cost(Tl)4-...4-cost(Td) (7)

T

where d = d. is the degree of the root of the tree and Tl""’ a

0

are the respective subtrees of the root, namely

Tj = {t = (xl,...,xk) eT le is the j-th element of SO} .

11



We also have

— 1

C = c()+-dOC
where C' = c(xl)4—dlc(xl,x2)+-dld20(xl,x2,x5)4-... has the form of
(5) and is an estimate of one of the Tj . Since each of the 4 = do

values of J 1is equally likely, the expected value of C 1is
B(C) = c() +d B(C') = c()+d ((E(C,) + ---+E(Cy))/a)

where E(Cj) = cost(Tj) by induction on the size of the tree. Hence
E(C) = cost(T) .
d

This theorem demonstrates that C is indeed an appropriate
statistic to compute, based on one random walk down the tree. As an
example of the theorem, let us consider Figuré 5 in Secticn 1, using the
costs shown there (since they represent the time to perform Step B2,
which dominates the calculation). We have cost(T) = 524 , and if the
estimation algorithm is applied to the tree it is not difficult to
determine that the result will be C =243 , or 291 , or L35, or 531,
or 543 , or 819 , or 1107 with respective probabilities 1/6 , 1/6 ,
/6, 1/6 , 1/12 , 1/6 , and 1/12 . Thus, a fairly reasonable
approximation will nearly always be obtained; and we know that the mean
of repeated estimates will épproach- 524 , by the law of large numbers.

Since the proof of Theorem 1 applies to all functions c(t) defined
over trees, we can apply it to other functions in order to obtain further

information:

Corollary 1. The expected value of D at the end of the above algorithm

is the number of terminal nodes in the tree.

12



Proof. Let c¢(t) =1 if t is terminal, and c(t) = 0 otherwise;

then C =D at the end of the algorithm, hence E(D) = E(C) = 2 c(t)

is the number of terminal nodes by Theorem 1.
d

Corollarz 2. The expected value of the product dodl "'dk-l for

fixed k , when the dj's are computed by the above algorithm, is the

number of nodes on level k of the tree.

Proof. Let c¢(t) =1 for all nodes on level k , and c(t) =0

1 -+ &, 8t the end of the algorithm. (Note

that dodl "'dk-l is zero if the algorithm terminates before reaching

otherwise; then C = dod

level k .) | 2

Corcllary 2 gives some insight into the '"meaning'" of the individual

- terms of our estimate (5); the term dydy ---dy o -c(xl,...,xk)

represents the number of nodes on level k times the cost associated

with a typical one of these nodes.

k.  Some cautionary remarks.

The algorithm of Section 3 seems too simple to work, and there are
many intuitive grounds for skepticism, since we are trying to predict
the characteristics of an entire tree based on the knowledge of only
one branch! The combinatorial realities of most backtrack applications

— make it clear that different partial solutions can have drastically

different behavior patterns.




Just knowing that an experiment yields the right expected value
is not much consolation in practice. For example, consider an experiment
which produces a result of 1 with probability 0.999 , while the
result is 1,000,001 with probability O0.001 ; the expected value
is 1001 , but a limited sampling would almost always convince us that
the true answer is 1 .

There is reason to suspect that the estimation procedure of
Section 3 will suffer from precisely this defect: It has the potential
to. produce huge values, but with very low probability, so that the
expected value might be quite differenf from typical estimates.

Let N, be the number of nodes on level k of the tree (cf.

k
Corollary 2). 1In most backtrack applications, the vast majority of
all nodes in the search tree are concentrated at only a few levels, so

that in fact the logarithm of Nk (the number of digits in Nk ) has

a bell-shaped curve when plotted as a function of k :

log N, (8)

On the other hand our estimate (5) is composed of a series of estimates

Ni = dodl "'dk-l which are never bell-shaped; since the d's are

integers, the NL grow exponentially with k , until finally dropping

to zero:

1k



log Nj . (9)

k

Although these two graphs have completely different characteristics,
we are getting estimates which in the long run produce (8) as an average
of curves like (9).

Consider also Figure 3, where we have somewhat arbitrarily assigned
a cost of 1 to the lone solution node on Level 4. Perhaps our output
routine is so slow that the solution node should really have a cost
of 106 ; this now becomes the dominant portion of the total cost, but
it will be considered only 1/12 of the time, and then it will be
multiplied by 12 . '

There is clearly a danger that our estimates will almost always be

low, except for rare occasions when they will be much too high.

5. Refinements.

Our estimation procedure can be modified in order to circumvent
the difficulties sketched in Section 4. One idea is to introduce
systematic bias into Step EW, so that the choice of X4l isn't
completely random; we can try to investigate the more interesting or
more difficult parts of the tree.

) The algorithm can be generalized by using the following selection

procedure in place of Step EL.

15



Step Eh'. [Generalized advance.] Determine, in any arbitrary
fashion, a sequence of d, positive numbers pk(l),pk(e),...,pk(dk)
whose sum is unity. Then choose a random integer Jk in the range

1< J, <4, in such a way that J with probability pk(j) .

k=Y

Let x be the J, -th element of S, » and set D - D/pk(Jk) )

kt1
C-C+ec(x )D . Increase k by 1 and return to Step E2.

d

SERRETE W

(Step Eb is the special case pk(j) = l./dk for all j .) Again we

can prove that the expected value of C will be cost(T) , no matter
how strangely the probabilities pk(j) are biased in Step E4'; in fact,
both proofs of Theorem 1 are readily extended to yield this result.

It is interesting to note that the calculation of D involves a posteriori

probabilities, so that it grows only slightly after a highly probable
choice has been made. The technique embodied in Step EL' is generally

known as importance sampling [9, pp. 57-59].

Some choices of the pk(j) are much better than others, of course, and

the most interesting fact is that one of the possible choices is actually perfect:

Theorem 2. If the probabilities pk(j) in Step EL4' are chosen

appropriately, the estimate C will always be exactly equal to cost(T) .

Proof. For 1< j < d , let Pk(j) be

Cost(T(xl,...,xk,xk+l(3))) (10)

Pk(j) ) cost(T(xl,...,xk)) -c(xl,...,xk)

where T(xl,...,xk) is the set of all teT having specified values

(xl,...,xk) for the first k components, and where Xk#l(j) is the

16



j-th element of S Now we can prove that the relation

K
Ca-(cost(T(xl,...,xk)) —c(xl,...,xk))D = cost(T)
is invariant, in the sense that it always holds at the beginning and
end of Step EL'. Since cost(T(xl,..,xk)) = c(xl,...,xk) when 4 =0,
the algorithm terminates with C = cost(T) .
Alternatively, using the notation in the second proof of Theorem 1,

we have

¢ =c() + °°§ggg%§0 c,

for some j , and Cj = cost(Tj) by induction, hence C = cost(T) .
.

Of course we generally need to know the cost of the tree before
we know the exact values of these ideal probabilities p;(j) , SO we
can't achieve zero variance in practice. But the form of the p;(j)
shows what kind of bias is likely to reduce the variance; any information
or hunches that we have about relative subtree costs will be helpful.
(In the case of Instant Insanity thefe is no simple a priori reason
to prefer one cube position over another, so this idea doesn't apply;
perhaps Instant Insanity is a mind-boggling puzzle for precisely this
reason, since intuition is usually much more valuable.)

Theorem 2 can be extended considerably, in fact we can derive a
general formula for the variance. The generating function for C
satisfies

c(z) - 220 % p.C.(zl/pj) (11)
1<j<a 99

and from this equation it follows by differentiation that

17



V&.I‘(C) - Cvl(l) +C'(l) _Cg(l)z
- cost(Ti) cost(T.) 2
= Z Va.r(C.)/P."’ 2 Pipj D - P . * (12)
1<j<a 1<i<j<d i J

Iterating this recurrence shows that the variance can be expressed as

2
var(C) = 3 1 > b, b, f cost(T(t,i)) _ cost(T(t,3)) . (13
w(©) ter F(8) 1<i <j_§d(t)p (W) () p’ () 2°(3) )

where P(t) is the probability that node t is encountered, a(t) is
the degree of node t , pt(j) is the probability that we go from ‘t
to its j-th successor, and T(t,j) is the subtree rooted at that
successor.

From this explicit formula we can get a béund on the variance, if
the probabilities are reasonably good approximations to the relative

subtree costs:

Theorem 3. If the probabilities pk(j) in Step Eh4' satisfy

cost(T(xl,...,xk,xk+l(j)) | 00st(T(xl,...,xk,xk+l(i)))
2, (3) = ¢ D, (1)

for all i, j and for some fixed constant « > 1 , the variance of C

is at most

2 - |
((9—4-1%)‘2) -l) cost(T)2 . (1k)

Proof. Let qj = cost(Tj)/pj , and assume without loss of generality
that ql‘S a4 < ... < dg < aql . From elementary calculus we have,

under the constraints cost(Tj) >0 and Eipj =1,

18



2
cost(T.,) 2 2
1<i<d P 1<j<ad J

equality occurring when d =2 and Qb = thl . Furthermore

2 P
1<i<j<d

1P

' 2
(q. -q.)2 = > —d z cost(T-.))
i J

J J 1<j<d  Pj 1<j<d

Letting B = (Oé2+2a+ 1) /4 , we can prove (14) by induction since

(12) now yields

- var(C) < Z var(CJ.)/pJ_+ (B-l)cost(T)2
< Z (Bn—l-l)cost(Tj)2/pj + (B—l)cost(T)2

< (8"-p)cost(T)? + (B-1)cost(T)”
.

Theorem 3 implies Theorem 2 when & =1 ; for « > 1 the bound

)
f.
g

in (14) isn't especially comforting, but it does indicate that a few
runs of the algorithm will probably predict cost(T) with the right
order of magnitude.

Another- way to improve the eétimates is to transform the tree
into another one having the same total cost, and to apply the Monte Carlo

'r procedure to the transformed tree. For example, the tree fragment



with costs C .,C. and subtrees Q,...,T can be replaced by

LR

C1+C2+C5+Ch+C5

a B ¥y % & C M

by identifying five nodes. Intermediate condensations such as

C1+C5+Ch
CE 7Y 3 € CS
a B ¢ M

are also possible.

One application of this idea, if the estimates are being made by a
computer program, is to eliminate all nodes on levels 1, 3, 5, T,
of the original tree, making the nodes formerly on levels 2k and 2k+l
into a new level k . For example, Figure 4 shows the tree that results
when this idea is applied to Figure 3. The estimates in this collapsed
tree are C =211, or 451 , or W6l , or 691, or 931 , with
respective probabilities .2, .3, .1, .3, .1 , so we have a slightly

better distribution than before.

20



Figure 4. Collapsed Instant Insanity Tree.

Another use of this idea is to eliminate all terminal nodes having
nonterminal "brothers". Then we can ensure that the algorithm never

moves directly to a configuration having d, = 0 wunless all possible

k
moves are to such a terminal situation; in other words, "stupid" moves
can be avoided.

Still another improvement to the general estimation procedure can
be achieved by "stratified sampling" [9, p. ]. We can reduce the
variance of a series of estimates by insisting for example that each

experiment chooses a different value of X -

6. Computational experience.

The method of Section 3 has been tested on dozens of applications;
and despite the dire predictions made in Section L it has consistently
performed amazingly well, even on problems which were intended to serve
as bad examples. In virtually every case the right order of magnitude
for the tree size was found after ten trials. Three or four of the
ten trials would typically be gross underestimates, but they were

generally counterbalanced by overestimates, in the right proportion.

21



We shall describe only the largest experiment here, since the
method is of most critical importance on a large tree. Figure 5
illustrates the problem that was considered, the enumeration of
uncrossed knight's tours; these are nonintersecting paths of a knight
on the chessboard, where the object is to find the largest possible
tour of this kind. T. R. Dawson first proposed the problem in 1930 [2],
and he gave the two 35-move éolutions of Figure 5, stating that "il est
probobablement impossible de dénombrer la quantité de ces tours
vraisemblablement, on ne peut effectuer plus de 35 coups." Later

[3, p. 205 4, p. 35] he stated without proof that 35 is maximum.

P W

Figure 5. Uncrossed knight's tours.

The backtrack method provides a way to test his assertion; we may
begin the tour in any of 10 essentially different squares, then continue
by making knight's moves that do not cross previous ones, until reaching
an impasse. But backtrack trees that extend across 30 levels or more
can be extremely large; even if we assume an average of only 3 consistent

choices at every stage, out of at most 7 possible knight moves to new

22



-

0 _ 205,891, 132,00k, 649

squares, we are faced with a tree of about 3

nodes, and we'd never finish. Actually 520 = 3,486,784,401 is nearer

the upper limit of feasibility, since it isn't at all simple to test

whether or not one move crosses another. Therefore it is not clear

a priori that an exhaustive backtrack search is economically feasible.
The simple procedure of Section 3 was therefore used to estimate

Here are

the number of nodes in the tree, using c(t) =1 for all ¢t

the estimated tree sizes found in the first ten independent experiments:

1571717091 209749511
315291281 58736818301
8231 311
1793651 259271
59761491 6071489081

The mean value is 6,696,688,822 . The next sequence of ten experiments

gave the estimates

567911 238413491
111 6697691
569585851 5848873631
111 161

L1l 140296511

for an average of only 680,443,586 , although the four extremely low
estimates make this value look highly suspicious. ’(We could have avoided
the "stupid moves" which lead to such low estimates, by using the technique
explained at the end of Section 5, but the original method was being
followed faithfully here.) After 100 experiments had been conducted,

the observed mean value of the estimates was 1,653,634,783.8 , with an

observed standard deviation of about 6.7 x109 .

2>



The first few experiments were done by hand, but then a computer
program was written and it performed 1000 experiments in about 30 seconds.
The results of these experiments were extremely encouraging, because they
were able to predict the size of the tree quite accurately as well as
its "shape" (i.e., the number N, of nodes per level), even though the
considerations of Section 4 seem to imply that N, cannot be estimated
well. Table 1 shows how these estimates compare to the exact values
which were calculated later; there is surprisingly good agreement,
although the experiment looked at less than 0.00001 of the nodes of
the tree. Perhaps this was unusually g;od luck.

This knight's tour problem reflects the typical growth of backtrack
trees; the same problem on a 7 x7 board generates a tree with
10,874,674 nodes and on a 6x6 board there are only 88,467 . On
a 9x9 board we need another method; the longest known tour has 47

moves [18]. It can be shown that the longest reentrant tour on an

nxn board has at least ng-O(n) moves, see [11].

7. Use of the method in practice.

There are two principal ways to apply this estimation method,
namely by hand‘and by machine. -

Hand calculation is especially recommended as the first step when
embarking on any backtrack computations. For one thing, the algorithm
is great fun to apply, especially when decimal dice [20] are used to
guide the decisions. The reader is urged to try constructing a few

random uncrossed knight's tours, recording the statistics dk as the

2l



3

O O~ O\ WO

Table 1.

Estimate, Ni

1.

10.

Lo,

255.

991.

L4352,
1601k.
599L8.
190528.
580450.
1652568.
LLhollo3 .
9897781.
22047261.
L4392865.
92464977 .
145815116.
238608697 .
253061952.
355460520.
348542887 .
328849873 .
34068220k .
429508177 .
318416025.
38610432.
T757695k4k.
74317824

QO OO0 O0OOOO0OCONVHFOUNOWVWONUVVIUVI FONTONOFND FO O O

[oNoNoNoNoONORONONG)

|_l

5125375511.

Estimates after 1000 random walks.

True value, N

1

10

L2

251

968

4215
15646
56435
182520
574555
1606422
4376153
10396490
23978392
L7667686
91277173
150084206
235901901
315123658
599772215
427209856
429189112
35886830k
278831518
177916192
103894319
4930257k
21049968
7153880
2129212
522186
109254
18862
2710

346

50

8

3137317290

25



tours materialize; it is a captivating game that can lead to hours of
enjoyment until the telephone rings.

Furthermore the game is worthwhile, because it gives insight into
the behavior of the algorithm, and this insight is of great use later
when the algorithm is eventually programmed; good ideas about data
structures, and about various improvements in the backtracking strategy,
usually suggest themselves. The assignment of nonuniform probabiiities
as suggested in Section 5 seems to improve the quality of the estimates,
and adds interest to the game. Usually about three estimates are enough
to give a feeling for the amount of Work that will be involved in a full
backtrack search.

For large-scale experiments, especially when considering the best
procedure in some family of methods involving parameters that must be
selected, the estimates can be done rapidly by machine. Experience
indicates that most of the refinements suggested in Section 5 are
unnecessary; for example, the idea of collapsing the tree into half as
many levels does not improve the quality of the estimates sufficiently
to justify the greatly increased computation. Only the partial collapsing
technique which avoids "stupid moves" is worth the effort, and even this
makes the program so much more complex that it should probably be used
only when provided as a system subréutine. (A collection of system
routines or programming language features, that allow both the estimation
algorithm and full backtracking to be driven by the same source language
pro;gra-rn, is useful.)

Perhaps the most important application of backtracking nowadays

is to combinatorial optimization problems, as first suggested by

26



r"""‘""".

D. H. Lehmer [15, pp. 168-169]. In this case the method is commonly

called a branch-and-bound technique (see [14]). The estimation procedure

of Section 3 does not apply directly to branch-and-bound algorithms;
however, it is possible to estimate the amount of work needed to test
any given bound for optimality. Thus we can get a good idea of the
running time even in this‘case, provided that we can guess a reasonable
bound. Again, hand calculations using a Monte Carlo approach are
recommended as a first step in the approach to all branch-and-bound
pfocedures, since the random experimegts provide both insight and

enjoyment .

Acknowledgments.

I wish to thank Robert W. Floyd and George W. Soules for several
stimulating conversations relating to this research. The knight's
tour calculations were performed as "background computation" during a
period of several weeks, on the computer at IDA-CRD in Princeton,

New Jersey.

27






(1]

(2]

(4]

(12]

[13]

References
F. de Carteblanche, "The colored cubes problem," Eureka 9 (19L7),
9-11.

T. R. Dawson, "Echecs Feeriques," problem 186, L'Echiquier (2)
2 (1930), 1085-1086; solution in L'Echiquier (2) 3 (1931), 1150.

T. R. Dawson, Caissa's Wild Roses (Surrey, England: C. M. Fox,

1935) ; reprinted in Five Classics of Fairy Chess (New York:
Dover, 1973).

T. R. Dawson, "Chess facts and figures," Chess Pie III, souvenir

booklet of the International chess tournament (Nottingham, 1936),
3L-36.

Paul J. Gans, "Self-avoiding random walks. 1I. Simple properties of
intermediate-walks," J. Chem. Phys. 42 (1965), L159-L163.

Solomon W. Golomb and Leonard D. Baumert, "Backtrack programming,"
J. Assoc. Comp. Mach. 12 (October, 1965), 516-52k.

N. T. Gridgeman, "The 23 colored cubes," Math. Magazine &&1(1971),
2h3-252.

Marshall Hall, Jr., and D. E. Knuth, "Combinatorial analysis and
computers," in Computers and Computing, Slaught Memorial Papers
No. 10, American Math. Monthly 72 (February, 1965), 21-28.

J. Hammersley and D. C. Handscamb, Monte Carlo Methods (London:
Methuen, 196L4).

J. M Hammersley and K. W. Morton, "Poor man's Monte Carlo,"
J. Roy. Statistical Soc. (B) 16 (1954), 23-38.

Donald E. Knuth, "Uncrossed knight's tours," (letter to the editor),
J. Recreational Math. 2 (1969), 155-157.

Donald E. Knuth, Fundamental Algorithms, The Art of Computer Programming,
Vol. 1 (second edition), (Reading, Mass., Addison-Wesley Publishing
Co., 1973) .

Dénes K¥nig, Theorie der endlichen und unendlichen Graphen

(Leipzig, 1936; reprinted by Chelsea Publishing Co., Bronx, N. Y.,

1950) .
28




[1L] . L. Lawler and D. E. Wood, "Branch-and-bound methods: A survey, "

Operations Research 14 (1966), 699-719.

"

[15] Derrick H. Lehmer, "Combinatorial problems with digital computers,
Froc. Fourth Canadian Math. Congress, 1957 (Toronto: University
o Toronto Press, 1959), 160-173. See also Proc. Symp. Appl. Math.

i (American Math. Society, 1956), 115, 12k, 201.

[1¢] Derrick iI. Lehmer, "The machine tools of combinatorics,'" Chapter 1
in Applied Combinatorial Mathematics, ed. by Edwin F. Beckenbach
(New York: John Wiley and Sons, 1964), 5-31.

/
[17] FEdouard Lucas, Recreations Mathematiques 1 (Paris, 1882).

[18] Michio Matsuda and S. Kobayashi, "Uncrossed knight's tours,"
(letter to the editor), J. Recreabional Math. 2 (1969), 155-157.

[19] . II. O'Bierne, Puzzles and Paradoxes (New York and London:

Oxford University Press, 1965).

|20] C. B. Tompkins, review of "Random-number generating dice," by

Japanese Standards Association, Math. Comput. 15 (1961), 9L4-95.

[21] R. J. Walker, "An enumerative technique for a class of combinatorial

problems," in Combinatorial Analysis, ed. by Richard Bellman and

Marshall Hall, Jr., Proc. Sympos. Appl. Math. 10 (Providence,
Rhode Island: Amer. Math. Society, 1960), 91-9h.

[22] Mark B. Wells, Elements of Combinatorial Computing (Oxford,

vn;land: Pergamon Press, 1971).

[2Z] L. D. Yarbrough, "Uncrossed knight's tours," J. Recreational

Math. 1 (1968), 1ko-1L2.

29



