SU-SEL~74-037 STAN-CS-74-435

. BALANCED COMPUTER SYSTEMS

by

Thomas G. Price

April 1974

Technical Report No. 88

DIGITAL SYSTEMS LABORATORY
Dept. of Electrical Engineering Dept. of Computer Science
Stanford University :
Stanford, California
This work was supported by the Joint Services Electronics Program:

U.S. Army, U.S. Navy, and U.S. Air Force under contract N-000lk-67-A-
0112-0044.

ABSTRACT

We use the central server model to extend Buzen's results on
balance and bottlenecks. We develop two measures which appear to
be useful for evaluating and improving computer system performance.
The first measure, called the balance index, is useful for balancing
requests to the peripheral processors. The second quantity, called
the sensitivity index, indicates which processing rates have the
most effect on overall system performance.

We define the capacity of a central server model as the maximum
throughput as we vary the peripheral processor probabilities. We
show that the reciprocal of the CPU utilization is a convex function
of the peripheral processor probabilities and that a necessary and
sufficient condition for the peripheral processor probabilities to
achieve capacity is that the balance indexes are equal for all periph-
eral processors. We give a method to calculate capacity using classi-
cal optimization techniques.

Finally, we consider the problem of balancing the processing
rates of the processors. TIwo conditions for "balance" are derived.
The first condition maximizes our uncertainty about the next state of
the system. This condition has several desirable properties con-
cerning throughput, utilizations, overlap, and resistance to changes
in job mix. The second condition is based on obtaining the most

throughput for a given cost.

TABLE OF CONTENTS

1. Introduction pafe
2. Balancing Requests to Peripheral Processors 1
3. Sensitivity 11
4, Designing a Balanced System 13
5. Computation of Balance, gensitivity, and Capacity 29
6. Applications 27
T. Conclusions 34
Appendix 35
References 50

i1

LIST OF TABLES

An example where the processor with the highest
utilization does not have the largest bi

An example with probabilities chosen to achieve
capacity.

An example where the processor with the highest
utilization has the largest bi

Another example where the processor with the highest
utilization has the largest bi

An example with probabilities chosen to give equal
utilizations

Processor utilizations at capacity

iid

page
28

28

29

31

33

Fig.

LIST OF FIGURES

The central server model
An example showing u, is neither convex nor concave

Maximum throughput holding the geometric mean of the
processing rates constant

Equivalent central server model

Capacity versus the degree of multiprogramming

iv

page

17

19

32

r

—_—_’

1. Introduction

Measurement is an important tool for finding "bottlenecks" in
computer systems. Frequently measurement of a computer system begins
by measuring the utilizations of the central processor and I/0
channels. If these measurements show that the utilization of one of
the processors is substantially larger than the utilizations of the
other processors this suggests that the processor with the higher
utilization may be a bottleneck and may be degrading the performance
of the entire system. The intuitive idea of a bottleneck needs to
be made more precise. In order to do this, it is helpful to consider
how we can improve the performance of the system once the bottleneck (s)
have been identified. 1In general there may be several ways to improve
the performance of the system.

If the processor with the higher utilization is an I/0 channel
one way to improve performance may be to balance the load on the
channels e.g. by shifting some of the load from the busy channel to
the other channels. This may be accomplished by moving system data
sets to different devices, changing the allocation algorithms for
auxiliary storage, moving one or more of the devices on the busy
channel to other channels, etc.

Another approach is to try to improve the scheduling of requests
at the busy processor in such a way as to reduce the average waiting
time at that processor. A third way is to replace some of the pro-
cessors or devices in the system with faster ones. The first method

is basically different from the other two. The first method involves

changing the relative load on the various channels. The other methods
are concerned with trying to increase the effective processing rate
at a given server.

In this paper we use the central server model [Buzen, 19714A; Buzen,
1971B; Buzen, 1973] to study ways to evaluate and improve overall system
performance. In section 2 we consider the problem of balancing requests
to the peripheral processors. Sections 3 and 4 are concerned with chang-
ing the processing rates to optimize performance. In section 5 we give
formulas for computing the measures developed earlier. Finally, in sec-
tion 6 we give several examples of how the results might be used.

Fig. 1 is a diagram of the central server model. The reader is
referred to the papers by Buzen [1971A, 1971B, 1973] for a detailed dis-
cussion of the model. The following notation is used in this paper.

My = service rate at the ith server
probability a job chooses the ith peripheral server

©
o
I

n = degree of multiprogramming
u, = utilization of the ith server

average queue length at the ith server

[l
[Wy
~
=
~
[}

Wi(n) = average waiting time at the ith server (flow time)

average queuing time at the ith server (waiting and not

r=l
e
~~
=]
N
n

being serviced)

T = throughput (jobs/second)

?_©%

Figure 1. The central server model

2. Balancing Requests to Peripheral Processors

For a given central server model, holding the service rates
constant, there is a set of peripheral processor probabilities which
maximizes CPU utilization and throughput (jobs complated/unit time).
We will call the maximum throughput as the peripheral processor prob-
abilities are varied the capacity of the system. We say that the
requests to the peripheral processors are balanced if the peripheral
processor probabilities achieve capacity. 1In this section we develop
a quantity which tells us if the load on the peripheral processors is
balanced and if not gives us some information about how to change the
*probabilities to improve performance.

We can get an intuitive idea of the problem of balancing the
requests to the peripheral processors by considering the differential
of the reciprocal of CPU utilization with respect to the peripheral

processor probabilities.

3(1/00) a(l/uo)

—_— dp, + . . .+ —

We found it more convenient to work with l/uo instead of uo becuase

the partials of l/uo with respect to pi are positive whereas they are

a(l/uo) 3(l/uo)
negative for u_. Suppose ——— > ——— and suppose we change
o api apj

Pi and pj slightly so that the new values are pi' = pi + Ap and pj'=

pj - Ap, while'holding the other probabilities constant. Then for

small Ap

3 (1/u°) 3 (lluo)
A(l/uo) = 391 - 3p3 AP (2)

If Ap is positive the CPU utilization decreases and if Ap is negative

the CPU utilization increases. It appears that the quantities

3(1/u)
) S give an indication of the relative saturation of the peripheral
i
3 (l/uo)
processors. The larger . the greater the relative saturation
i

of the ith device. We define

a(1/u°) auo 3T
. ST S
i 1/u u T (3)
o (o]

as the balance index for the ith processor. The normalized quantity
bi is the relative change in system performance due to an incremental
change in pi. As (2) shows, transferring a small amount of load from
a device with a larger balance index to a device with a smaller
balance index improves performance whereas transferring a small amount
of load in the reverse direction degrades performance.

In what follows we derive two results which support and strengthen
our interpretation of bi as a balance index. The results are based on
the fact that 1/uo is a convex function of the peripheral processor

probabilities which we will now prove. l/uo can be expressed conveniently

in terms of the complete symmetric functions Cn(x) (see Appendix) .

r— r—

C (x) P P
1 1 m

Let £ (x) = ———~ and g (p) = f (—, —, .. -——). Then
n Cn-—l (x) n n\u ' oWy M

l/uo = uogn(p) where n is the degree of multiprogramming. For a

derivation, see Buzen [1973] or Muntz and Baskett [1972]. In the fol-
lowing for convenience we drop the subscript n on fn(x) and gn(p).The

equations are true for any fixed n.

Theorem 1: l/uo is a convex function of the peripheral processor

probabilities.

Proof: From the definition of f(x), 1l/u_ - u8(P). Therefore it
is sufficient to show that g(p) is convex. Let p = (pl' Co pm) and
p' = (pi, Ce p;) be two probability vectors and let A' = 1-h,

0 <X < 1. 1In the Appendix we show that f(x) 1s convex. Therefore

Ap, + A'p! Ap_ + A'p!

gp + A'p") = £ (%—3 __l______L’ o __E_____JE>

0 ul um

P P, P P’

=f (Al— T e Y) A2 4 A'—“‘)
Ho LS| | M M
p p p' p’

<Af(llj—, _l’ , _P.‘.> +)\'f<1 , .i’ v sa _m_)
o ul m o ul um

Ag(P) + avg(p")

Hence g(p) and l/uo are convex. It is interesting to note that u,
is neither convex nor concave as can be seen in Fig. 2.

Convex functions have the useful property that an unconstrained
local minimum is also a global minimum. A similar result holds when
the variables are constrained to be probability vectors.

Theorem 2: The relations
= 2 all i such that p, > 0 (4)

Bpi
bi i > A all i such that p =0 (5)
are necessary and sufficient conditions on the peripheral processor
probabilities to maximize CPU utilization and throughput.

Proof: From Theorem 4.4.1 in Gallager [1968] and the fact that
g(p) 1s convex it follows that (4) and (5) are necessary and sufficient
to maximize -g(p). Therefore they must be necessary and sufficient to
minimize g and to maximize uo and T.

- Theorem 2 states that a set of peripheral processor probabilities
achieve capacity if and only if the balance indexes for all channels with
non-zero probabilities are equal. This result agrees with our intuitive
interpretation of the balance index. Furthermore, it is useful if we
want to calculate the capacity for we know that we can use any method,

however sloppy, and if the method finds a set of probabilities which

satisfy conditions (4) and (5) then they must achieve capacity.

000-Z

00:0 , 000-5 10 15 270 25
/ Figure 2. An example showing Uy is neither convex nor concave
X
2

If a set of probabilities does not achieve capacity, i(pe pext
result gives some information about how to change the probabilities
«**9 Ppy and p' = (P, 0 -*s p))

to improve performance. Let p = (pl'

be two probability vectors.

m
0
Theorem 3: g(p') - g(p) > & %ﬁ;ﬂl (p3 - pj) and in particular

=1]
m
if L p- ' o4 1
j=lbj (P) (Pj pj) > 0 then u (p') <u (p)
Proof: From the definition of convexity
Ag(p') + (1-2)g(p) 2 glrp' + (1-2)p] 0<x<1
L. Rearranging terms
t o'+ (oaypl -
Since (6) is wvalid for all A, 0 <A < 1 we can pass to the limit, obtaining

g(p') - g(p) Z—C—‘sﬂp'—&_u_—&zm
A=0

m
- TG - ey

j=1 Py
It

Theorem 3 strengthens our interpretation of the balance index.

says that if we transfer load (not necessarily an incremental amount)

from a device which is less saturated to a device which is more saturated

r—

(i.e. from one with a smaller balance index to one with a larger index)
it will decrease the performance of the system. On the other hand, from
(2) we know that if we transfer an incremental amount in the direction
larger balance index to smaller balance index it will improve the per-
formance. If we transfer more than an incremental amount in the correct
direction we may "overshoot" and the change may either improve or degrade
the performance.

To summarize the results of this section, we have developed a
balance index which indicates the relative saturation of the peripheral
processors; the larger the balance index the greater the relative sat-
uration of the-‘processor. System capacity is achieved when and only
when all of the balance indexes are equal. If the probabilities are
changed so that the "average" balance index increases then the perfor-
mance will decrease. If the probabilities are changed an incremental
amount so that the average balance decreases then the performance will
increase. If the probabilities are changed more than an incremental
amount so that the average balance decreases the performance may either

improve or decrease.

10

3. Sensitivity

In the previous section we considered the problem of how to im-
prove system performance by changing the frequency of useage of the
different peripheral processors. As mentioned before, other approaches
to improving system performance are to buy faster devices or to try to
improve the scheduling of one or more servers to reduce average waiting
time.l The effect of these changes is to increase the processing rate
of the server.

If we are considering increasing the processing rate of a server
it would be useful to know which processor should receive attention in

order to give the most improvement in system performance. Buzen [1971A,

1971B] has proposed %%— as a measure of the extent to which the ith
i
server is creating a bottleneck. The quantity %%— is basically a sen~

i

sitivity measure showing how sensitive system performance is to an incre-
mental change in the processing rate of the 1th server. If we intend to

improve performance by increasing the processing rate of one of the ser-

aT .
vers then 3;— should give us an indication of which server will have
i

lsince the central server model assumes exponential service times
any scheduling algorithm which does not use information about process-
ing times will have the same average waiting time. Therefore the model
is not directly applicable to questions involving scheduling. However,
in actual systems the service times will not be exactly exponential and
information about latency on rotating storage devices and processing
times may be available. 1In this case a scheduling algorithm such as
shortest-latency-time-first may decrease the average waiting time.
When considering system performance measures such as utilization or
throughput this decrease in average waiting time can be modeled crudely
as an increase in processing rate. Thus the idea of sensitivity being
developed in this section may suggest where improved scheduling will
make the most improvement in system performance.

11

the processing rates of the servers with larger values of s

the most effect. We suggest however that a normalized measure may be
more useful.

A normalized measure seems more appropriate because any change
we make in a system is most likely going to be relative e.g. we may
consider increasing the speed of a server by 20% or 50% etc. An
increase in processing rate of 10 operations/second for a processor
with w = 10 is not comparable to an increase of 10 operations/second

for a processor with w = 100. We define

aT

aui
8= T 0<ic<m

¥4
as the sensitivity index for the ith server. si gives the relative
change in system performance for a small relative change in ¥ , The

sensitivity index is useful if we are considering changing processing

rates because we know that system performance is most sensitive to

T

12

4. Designing a Balanced System

The word "balance" has another meaning, different from that of
section 2, which is often used in connection with computer systems.
If a component is very fast relative to the other components of the
system increasing its speed further has little effect on system
performance. In fact it might be possible to replace it with a
component which is considerably slower, and possibly cheaper, without
degrading system performance significantly. If possible, a designer
would like to choose the speeds of the components so that none are
faster than necessary and none are so slow that they significantly
degrade system performance. This idea is often expressed by saying
that the system should be "balanced." In this section we attempt to
make this concept of balance more precise.

A similar problem faces the manager of an installation. He may
be able to change the job mix and thereby the processing rates through
pricing, by varying the job scheduling algorithm, etc. As much as
possible, a manager would like to "match" the job mix to the hardware
to maximize throughput. Ih nditions for lan riv low

how to change the job mix to improve performance.

From the above discussion we see that balancing a system involves
varying the processing rates in order to optimize performance. Thus
we have an optimization problem similar to the one discussed in sec-
tion 2. In section 2 we considered the problem of maximizing through-
put by varying the peripheral processor probabilities. Similarly one

way to approach the problem of balancing a system is to maximize

13

throughput by changing the u's. However, there is one fundamental
difference in the two problems. As we varied the probabilities they
had to satisfy the constraint that I Py = 1. In the case of the u's
there is no obvious constraint. Maximizing the throughput over the
u's without any constraint doesn't make sense because we could always
increase throughput by increasing the u's. Two types of constraints
on the u's which are interesting are the following:

1. Keep the geometric mean of the u's constant.

2. Keep the total cost of the system constant.
We will consider the problems of maximizing the throughput subject to
each of the above constraints.

The geometric mean of the processing rates is

1
P P\
1 m) 2
(uoul eee Mo) (7

The set of configurations with the same geometric mean seems to cor-
respond closely to the pertubations we might consider intuitively to
determine if a system is balanced. For example if we are trying to
decide if a system is balanced we might see if we can increase the
throughput of the system by making the CPU say 10% faster and the

I/0 devices 10% slower. Of course both the original and the modified
systems have approximately the same geometric means. This intuitive
approach to balance amounts to holding the geometric mean approxi-

mately constant and varying the u's to maximize throughput.

14

r--

—t L r—

The constraint that we keep the geometric mean constant can be

written as

In My pl In M S S pm In “m = constant (8)

Lagrange's conditions for a maximum of T subject to (8) are

3T F
—a—u—-)\-—i‘=0
i g1
or
1
constant
b (9)
. nm
where P, is taken to be 1. When (9)holds so = I si. In section 3
i=1
m
weshowthat I s, = 1. Therefore the conditions given by (9) yield
i=0
s, =5 and S; = opy» 1 # 0. If an actual system has s, > .5 then

according to these conditions we will say it is CPU bound; if S, <.5

it is I/0 bound. It is interesting to note that the conditions given

by (9) are the same conditions derived for balancing the load to the
peripherals in section 2.

The conditions given by (9) can also be justified on the basis
of sensitivity. The conditions define a "center" point where the

system is not particulary sensitive to the processing rate of any

15

“__/

single component. This allows for the most variation in processing
rates before some processor becomes saturated. When we design a system
we usually have only estimates of the u's and it seems reasonable to
design the system so that a small percentage error in the CPU rate or
the I/0 rates would have about the same effect on throughput. Similarly,
the job mix will probably change over the life of the machine and again
it makes sense for the system to have approximately equal sensitivity to
changes in either CPU or I/O rates. Fig. 3 is a plot of the maximum
throughput as a function of p = geometric mean CPU time/geometric mean
I/0 time, keeping the geometric mean of the processing rates constant.
The data displayed in Fig. 3 is for a system with four jobs and three

peripheral processors with pl = Py = p3 = .333. The value of p which

gives the most throughput is given indirectly by (9). The graph shows
that the system has the best resistance to changes in job mix when the
conditions given by (9) are satisfied.

Managers are often concerned about making good utilization of
the hardware. This suggests maximizing some average of the utilizations.
For a given set of p's the conditions above maximize the geometric mean

of-the wutilizations

(10)

The weighting in (10) may be reasonable in many cases. Suppose that
server 1 has a relatively large P; and relatively small utilization.

This means that the server must be relatively fast. Therefore a

16

LI

10-

1.

Throughput (CPU and 1/0 operations/sec)

0000006

L 4 r r r——-‘ r_—"‘ == = ' '
0
1/0 bound
. oun B | CPU | boufld
//,
B N
/
| ‘\\\\
//]
//
= S
800051 00000- 10 1.00

p = GM CPU time/GM I/O time

Figure 3,

Maximum throughput holding the geometric mean of the processing rates constant (=1)

10

r—

—

server with large frequency of useage and low utilization must be a
relatively fast server with low utilization, which is probably undesir-
able. Thus it seems more important to make good utilization of the
servers with larger p's.

Finally, we note that the conditions given by (9) maximize our
uncertainty about the next state of the system. The average entropy

of the service times is given by

1
U=1 - 5

m
(ln o + I Py 1n By (11)
i=1

The meaning of U requires some explanation. The entropy of a continuous
system is really infinite; it takes an infinite amount of information
to specify a real number with zero tolerance. However, since any physi-
cal measurement is limited in precision to some smallest discernible
interval At we can talk about the entropy per discernible interval of
the corresponding discrete system. If we measure the values in multiples
of the smallest discernible interval (i.e. let At = 1) then the average
entropy per operation of the central server model is given by (11) with
units of nats per discernible interval [Beckman, 1967; Gallager, 1968].
The average entropy has an interesting interpretation in terms of an
equivalent form of the central server model.

It is not difficult to show that the model in Fig. 1 is equivalent

to the model in Fig. 4 [Feller, 1966, pp. 54-54], where Ty

0 <1 <m., In this equivalent model a job is served by an exponential

18

—

et
]
A
r
1
o
1 -2
)
v
r
2
o
1 -t
r
m
'
rm
r —ap,

Figure 4.

Equivalent central server model

19

________M

H

server at a rate ye It then chooses with probability ;L-to leave
i
My
that server and with probability 1 - ;— to return for more service.
i

The total service time at the 1! server is still exponentially dis=-

tributed and the mean service rate is still Hye If we let r, = %E

where At is the smallest discernible time and measure all times in
units of At then the average amount of information per operation to
determine the next state of the system is given by (11). Thus if U

is large we are relatively uncertain about what the next state of the
system will be whereas if U is small we are relatively certain about
what the next state of the system will be. Therefore if the system is
balanced we would expect U to be relatively large; if the system is
either CPU bound or I/0 bound U should be relatively small since there
is a high probability that the next state of a job will be at the
limiting server. The conditions given by (9) maximize the product of
the rate of completion of CPU and I/0 operations and U or in other words
they maximize our uncertainty about the next state of the system.

A system which satisfies the conditions given by (9) is desirable
because it is not sensitive to errors in estimating job characteristics
or changes in the job mix. Also, since the conditions maximize the
geometric mean of the utilizations they will often yield an economical
system. However, if one component is much more expensive than the
others then a system which is I/0 bound or CPU bound may be more eco-
nomical. One approach to getting the most throughput per dollar is to

hold the system cost constant and vary the u's to maximize throughput.

20

Suppose the cost of a processor is proportional to uaﬂ>a Then

holding the system cost constant is equivalent to the constraint.

Q

a
. = 12
1u1 + ...+ ¢ M constant (12)

a
+
couo c

where the c's are arbitrary constants. Using Lagrange multipliers the

necessary conditions for maximum throughput are

1 . = constant (13)
€1¥4

21

5. Computation of Balance, Sensivitity, and Capacity

Balance

In section 2 the balance index was defined as

9(1/u
_f___gi_ 8u, 3T
b = L = api p
i - t—— = - —
(1/u0) u T

After taking the derivative,

the results can be expressed in several

equivalent forms each of which may be useful in some applications.

X be the rate of completion of CPU and I/O operations = un

l<ig<m

" Li(n) - L, (n-1)
1=

Py

L, (n)
L () - ui(n) +1
Py

u

Q (n)
= X(n) (W, (n) -)
i

- (Li(n‘l) +) - M%.—ll (Li(n-Z) +
i

22

Let

u_« We have
0 o

(14a)

(14b)

(l4c)

1) (14d)

——

Equation (14b) should be useful in calculating bi for actual systems

since all of the quantities involved (average queue length, utilization
and relative frequency) can be measured relatively easily. ope might
expect that balancing requests to the peripheral processors to obtain
the best performance would result in equal average waiting times at
each server. Form (l4c) is interesting because it shows that this is
not true. A similar result has been observed for open networks with

multiple servers [Schrage, 1972]. Equation (14d) shows that bi remains
finite as P; * 0 and may be useful in calculating bi for small Py for
example if gradients are needed in an optimizing program.

Sensitivitv

Sensitivity is defined in Section 3 as

T
au1
8; = T 0<sigsm
1
Mfferentiation yields
8, = Li(n) - Li(n-l) (15a)

Corresponding to the alternate forms for balance we have

23

L, (n)
8, = Li(n) - W— + 1 (15b)

Q, (n))

ug (15¢)

= pA(0) (wjL (@) -

= u, (n) (Li(n-l) + 1) - ui(n-l) (Li(n-Z) + 1.) (15d)

where P, is defined to be 1. Thus s, = pibi for 1 £ 1 £m. It is also

interesting to note that

m m
z si = % x u -a..T_ =]
i=0 i=0 i aui

This follows from Euler's theorem on homogeneous functions.

Capacity

It is unlikely that simple expressions for the probabilities which
achieve capacity exist. However a simple way to compute these probabil-
ities numerically has been found. Finding the capacity is basically the
problem of minimizing a convex function of m variables. Many numerical
methods for finding the unconstrained local minima of functions of
several variables have been studied [Brent, 1973]. However, the algo-
rithms for unconstrained minima cannot be applied directly to find

capacity because of the constraints Py >0 and I p1 = 1.

24

The constraint that p; » 0 can be handled by assigning a large

positive value to the function whenever the minimization routine asks

to evaluate the function at negative arguments. The constraint that

L pi = 1 can be satisfied by minimizing the composite function

g(p) + (M - 2 p,))? (16)

where M is some large number. The term (M(l-Zpi))Zis sometimes referred

to as a penalty function. 7If the minimization algorithm finds a minimum

of (16) over the region where the components are non-negative then the

conditions

g (p)
by, 2421 - 1p,)) Pi >0
9-8_(L) 2 2M2(l -z pl) Pi =0

must be satisfied. Also, the I pi must be approximately 1 because

P,u u 2M2(1 - =) _
i0"0 (pr) piuouo Qpi Sy ﬁ 1

or

0s1-:2 S
: Py < piuou°2M

25

Therefore, by Theorem 2 the probabilities must achieve capacity.

Several linear constraints on subsets of the probabilities can be

handled in the same way.

26

6. Applications

In this section we give several examples of how the definitions
and theory of the previous sections might be applied. Consider a
system with the parameters shown in Table 1. The system has a CPU
and three peripheral processors. The degree of multiprogramming
is 3. First consider balancing the load on the peripherals. In-
specting only the utilizations we might try to balance the load on
the peripherals by transferring some of the load from server 1 to
server 2or 3. However, from Theorem 3we know that this would actu-
ally decrease performance since b3 > bl and b2 > bl' Also, since the
balance indexes are not equal we know that we can improve the per-
formance, for example by increasing pl and decreasing p3 a small amount.
Using the method described in Section 5we calculated the capacity of
this system. The probabilities which achieve capacity are shown in
Table 2. At capacity the CPU utilization is 57.2%. Thus the maximum
increase in CPU utilization that can be obtained by balancing the
requests to the peripherals is 5% (a relative improvement of 9.6%).
Based on this knowledge we can decide whether or not the potential
gain is worth the effort.

Table 1 is an example where the processor with the highest utili-
zation does not have the largest value of bi (in fact it has the
smallest value of bi). In this case we saw that moving load away from
the server with the highest utilization will decrease performance.
Tables 3 and 4 show examples where the processor with the highest

utilization does have the largest value of bi. In these cases moving

27

Table 1

An example where the processor with highest utilization does

not have largest bi'

i
ui Py u bi sy Li
0 6.5 - .522 - 270 . 800
1 4 .667 .566 .469 .313 .895
2 1.5 2 452 1.044 .209 .654
3 1 .133 .452 1.566 .208 .654
Table 2

An example with probabilities chosen to achieve capacity.

i Py i i 1 i
0 6.5 - .572 - .300 .943
| 4 .865 . 804 .704 .609 1.608
2 1.5 .109 .271 .704 .077 .344
3 1 .026 .097 .704 .018 .105

28

Table 3

An example where the processor with the highest utilization
has the largest bi’

r-
i

i
My Py et ! 51 "1
6.5 - .358 - .130 485
4 S 194 .151 .050 .228
1.5 "3 .517 .753 .251 .801
1 .333 775 1.708 .569 1.485
Table 4

Another example where the processor with highest utilization
has the largest bi'

1 Py Yy by 51 L

6.5 - .563 - .267 .942
4 .950 .868 . 749 .712 1.902
1.5 .030 .073 .348 .010 .078
1 .020 .073 .522 .010 .078

29

load away from the server with the highest utilization can improve
performance. Thus one must be careful in interpreting measurements
ifonly utilizations are available.

Finally, while constructing the examples for this section we
observed that although the probabilities which achieve capacity are
often substantially different from the probabilities which give equal
utilizations and the resulting queue lengths and utilizations are
considerably different (compare Tables 2 and 5), the difference in
throughput is frequently relatively small.

Next consider changing the processing rates. For the system
shown in Table 2, if we want to improve the scheduling of one of the

processors, processor 1 should be considered since s. is relatively

1
large.

Looking at theutilizations in Table 1 it is not obvious whether
the system is CPU bound, I/0O bound, or balanced. The conditions given
by (9) tell us that the system is I/0 bound (so < ,5). This means
simply that changes in the I/0 rate have more effect on overall per-
formance than changes in the CPU rate. This suggests that the CPU
may be unnecessarily fast and that a slower CPU or faster I/O devices
may give more throughput per dollar. Also, the fact that the system
is I/0 bound shows that throughput can probably be increased by
changing the job mix to decrease the I/O time per job and increase

the CPU time per job. A pricing schedule which makes I/0 time rela-

tively expensive and CPU time relatively cheap might be appropriate.

30

Table 5

An example with probabilities chosen to give equal

utilizations.
i ¥y pi ui bi si Li
0 6.5 - -500 - -250 075
1 4 .615 .500 .406 .250 .75
2 1.5 .231 .500 1.083 .250 .75
3 1 .154 .500 1.625 .250 07

An important problem which has not been addressed in this paper
is the question of how much main memory we should have. To help answer
this question we can compute the capacity of the system for several
values of n, the degree of multiprogramming, as shown in Fig. 5. The

processing rates used in this exampe are My = 6.5, ul = 4.0, p2 = 1.5

and My = 1.0. Fig. 5 shows that as n is increased the marginal return

- decreases. The utilization of the processors at capacity for each value
of n are shown in Table 6. As n increases the utilizations approach

equality [Baskett, 1973]. However, they approach equality fairly slowly.

31

butuwezboadrjTnuw jo s91bsp oy3l snsisa A3Toede) ¢ oInbrj

ININWBHIOHAILINW 40 334930 = u
A -21 « 01 -8 -3 -y -2 -0000

e —— 0-000

JT’ 2-000

¥-000

\\ 8-000

— 8-000

O-1

(uor3ezyT¥an ngy) L3yoeded
32

Processor utilizations at capacity.

Table 6

0 1 2 3
1 .381 .619 0 0
2 499 767 .114 .000
3 .572 . 804 .271 .097
4 .629 .817 .391 .231
5 .673 . 832 476 .332
6 .708 . 846 .539 .410
7 .736 .858 .588 <472
8 .760 . 869 .628 .522
9 .779 .878 .661 .563
10 .796 . 886 .687 .598
11 .810 .894 .710 .626
12 .823 .900 .730 .653
13 .834 .906 .748 .675
14 .843 911 .764 .693
15 .852 915 .777 .712
16 . 860 .920 .787 .727
17 .867 .923 .799 .741
18 .873 .927 . 809 . 754
19 .879 .933 .807 .766
20 . 884 .933 .826 .775

33

r-

_____J

7. Conclusions

We have used the central server model to develop two quantities,
the balance index and sensitivity, which appear to be useful for
evaluating and improving computer system performance. The balance
index is useful for balancing requests to peripheral processors.
Sensitivity indicates which processing rates have the most effect on
overall system performance. Many of the results can be extended
directly to general exponential networks of queues [Muntz, 1972].

We have shown that the balance index is a measure of the rela-
tive saturation of a processor. Specifically, shifting load from a
processor with a smaller balance index to a processor with a larger
balance index decreases performance. Throughput is maximized when
all of the balance indexes are equal and we call the maxi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>