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ABSTRACT

We use the central server model to extend Buzen's results on

balance and bottlenecks. We develop two measures which appear to

— be useful for evaluating and improving computer system performance.

The first measure, called the balance index, 1s useful for balancing

requests to the peripheral processors. The second quantity, called

_ the sensitivity index, indicates which processing rates have the

most effect on overall system performance.

We define the capacity of a central server model as the maximum

throughput as we vary the peripheral processor probabilities. We

= show that the reciprocal of the CPU utilization 1s a convex function

_ of the peripheral processor probabilities and that a necessary and

sufficient condition for the peripheral processor probabilities to .

— achieve capacity 1s that the balance indexes are equal for all periph-

eral processors. We give a method to calculate capacity using classi-

] cal optimization techniques.

_ Finally, we consider the problem of balancing the processing

rates of the processors. Two conditions for "balance" are derived.

The first condition maximizes our uncertainty about the next state of

the system. This condition has several desirable properties con-

cerning throughput, utilizations, overlap, and resistance to changes

in job mix. The second condition 1s based on obtaining the most

throughput for a given cost.
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1. Introduction

Measurement 1s an important tool for finding "bottlenecks" in

computer systems. Frequently measurement of a computer system begins

- by measuring the utilizations of the central processor and I/0

channels. If these measurements show that the utilization of one of

the processors 1s substantially larger than the utilizations of the

other processors this suggests that the processor with the higher

utilization may be a bottleneck and may be degrading the performance

of the entire system. The intuitive idea of a bottleneck needs to

be made more precise. In order to do this, it is helpful to consider

- how we can improve the performance of the system once the bottleneck(s)

ET have been identified. In general there may be several ways to improve

the performance of the system.

L If the processor with the higher utilization is an I/0 channel

| one way to 1lmprove performance may be to balance the load on the
channels e.g. by shifting some of the load from the busy channel to

i the other channels. This may be accomplished by moving system data
sets to different devices, changing the allocation algorithms for

~ auxiliary storage, moving one or more of the devices on the busy

channel to other channels, etc.

Another approach is to try to improve the scheduling of requests

| at the busy processor 1n such a way as to reduce the average waiting

time at that processor. A third way is to replace some of the pro-

cessors or devices in the system with faster ones. The first method

1s basically different from the other two. The first method involves

1
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changing the relative load on the various channels. The other methods

are concerned with trying to increase the effective processing rate

at a given server.

In this paper we use the central server model [Buzen, 19714; Buzen,

1971B; Buzen, 1973] to study ways to evaluate and improve overall system

performance. In section 2 we consider the problem of balancing requests

to the peripheral processors. Sections 3 and 4 are concerned with chang-

ing the processing rates to optimize performance. In section 5 we give

formulas for computing the measures developed earlier. Finally, 1n sec-

tion 6 we give several examples of how the results might be used.

Fig. 1 1s a diagram of the central server model. The reader 1is

referred to the papers by Buzen [1971A,1971B, 1973] for a detailed dis-

cussion of the model. The following notation 1s used in this paper.

Hy = service rate at the ith server

Py = probability a job chooses the th peripheral server
n = degree of multiprogramming

u, = utilization of the gt server
— Ly (n) = average queue length at the th server

- W, (n) = gverage walting time at the jth server (flow time)

| Q; (n) = average queuing time at the th server (waiting and not
being serviced)

T = throughput (jobs/second)

yi
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2. Balancing Requests to Peripheral Processors

For a given central server model, holding the service rates

constant, there 1s a set of peripheral processor probabilities which

maximizes CPU utilization and throughput (jobs complated/unit time).

We will call the maximum throughput as the peripheral processor prob-

abilities are varied the capacity of the system. We say that the

requests to the peripheral processors are balanced if the peripheral

processor probabilities achieve capacity. In this section we develop

a quantity which tells us if the load on the peripheral processors 1s

balanced and 1f not gives us some information about how to change the

*probabilities to improve performance.

| We can get an 1ntuitive idea of the problem of balancing the
requests to the peripheral processors by considering the differential

| of the reciprocal of CPU utilization with respect to the peripheral
processor probabilities. .

| ] 3(1/u_) 3(1/u_)
x d(1/u) = “on, dp, +... 4 EN dp_ (1)

We found it more convenient to work with 1/u instead of u, becuase

the partials of 1/u_ with respect to P, are positive whereas they are

3(1/u) 3(1/u )

negative for ue suppose — > ~~ and suppose we change
i ]

Pi and Ps slightly so that the new values are Pp.’ = pi + Ap and py'=

P; - Ap, while'holding the other probabilities constant. Then for
small Ap

.
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8 (1/u) 3(1/u))
Al = —_— -

(1/u ) rr. 3p AP (2)

| | |
If Ap 1s positive the CPU utilization decreases and if Ap is negative

the CPU utilization increases. It appears that the quantities

3 (1/u))
“ap. give an indication of the relative saturation of the peripheral

i

3 (1/u )
processors. The larger EET the greater the relative saturation

Py
th

of the 1° device. We define

0 (1/u) ou, aT

= b = _ By - Py ER Py
1 1/u u T (3)

i as the balance 1ndex for the i th processor. The normalized quantity
by 1s the relative change 1n system performance due to an incremental

change 1n Py As (2) shows, transferring a small amount of load from

a device with a larger balance index to a device with a smaller

balance index improves performance whereas transferring a small amount

of load 1n the reverse direction degrades performance.

In what follows we derive two results which support and strengthen

our interpretation of by as a balance index. The results are based on

the fact that 1/u 1s a convex function of the peripheral processor

probabilities which we will now prove. Lu can be expressed conveniently

in terms of the complete symmetric functions C (x) (see Appendix).



C (x) P P
n 1

Let £ (x) SE) and 8 (p) = f (& To _— =). Then| n-1 n Hs 1 Ha
1/u_ = ug. (p) where n 1s the degree of multiprogramming. For a

derivation, see Buzen [1973] or Muntz and Baskett [1972]. In the fol-

lowing for convenience we drop the subscript n on £ (x) and g (p).The

equations are true for any fixed n.

Theorem 1: 1/u 1s a convex function of the peripheral processor

probabilities.

Proof: From the definition of f(x), 1/u_ = ue). Therefore 1it

1s sufficient to show that g(p) 1s convex. Let p = p,, ..., P) andm

p' = (pgs Co P,) be two probability vectors and let A' = 1-h,

~ O <A <1. In the Appendix we show that f(x) is convex. Therefore

Ap; + A'pg Ap + A'p!1

EE SEA —e lu)L 0 1 Hm

| J P P, P P.
= (1 TN vi Sa v2)Ho Ir H1 S| Hm Mn

|

P P Py Pp’

< ie (5 SN =) . ve (i he A =)0] 1 Hm Ho Hy Hm
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Hence g(p) and 1/u_ are convex. It is interesting to note that u
1s neither convex nor concave as can be seen in Fig. 2.

Convex functions have the useful property that an unconstrained

| local minimum is also a global minimum. Asimilar result holds when
the variables are constrained to be probability vectors.

Theorem 2: The relations

9g

Py
b, = ra A all i such that Py > 0 (4)

9g

9p,
“ b, = =z 2 A all 1 such that Py = 0 (5)

\
are necessary and sufficient conditions on the peripheral processor

. probabilities to maximize CPU utilization and throughput.
Proof: From Theorem 4.4.1 in Gallager [1968] and the fact that

N g(p) 1s convex it follows that (4) and (5) are necessary and sufficient

to maximize -g(p). Therefore they must be necessary and sufficient to

| minimize g and to maximize u and T.
| Theorem 2 states that a set of peripheral processor probabilities

achieve capacity 1f and only 1f the balance indexes for all channels with

non-zero probabilities are equal. This result agrees with our intuitive

interpretationof the balance index. Furthermore, it is useful if we

want to calculate the capacity for we know that we can use any method,

however sloppy, and 1f the method finds a set of probabilities which

satisfy conditions (4) and (5) then they must achieve capacity.
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If a set of probabilities does not achieve capacity, ipe pext

result gives some information about how to change the probabilities

to 1mprove performance. Let p = ®., , ¥*0 Poy and p' = (0! , +s p!)
be two probability vectors.

| g ag ((p)
Theorem3: g(p')- g(p) > I 57 (pj - pj) and in particular

j=1 74
m

| v

if or (P) (py pj) > 0 then u, (p ) < u (p)

Proof: From the definition of convexity

Ag(p') + (1-2)g(p) 2 glrp' + (1-1)p] 0 <i <1

[ - Rearranging terms

gp") - g(p) > ELAR (A=Vpl = a(p) (6)

Since (6) 1s valid for all A, 0 <A < 1 we can pass to the limit, obtaining

g(p') - g(p) »-98[p°+ (1-1)pj
da A =0

r 22)
= 1 SEES (ery opg)

i=1 J

Theorem 3 strengthens our interpretation of the balance index. It

says that 1f we transfer load (not necessarily an incremental amount)

from a device which 1s less saturated to a device which 1s more saturated

9
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(i.e. from one with a smaller balance index to one with a larger index)

it will decrease the performance of the system. On the other hand, from

(2) we know that 1f we transfer an incremental amount in the direction

larger balance index to smaller balance index it will improve the per-

formance. If we transfer more than an incremental amount in the correct

direction we may "overshoot" and the change may either improve or degrade

the performance.

To summarize the results of this section, we have developed a

balance index which indicates the relative saturation of the peripheral

processors; the larger the balance index the greater the relative sat-

~ uration of the-‘processor. System capacity is achieved when and only

when all of the balance indexes are equal. If the probabilities are

} changed so that the "average" balance index increases then the perfor-

mance will decrease. If the probabilities are changed an incremental

amount so that the average balance decreases then the performance will

L increase. If the probabilities are changed more than an incremental

| amount so that the average balance decreases the performance may either
improve or decrease.

{

10



3. Sensitivity

In the previous section we considered the problem of how to im-

prove system performance by changing the frequency of useage of the

| different peripheral processors. As mentioned before, other approaches

| to improving system performance are to buy faster devices or to try to
improve the scheduling of one or more servers to reduce average waiting

time.! The effect of these changes 1s to 1ncrease the processing rate

of the server.

If we are considering increasing the processing rate of a server

it would be useful to know which processor should receive attention in

order to give the most improvement in system performance. Buzen [1971A,

| oT

| 1971B] has proposed ay. 2S a measure of the extent to which the 1 EB
Hy

| server 1s creating a bottleneck. The quantity . 1s basically a sen-
L i

sitivity measure showing how sensitive system performance is to an incre-

_ mental change in the processing rate of the g th server. If we intend to

improve performance by increasing the processing rate of one of the ser-

) aT Ca
vers then EN should give us an indication of which server will have

i

1Since the central server model assumes exponential service times
any scheduling algorithm which does not use information about process-

ing times will have the same average waiting time. Therefore the model

1s not directly applicable to questions involving scheduling. However,

in actual systems the service times will not be exactly exponential and

information about latency on rotating storage devices and processing

times may be available. In this case a scheduling algorithm such as
shortest-latency-time-first may decrease the average waiting time.

When considering system performance measures such as utilization or

throughput this decrease in average waliting time can be modeled crudely

as an increase 1n processing rate. Thus the idea of sensitivity being
developed in this section may suggest where improved scheduling will

make the most improvement 1n system performance.

11
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the most effect. We suggest however that a normalized measure may be

more useful.

A normalized measure seems more appropriate because any change

we make 1n a system 1s most likely going to be relative e.g. we may

consider increasing the speed of a server by 20% or 50% etc. An

increase in processing rate of 10 operations/second for a processor

with uw = 10 is not comparable to an increase of 10 operations/second

for a processor with w = 100. We define

oT

My
8, = T 0 <iz<m

Hy

. as the sensitivity index for the 1" server. si gives the relative

change in system performance for a small relative change in Hy The
- sensitivity index 1s useful 1f we are considering changing processing

| rates because we know that system performance 1s most sensitive to
the processing rates of the servers with larger values of Sy

-

12



4. Designing a Balanced System

The word "balance" has another meaning, different from that of

) section 2, which 1s often used in connection with computer systems.

If a component 1s very fast relative to the other components of the

system increasing 1ts speed further has little effect on system

performance. In fact 1t might be possible to replace it with a

component which 1s considerably slower, and possibly cheaper, without

degrading system performance significantly. If possible, a designer

would like to choose the speeds of the components so that none are

faster than necessary and none are so slow that they significantly

degrade system performance. This idea 1s often expressed by saying

that the system should be "balanced." In this section we attempt to

make this concept of balance more precise.

A similar problem faces the manager of an installation. He may

be able to change the job mix and thereby the processing rates through

| pricing, by varying the job scheduling algorithm, etc. As much as

possible, a manager would like to "match" the job mix to the hardware

| to maximize throughput. The conditions for balance derived below show

| how to change the job mix to improve performance.

From the above discussion we see that balancing a system involves

varying the processing rates in order to optimize performance. Thus

we have an optimization problem similar to the one discussed in sec-

tion 2. In section 2 we considered the problem of maximizing through-

put by varying the peripheral processor probabilities. Similarly one

way to approach the problem of balancing a system 1s to maximize

13



throughput by changing the u's. However, there 1s one fundamental

difference in the two problems. As we varied the probabilities they

had to satisfy the constraint that I Py = 1. In the case of the u's

there 1s no obvious constraint. Maximizing the throughput over the

u's without any constraint doesn't make sense because we could always

increase throughput by increasing the u's. Two types of constraints

g on the u's which are interesting are the following:
1. Keep the geometric mean of the p's constant.

2. Keep the total cost of the system constant.

We will consider the problems of maximizing the throughput subject to

each of the above constraints.

The geometric mean of the processing rates 1s

Py Pn 3
(vo: cee Ho ) (7)

The set of configurations with the same geometric mean seems to cor-

respond closely to the pertubations we might consider intuitively to

determine 1f a system 1s balanced. For example if we are trying to

decide 1f a system 1s balanced we might see 1f we can increase the

throughput of the system by making the CPU say 10% faster and the

I/0 devices 10% slower. Of course both the original and the modified

systems have approximately the same geometric means. This intuitive

approach to balance amounts to holding the geometric mean approxi-

mately constant and varying the u's to maximize throughput.

14
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The constraint that we keep the geometric mean constant can be

written as

1n uy + Py In My +... + P_ 1n Wo = constant (8)

Lagrange's conditions for a maximum of T subject to (8) are

aT Fi

ER - A I. = (
i i

or

®1
constant (9)

p1=

| m

i=1 |

" |
weshowthat 1 S, = l. Therefore the conditions given by (9) yield |

i=0

] So © +3 and s, = «IPs i140. If an actual system has 8, > +3 then

according to these conditions we will say it 1s CPU bound; if 5, <.5

L it is I/0 bound. It is interesting to note that the conditions given

i by (9) are the same conditions derived for balancing the load to the
peripherals 1n section 2. |

i The conditions given by (9) can also be justified on the basis
of sensitivity. The conditions define a "center" point where the

{ system 1s not particulary sensitive to the processing rate of any

= 15
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single component. This allows for the most variation 1n processing

rates before some processor becomes saturated. When we design a system

we usually have only estimates of the u's and it seems reasonable to

design the system so that a small percentage error in the CPU rate or

the I/0 rates would have about the same effect on throughput. Similarly,

| the job mix will probably change over the life of the machine and again
1t makes sense for the system to have approximately equal sensitivity to

changes in either CPU or I/O rates. Fig. 3 is a plot of the maximum

throughput as a function ofp = geometric mean CPU time/geometric mean

I/0 time, keeping the geometric mean of the processing rates constant.

The data displayed in Fig. 3 1s for a system with four jobs and three

peripheral processors with Py = Py = Ps = ,333. The value of p which

gives the most throughput 1s given indirectly by (9). The graph shows

that the system has the best resistance to changes in job mix when the

) conditions given by (9) are satisfied.

1 Managers are often concerned about making good utilization of
the hardware. This suggests maximizing some average of the utilizations.

~~ For a given set of p's the conditions above maximize the geometric mean

of-the wutilizations

(2: "1, P2 a) 201 2 (10)

The weighting in (10) may be reasonable 1n many cases. Suppose that

server 1 has a relatively large P; and relatively small utilization.

This means that the server must be relatively fast. Therefore a

16
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server with large frequency of useage and low utilization must be a

relatively fast server with low utilization, which 1s probably undesir-

able. Thus 1t seems more important to make good utilization of the

servers with larger p's.

Finally, we note that the conditions given by (9) maximize our

uncertainty about the next state of the system. The average entropy

of the service times 1s given by

1 m

SEER CIERRA (11)i=1

- The meaning of U requires some explanation. The entropy of a continuous

system 1s really infinite; it takes an infinite amount of information

to specify a real number with zero tolerance. However, since any physi-

L cal measurement 1s limited in precision to some smallest discernible

: interval At we can talk about the entropy per discernible interval of

a the corresponding discrete system. If we measure the values in multiples

i of the smallest discernible interval (i.e. let At = 1) then the average
| entropy per operation of the central server model 1s given by (11) with

i units of nats per discernible interval [Beckman, 1967; Gallager, 1968].
The average entropy has an interesting interpretation in terms of an

~ equivalent form of the central server model.

It 1s not difficult to show that the model in Fig. 1 1s equivalent

) to the model in Fig. 4 [Feller, 1966, pp. 54-54], where ry > uy
- 0 <1 <m. In this equivalent model a job is served by an exponential

18
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- server at a rate Tye It then chooses with probability = to leave
i

_. Hy
that server and with probability 1 = = to return for more service.

i

The total service time at the 1°P server is still exponentially dis=-

tributed and the mean service rate 1s still Hye If we let r, = >
where At 1s the smallest discernible time and measure all times in

units of At then the average amount of information per operation to

determine the next state of the system 1s given by (11). Thus 1f U

1s large we are relatively uncertain about what the next state of the

system will be whereas 1f U 1s small we are relatively certain about

what the next state of the system will be. Therefore if the system is

| balanced we would expect U to be relatively large; 1f the system 1is

i either CPU bound or I/0 bound U should be relatively small since there
1s a high probability that the next state of a job will be at the

§ limiting server. The conditions given by (9) maximize the product of
the rate of completion of CPU and I/O operations and U or in other words

-~ they maximize our uncertainty about the next state of the system.

A system which satisfies the conditions given by (9) 1s desirable

because 1t 1s not sensitive to errors in estimating job characteristics

or changes in the job mix. Also, since the conditions maximize the

geometric mean of the utilizations they will often yield an economical

system. However, 1f one component 1s much more expensive than the

others then a system which is I/0 bound or CPU bound may be more eco-

nomical. One approach to getting the most throughput per dollar is to

hold the system cost constant and vary the u's to maximize throughput.

20



Suppose the cost of a processor 1s proportional to uo Then

holding the system cost constant 1s equivalent to the constraint.

a ol o+... + = 12cH, + CyHy c Ho constant (12)

where the c's are arbitrary constants. Using Lagrange multipliers the

necessary conditions for maximum throughput are

1
——_= constant (13)
€1M4

21
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5. Computation of Balance, Sensivitity, and Capacity

Balance

| In section 2 the balance index was defined as

9(1/u ’
3/u) ba 3T

J

( lu) u_ T

After taking the derivative, the results can be expressed in several

equivalent forms each of which may be useful in some applications. Lote
A be the rate of completion of CPU and I/0 operations = qu

. 0%" We havel <1i<m

L ~ -

_ ; (0) L, (n 1)
i

L; (n)

_ Ln) - u, (n) + 1
(14bPy )

Q (n)

= Am) {W, (n) - +) (14c)u
i

= X(n) L (n-1) + _ A(n-1)
My 1 | y L, (n-2) + 1 (144)i

22



Equation (14b) should be useful in calculating b, for actual systems

since all of the quantities 1nvolved (average queue length, utilization

and relative frequency) can be measured relatively easily. ope might

expect that balancing requests to the peripheral processors to obtain

the best performance would result in equal average waiting times at

each server. Form (l4c) is interesting because it shows that this is

not true. A similar result has been observed for open networks with

multiple servers [Schrage, 1972]. Equation (14d) shows that b, remains

finite as P; > 0 and may be useful in calculating by for small J for

example 1f gradients are needed 1n an optimizing program.

Sensitivitv

Sensitivity is defined in Section 3 as

oT

- 8 = oy 0 ii T Ss sm

. M1

|

. Mfferentiation yields

| 8, = L;(n) - L,(n-1) (15a)

| Corresponding to the alternate forms for balance we have

i

23



L; (n)
8 = — es

{ L;(n) a, () + 1 (15b)

_ Q (n)
= p;A(n) Ww, (n) arr (15¢)

i

= u, (n) (10-0) + 1) - u, (n-1) (£02 + 1) (15d)

where Ps is defined to be 1. Thus 5, = pb, for 1 <i <m. Tt is also

interesting to note that

m m

| i=0 1=0 Hi

| This follows from Euler's theorem on homogeneous functions.

Capacity
~

It is unlikely that simple expressions for the probabilities which

. achieve capacity exist. However a simple way to compute these probabil-

ities numerically has been found. Finding the capacity is basically the

| problem of minimizing a convex function of m variables. Many numerical
methods for finding the unconstrained local minima of functions of

several variables have been studied [Brent, 1973]. However, the algo-

rithms for unconstrained minima cannot be applied directly to find

capacity because of the constraints Py > 0 and LP, = 1.

24



The constraint that p;, > 0 can be handled by assigning a large

positive value to the function whenever the minimization routine asks

to evaluate the function at negative arguments. The constraint that

L pi = 1 can be satisfied by minimizing the composite function

g(p) + (M(L - I p))?i (16)

where M 1s some large number. The term (M(1-Zp,.)) 2{s sometimes referred

to as a penalty function. If the minimization algorithm finds a minimum

of (16) over the region where the components are non-negative then the

conditions

gp) _ 2

bp, = 2M (1 - 2p) Pi > 0

ag (p) 201 _
L 5p, 2 2M°(1 - I pi) Pi= 0

i

| ;

i must be satisfied. Also, the I pi must be approximately 1 because

\ Pju Mm 2M°(1 - LZ p,) = pup BE) J
SY ioo IP, i

- or

Py Pu MH 2M?00

25
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Therefore, by Theorem 2 the probabilities must achieve capacity.

Several linear constraints on subsets of the probabilities can be

handled in the same way.

y

]
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6. Applications

In this section we give several examples of how the definitions

and theory of the previous sections might be applied. Consider a

system with the parameters shown in Table 1. The system has a CPU

and three peripheral processors. The degree of multiprogramming

is 3. First consider balancing the load on the peripherals. In-

specting only the utilizations we might try to balance the load on

the peripherals by transferring some of the load from server 1 to

server 2or 3. However, from Theorem 3we know that this would actu-

ally decrease performance since P, > by and b, > bo Also, since the

balance indexes are not equal we know that we can improve the per-

formance, for example by increasing Pl and decreasing Py a small amount.

Using the method described 1n Section 5we calculated the capacity of

this system. The probabilities which achieve capacity are shown in

Table 2. At capacity the CPU utilization is 57.2%. Thus the maximum

increase in CPU utilization that can be obtained by balancing the

requests to the peripherals 1s 5% (a relative improvement of 9.6%).

Based on this knowledge we can decide whether or not the potential

gain 1s worth the effort.

Table 1 1s an example where the processor with the highest utili-

zation does not have the largest value of by (in fact it has the

smallest value of bi). In this case we saw that moving load away from

the server with the highest utilization will decrease performance.

Tables 3 and 4 show examples where the processor with the highest

utilization does have the largest value of bi. In these cases moving
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— Table 1

: An example where the processor with highest utilization does

not have largest b,.

i

My Py uy by Sy Ly

0 6.5 - e522 ~ .270 . 800

1 4 .667 .566 469 .313 .895

2 1.5 i 452 1.044 .209 .654

3 1 «133 452 1.566 .208 .654

L [4

. Table 2

| An example with probabilities chosen to achieve capacity.

L

i

. My Py uy Py 51 Ly

1 4 .865 - 804 . 704 .609 1.608

| 2 1.5 -109 271 . 704 .077 . 344

i 3 1 .026 .097 . 704 .018 .105
.
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Table 3

An example where the processor with the highest utilization

has the largest b,.

i

Hi Pi “4 Py °1 by

0 6.5 - .358 - .130 .485

1 4 0 333 194 .151 . 050 .228

2 1.5 0 333 «517 .753 .251 .801

3 1 «333 .775 1.708 «569 1.485

| Table 4
Another example where the processor with highest utilization

| has the largest b,
_ ee

: Hy Py “1 by ®i Ly

0 6.5 - .563 - 267 .942

1 4 .950 .868 . 749 «712 1.902

2 1.5 .030 .073 .348 .010 .078

3 1 .020 .073 e522 .010 .078
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load away from the server with the highest utilization can improve

performance. Thus one must be careful in interpreting measurements

ifonly utilizations are available.

Finally, while constructing the examples for this section we

observed that although the probabilities which achieve capacity are

often substantially different from the probabilities which give equal

utilizations and the resulting queue lengths and utilizations are

considerably different (compare Tables 2 and 5), the difference in

throughput 1s frequently relatively small.

Next consider changing the processing rates. For the system

shown in Table 2, if we want to improve the scheduling of one of the

processors, processor 1 should be considered since 51 1s relatively

large.

Looking at theutilizations in Table 1 1t 1s not obvious whether

— the systemis CPU bound, I/0 bound, or balanced. The conditions given

| by (9) tell us that the system is I/O bound (s_ < .5). This means
simply that changes in the I/O rate have more effect on overall per-

| formance than changes in the CPU rate. This suggests that the CPU
may be unnecessarily fast and that a slower CPU or faster I/O devices

i may give more throughput per dollar. Also, the fact that the system
| is I/O bound shows that throughput can probably be increased by

changing the job mix to decrease the I/O time per job and increase

_ the CPU time per job. Apricing schedule which makes I/O time rela-

tively expensive and CPU time relatively cheap might be appropriate.
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Table 5

An example with probabilities chosen to give equal
utilizations.

i
My Py uy by Sy Ly

0 6.5 - .500 ~- .250 .75

1 4 .615 .500 .406 .250 «75

- 2 1.5 -231 .500 1.083 .250 .75

| 3 1 «154 .500 1.625 .250 07)

f An important problem which has not been addressed in this paper
1s the question of how much main memory we should have. To help answer

I this question we can compute the capacity of the system for several
values of n, the degree of multiprogramming, as shown in Fig. 5. The

= processing rates used in this exampe are u_ = 6.5, Woo= 4.0, by = 1.5 |

and My = 1.0. Fig. 5 shows that as n is increased the marginal return |

- decreases. The utilization of the processors at capacity for each value

of n are shown in Table 6. As n increases the utilizations approach

equality [Baskett, 1973}. However, they approach equality fairly slowly.
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Table 6

Processor utilizations at capacity.

n vu, uy u, uj

1 . 381 .619 0 0

2 .499 .767 114 .000

3 .572 . 804 271 .097

4 .629 .817 .391 .231

5 .673 . 832 476 332

0 .708 . 846 .539 .410

] 736 .858 .588 472

8 . 760 . 869 .628 «522

9 .779 .878 .661 .563

10 . 796 . 886 .687 .598

11 .810 .894 .710 .626

12 .823 .900 . 730 .653

13 . 834 .906 .748 .675

14 .843 911 .764 .693

15 .852 .915 ay .712

16 . 860 .920 .787 .727

17 .867 .923 .799 .741

18 .873 .927 . 809 . 754

19 .879 .933 .807 .766

20 . 884 .933 .826 .775
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7. Conclusions

| We have used the central server model to develop two quantities,

| the balance index and sensitivity, which appear to be useful for
evaluating and improving computer system performance. The balance

index 1s useful for balancing requests to peripheral processors.

Sensitivity indicates which processing rates have the most effect on

overall system performance. Many of the results can be extended

directly to general exponential networks of queues [Muntz, 1972].

We have shown that the balance index 1s a measure of the rela-

tive saturation of a processor. Specifically, shifting load from a

processor with a smaller balance index to a processor with a larger

. balance index decreases performance. Throughput is maximized when
all of the balance indexes are equal and we call the maximum through-

{ put the capacity of the system. Capacity should be a useful concept
because 1t gives a convenient upper bound on the performance of a

- configuration.

Two conditions for balancing processing rates were derived. The

first condition maximizes our uncertainty about the next state of the

. system. This condition tends to give the most overlap of resource

utilization and 1t shows us how to change the job mix to increase

throughput. Also, 1t may suggest which processors are unnecessarily

fast, 1f any. The second approach, used to derive (13), can be used

to determine optimum processing rates based directly on actual cost

functions.
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APPENDIX

AN INEQUALITY CONCERNING SYMMETRIC FUNCTIONS

Let SERRE and Dy ,...,b be non-negative real numbers. Let

E(a) denote the nth elementary symmetric function of a a and
resend

h

let C (a) denote the n® complete symmetric function of a a
[resend

the formal definitions being

1 a
E (a) = ) a (1)
n i. 4...41 =n 10 Fram

1 m

1,=0 or 1
h

i, i
C (a) = z a

1 m

i.,>0

f =

3 The following inequalities have been proved by Whitely [1958]and others:

A

1/n wn 1/n
E (atb) > BE (a) + E (b) (3)

1/n 1/n

c, Mat) cc a) + c1/7 b) (4)

. These inequalities are equivalent to the statements that Em

q 1/n
1s concave and C ~° "(a) is convex. Marcus and Lopes [1957] show that
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E (a+b

2) E@ EO)
E + 5
n-1¢2@ b) E (a) E _1(b) (9)

which 1s equivalent to the statement that the ratio E (a)/E , (a) 1s

concave. In this paper we prove the following related inequality.

Theorem:

C_ (atb

(ath) ) C, (a) . C_(b) ©
Ca-1 (31D) } Ca-1(8) Ca-1 (®)

This 1nequality 1s equivalent to the statement that the ratio

c,(a/c _, (a) 1s convex. The proof given in this paper is similar to

the proof of (4) by Whitely [1958]. ppg proof uses the classical theory

y of maxima and minima, together with induction on m and n.

| Let the operator 6, applicable to forms in m variables | ...,aARRAS

be defined by

m
2)

6 = I —
da (7)

3=1 °%

. The effect of § on C, (a) 1s easily evaluated, as follows.

Lemma 1:  [Whitely, 1958]

oC (a) = (mtn-1) C-1 (a) (8)
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Proof:

- 3 i i.-1 i
2 = 1

da, C, (a) z 1.3) . ..a J, ..aml
J i,+...41 =n J m

1 m

1 Ln
= (i, +1 ToL.( 3 ) a; a (9)
i, . .+1 =n-1m

Summation over J from 1 to m gives (8) since mh
r@ i,+1 = n-1-h

j=1 J

Let

C (a)

n C 1a (10)

| The effect of 8 on f, (a) can be determined using Lemma 1.
Lemma 2:

| 0f (a) fa (2a) = mn-1 - (m+n-2)

n-1

Proof: Differentiating (10)

|

C (a) —— C (a) - C (a) —=— C (a)
3 n-1 9a, n n da. n-l

~ %, f(a) =—
[C_,(a)]
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Summing over J and using Lemma 1 we get

m C (a) CC _, (a)0 -

j=1 7] n-1 n-1 (a)

which 1s equivalent to (11).

We also require a result for the effect of an operator similar to

6 when the summation over J in (7) 1s i1ncomplete. In the following

paragraphs we prove several lemmas which lead to the required result

Lemma 6.

Lemma3: [Whitely, 1962]

| f@ cf (a) (12)
| with equality only 1f m = 1.

In section 6 of the paper referenced, Whitely shows that

C 2/c C 2 1 which is equivalent to (12)~ n° n-1 n+l

" Let

i i i
1 1L,(n) = — h | m

3 ) C_ z 1,8) SLY ceed (13)
i. +. ..+1 =n
1 m

In applications concerning queuing networks Ls has the interpretation
of average queue length.
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Lemma 4:

L, (n) - L, (n-1) 2 0, n> 1 (14)

Proof: The proof is by induction. pop p = 1 we have

a

L,(1) - L,(0) = —d— - ¢ 5g
J J m N

Za

j=1

In general, for n > 1

L

C a, n-1L; (n-1)+1) (15)

Thus

“a-1

Ly (n) = CN 3; (Ly (n-1)+1) (16)

and

Lo) L,(n-1) +1 L.(n-2) + 13 n y (2-1) = a, a Br — (17)
n n-1

| By the inductive hypothesis and Lemma 3 the right hand side of (17)
must be non-negative.
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Lemma 5:

a f(a)

3a, f,(a) 21 - —
J n-1 (2) (18)

Proof:

d
C —_— 0d

Go f= —4 7 Ba n-1
J cl (19)

n-1

It 1s not difficult to show that

I.

| cL
To c - m1

| 3 2; (20)
ho.

Substituting (20) in (19)

GC -

a fs "a=" (2) “ata-1L; (n-1)
J a ct

J n-1

- en £ (L.(n) ~ L (n-1))jg * 3d (21)

or
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9
da, n 1
—l— = = (L, (n) - L, (n-1)) (22)

f a, h| h
n J

Using (16) in (22)

9 ¢
da, n L,(n-1) + 1 L,(n=2) + 14. dC (23)

f f f
n n n-1

1 1

Subtracting = CF from both sides of (23)
n n-1

OB _
da L, (n-1 L —

LT FURSWh Wy Ld BC (24)
f f f f f
n n n-1 n n-1

By Lemmas 3 and 4 the right hand side of 24 must be non-negative and

we have

Sa fh
—— (4 - -)s0 (25)

f f f
n n n-1

which is equivalent to (18)
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' Lemma 6:

m ; f (a)

z Sa f£ (a) < mtn-s-1 - (m+n-s-2) NOR 1 £ ss m1 (26)j=st+l ~j n-1

Proof: From Lemma 5

_9 f > 1 = tn
da n - f (27)

J n-1

Summing (27)

5 ( £ )I —f -sl|1 - — > 0
j=1 °% °° "n-1

Therefore

m d tf )6f (a) - I — ff -8(1- —2}>s 0ja -_—n j=s+i2- Jj n ( f-1

or

ml d ( t )I —f < 6f (a) ~s8(1 « ——
j=s+1 9a, N n *n-1

L £
= mn-1-s - (m—h-2-S) nn

f

| n-1
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Proof of the theorem

We use a double induction on m and n. The inequality (6) holds

(with equality) for all m if n= 1 and for all nif m=1  o shal]

prove that 1t holds for a particular pair myn (m2 2, n 2 2) provided

that it holds for all pairs m',n with m'< m and all pairs mn' with

n' <n.

Let a;,...,a_, b,,. . .,b be variables which are subject to the1 m' 1 m

conditions

f (a#b;,..00a 4b | = 1 (28)

a,20,...,a 20, b,20,...,b 20

i These conditions define a closed set of points in 2m dimensional space.
| | C_ (ath)

The set of points is also bounded for if CB ______ _ 1 ipen

| nel (a+b)
Cc (a+b)
—1 <1 and since [c, (a)1" < n!C (a) this implies that

1 n

 _a-1 © l or C, (a+b) < n! Therefore the function
[C, (atb)]

£ (a) + £, (b) (29)

has an absolute minimum in the set defined by (28) [Kaplan, 1952].
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Let M denote the minimum of (29) subject to the above conditions.

It suffices to prove that M 2 1, gince this implies (6) by conditions

of homogenenity.

Suppose first that the minimum 1s obtained at a point for which

a,>0,...,a >0, £;>05...,b >0, This point cannot be a singular point on

the surface for by Euler's theorem on homogeneous functions we have

- 3 3
I a, — f(atb)+ £ pb —_Ff (a+b) =f (a+b) = 1

1=1 i 9a, n j=1 h| 9b, n n (30)

so that the first partial derivatives cannot all vanish. Hence

Lagrange's relations for a local extremal of (29) subject to (28) are

Lt applicable. They are:

f(a) - A = ¢
da, n oa, a (87h) 0

=f (b) - A 5 £ (ath) = 0
ob, n 9b, n

where A 1s an undetermined multiplier. popce

| =f (a) = A = £ (a+bda, n da n(2 ) (31)|

3 f(b) = y =Oob, ab. f,(atb) (32)
] J]

he
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We combine these relations in two different ways. pirst we multiply

(31) by a, and (32) by by and sum for i and j from 1 to m. By Euler's

theorem on homogeneous functions we obtain

f, (a) + £ (b) = Af (ath) (33)

By (28) and the definition of M, this implies A - yy. Secondly we sum

over 1 in (31) and use the result of Lemma 2, in the two forms

m 3 £ (a)
L — f (a) = mn-1 - (m+n-2) ———_

i{=1 0a, n f-1 (a)

mq £ (ath)
& — f (ath) = wn-1 - (mk-2) ————

| i=1 0a, n f-1 (a+b)

{ We obtain

| Lo f(a) ( £ (a+b): mn-1 - (mtn-2) ———— = { wn-1 - (Wn-2) ——— 34
f(a) f_(atb) |

Similarly from (32)

rool £ (b) £ (atb)min-1 - (mn-2) ————— = ) mn-1 - (mn-2) ——m— 35
f(b) f _, (ath) | 13°
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Now suppose A = M < 1. Then (34) yields

mn-1 - (wtn-2) 0 aq - _ a)
) FL (ath) > mn-1 - (m+n-2) ay

n-1

Rearranging

f f +

f(a) (a)f__, (ath)
n-1 £ (a+b) (36)

Similarly from (35)

f (b)f +

. f(b) 3 Ef _, (ath)
n-1 £ (atb) (37)

L

Adding (36) and (37)

f (a+b) (f f

fg@ +e) « at+ £6)n= f (ath) (38)
- n

Using (33) in (38)

fap(@ +f, (b)
f__, (ath) <A<1 (39)

But by the inductive hypothesis with n' = n-1

f_p(ath) < f@ +f (b)
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Hence (39) 1s a contradiction and we must have A =M > 1.

~ Suppose next that the minimum of (29) subject to (28) is attained

| at a point at which one or more of RRR biseeesb is 0. We can

suppose that ay and b, are not both 0 for any 1, for in that case the

result would follow from the inductive hypothesis with m' <m. Thus

without loss of generality we can suppose the minimum point has

a =. . =a = 0 by = . . =b =0

where gq £ r, and has all the other a, and b, positive.
~ The minimum M is also the minimum of the function

AC SERLRREL + £,(bysevesb) (40)
-

1 of m—gtr variables, subject to

Epps sb r ui™Pqurs ee rapyyeeenay) = 1 (41)

with all the variables non-negative. These conditions define a closed

| and bounded set of points in a space of m—-g+r dimensions. The minimal
point is again a non-singular point on the surface (41), for the rela-

- tion (30) remains valid if 1 1s summed from g+l to m andj 1s summed

from 1 to r.

3 Hence Lagrange's conditions for an extremal of (40) subject to

(41) are applicable. They again give (31) and (32) except that i and
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Jj are limited to the ranges 1 > g and J £ r. The deduction (33) remains

valid, on the understanding that a denotes the set Agta and b

denotes the set Dy vaeusb . We again have A = M.r

Summation over i from g+l to m in (31) gives

I fa) =r I © (a+b)Na = ron a+ (42)

where t (ath) now denotes the function on the left of (41). By Lemma 2

applied to El CORETRRNL we have

a £ (a) f (a)Ma a) = m-g¢gin-l - (m~q+n-2) ———
1=q+1 da, n q ) E_ (a) (43)

i By Lemma 6 applied to the function on the left of (41) we have

- 3 £ (ath) f (ath)- — atb) £ m-qtn-1 - (m-qgtn-2) ———

i=q+1 °3 © T__, (ath) (44

Combining (42), (43), and (44) we get

f (a)

w-gm-l = (n-qin-2)

£ (ath)Al m- -1 ~-(m- - I

m-q+n-1 -(m-q+n-2) f (a+b) (45)
n-1
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This corresponds to equation (34) with the constants modified and

inequality in place of equality. gipilarly the inequality analogous

to (35) holds. Proceeding as before we again reach the contradiction

(39) and therefore we must have A = M 2 1.

|
L
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