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This manual describes the use of the interactive proof checker FOL. FOL implements a
version of the system of natural deduction described by Prawitz, augmented in the
following ways:
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Section 0 THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER

The reader ready to plunge right into making FOL. proofs may skip 10 section 1.

The idea of doing mathematical reasoning mechanically goes back to Leibniz. but it was not
until the end of the last century that Frege and Peano developed the first completely formal
systems adequate for expressing some kinds of reasoning. Much of the work of Whiteread and
Russell was an attempt at demonstrating that large parts of mathematics could actually be
expressed within such systems. After these initial successes, however, the interest of logicians
changed from proving theorems within mathematical systems to proving meta-theorems about
such systems.

Even before Goedel's work, it was intuitively clear that checking proofs was different from
finding them. It is an essential part of the idea of formal system that proofs can be checked
mechanically, whereas finding proofs mechanically was always regarded as a research problem.
This distinction was clarified by the work of Goedel, Tarski, Turing and Church which showed
that algorithms for finding proofs can work infallibly only in limited domains and that some
mathematical ideas c=nznt be completely characterized by axiomatic systems.

The advent of compriers and the beginning of the study of artificial intelligence gave rise to
attempts to explore experimentally what can be proved by machine. There has been sieady
progress in this endeavour, but twenty years work leaves us a long way from being able to prove
important mathematical theorems.

Knowing that mechanical theorem proving has a long way to go justifies a renewed interest in
the more straight-forward task of proof-checking by computer. Moreover, while it is not as
intresting to check proofs by computer as to make computers prove the theorems, proof.
checking has obvious potential applications. The most important of these is proving that
computer programs meet their specifications since the reasoning involved is lengthy although
usually straightforward - or so our intuition tells us. Since a computer program is a
mathematical object whose properties are determined entirely by its symbolic form, it is a
mathematical disgrace 10 have to debug them case by case rather than proving them correct in
general. Since the programs are long, the proofs of correctness will be long, and since
programmers sometimes think wishfully, it is obviously desirable that the proofs be checked by
computer.

It is also interesting to see if we can check the proofs of interesting mathematical theorems even
though the problem is of less practical urgency. since the human refereving process works quite
well.

At first sight, computer procs checking seems almost trivial. We know that almost all practical
mathematical reasoning ran be done in axumatic set theory which in turn is expressed in first
order predicate calculus. Therefore, it wou'l seem that all we need do is to make a proof checker
for predicate calculus, choose either the Zermelo-Fraenkel or the Goedel-Bernays-von Neumann
axloms for set theory and write and check our proofs. This is one of the things the FOL project



FOL Manual Page 2

is dning, but in order that it; formal proofs should not be substantially longer than conventional
mathematical proofs, it is necessary to reformulate the usual logical systems. This can be
thought of as an effort to produce a forinal system in which the rules of inference, as well as
the expressive power of the language, is more closely correlated with actual mathematical
practice. The use of a computer allows for the introduction of complicated rules of inference
whose metamathematics is not simple. FOL provides for the following:

(1) its notion of a first-order language includes function symbols, equality and other usual
mathematical notation, such as infix operators, n-tuple notation:
(2) the user can declare sorts and declare variables to range over given sors. This greatly reduces
the length of axioms and theorems and corresponds ta the fact that in an informal proof a
context is established, and the reader knows that a certain part of the proof is carried out within
the context;

(3) the decision procedures for certain simple domains are built into the system. This allows
some proofs to be much shorter than usual mathematical proofs, because the computer can go
through some quite complex chains of reasoning by itself. At present, propositional deduction
and a fragment of the theory of equality have been implemented. The Boolean algebra of sets
and elementary commuiative algebra are planned:
(4) some facilities for introducing definitions have been implemented:
(5) a facility is provided for defining the interpretations of constants and predicate/function
symbols, and for computing within a model of the language. This means, for example, that
algebraic and LISP functions can be calculated directly, rather than being synthetically derived:
(6) some primitive facilities are available for metamathematical reasoning:
(7) rules of inference for some interesting modal logics are provided.

The domains which are being explored by means of FOL proofs include:

(I) CLASSICAL MATHEMATICS. This is the single most striking success in our ability to
represent reasoning in terms of formal derivations. How close are these derivations to a
mathematician’s informal proof? Do they constitute a faithful representation of his reasoning?
How are the inference rules of our logic related to the actual rules of evidence he uses when
convincing himself of some truth? The answers to these questions are important in determining
whether we can make computer-checkable proofs that are not enormously longer than the proofs
in mathematical journals. Experiment with the use of FOL in classical mathematics will help
answer them. Theoretical studies of the intensional properties of proofs such as those of Kreisel
(1971a,1971b) are also relevant. Moreover, it turns out that a large part of m-ny mathematical
proofs in the literature are really at the metamathematical level, i.e. they are reasoning about the
reasoning in the axiomatic system. Thus it can happen that 2 simple theorein prover or proof.
checker is not even capable of expressing the theorems of mathematicians, let alone proving
them:

(ii) MATHEMATICAL THEORY OF COMPUTATION. (McCarthy 1961. Floyd 1967, Manna
1974)and others have shown how first-order theories can be used in proving properties of
programs. Making this into a tool for verifying programs before they are widely distributed is
one of the major goals of the FOL project. This will require further research in formalizing the
properties of programs, the ability provided by the attacAment feature of FOL to establish
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decidable properties of parts of the program by direct calculation rather than step-by-step
inference, and a great deal of experiment aimed at making the proofs correspond to the
programmer's informal reasoning that his program does what it should:

(iil) REPRESENTATION THEORY. Common sense reasoning is being represented in FOL in
the style of (McCarthy and Hayes 1969). As in j.roving programs correct, purely inferential
reasoning must be supplemenied by assertions directly computed from the data base
representing the environment: again the FOL attachment leature is the key device used. Even
more experiment will be required before the formal proofs correspond to informal reasoning
than in the case of mathematics, because this area has not been well explored (perhaps oaly by
McCarthy, Hayes 1974, and Sandewall 1970). Particular problems are the axiomatization of time,
simultaneity, causality, knowledge, and the geomeiric reasoning involved in perception.
Metamatiiematics also comes in. particularly when it is necessary to reason about knowledge and
belief. We hope that axiomatizing the metamathematics of FOL, i.e. the structure and truth
conditions of FOL sentences together with a reflection principle, suitably restricted to avoid
paradoxes, will enable us to express common sense reasoning about knowledge. belief. truth and :
falsehood.

FOL is committed to a system of natural deduction. The use of the word ‘natural’ is best
explained by Prawitz himself (Prawitz, 1965):

‘Systeme of natural deduction, invented by Jaskowski and hy Geonizen in
the carly 1930°, ennstitute a form [or the development of logic that is
natural in many respects. In the first place, there in a similarity between
natural deduction and intuitive, informal reasoning, The inference rules of
the systems of noiural deduction correspond closely to procedures common
in intuitive reasoning, and when informal proofs == such as are encounteorod BN
in mathematica for example -- are formalized within these syctems, tie
main structure of the informal proofs can often be preserved. Thin in itself
given the systems of natural deduction a. interest as an explicaiion of the
informal concept of logical deduction.

Centzen's variant of natural deduction ia natural also in a deeper sense,
His inference rules show a noteworthy systemaiization, which, among other
things, is closely related 10 the interpretation of the logiral signs,
Furthermore, as will be shown in this study, hia rules allow the deduction 10
proceed in a certain direct fashion, affording an interesting normal form
for deductions. The result that every natural deduction can he transformed

into this normal form is equivalent to shat in known az Hauptsatz or the
normal form thcorem, a basic result in proof theory, which was established by
Gentzen for the calculi of sequents. The proof of this result for systems of |
natural deduction iz in many ways simpler and more illuminating.

In thiz manual, most of the metamathematical notions discussed will be referred to by words in the
following font: r.g. SYNTYPE, INOVAR, WFF. TAcse notions will play a greater role in later versions of
FOL.
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Section | THE NOTION OF AN FOL LANGU AGE

In FOL the user specifies a first-order language by making a set of DECLARATIONS (see Section
4.3). The proof-checking system then generates a proof checker and a collection of rules specific
to that system.

An FOL language is determined by specifying a way of building up expressions, usually called
well formed formulas or WFFs, from collections of primitive symbols. In FOL these classes of
symbols are called SYNTYPEs. They are:

I. logica’ constants:

a) sentential constants - SENTCONSTs: FALSE, TRUE

b) sentential connectives - SENTCONNs: -~Av,29

c) quantifiers - QUANT: V,3

2. auxiliary symbols: - AUXSYM: ("and 7)"

3. sets of variable symbols:

a) individual variables « INDVAKs,

b) individal parameters - INODPARs.

4. a set of n-place predicate parameters - PREDPARs.

These symbols are used to form those sentences common to all FOL languages. Sometimes a
language L may also contain symbols which are intended to have interpretations which are
fixed relative to the domain of the interpretation. Examples are: °¢" in set theory, “s” in first
order logic with equality, “0° and “Suc” in arithmetic. These are represented by

§. sets of constant symbols:

8) individual constants - INDCONSTS.

b) n-place operation symbols - OPCONSTs.
c) n-place predicate constants - PREDCONSTSs.

In addition one can

6. restrict the range of a variable symbol to some PREDCONST by declaring it to be a SORT.

7. designate a partial order 10 hold among sonic of those PREDCONSTs which have been declared
to be SORTS:

TERM, AWFFs (atomic well formed formulas), and WFFs (well formed {armulss) are defined in the

usual way.
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A formal description of these languages and of the notion of SORT is given in appendix I. The
entire extended syntax of FOL is described in appendix 2.

A first-order THEORY is defined by a (possibly empty) set of sentences of L, called AXIOMs. It is
the creation of such theories and the checking of valid deductions in them that is the main
purpose of the computer program FOL.
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Section 2 THE NOTION OF AN FOL DEDUCTICN

A derivaticn (the following description of which is taken almost verbatim from Prawitz 1965)

begins by inferring a consequence from some ASSUMPTIONS or AXIOMs by means of one of the
RULEs listed below. We indicate this by writing the formulas assumed on a horizontal line and

the formula inferred immediately below this line. On the computer this can be repeated using
previous consequences as new hypothesis. This generates a tree, which we call a DERIVATION.
Thus if we wish to derive AS(BAC) from (A2BJA(ASC) we write:

(R81 A (ASC) (AB)A (AC)

Ee Prresemeeomeneeeee

At each step so far, the configuration is a DERIVATION of the undermost formula from the set of
formulas that appear as ASSUMPTIONS. The assumptions are the uppermast formula occurrences,
and we say that the undermost formula depends on these ASSUMPTIONs. Thus, the example above
is a deduction of BAC from the sct of assumptions {{A>B)A(A>C)A}, and in this deduction. BAC
is said to depend on the top occurrences of these formulas.

As the result of some inferences, however, the formula inferred becomes independent of some or
all assumptions, and we then say that we discharge the assumptions in question. There are four
ways to discharge assumptions, namely:

(1) Given a deduction of B from {AJUT, we may infer ASB and discharge the assumptions
of the form A:

(2) Civen a deduction of FALSE from {-AJUl, we may infer A and discharge the
assumptions of the form ~A;

(8) Given three deductions, one of C {rom {A}UT', one of C from {BJuT', and one of AVB.,
we may infer C and discharge the assumptions of the form A and B that occur in the
first and second deductions respectively, i.e. below the end-formulas of the three
deductions, we may write C and then obtain a new deduction of C independent of the
mentioned assumptions;

(4) Given a deduction of B fron {A{x+aljUl’ and a deduction of 3x.A, we may infer B and
discharge assumptions of the form A[x+~a) provided that a does not occur in 3x.A, in
B, or in any assumption - other than those of the form A[x*-a] - on which B depends
in the given deduction.

To continue the deduction above, we may write Aa(BAC) below BAC and obtain a deduction of
A(BAC) from {(AaB)A(A=C)}.
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Section 3 THE RULES OF INFERENCE

The inference rules consist of an introduction (I) and an elimination (E) rule for each logical
constant. The letters within parentheses indicate that the inference rule discharges assumptions
as explained above.

AD RB AE) RAB AAD

MB

vD ®R ’ vi) a8 Ct C

2)

sh 8 8 AR Rod

a ’

vl) A VE)  Vx.A |

Wate) Mlxet,

(Axes)?

IM Aix) ® IA )

HR) {-A)

-1 FALSE £) FALSE

ee ----

FD A A FE) Faust

ol) RA PA of) Med Ad

Restriction on the Vl.rule: a must not occur in any assumption on which A depends.

Restriction on the 3E-Rule: a must not occur in Ix.A, in B, or in any assumption on which the
upper occurrence of B depends other than Axa}
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Section 3.1 An FOL deduction using the computer

We show here the computer interaction necessary to check the derivation given in Section 2.

In this and all succeeding sections examples of interactions with the computer will appear ir. small
type. Those lines which are typed by the user will be preceeded by five stars "seves”. The other lines
are those typed by the computer.

To derive A3(BAC) fram (A>BJA(A=C), we proceed as follows.

soeesDECLARE SENTCONST A,B,C;

s992oRSSUNE (AB)A (RIC);

1 (A>8)A(RXCD) #))

essoes~l 1,1;

2 Wh

10090RSSUNE A)

IRD

eoeeedt 2,3,

$F ud

seseant 1.2)

S Mt) (ID

soesedf 3,9

6 C UI

seesenl 4S;

7 cad

essessl 3557)

8 RABAC) (DD)

Each LINE typed by the computer contains: 1) a LINENUM, which labels that LINE: 2) the WFF
representing the result of applying the RULE typed by the user on the line above: 3) a list of
numbers representing those LINEs of the proof on which the WFF depends. Consider the LINE
begining with 7 in the above example. 7 is its LINENUM, BAC is the WFF on this LINE, and the
derivation of BAC on this LINE depends on the assumptions on LINES | and 3. This LINE was
generated by the user specifying as a RULE Al (AND introduction) using lires 4 and 5. This
information is typed by the user and in the example appears directly above LINE 7 of the proof.
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There are two other things to notice about this example. The first thing typed by the user was
a declaration stating that A.B and C are SENTCONS1s. Making declarations is essential. Failure
to declare an identifier is the most common reason for a syntax error. Second is that when ol
is applied to LINEs 3 and 7, LINE 3 has been removed from the list of dependencies of the new LINE.
This corresponds to the description of this rule given on each of the pievious two pages. The
exact format of the commands a user must type to the computer is explained in section 4.
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Section 3.2 Implementation - user oriented features of FOL

There are several differences between the machine implemention of FOL and the description
given above aud In Appendix |. These differences are usually for the purpose of making life
easier for the user. The description in the Appendix presents a clean version of (he logic so that
the metamathematics can be discussed in a straight-forward way. The m> jor differences are
described briefly below; more detailed descriptions occur in the app.opriate sections of the
sequel.

Section 3.21 Individual symbols

In Prawits’s logic, individual variables (INOVARs) may only appear bound, and individual
parameters only free. In FOL. this restriction is relaxed, and INDVARs may appear free as well as
bound in well-formed formulas. INDPARs, however, must always appear free. Additionally,
natural numbers are automatically declared to be INDCONSTs of SORT NATNUM.

Section 3.22 Prefix and Infix notation

FOL allows a user to specify that binary predicate and operation symbols are to be used as
infixes. The declaration of a unary application symbol to be prefix makes the parentheses
around I's argument optional. The number of arguments of an application term is called its
ARITY. Section 4.1 describes how to make such declarations.

Section 3.23 Extended notion of TERMS

In addition to ordinary application terms, FOL accepts TERMs representing finite sets,
comprehension terms, n-tuples and LISP s-expressions. A detziled description of the syntax of
these terms is to be found in Appendix 2.

Section 24 The Equality of WFFs

The description of subsitution given in Section 4.35 is consistent with FOL's notion of
equivalence of WFFs. The proof-checker always considers two WFFs to be equal if they can both
be changed into the same WI'f by making allowable changes of bound variables. Thus, for
example, the TAUT rule will accept Vx.P(x)>Vy.P(y) as a tautology.

Section 3.25 VL0Ls and subparts of WFFs and TERMs

FOL as implemented offers very powerful and convenient techniques for referring to objects in
a proof: essentially, any well-formed expression has a name, and can be manipulated as a single
entity. A VL is a name of a part of a derivation. There are several kinds of Vis: for example, a
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label represents a line-nuinber, the WFF on that line, and a list of the dependencies of that line in
the derivation.

The syntax of Vis is very extensive and a review of it will be left to Appendix 2.

- Section 3.26 Axioms and Assumptions

FOL allows the specification of certain WFFs as AXIOMs. The difference between these and
ASSUMPTIONS is that the former are not :aentioned explicitly as dependencies of any lines of the
derivation. Thus every proof checked by FOL tacitly depends on a set of AXIOMs.

Section 3.27 FOL derivations

As opposed to a free, a deduction in FOL consists of a collection of AXIOMs and a linear sequence
of lines, each line represeniing either an ASSUMPTION or a DEDUCTION from the previous lines
(and axioms).

Section 3.28 SORT:

The addition of SORTs. and specification of a partial order over thew, constitutes a major
extension of FOL froin a computational point of view. Their meaning and use is discussed in
the sections on declarations and the quantifier rules.
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Section 4 USING THE PROOF CHECKER

FOL is invoked at the Stanford A.l1 Lab by typing R FOL to the monitor. A backup file is
automatically opened onto which input is saved: the name of this file may be altered by means
of the BACKUP command (vide infra). To save an entire core image type the command ‘EXIT
and SAVE <filename>: to restart type RU <filename> and you will be where you left off.

The commands fall naturally intn several classes:

I. Commands for defining the first-order language under consideration: that is to say,
commands for making declarations:

2. Commands for defining avioms:

3. Commands far maling assumptions and applying the rules of inference to generate
new steps in a derivation;

4. Administrative commands, which do not alter the state of the derivations, but enable

various book-keeping functions to be carried out.

In this manual the syntax of FOL will be described using 8 modified (orm of the MLISP2 notion of pattern.
There form the hace construcis of the FOI, parser.

1. Identifiers which appear in paticenk are to he 1aken Literally.
2. Patterns far rynlatic types are surrounded by angle brackets. Thus <wff> in a WFF,
3. Patterus for repetitions are designated by:

REPn[ ‘pattern> ] means n ar more repeated PATTERN.
If a REPn has twa arguments then the second argument ie a pattern that acte as a separator. So
that REPI[ <wfl>, |, ] meant ane ar more WEF seperated by comma,
4. Alternativee appear ac ALT <PATTERND |. | <PAT TERN )

ALT] <wff> | <termd> ] meanc either a WFF or a TERM.
S. Optinnal thinpe appear as OP] <patteend ]

REP2S[<wif>,ONIT,]] means a sequence of two or mare WFFs optionally separated hy commas,
These conver Lian are combined with the comparatively standard Backus Normal Form description.
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Section 4.1 System Specification

The first step in specifying a first-order theory is the description of the language which is to be
used. This is done by defining the symbols uf the language, using the declaration commands.
These commands specify which symbols are to be variables, constants and predicate or function
symbols.

Section 4.11 Declarations

As we mentioned above, one of the first things that a user of FOL must do is to define the FOL
language to be considered. Every identifier in a proof must be declared to have a SYNTYPE,
Only nine of these types can be declared by the user. They are:
I. SYNTYPEL

a) INDVAR (individual variables)

b) INDPAR (individual parameters)
¢) INDCONST (individual constants)

d) SENTPAR (sentential parameters)
e) SENTCONST (sentential constants)

2. SYNTYPE2

a) PREDPAR (predicate parameters with one or more arguments)
b) PREDCONST (predicate constants)
c) OPPAR (operation parameters or function parameters)
d) OPCONST (operation constants or function constants)

Declarations are fixed within a proof and once made they cannot be changed.

DECLARE ALT( REPl {<simpldec> OPT{,)] | REP] {<appidec> OPT(,)) )

There are two kinds of SYNTYPEs, those of symbols which take arguments, SYNTYPE2s, and those
which do not, SYNTYPEIs.

«amyntypel> te ALT{ cindsym> | csentaym)}
«syntyped» te ALTI <predsym> | copsym> )

The idea of SORTs is to allow a user of FOL to restrict the ranges of function to some
predetermined set. This correspond to the ususl practice of mathematicians of saying let f be a
function which maps integers into integers. In FOL a SORT is just a PREDCONST of ARITY 1, i.e.
a property of individuals. The effect of this informal restriction to integers is achieved in FOL
by

seeesDECLARE PREDCONST INTEGER 1;
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followed by

¢009eDECLARE OPCONST o (INTEGER, INTEGER)« INTEGER;

A PSEUDOSORT is an identifier which has net yet been declared but is assumed to be a PREDCONST
of ARITY | and is declared such because of th: context in which it appears. If INTEGER had
not been separately declared above, in its appearance in the second command it would have been
considered to be a PSEUDOSORT and declarea accordingly. There is one special PSEUDOSORT, i.e.
the PREDCONST UNIVERSAL. This represents the most general SORT and is the default option
whenever SORT specifications are optionzl. ln declarations it can alsc be abbreviated by "+",
The MOSTGENERAL command explained in the next section, can be used to change the name
of the MOSTGENERAL SORT.

cpssudosorts 1e ALT cidentitiors | 0)

Simple declarations

«sing ldec> 1 esyniypel> <idlist> O0PTL ( <psoudeserts)

Examples of simple declarations:

so0osDECLARE INOVRR x y 2;

os9¢oDECLARE INOVAR 2 b ¢ ¢ Set, AB C ¢ Classy

Application declarations

«opp idec> 1s <pyntype2> <idlist> <argdec> BPTI [ «hpdec> ) )
<orgdec> te ALT( cargrorts | enatnums )
<orqsori> ts MTL t esortrepy MTle|e) <pseudosorts |

( esortrap> ) MLT(e|e) <psovdesort> }
«sortrep> te REPS «psovdeseris , OPTIALY(e],]] )

«<bpdec> te MTL crdp> | crip> clip» | <lbp> arp» | INF | PRE )
«rbp> ta R o <naloum
<p> ie L eo cnateum

Examples of application declarations:

eosssDECLARE OPCONST EXP(Int,Intlelnt (Lo0S0 R000) ;

The meaning of this declaraion is that EXP is an OPCONST, it has two arguments (ARITY 2), both
of which are of SORT Int. lt also has a value of SORT Int, and is to be used as in infix operator
with a right binding power of 800 and a left binding power of 850. This could also be declzred
by

s00eoDECLARE OPCONST EXPiintelntelnt (L338 R800)
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Simpler declarations can be made if you don’t wish to specify so much information.

ses o0ECLARE OPCONST EXPiintelntelnt (INF)

declares EXP the same a> above but uses the default infix bindings R«500, L550.

ees oDECLARE OPCONST EXP lint, Intising

simply makes EXP an ¢ dinary applicative function, so you must type EXP(a.b) rather than (a
EXP b). Further sun, V:{i21ion can be made if less sort information is wanted

ee*oDECLARE OPCONST E.7 int, Int),

makes the value of EXP have the SORT UNIVERSAL (the MOSTGENERAL SORT), and

seeseDECLARE OPCOMST EXP 2,

just says it has ARITY 2. Of course

sooesDECLARE OPCONSY EXP 2 (INF)

00¢0¢DECLARE OPCONST EXP 2 [L858 R000)

have the obvious meaning. This section has illustrated most of common ways of making
declarations. There are some other examples scattered throughout this manual.

Section 4.12 SORT manipulation

There are several commands which affect the SORT structure:

Section 4.121 NQSORT declaration

NOSORT

The NOSORT command turns off SORT checking. If any SORTs heve already been declared, an
error message will be given.

Section 4.122 MOSTGENERAL, NUMSORT, SETSORT, SEXPRSORT

MOSTGENERAL <sort>

NUMSORT <gort> i
SE TSORT <sort>
SEXPRSORY <sort>
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In FOL certain TERMs come with predeciared SORTS: ni, merals become INDCONSTs of SORT
NATNUM, comprehension terms, set terms and n-tuple terms have SORT SET, quote-termms have
SORT SEXPR, and the default MOSTGENERAL SORT is the PREOCONST UNIVERSAL. The effect of

the above commands is to replace these default SORTS with those specified by the user. For
example, in the case of Goedel-Bernays-von Neumann set theory, the MOSTGENERAL SORT is called
CLASS.

Section 4.123 MOREGENERAL declaration

MOREGENERAL <sort> 2 | <sort_list> } 3

For example,

e00ooMORECENERAL chesspiece 2 lwhitepioce,blockplecel;

is equivalent to the axioms

vx. (whitepiece(x) > chesspiece(x))
vx. (blackpiece(x) > chesspiece(x))

where chesspiece, whitepiece and blackpiece are understood to have been previously declared
PREDCONSTs. Although these axioms do not appear explicitly, the quantifier rules behave as if
they did (this is explained in detail in section 4.327). This establishes a partial order among the
SORTs. Another typical example wouid be the declaration of classes to be MOREGENERAL than sets.

Section 4.124 EXTENSION declarations

EXTENSION <predconst> <ext_set> ;

<ant_set> ie <«primext> REPO{ ALTIUIN|/) <primexi> }
«pr imaxt> ie ALTL <sert> | | <indconstitaty | )

where each of the SORTs ip the <primext> already has an EXTENSION defined. For example,
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seseeDECLARE INOCONST BK ¢ BRINGS, UK ¢ WKINGS;

ss90sDECLARE PREDCONSY KINGS 1)

400sXTENSION BKINCS 18K);

Extension of PXINGS is (BK)

ee0s tEXTENSION UK INGS 1UKI,

Tutang inn of WFINGS 1s (WK)

se00 EXTENSION KINGS WKINGS U BKINGS,

Evtengion of KINGS is (IK BK)

The initial declaration doclares BK to be of SORT BKING, and WK to be of SORT WKING. The

command ‘EXTENSION BKiNGS {BK} says that BK is the only object which satisfies the
predicate BKINGS: similucly, the command ‘EXTENSION KINC™ 3KINGS U WKINCS' says
that the only objects which satisfy the predicate KINGS are those in the union of the extensions
of BKINCS and WKINGS, i.e. BK and WK. This is equivalent to the introduction of the axioms:

vx. (BRKINGS(x) * (x*BK))
Vx. (WKINGS(x) 5s (xeWK))

Vx. (KINGS(x) » (xsBK v xsWK) A {BKeWK)))

By itself. this command has no effect, but the semantic simplification mechanism (see Section
4.4) uses these axioms.

Section 4.13 Predeclared Systems

THEORY «<sysname> ;

The THEORY command may be used to call up several pre-declaced systems. If no THEORY

command is given, the basic FOL system is generated. i.e. he full natural deduction system for
classical logic with the extended inference rules. The options which are available are

esysnane> te ALT [ PRANITZ| 2F | GON| S4 § 5 | KBK | KIB)

where PRAWITZ is the system described by (Prawitz 1965), i.e. without SORTs or any of the
extended inference rules such as TAUT; ZF is Zermelo-Fraenkel set theory (as defined in
Appendix 3) CBN is Goedel-Bernays-von Neumann set theory (as defined in Appendix 4% S4 and
SS are Lewis's classical systems of possibility and necessity (as defined in Appendix 5% and KBK
and KBB are Hintikka's systems for Knowledge and Belief respectively (see Appendix 5).

Reproduced from
best available copy
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Section 4.2 Axioms

Axioms are only briefly mentioned in the description of FOL. In the machine implemented
version they play the same role as assumptions, but they do not appear in the dependency list of
any step of a deduction, nor are they printed when you show the proof. Thus derivations are
always relative to an unmentioned theory. When a theorem creating mechanism is availabie this
will change. The syntax for defining an axiom is:

AXIOM <axiom>

where

«axioms ta REPI{ coxnam> t <hulisty  }
coxligt> 1m ALYL cutttist> | REPllcaxiom] )

This allows for a block structured way of naming sets of axioms, so they can be referred to
either by some particular name, or as part of a group. Each WFF in WFFLIST is given a name by
FOL. This name is generated by taking the AXNAM and concatenating an integer to it. For
example if the AXNAM is GROULIP then they will be given the names GROUPI, GROUP2... .
These can tien be uscd to refer to each axiom. An AYNAM is like a LINENUM and may be used in
any context that requires a LINENUM. If WFFLIST only contains one WFF that axiom is called
AXNAM,

NOTE: The syntax calls for multiple semicolons!

Examples:
so0ooAXION As Jo VK. KX,

YY. a {Xe YAY Xd
Ct WW. hcl;

This creates two axioms A and C. Axiom A contains two subaxioms Bl:vX.-X¢X and

B2sVY ~(X¢YAY¢X). If you prefer to think of collections of axioms as theories, thes the syntax
allotvs arbitrary nesting of theories, cach followed by a semicolon. At the moment no checking
is done for the consistency of axiom names. You lose if you create conflicting ones. Axioms
cannot be got rid of, so be careful. Numbers are not legitimate AXNAMs,
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Using axioms as axiomschemas.

There are no special rules for axiom schemas, merely an extension of the use of the rules already
given. Namely, an aviom schema is simply an axiom with a predicate parameter (PREDPAR) in it.

An axiom can be used anywhere a step can by using an AXREF. This is of the form
AXNAM[PP,&XX |...PP XX] and its syntax is described in the section on Vie. An AXREF can

appear anywhere a VL can. In the form AXNAMPP«XX, .PP XX] the ¥P, are predicate

parameters (PRECPARs) appearing in the axiom, and the XX, are propositional functions assigned

to these parameters. The assignments are done successively rather than simultaneously.

An XX is a WFF preceded by A. any number of INOVARs and a “." (period). Thus cg. A x y z<wff,
The ARITY, p. of the PREDPAR must be less than or equal to the number of variables following the
A. The indicated x-cnnversion on the first p variables is done automatically. The crror message
"NOT ENOUGI{ 1 AMBDA VARIABLES" means p is too large. The remaining variables are
treated as parameters of the entire axiom. and the instance of the axiom returned is the
universal closure of the axiom with respect to these parameters.

The :» (SUBPART) mechanism (see Appendix 2) can be used to take pieces out of the resulting
formula in the usual way.

Example of using axiom s~hemas:

eenesDECLARE PREOPIR F |;

seese INDVAR X,

ecossRNION INDUZLTION: FIR AVX, (FIX) oF (Xe1)oVX F(X);

INDUCTION: F (9) «VX, (F(X) oF (Xa1)3VN,F(X)

eres oDECLARE INOVAR a bg

sesesr]l INOUCTION(Ferb 0.0+0sbes),;

1 Ve. ((ae®etBen)VX. ((aeX)e (Xas)a(aatXal)Dal (Nal) amd )oVX, (ask)e (Xep))

seeder] INDUCTION (Ferb.Va.a+bebes);

2 Va. (peB)u Ban) VX, (Va. (asX)a(Xea)oVa.(aa ldeld)a(ldallea)}aVX a. (aeX) aiden)

osssenl INDUCTION (FerD X.XobobeX];

3 WH. (0a0)a (0X) AVL. ({XeX1)@(X1eX) (Xe (RNa) Im E (NI 01) 6X) ) IVE2 (NeX2) u(X2eX))
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Section 4.3 The generation of new deduction steps

Note: when the variables A. and C ae mentioned in this section, they refer to the description of the
basic Prawitz logic in rection J.

Section 4.31 Assumptions

ASSUME <ufflist>

The ASSUME command makes an assumption on a new line of the deduction for each WFF in
WFFLIST. Note that the dependencies of a line appear in parentheses at the end of a line, and
that assumptions depend upon themselves

Examples!

080¢oASSUNE Yx.x(x;

I Yu.x¢x  (})

os0esRSSUME Vy.ycy, ~Wy.ycy;

2 VWy.wy (Q)

J Wy.yey (3)

Section 4.32 Introduction and Elimination rules

The general form of a RULE JAME is

crulonsme> 1x «logeonst» RIT 1 | EE}

where 1 stands for introduction and E for elimination. The format of a command is:

<cruio_ol_infarances te <rulensmer <linanusinie>

The LINENUMINFO is dif ferent for each rule. This is explained below. We will use & to stand for
an arbitrary VL (see section 3.25). In the description of some of the rules it is necessary to
distinguish among several VLs. In this case we write 81,82... . We will write

Al sas

rather than

Al <vi> A <vi>
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Alternative alphabetic RULENAMEs will be given in parentheses after the standard ones. These
usually correspond to other frequently used names for these rules. Thus MP (modus ponens) or
UG (universal generalization) can be used, instead of >] or VI.

Al) commas in these rules are optional. This will not be mentioned explicitly in the following
sections. Thus a “," appearing in a rule specification it is to be thought of as OPT).
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Section 4.321 AND 7A) rules

Introductionrule

Al (Al) (aan) A® :

The LINENUMINFO for Al is any parenthesized conjunctive expression in which all conjurcts are
Vis. If no parentheses appear (even in a subexpression) association is to the right, thus
sa(saeas)as means sa((sa(san))as), AND is always a binary connective. The "&" and "," are
alternatives to the "A" symbol. The dependencies of a line are those LINENUNMs mentioired.

iminatiop rule

AECAE) ® OPT ALT(,I1:) J] ALTI{1121 <subpart>1

1 picks out the first conjunct, 2 picks out the second conjunct and SUBPART picks the
appropriate subpart. For the definition of SUBPART see Appendix 2. The dependencies of the
result are the same as those of o. The first command in the example could have also been
written "AE 4 1:" or "AE 4:1:" or "AE 4:01",

= eed 4,4; :

S (Yx.Class{x)aVa, ~{a(AT)]

soeseft 414102;

6 Va.~(achT)

seedeRE 4101010),

The main symbol! of Vx.Clossix) ip net an A

eseserl 410);

In the <subperi> 163 , J is tes lorge
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Section 4.322 OR (v) rules

Introductionrule

vl] (01) (Bvt fsvenf fs) 3

OR’s may be parcathesized just like AND's, but at least one disjunct must be a VL. Any Vis
given will cause the dependencies of that line to be included in those of the conclusion. As with
AND, association is to the right and OR is binary.

Eliminationrule

vE(OE) es , @] | 2

® is the VL on which a disjunction AvB appears 8] and #2 are both VLs «uch that si: and a2: are
both equal to the WFF CC. The conclusion of this rule is the WFF C. The dependencies of the
conclusion are those of » along with those of ol which are not equal to A and those nf #2 not
equal to B. Remember two WFFs are equal if they differ only by a change of bound variable In
the example two different commands are given. Note how the dependencies are treated in each
Case.

¢t a +RSSUNE Live,

9 Vu.xexvaVy.yty (9)

tcees0l 1v3:;01 2:1v),

180 Vu. ngwvaiVy.yty (1)

teed

11 VYy.ytyv=Vy.yry (3)

steel 9,10,1);

12 VomemvVy,yy (9)

etessvkt 8,10,14;

I3 ¥noxguv-Wy.ycy (3)

wevervk 9,11,18;

14 Va.xenvaVy.yy (139)

Reproduced from
best available copy
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Section 4.323 IMPLIES (2) rules

Introductionrule

>] (DED) ALT wom | <uff>oe ]

The difference between #30 and <wff>oe is that in the former case dependencies of the
conclusion which are rqual to the hypothesis are deleted. A comma is an alternative ta the ">"

symbol. In other styles of presenting first order logic this rule is called the deduction theorem.

siesed] 13]

15 Vx, u(xdV¥x_u(x

te9+:0ED lio],

16 Vs. mewdV¥xvex  {]) :

seeee 3] 2,14

17 Vy. yoyo¥n.ve

Eliminationrule

SEMP) « , »

The order in which the arguments are specified is irrelevant. This is the classical rule modus
ponens. The dependencies of the conclusion are the union of the dependencies of hoth Vis.

s:00008 1,17,

18 Yuen (])
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Section 4.324 FALSE (FALSE) rules

Introduction_rule

FI el , #2

If wl is of the form A. then #2 must be of the form -A (or the other way around). The
conclusion is just (he WFF "FALSE". Its dependencies are the union of those nf #1 and #2,

seecefF] |,3,

J9 FALSE (1 2

Elimination rule

FE o |, ALT o] | «uff>) |

® must be of the WFF "FALSE". A new line is created with either 81: or the WFF specified by the
alternative. This rule says that anything follows from a contradiction. The dependencies (there
had better be some) are just those of

veee:FE 19 6:18 lasx),

8 ~Le(AY) a»
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Section 4.325 NOT (=) ules

Introduction_rule

~] (N1) " , ALT ol 1} <uufés ) :

» must be the WFF "FALSE". The conclusion of the rule is the negation of #l: or the WFF. The
dependencies nf the conclusion are those of 8 minus the anes equal to el: or WF,

ccocoal 19,3;

cl ~=Wy.yey })

rs0eeDED 1021,

2 Vu. wgudeaVy.yiy

Elimination_rule

-£ (NE) 8s, ALYeo] | eutf>)

® must be the WEF "FALSE". ol or WFF must have the form -A. The conclucion is A. The

dependencies are thaw of », minus any equal te ~A. if this rule ic amitted (or simply not used)
and only the introduction and elimination rules are used the proof is intuitionisticly valid.

eet ASSURE <3:

23 ~-Vy.ycy 2D

t2eeeb] 23,3, |

S40 FALSE (3 2D)

ececr-f 24,3;

cH Vy.yey 23)

teoesDED 23309;

<6 ~=¥y. yc YoVy. yy

Reproduced from

best available copy
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Section 4.376 EOIN ALENCE (w) rules

Introductionritle

s] (E]) of] , oo ‘

Either ®»l is of the form A=B and #2? is of the form BoA or vice versa. The condlusion js AB.
The dependcucics are the union of the dependencies of #1 and #2.

¢.eens] 06,200,

IT «aVy.uryeVy.yry

Eliminationrule

sk (EE) ® | ALTD ALTIo!1) + ALT(cI2] ) :

If o is of the form AB then the first alternative produces AB. the <ccond 855A. The
dependencies are those of »

RTRRE] SS AP

.& Vy. ys Ye ~-V¥y. yey

Reproduced from
best available copy
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Section 4227 QUANTIFICATION rules

This is an example of a proof using all the quantification rules.

ecese DECLARE INDVAR x y; DECLARE INDPAR a b; DECLARE PREOPRR P 2;

£224 +RSSUNE Wx, Jy.Px,aVx y. (Pix, y)5Ply,x));

1 Wu, 3gPU,yd aWs gy. (Px,gd Ply, x}) (1)

ceons-B | 1

2 Ve. 3g.Plr,y) (1)

weeeerb | 2

3 Wx gy. (Px,oP ly, x0) (1)

ssnve¥t 2 ay

& 1y.Pla,y) (1)

t<2:2¥YL J 8 bu;

5 Pta,bloPlb,a) 11)

2:0:30 4 by

6 P(a,b) (6)

secserdl $5.6;

7 Pto,8) (1 6)

teeoen]! 6 7;

8 Pla,b) Plb,a) (16)

teseell 8 bey

9 3y. (Pla, aPiy, a) (1)

seeeeV] 9 sox;

19 Va. dy. (Plu, y)aPly,x)) (1)

se0eed] 1518;

11 (Wa. y. Plu, yg) s¥x gy. (P(x, yg) oP (ly, x) ) )5¥x. Jy. (Plu,y)aP ty, »))

best available copy
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Section 4.3271 UNWERSAL QUANTIFICATION (¥Y) rules

Introductionrule

vI(UG) & , REPLI OPT{ALT[cindvar>i<indpar»] « ] cindvars . OPT (,1]

Several simuliancous universal genalizations on ¢ can be carried out with this command. For
each element of the list (vither Xx or a~X) a new universal quantifier (Vx) is put at the front of «:
(with x far all free accurrences of a in the second case) and a new line of the derivation is
created.

Remember there ic a recriction on the application of thie rule, namely the newly quantified variahle
must nat appear [ree in any of the dependencies of »,

In the example V1 occurs on line 2. There is nothing free in the WFF on tine | (line 9 only
dependency) so the generalization is legal. Notice that the “a” was changed to an "x". "a" cannot
be generalized. as it is an INOPAR,

Elimination rule

VE(US) 8 | <termiist>

Universal specification wses the terms in the Ztermlisi> to jastantiate the universal quantifiers in
the order in which they appear. If a particular terms is not free for the variable to be
instantiated a bound variable change is made and then the substitution is made. The variable
created is declared to he an INDVAR of the correct SORT.

Line 4 and 5 of the example were created by this rule.

Reproduced from

best available copy
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Section 4.3272 EXISTENTIAL WANTIFICATION (3) rules

Jatroductionrule

31{EG)Y » , REFPLIOPT{.- tmrm> &} <indvar> OPTlcocctint>) ,0PT{,}}

The list following @ tells which TERM are to be gencralized. If the nptional «term is present, it
is first replaced by dndvar> at cach occurrence mentioned in the <scclistd. The WIF on » is then
generalized and the next thing in the list is considered. Notice that no use can be made of an
<occlisty if there is no TERM present. The machine will ignore such a list in this case. The
dependencies of the conclusion are just those of ».

cocclisty ix OCC (ordernatnumlisty

The ordernatnumlist> is a list of natural numbers in inceeasing order.

In the cxample existential introduction is done on line 9 of the proof. Thic is the most
interesting line of this example. You will note that the dependencies of this line are not as
described above because of the previous existential elimination. This is explained below,

+1¢2:DECLARE FREDCONST F 13 TAUT F(x) v-F (rn);

i

cio?

<7 Fix) yf (v)

s eee 3 7, vey occ 2

<8 Jy. (FixduaF (yd)

ecnse V] 08, wy;

9 Vx. 3y. (F (x) v~F (y))

Elimination rule

3E(ES) ® , REPIIALTL zindvar> | <cindpar> ),0PT({,])

The implementation of this rule ic the most radically different from the formal statement given
above. This rule corresponds in iziormal reasoning to ihe following Lind of acme. Suppose
we have shown that comething exis with same particular peaperty, e¢ Iv dant Then we «ay
“call this thing b". This ic like saying ASSUME P(ah). Then we can reasnn about i Ad soon as
we have a sentence, however, that no longer mentions b. it is a theorem which does not depend on

what we called “y” but only on the dependancies of the existential statement we staried with.
Thus we can climinate F(ab) from the assumptions of this theorcin and replace thew with those
of the assumptions of 3y.P(a.y)

Reproduced from

best available copy
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The machine implementation thus makes the correct assumption for you, remember it and
automatically removes it at the first legitimate opportunity. Several eliminations can be done at
once.

In the example an existential elimination was done creating step 6. This line actually has as its
REASON that it was ASCUMED. Line 8 thus depends on it. When the existential generalization
was done on the next line, b no longer appeared and so line 6 was removed from the
dependancics of line 9. A user should try to convince himself that this is equivalent to the rule
stated at the beginning of this nianual.

Reproduced from

best available copy
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Section 4.3273 Quantifier rules with SORT

The following table describes the effect of the quantifier rules in the presence of SORT and
MOREGENERAL declarations, such that p is of SORT P, q is of SORT Q and r is of SORT R, and R is
MOREGENERAL than Q and Q is MOREGENERAL than P

vt Vq.Rig} Vq.Riq) Vq.R(g)

ap) No Qte1Alr)

4 Rig) Aig) Riq)

3 34.R(q) 3q.Alq) 3q.R (a)

“error he at)

k H Riq) Aig) Rig)

Pwalp.Apl  Je.A@ Ihr)

As an example, it is possible that you might try to instantiate 2 variable to a terin whose SORT is
MOREGENERAL than the quantified variable. In this case the result of the specialization is to
create an implication asserting that if the term were of the proper SORT then the specialization
holds. If the variable is MOREGENERAL than the term then the usual WFF is returned.
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Section 4.33 TAUT and TAUTEQ

TAUTOLOCGYrule

TAUT «cuff» |, cviliat> 4

This rule decides if the WFFs follows as a tautelogical consequence of the WFFs inentioned ir the
VLLIST (the nation of VLLIST is defined in Appendix 2). In this case WFF is concluded ana its

dependencies are the union of the dependencies of cach WFF in the VLLIST. We think this
algorithm is fairly efficient ana thus should be used whenever possible.

TAUTEQ rule |
TAUTEQ implements a decision procedure for the theory of equality and n-ary predicaies, n°0,
Its syntax is the samc as the TAUT rule:

TAUTEQ <uff> , «v!llict>

This rule decides if WIF follows from the WFFs mentioned in VLLIST in the above-mentioned

theory. Thus, anything that can be proven by TAUT can ale be proven by TAUTEQ, but
TAUTEQ runs more slowly than the TAUT rule.

e+0e-DECLARE PREDCONST P | Q 1,

e<oe DECLARE OPCONST ¢ 1,

tooo DECLARE INDVAR a bg

testr TAUTEQ Asbo (Pla)eP(b));

1 asb>(Pla)ePib))

0¢004TRUT aad(P[2)aP(b});

TOUGH LUCK

tee TAUTEQ asd adetib)y

- 10UGH LUCY

The formula a=ho(P(al I’th)) cannot be proven propositionally: TAUT wauld simply rename (ab)
to a new PREDPAR with ARITY 0, say Pl, P(a) to P2, and P(b) to P3, and then try to prove
PIa(P2:P3). The formula (a=b)>f(a)=f(b) cannot be proven by TAUTEQ since TAUTEQ does not
know about the arguments of fuiictions.

Reproduced from
best available copy
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Section 4.34 The UNIFY Command

LINIFY «<uff> »

This command tries to establish whether the VFF is a consequence he VL are

This rule of inference is best described by first presenting some examples:

tee cASSUNE WX, P(X),

I VX.P(X)

tee dUNIFY PCLDY) |

J PCO)

e~«< UNIFY IX.PUX} 1}

J 3x, p(x}

In step 2, the UNIFY mechanism recognised that P. applied to any TERM followed frova VX. P(N).
More aggressively, an line 3, it recognised the that YX.P(X) implies that IX.P(N). These are two
simple cases of the use of this command. A more complicated example is:

cee: ASSUME IN. VY, IP (X)O2(X,YD) 4

I vePa).Qu,Yi} ti} |

ese :UNIFY JN.PCGHVIN.V2.02(M,2) 1;

¢ W.PW WY.) (1)

Notice that, in both of the examples above, the propositional structure of WFF was the same as
that of the VL. This rule is designed to handle exactly this case: namely. it is designed to handle
the quantifier manipulations involved in implications between WFFs with similar propositional
forms.
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Section 4.3% SUBSTITUTION rule

SUBST e)] IN e2 OPT{ OCC <ordernatnumlist> ]

If the major connective in ol is = or s then (making allowances for bound variable changes) the
occurences of the left hand side of »l which appear in #2 will be replaced by the right hand side
of wb. If an occurrence list appears only those listed will get substituted.

SUBSTR e] IN o;' QPT{ OCC <ordernatnumlist> )

does the same as SUBST but substitutes the left hand side nl 8) for the right hand cde of a] in
»2

Ordinarily. f(x) cannot be substituted for y in Vx. F(x.y) as the x in f(x) would then become
bound, i.e. f(x) is not free for yin Vx. F(x.y). FOL automatically handles this conflict of bound
variables in a substation; those accurences of a bound variable which will cause a conflict are

changed. Thus. if one tries to substitute f(x) for Vx.F(x.y) the generated substitution instance
will be VX LF(NL(f(x]) Here ile newly created variable will have the same SORT as x of SORTS are
being used.

The ‘new’ variable is created by considering the ‘old’ variable to have two parts: a prefix which is
the identifier up to and including its last alphanumeric character, and an index, cither empty or
a positive integer. The new variable which is generated will have the same prefix, and an
incremented index. For this purpose, an empty index is considered to be ‘0’.
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Section 44 Semantic tachment and Simplification

FOL is concerned with checking theorems in a first-order language, which the user <pecifies by
making declarations. This language is then a structure Le<PF.CO, where Pic a «et of predicate
symbols, F a set of function symbols, and C a set of constant symbols. A mode! of Lis a
steucture Mec)IPF (0, with D a aou-cinpty set. P* a set of u-ary predicates on D. F' a set of

functions mapping D” inte ND, and (7 a subset of D. Au interpretation of 1 in M is a map which
specifies which symbole in P correspond to which predicates in M, similarly for F and C. The
implementation of semantic attachment has two aspects:
(a) the attachment mechanism which allows the user tn specify the objects in the model which

correspond to cymhaolc in the languaye and vice versa, and
(b) the simplifrer which tries to compute, in the model, the values of FOI expreciinne ie it uses
the notion of satcfialiiry.

For example, we might associate with function symbols the corresponding LISP functions, The
OPCONST “+' mirht be semantically attached to the LISP function, PI US, and the THD OHST FF
and ‘2 (i.e. the wumerals) attached to the numbers | and 2, so that an rvalination of ‘142° in the

model would give the monber 3 as an answer - the simplifier would thea return the TRIICONTT 3°

Note carefully that the map (rom I. into M and that from M hack to L may he partial, ic. these
may be symbols in I which have no defined interpretation in NM. and the process of
simplification with respect to M may generate abjects in M which have no cavonical symbol jn
L. The FOL simplificr simplifies sentences to the maximal possible extent, using the results of
computation within the model, as well as any relevant information about the EXTENSION and
SORT structures which the user has defined on L.

FOL aliows the assignment of arbitrary LISP functions or lambda-.expressions as the
interpretations of predicate and function symbols.
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Section 44] The ATTACH command

ATTACH OPT (sl ALTI( <predconst> | <opconst> | <indconst> ] «<s_expr>

<8_expr> se ALT{ <atom> | ( <s_expriist> OPT (<dotend>) ) J;
<g_exprlist> te REP1[ <s_expr> )
<dotend> tm , <Sexpr>
<atom» te ALT( <identifier> | <natnum> }

This command allows for the definition of the maps from the FOL language that the user has
defined into the LISP cavironment which he wishes to take as the model of his language (and :
vice versa if the ATTACH? option taken).

PREDCONSTs and (FCONSTs way be attached either 10 atoms which are the names of already-
defined LISP functions (i.e. ones which have a SUBR, EXPR or MACRO property, including of
course all the standard ILISP functions) or Jegal LISP function, lambda-expres:ion or macro
definitions. The attachinent mechanisin checks that the functions (except SUBRs) being
attached have the correct number of arguments corresponding to the ARI TY of the FREDCONST or
OPCONST to which the attachment is being made. INDCONSTs may be attached to any S.-
expression.

veesvDECLARE INDCONST ZERO, ONE ¢ INTEGER

0¢030DECLARE OPCONSY (INTEGER, INTEGER) o INTEGER (INF);

2¢0esATTACH ZERO 0;

CERO attached te §

ooo oRTTACH ONE |;

ONE attached to |

+++09DECLARE OPCONST CAR COR(LISTISLIST;

eeoe DECLARE OPCONSY CONS (SEXPR,SEXPR)aSEXPR;

s¢s4sRTTACH CAR COR;

¢sossATTACH CONS CONS;

e009¢DECLARE JNOVAR R 8 L ¢ SEXPR,;
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Section 442 The SIMPLIFY command

SIMPLIFY [ALY <uff> | <vl> | <term> }

This cr. mand effects the simplification of an FOL seutence hy computing within its model,
i.e. the simplification mechanism attempts to find, in the model, ab jects (LISP S-exprescions)
which correspond ta syatactic symbnald in the sentence. If any are found, they are FVAl uated in
the normal way. The simplifier then attempts to find a term in the language which cnrrecpands
to this evaluated entity. In the case nf VLs and Tcl the original exprecann iv returned,
together with its maximally simplified form: if a term exists in the languace for the
simplification, then that forms the right hand of the equality. (The <implifisr §i« aware that
NATNUMs and LISP numbers correspond to cach other). In the case of Li «additionally, if the
result of simplification is a truth-value, the WFF or its negation is returned, whichever is
appropriate. ‘The simplification is carried out to the maximal extent.

If a LISP crror is encountered during simplification, an error message is given.

In the model defined by the attachments made above, the following occurs:

ee sSIMPLIFY CRO + ONE;

TUPOCONE1

e:eesSIMPLIFY CAR * (RB);

CRR(*tA B)) aR

In addition, the simplification mechanism takes into account any information that is available
about the SORT and [XTENSION declarations that have been made. For example, remembering the
example on extensions given in section 4.124:

to 2:NECLARE INDCONST BY ¢ BRINGS, WK ¢ UY INGS;

“1: DECLARE PRIDCONST KINGS |;

11 t EXTENS TON BY INGS 1BKE

Evtension of BI INGCS 15 (BK)

tte EXTENSION WE INGS IMP1g

Extension of WI INGS 3 (NK)

+2+¢¢EXTENSION } INGS WINGS U BY INGS,

Extansion of FINGS ig (WK BK)

tees, SIMPLIFY WV«pry

~ (Wt BK)

Reproduced from
best available copy
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Section 4.43 Auxilimy FUNCTION definition

FUNCTION <function-=_oxpr>

This allows the definition of <function-s expe> as an auxiliary LISP function. If the function
definition is a legal « expr> which is not a legal LISP? function definition of the DE or
DEFPROP sort, an error message will be given.



Section 4.5 Admimusthiative Commands

These commands manipulate the proof checker but do not directly aller the current deduction.

Section 451 The l ABFI! corimand

LABEL ALTL ~iclent 1 cident. = <linenum>)

In the first case the nent diac the proof checker generates will get the labeb 1 1 In the seennd
the LINENUM mentioned will become labeled by IDENT. Labels are alternatives ta Vis and can be
used in any place that the syntax expects them.

Section 4.52 File Handling commands

Section 4.521 The FET Ii command

FETCH ¢ilename~ NPT FRM cmarkl> J OPTL TO «mark’~> )

The FETCH command reads the file filename), and executes any FOL commands in this file.
FOL accepts standard Stanford file designators. If mark specifications are present, the file is
only read within the limits which they specify. The default FROM/TO are the beginning and
the end. respectively, of the file. The commands read during a fetch acc not printed in the
backup file. FETCHes may be nested to a depth of 10.

Section 4522 The MARK command

MARK <tokens

This command has no effect on the proof, but simply places a mark in the file which the
FETCH command can use to delimit scading of the file.

Section 452% The BAC KUP command

BACKIIP ~file name>

When FOL is initialized. a file called BACKUP. TMP is automatically created. All console input
from the user is saved on this file. This command closes the current backup file. and npeans a

new one with the specified file name.

Reproduced from

best available copy
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Section 4.524 The CLOSE command

CLOSE :

This closes and reopens the backup file. Normally the backup file is written every five steps in
the proof, but this command enables the user to save the state of his deduction at any poiiii.

Section 4525 The COMMENT command

COMMENT <delimiter> <text> <deiimiter>

When typed at the top-level, this inserts any text between the delimters into the backup file: if it
appears in a FETCHed file, the text is ignored. Of course, the dzlimiter must not appear in the
text.

Section 453 The CANCEL command

CANCEL OPT[ <linenum> };

This cancels all steps of a deduction with LINENUMs greater than or equal to LINENUM. Thus you
can remove unwanted sicps from a deduction provided they are ail at the end of the PROOF. If no
LINENUM is specified, only the last line is cancelled.

Section 4.54 The SHOW command

The SHOW command is used to display information generated by FOL. The intent of the
present command 1s to allow you to display information about a derivation at the console and
save it on a file. The integer after the FILENAME becomes the linelength while this command is
active.

SHOW <shoutype> TPT( <filename> OPT( <inteaer> }} 3

<shoutyps> 1» ALT( PROOF OPT( «rongeliaty ) |
STEPS OPT( «rangelist> ) |
RX 10M OPT «axnamiist> ) |
DECLARATIONS OPT( «decinte> ) |
CENERALITY  OPT( «goninte> ) |
LABEL! S OPT( <labelinte> ) }

crpngel igt> to RLPlicrangespacs,0PT(,1)
crangespec> ta RLTL OPT( <linenum>) 1 OPTL clinenums J | <linenum» |)
«docinio> 1a REPL( ALTI <syntype> OPT{ ( <serts) |

<folsym> |
SORTS 1, OPTL,))

<«goninio> te REPL{ «sort», OPT(,) )

ciabalinto> se REPLI ALTL <labels | <rengespec>) , OPT(,] )
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RANGESPEC may be of the form 23 or 23:65 or :65 or 34: or even: Its meaning is either 4 wngle
LINENUM of a range of LINFNUMS. If a number stands alone it simply means thic umber, If
there are two numbers separated by a colon, the range is from the first to the ~econd. If
numbers do ant appear on either «ide of the colon then the default nt @ oc the Jac line is
assumed. An FOLSYM is any declared identifier and show returns ite SORT adentificr and chow
returns appropriate syntactic information.

Examples are:

t+a+«SHOM PROOY 1,0:0,16: FDU.RAIILETRUN) 22;

this writes lines |, 2 to 5, 16 to the last line of the proof onto the file FOO.BAZ[SET RWW] with
a linelength of 22.

set: SHOW PROOF;

displays the proof an the console,

The next example, taken from an actual test file. shows the Lind of syntactic information
displayed by a "show declarations” command.

se: 5HOM DECLHRATIONS ENPYY x » £ carry front Dinaryplus;

EAPTY + JNDCOMHT of sort BYTES

v 1s INDVRAR of gzort INTEGER

+ is OPCONST

The dominos INTEGER o INTEGER, and tha 1 ange 8 INTEGERTL. HON DoRIN

< v8 PRECCONST

The domain 1s INTEGER o INTEGERIL.YQ R. 300)

carey x OPCONSTY
The domain 1s BYTES @ BYTES, end the ranae 1s BYIFS

front 1s OPCONST

The domain is BYTES, and the range is BYTESIR. 5D)

No declaration for binaryplus

«>0¢:3HON DECLRRAYION SORTS;

shows all the PREDCONSTs of ARITY | (i.e. all of theSORTs)

SHOW commands do the nhvious thing in conjunction with the display features turned on by
DISPLAY.
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Section 4.35 The DISPLAY command

DISPLAY OPT{ <displaytype> )

<«displayiype> 1s RLYI PROOF |
STEPS |

AX 10M
ATTRCHAENTS

DECLARAY JONS
LABELS |

STATUS )

FOL may take advantage of the display features of the Stanford DataDisc system by means of
this command.

For example: |

eeseeDISPLAY

creates a display window of full-screen width, into which the steps of the proof are displayed as
the derivation continues. The page-printer is restricted to the bottom eight lines of the screen. If
ihe argument is non-null then the ‘proof’ window is restricted to half-screen width, and a second
window, appropriately labelled, occupies the other half of the screen eg.

A seree01SPLAY RXIONS ,;

causes an ‘axiom’ window to be opencd, and all axioms are printed to that window, rather than
to the ‘proof’ window or the page-printer.

Whatever the current state of the display, ‘DISPLAY <null)’ causes the ‘proof’ window to be
regenerated, together with the last five lines of the proof, if any. Any other windows which may
be present are flushed. This method is slow and cannot be used from teletypes, but provides a
much more convenient way of displaying the steps of the proofs and other information.

sees tUNDISPLAY

restores the screen to normal teletype mode.

Section 4.56 The EXIT command

EXIT

This command returns the user to the monitor in a state appropriate for saving his core-image.



FOL Manual Page 44

Section 438 The SPOOL Command

SPOOL <fitename> + YSPOOL <filename>

These cause the filename to be spanled on the appropriate device (LPT or XG)

Section 4.58 The TTY ¢ ommand

TTY

This resets the printing routines so that they are teletype rather than display oriented In this
mode, the logical connectives are represented by NOT, OR, & or AND, = or IMP, » or FOUIY,
FORALL. EXISTS.
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Appendix 1

FORMAL DESCRIPTION OF FOL

The non-descriptive symbols of FOL divide Into SYNTYPEs as follows:

}. Individual variables - INOVAR. There are denumerably many individual variable symbols. We
use X.y.z as meta-variables for then;

2. Individual parameters - INOPAR. There are denumerably many individual parameter symbols.
As wmeta-variables we use a,b,c

3. n-place predicate parameters - PREDPAR. For each n there are denumerably many predicate
parameter symbols. An n-place PREDPAR {is said to have ARITY ao;

4. Logical constants:

a) Sentential constants - SENTCONST: FALSE and TRUE.
b) Sentential connectives - SENTCONR: ~Av,D8,

¢) Quantifiers - QUANT: VY and 3

8. Auxiliary signs - AUXSYM: parenthesis ().

A particular FOL language is distinguished from a pure first order language by declaring
certain constant symbols. These have the SYNTYPEs:

1. Individual constants . INDCONST:

2. n-place predicate constants - PREDCONST. Each n.place PREDCONST has ARITY mn:

3. n-place operation symbols - OPCONST. Like PREOPARs each has an ARITY. Some authors call
OPCONSTs function symbols:

Each SYNTYPE is assumed to be disjoint from all others.

TERMs

t is a TERM in FOL if either

I. tis an INDPAR, INDVAR, or an INDCONST, or

2. tis f(t,1,...1,). where f is an OPCONST of ARITY n and ¢t; is a TERM.
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WFFs

A is an atomic well-formed formula or AWFF if

I. A is one of the symbols "FALSE" or "TRUE",
2. A is P(t...t2) where P is a PREOPAR or a PREDCONST of ARITY n.

The notion of weil-formed formula or WFF is defined inductively by:
1. An AWFF is a WFF.

2. If A and B are WFFs, then so are (AAB), (AvB), (ASB). (ASB). and <A).

- 3. If A is a WFF, then so are ¥x.A and Jdx.A provided that x is an INDVAR.

The usual definitions of free and bound variables appiy and can be found in any standard logic
text (eg. Mathematical Logic by S.C. Kleene). Below the usual conventions for omitting
parentheses will be used.

FORMULAS

The notion of SUBFORMULA is defined inductively
I. A is a SUBFORMIULA of A.

2. If BAC, BvC, BaC, BC, or -B is a SUBFORMULA of A 50 are B and C.

3. If vx.B or 3x.B is a SUBFORMULA OF A, so is B[tex).

The notations Altex] and A{te-u}), where A represents a WFF, t, u TERMs and x an INDVAR are
used to denote the result of substituting x or u, respectively, for all occurrences of t in A (if
any). In contexts where a :iotation like Aftex] is used, it is always assumed that t does not occur
in A within the scope of a quantifier that is immediately followed by x. The notation A[x«1),
denotes the result of substituting t for all free occurrences of x.

The notation Alaex,x+t] means the result of first substituting x for a and then t for x. To
denote simultancous substitution we use Alae=xixet)
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Appendix 2

THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

In this manual the . max of FOIL will ba deacribed using a modified form of the MLISP2 notion of
pattern. These form the basic ronstructa of the FOL parser.

1. Identifiers which appear in patterns are to be taken literally.
2. Patterns for syntactic typos are surronnded by angle brackets,
3. Patterrs for repetitions are designated hy:

REPD]<patiern>] means 0 or more repeated PATTERN,
REPn/<patiern>] means n or more repeated PATTERNS,

If a REPO ar on REPn has two arguments then the second argument is a pattern that acts as a
separator. So that REP<w[f[> ,] means one or more WFFs separated by commana.
4. /ilternatives appear as NT[<PATTERND|.J<PATTERNn>).
ALT<wff>|<term>] means cithee a WFF or a TERM.
5. Optional things appear as OPT[<pattorn>]

REP2[<w[[>0PT].]] means a sequence of two or more WFFs opilionally separated by
commas,

These convant.ns are comhined sith the standard Beckus Normal Form notation.

Basic FOL symbols

In an attempt to make life easier for users, the FOL parser makes more careful distinctions
about the kinds of symbols that it sees than the previous description indicated.

<indgsym» 1a MT{ «indvary | «<indpar>» | <indeconst> )
cindvary te cidentitior> jdaciared INDVRR

<indpar» ta <idenlifier> jdeciored 1HOPAR
cindconst> 1a RLT( cidentifior> | jdeciarea INOCONST

< integer» ) $no declaration necessary

<0pSym> 1s ALT( «<oppar> | «optonst> )
<Qppar» 1s «identifier» jdec lared OPPRR

«ppCongt> te «identitior> 1decisred OPCONST
<preop» Is «OpSy™ 1ARITY | and decinred PREFIX
«infop> 1 copsym™ (ARITY 2 and declared INFIX
«opp lop> te <opsy™m {ARITY n and not dec lared

- t INF or PRE dec

cprodsys> 10 ALT{ <predpar> | <prodoconst>
<predpar> is «identifier> jdeclared PREDPAR
<preodconsi> i» «identifiers jdaclared PREDCONST
cprepred> 1a  «prodaye> RARITY 3 and declared PREFIX
<infprad> 1s «predsym> gARITY 2 and declared TWF IX
coppipred> 1a <prodsym> (MITY n and not decliored

} INF or PRE dec

cvontsym> i= ALT «sentper> | «sentcomst> |)
<tentpar> 1» «identifiers jdeciared SENTPAR
csoniconst> 1s ALTL FALSE |

TRVE |
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<identifior» ) jdectared SENTCONST
} INF or PRE dec

<gsontconn> 3s ALTL =~ | NOY | jnegalion
v | OR | jdis junction
A | & | RAND | jconjunciion
> | «| 1w | jimplicetion
es |] = | EQUIV } joqul valence

«pre log» te ALTE « | NOT ) -"
<inf log» te ALTE v | OR | A | 8 | AND | > | «| INP | uo | =» | EQUIV)

<quant> te ALTL V | FORALL | 3 | EXISTS)

TERMS

The FOL syntax for TERMs allows for both prefix operators and binary infix operators, as well
as the usual function application notation. Any undeclared identifier can be declared am
operation constant (OPCONST) using the DECLARE command. With proper declaration the
following are TERM:

ft {xe-y,gixsyez))
CAR

car (x,y)
IROBOT,BOX1,000RIUiy] Vx.P iq ix,y)))
pouerset(-RBA, C>)

<torm>» te ALTIL <indsym> |
<app | term }

«pralixterny |
<inl i xterm» |
«sol term» |
<n_Ltupleterm |
<compiorm |
t clerms ) )

<opp | torm to copplop> ( ctormiisly )
<prolixterms te <cpreopr cterms
cintixterm> te <iorm> cinfop>» ctor

csalliorn> 1m | «tormlist>» |}
entup ie ters te < <tormlist>» >
<cOmpiorm> ie | cindvar> | <«wutl> |

<tormiist> to REPLI <torms , "PY(,) ]

These are illustrated above and may be used at any ime. Other additions may occur from time
to time.

Of course, the appropriate restrictions on the SORTs of the arguments af the OPSYMs must be

AWFFs

AWFFs are formed similarly, but cannot be nested.
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«<dutf> eo RLY[ «basaufi> |
capplaut i> |

cpreautis |
cinlaut i> )

<beseduli> ee ALTL «santsym> |
apredpar> ) pith RARITY O

<applauti> te <applpred> { <ctarmlist> )

cproaduiis i» cpreprad> «term»
cintonlt> te ctarm> «<infpred> <torm

Examples of AWFFs are

A,B, Hc IX|32.Hc2r2¢X)
<a, b> = (5, 18,0}

tle,yle *cari{consix,yl) :

Equality is treated as any other predicate constant, but the system Lnows about the
substitution of equals for equals. It does not know that AZB is usually interpreted as ~(A«B), but
treats it as any other predicate symbol.

WFFs

«wff> 1 RLY «standard first order logic foreuia> |
<vi> 1 10PT «gubpart>l I0PY «subst _oper>! |

The syntax for WFFs allows the following abbreviations and options.

The primitive logical symbols are:

anti> te ALTE cprimutt> | <proutt> | <cintutt )

«primifi> 1a ALT coutf> | «quaninii> | { <anit> } )
«prenti> 1a <prelog> «<primusti>
cintul > te «primii> cinflog> <primti>
cquantuil> te cquantprefin> <anelinit>
cquanipretixs is ALT cquant> REPL cindvar> ) . |

( <cquant> REPL( <imdvar> ) ) )
<shal luff> 1s REPBI <prulog> } «primitt>

Parentheses may be amitted and then association is to the right. As is usual conjunction hinds the
strongest, [followed by disjunciion, implication end equivalence, Negation, as well as both quantifiers,
bind to the shortest WEF ox their right, Thus Yx.P(x)oP(x) will parse as (Vx.Pix))oP(x) not as
Vx.(P(x)o P(x)

We can write adjacent quantifiers of the same type together, so Vx.Vy.P(x.y) can be written vx
y.P(x.y). FOL also accepts (VxXVy)P(x.y) or (Vx y)P(x.y) for Vx.Vy.P(x.y).

Subparts of WFFs and TERM:

Within a deduction there is a completely general way of specifying any subpart of any TERM or
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WFF alveady mentioned. We accomplish this by means of a SUBPART designator. Derivations
consist of WFFs, each of which has a LINENUM. The WFF which appears on this line is designated
by following it with a colon. If

18. Vx y. (PI1Ix)130 (MIx,y)))

is line 10 of some derivation then 10: represents the WFF on that line, i.e. Yx y.(P(f(x))>Q(h(x 52)
Furthermore. subparts of such a WFF can be designated by a SUBPART designator.

«gubgert> 1s REPI( § cinteger> }

The integer denotes which branch of the subpart tree you wish to go down. Quantified formulas
and negations have only one inimediate subpart, called sl. The other sentential connectives each
have two. For predicates and function symbols the number of immediate subparts is
determined by their ARITYs. Any conflict with these will produce an error. Thus

10:21 « Vy. (PU1(x))3Rlh(x,y)))
10:02 - ERROR
18: 2101028) « hix,y

10:21#101#2 + ERROR (P has ARITY 1).

Substitutionsin WFFs and TERMs

Onte you have named a WFF, you can use a substitution operator to perform an arbitrary
substitution.

«<subsi_oper> 1e [ REPL{<substiistl>OPTI 1} 1}
«pubsttistl> iu ALT cterm» « <torm> | <ufi> o <uff> )

Examples:

10:21 Ix+ROBOT) = Vy. (P(f(ROBOT))>Q(N(ROBOT, y)))
101232104 (x)oROBOT:Q (hx, y))ePix)) « P{ROBOT)SP(x)
10: 121058111 (10: 4141228181) -ROROT) = ROBOT

10:21 Inet ty) » Wl. (PCICI(YIIIANLILY,9i})),

Note: the substitution operator changed the bound variable in the last example. This prevented the y in
J(y) [rom becoming hound. Ser section on substitutions.

WFFs and TERMSs thus have the following alternative syntax:

<«dfi> 10 «vi» 1 OPTL caubpart> OPY( «subst _oper> ))

ctorm> ta «vi» 1 OPT[ cavbpart> OPY( <aubst_oper> )}

There is an ambiguity as SUBPART may produce only a WFF where a TERM is necessary (or the
othe: way around). FOL checks for this and will not ailow a mistake. Such a subpart
designator can be used whenever the syntax calls for a \WFF or TERM.
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Another label for handling well-formed expressions is the VL

«vi» 1a RALTL «integer» | <label> OPTIRLTI ¢|=) «intagers) |
<axre> | REPLL(-] 1

The optional + or - integer) after a label designates an offset from the mentioned label by the
amount designated.

The last alternative has not been previously mentioned. Its meaning is the n-th previous line,
where n is the number of "-" signs.
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Appendix 3

AXIOMS FOR ZERMELO FRAENKEL SET THEORY

The axioms presented here and in appendix 4 are examples of the expression in FOL of the
conventional Zermels-Fraenkel and Goedel-Bernays-von Neumann set theories. We believe that

the practical nse of set theory for mathematical and computer science proofs will require an
extended practical system.

DECLARE PREDCONSY ¢ Z1INF);
DECLARE PREDCONST ¢ 2(INF);
DECLARE OPCONST U 2{iHF)

DECLARE INOVAR r 8 t u v ¥ x y 2
DECLARC PREDPAR A 2 B 1

RXION ZF:

EXT ¥x y. (Vz, (2x20 y)onny) % Extensionality
ENT, In. Vy. ~yor; XY Nui) gel
PRIR:  ¥x y.3z.¥u. luezwexvisyl; X Unordered pair
UNION: Vx, Jy. Vz. (zqyz3t. (za tatex))y Z Sum set
INF: Ix. (Oc eaVy, (yexaiyUiytdex)d; X Intinity
REPL: Wx.Jy.Vz.(Rw, I)zysz) > X Replacement

Yu. dv. (¥r. (rev 1 3s, (scusRis,rd) )y

SEP: Vx. dy. ¥z. CzcyszonaB iz) dy ¥ Separation
POMER: W¥x.Jy.Y2. (2cyziecr)} X Power sei

REG: Vi. Jy. txeBv lye xa¥z, t2exd=20yd))§ 4} I Regularity

7 Replacement is equivalent to 4

z Yi, (Jy. Rx, avy 2. (Ax, y) AR(x,2)oys2)} > 4
7 Yu,Jv. (Vr. (rev 3 3s. (scuaRis,r)))) x

7 or Ye, Jy. Alx,y) > Yu, Jv. Vr. (rev u 3s. (squnlils,r))) x

7 Separation is a consequence of and wedker then replacment. | 4

2 Detinltions 7

DECLARE PREDCONSY FUN i, INTO 2,PSUBSET 2(INF);

NECLARE OPCONST rng 1 dem 1

Axion

SUQSET: Vv y. {xeye¥e, (zexdzeyl)dy

PROPSUBSET, Veo. (PSUBSET (x,y) excya-ney)}
POIRF UN: Vx y xz. (2¢ Ix, yindanveey);
UNITSETFUN, Yu. lubmix,x} 3}
OPA I RF UN: Wr y.lex,yselixl,x, 1) 33
FUNCTIONS Vu. (FUN (ud s¥2, (2cuadn y. (2ecx,y>))aA

Vx yg 2. lax, y>cuaex, 2aqudyes)
pohalk- Yu x. (redomiu) sFUN(M) Ady 3. (geuayoen,25))
RANuL: Yu wo (eerng lu) -FUNTuYAdy 8. (ycuayedz, x»)
INTO: Yu x. UNDG, virrnglulendy
UNION: Wx y 2. (revilyzzexvzeydy §



Appendix 4

AXIOMS FOR GOEDEL-BERNAYS-VON NEUMANN SET THEORY

MOSTYGENERAL Class;

DECLARE PREOCONSY Class Set |;
DECLARE PREODCONST ¢ (Crass, Crass) INF);
DECLRRE PREDCONST c(Set,Class) LINFI,

DECLARE INDVRR A BC « Class,x y u v ww « Set)
DECLARE PREDCONST Empty Onefany(Ciass),DisjointiClass,Class))

AXIOM NCB:

KLASS: Vx Cloassix)g
155€T: Rh 8. R850 (RY),
EQUAL: va B C. ((C.ReCcB) ofall)

EMPTY! In.Vy. ayoxj
PAIRS, Vx y. Ju. Vv. (veunvenvveyl

CLASS!

EP]: 30. Vu v. (cu, vaRaucv)y
INT: vA 8.3C.vu. tucCaucRrucBly
COMP: VA.IR. Vu. (ucBa~uch),

PRO J: YA. IN. Yu. fueBodv.cu,vac)
PRION: YR. IR. Yu v. leu, vaBaucR);
CONV: YR. IR. Yu v. teu, var Brev,ux(R)
TRI: VYR.IB.Yu v wu. leu, v, urcBacy,u,ur);
TRI2) YA.3B.Yu v wu. leu, v,us(Bacu,u,v>(R) 3

SET

INF: Ju. (Emp ly iu) a¥y, (vcusdu. lucua=vanavend));
UNIONT Yu. 3v.¥u x. (ugxanquongvly
PUMER:  Yu.3v.Vu. (ncusucv)y

REPL: Yu R. (Onelany (RY 53v. Vu. lug vadx. Ixcuacen, xs¢R)))

FND: VA. (~Empty (WH) 33u. (uh Dis joint iu,A))),;

ACs 3A. (Dnellany (RY AVu, (<Englylu)odv. (vetuacv, uxt) )

Reproduced from
best available copy
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Appendix 5

INTUITIONISTIC MODAL LOGICS

Modal Logic:

The best known medalities are the so called ‘alethre’ ones, involving nececara NN) and

possibility(AMX hut many other sentential operators which display modal characteriatics have heen
studied, e.g. C for cancality (Burks (951), K and B for Lanowledge and belief tlintikka i"), P for
perception (Iintikka.iié. These latter modalities are the subject of intensive aesearch in loyic
at the moment, and a comprehencive semantics has heen evalved for «ome of them (Kriphe 1961,
Hintikka 99 There are still many difficult problems, especially in the case of quantification
into modal contexts, where the traditional rules of substitutability of equivalents and of

existential gencralization do not seen to hold. Thic has led ta a reformulatian of many
ontological notions in quantification theary(see, for example, (Hintikka.17%%) and (Follesdal 1968),

(Nate that modal operator pre contential operators af a rather special kind, nog POUDCONS Te fe {0 png
possible to regard modal operators ac applying 10 names of centences or formulae without losing the
powerful cemanticcicn, for rvample «Montague, 19630)

In the current implementation, the user may define non-standard modal systems and operators,
Lewis S4 and S5. Hintibka's KBK and KBB(op.cit) are already available, together with the
operators N(necessarily). M(possibly), K(knows), B(believes).

(a) The Classical Systems T, $4 and S5

von Wright's system, T (van Wright 1951) is got from LPC by adding:
Ab: Npo>op

AG: N.p=2q)> (Np =>Njq)

Lewis's system $4 (LewiskLangford.1932) is got from T by adding:
A7: Np >NNp

Lewis's S5 by adding:
AR: Mp 2NMp

(b) Natural Deductina Systems of Modal Logic

(1) These arp based on minimal, classics) and intuitionistic logics:

(2) A formula is «aid to be madal if its principal sign is a modal sentential operator:

(3) Necessity systems:

Prawitz has two inference rules for S4: 5
\co© 2 bs .

food se co?0% \a
Re? a2
\
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NI) a NE} Na

N.a a

and a corresponding deduction rule for NI, when the proof ar deduction of a’ depends only on
modal formulas.

In S53, N.asa may be inferred also when every formula in the dependency set is either a modal
formula or the negation of 2 modal tormula. begin indent 5,0 (4) Possibility systems:

The possibility operator, M. may be added by means of the rules

MI) a ME) Makb

M.a b

When these rules are added, the deduction rule for NI must be modified to be similar to the rule

ME.

In the classical Lewis systems, M and N may be interdcfined, e.¢c. M.as-N-.a and N.a © -M-.a, but
in the Prawitz system this is not possible.

The syntax for modal formuiae is wentical to that of standard formulae, except that WEF may
be preceded by | or more modal aperators(and imbedded -). followed by a °’. So a perind

amodyiuli~ oe smodadlprelivy -primull>

amodatprativy oe identifiers *,

For example, NMN-MMNNMNMNM.A and YX.M.P(x)oMMp(x) are well-formed.

When scanning for modal formulae is turned on using the ‘THEORY' command (sce Section
4.13), the following rules then become available:

NECI dine number, NECE  <cline-number>

POSSI dine-number>, POSSE <line-number

as defined by the conditions above.(Nate carefully the dependency restrictions)
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