
PB-234 S513

A NOVEL PARALLEL COMPUTER ARCHITEC-

TURE AND SOME APPLICATIONS

Samuel E. Orcutt

Stanford University

Prepared for:

National Science Foundation

May 1974

DISTRIBUTED BY:

Natisnal Technical InformationService

N

.

/
BIBLIOGRAPHIC DATA 1. Report No. 2.

Technical Report No. 7) PB 234 513
4. Title and Subcitle S. Report Date

May 1974

A Novel Parallel Computer Architecture and Some Applications co
7. A 8. Performing O izat .

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Stanford University
It. C G No.

Digital Systems Laboratory oncaet/Grant No
Stanford, California 94305 NSF Grant GJ-41093

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered

National Science Foundation technical
1800 G Street Nw

15. Supplementary Notes

STAN-CS-Th-430

16. Abstracts

(see attached sheets)

17. Key Words and Document Analysis. 17a. Descriptors a

parallel computation, computer architecture, interconnection

| networks, triangular linear systems, matrix multiplication, sorting,

17b. Identifiers /Open-Ended Terms

Heronayuread by

NATIONA! TECHNICAL
INFORMATION SERVICE
Ls Dep. et of Ugmioerco

17¢. COSATI Field/Group Springfield VA 22151

18. Availability Statement 19. Rocurity Class (This
Approved for public release: distribution unlimited “Pn A : 4 |

0. Security Class is 4

ORM NTIS-39 (REY. 10-73) ENDO SED BY ANSI AND UNESCO. THIS FORM MAY BE REPRODUCED USCOMM. DC s2¢8-P74

n" 22480

ABSTRACT

Present day computers have been designed with processing elements

and memories in a one-to-one correspondence, For many problems this

architecture limits the speed of solution, In this paper a machine

architecture is presented in which processing elements and memories

sre considered independent resources. This architecture provides a

technique for increasing the logical bandwidth of the memory without

increasing the physical bandwidth. The scheme for interconnecting

processing elements and memories .s based on the mathematical formu-

lation of a matrix-matrix product,

Of interest in determining the usefulness of a particular computer

architecture are the problem classes which it is able to solve efficiently.

For this machine we consider several problems, On a serial processor

the multiplication of two nxn matrices requires ¢ (nd) steps when using

the classical algorithm or o(n{1°82 7)) steps when using Strassen's

algorithm, We present an algorithm for our machine which performs this

multiplication in O(log n) steps. This can easily be shown to be the

minimum time possible, We also consider the solution of linear trianguler

systems of equations. This problem requires 0(n®) steps for a serial

processor, and O(n) steps for a parallel processor of the ILLIAC IV-type.

We present a parallel algorithm suited to execution on our machine which

solves these systems in 0(1log” n). This algorithm is based on an extension

of the principle of recursive doubling,

11
STAN-CS-T4-430

A Novel Parallel Computer Architecture

and Some Applications

by

Samuel E. Orcutt

May 1974

Technical Report No. T1

Digital Systems Laboratory

Stanford Electronics Laboratories

Stanford, California

This work was supported by Bell Laboratories and by the National
Science Foundrniion under grant GJ-41093.

.

14

A NOVEL PARA’.LEL COMPUTER ARCHITECT{RE

AND SOME APPLICATIONS

by Samuel E., Orcutt

Abstract

Present day computers have been designed with processing elements

and memories in a one-to-one correspondence, For many problems this

architecture limits the speed of solution. In this paper a machine

architecture is presented in which processing elements and memories

are considered independent resources, This architecture provides a

technique for increasing the logical bandwidth of the memory without

increasing the physical bandwidth. The scheme for interconnecting

processing elements and memories is based on the mathematical formu-

lation of a matrix-matrix product,

Of interest in determining the usefulness of a particular computer

architecture are the problem clssses which it is able to solve efficiently.

For this machine we consider several problems. On a serial processor

the multiplication of two nxXn matrices requires 0(n3) steps when using |

tne classical algorithr or o(n" 1982 7) steps when using Strassen's

algorithm, We present an algcrithm for our machine whi~zh performs this

multiplication in O(log n) steps. This can easily be shown tc be the

minimum time possible. We also consider the solution of lincar triangular

systems of equations. This problem requires 0(n°) steps for a serial

processor, and O(n) steps for a parallel processor of the ILLIAC IV-type.

V |

¥: present a parallel algorithm suited to execution on our machine which

© sGlves these systems in 0(log~ n). This algorithm is based on an extension

of the principle of recursive doubling,

In addition to numerical type algorithms, we present algorithms :

for several combinatorial type problems, In particular, we give methods

for performing permutations and sorting. These algorithms require O(log n)

steps when operating on n items.

-/-

I. INTRODUCTION

Present day computers have been designed with processing elements

(PE's) and memories in a one-to-one correspondence. The classical serial

processor is composed of a single PE and a single memory. In a typical

parallel processor, say the ILLIAC IV, there are a multplicity of indi-

vidual processors, each one composed of a PE and a memory. In this case

there are many independent PE's and memories but they are organized so as

to associate a single memory with each PE.

As on plternative, PE's and memories can be interconnected in an

arbitrary manner. In Section II a machine architecture that makes use

of this additional fre~dom is described. This architecture provides a

method for increasing the logical bandwidth of the memory without increasing

the physical bandwidth. The scheme used for interconnecting PE's and

memories is based upon the mathematical formulation of matrix-matrix products.

In order to utilize such a computer organization effectively, it is

essential that the algorithms chosen be organized in a manner appropriate

to this organization, Considerable recent research has been done on the

development of algorithms in this manner, much of the impetus in this areca

being p:omoted by the ILLIAC IV project. The main emphasis of this research

has been toward developing algorithms for solving problems of size n, size

being measured in a manner appropriate to the particular problem under

consideration, on a machine with n processors,

In Section III we present an algorithm for computation of Mutrix-wmatrix

products that requires only O(log n) steps when executed on our machine. In

-2-

Section 1V the speedup and efficiency of this algorithm is investigated.

We also consider the problem of solving triangular linear systems of

equations, The serial algorithm requires (n°) steps, and the straight-

forward parallel algorithm requires O(n) steps when executed on a

varallel machine of the ILLIAC IV-type. The fastest algorithm known

to this author is that of Heller [1973]. 3y applying matrix theoretical

arguments to a lower Hessenberg matrix derived from the original triangular

matrix, he develops an algorithm which requires 0(10g° n) when executed

on a MIMD computer with o(n*) processors and an appropriate interconnection

network. (We use MIMD and SIMD in the sence of Flynn [1966]. They are

taken to mean Multiple Instruction stream - Multiple Data stream and Single

Instruction stream - Multiple Data stream respectively, By applying

recursive doubling arguments, similar to those of Stone [1973a] and Kogge

[1974], directly to the recurrence relation represented by the triangular

system we also develop an algorithm requiring O(log n) steps. Although

this time behavior is identical to Heller's, our algorithm requires only

0(n3) processors and is suitable for execution on the machine of Section II.

In Section V we give serial and straightforward parallel algorithms for

the solution to triangular linear systems. Section VI presents the hasic

principle upon which our algorithm is based, the principle of recursive

doubling developed by Stone. In Sections VII and VIII we develop our

algorithm for the solution to triangular linear systems of equations. This

problems is of interest as it forms a fundamental step in the solution of

general linear systems of equations when using the LU factorization.

-3=

In addition to the numerical type problems, it is useful to consider

some combinatorial applications. The twu problems considered in Section

IX are sorting and permutations. For the case of sorting the best known

parallel algorithm takes 0(10g° n) steps, while the algorithm we present

requires only O(log n) steps. The algorithm presented for performing

permutations also requires O(log n) steps.

i”

II. THE MACHINE ARCHITECTURE

Extant parallel computers have been designed using a set of

independent processors, each consisting of a PE connected to a memory.

Although this architecture is suitable for many applications, there

exist large problem classes that are not well suited to efficient

solution on such a machine. To solve problems of these classes

efficiently, a computer architecture more versatile than those currently

in use must be developed. In this section such an architecture, based

upon a set of independent PE's, a set of independent memories, and a set

of interconnections, is considered. A block diagram of this architectura

is shown in Figure 11.1. The five blocks in the diagram are each described

in detail in the remainder of this section,

A bottleneck in many computers is the memory. To compute at maximum

possible speed the memory must have sufficient bandwidth to supply the

arithmetic hardware with operands as fast as they are used. In modern

computers several techniques have been used to increase the availability

memory bandwidth without just buying faster and faster memory. The most

commonly used technique is memory interleaving. This consists of parti-

tioning a single memory into a set of smaller, independently operating

modules, In this way multiple memory requests may be simultaneously active

resulting in a higher bandwidth than otherwise. We have taken this princi- |

ple one step further. In addition to having multiple independent memory |

modules, we arrange the data paths from the memories in such a way as to

transmit the data from a single memory to many different PE's simultancously.

cm——— Data Flow Paths

momemees Control Signal Flow Paths

EE MEMORIES

MEMORY~-PE INTERCONNECTION NETWORK

Et

2
-
o
xE -
Oo

J AE
—— PROCESSING ELEMENTS (PES)

: PE-PE INTERCONNECTION NETWORK

Figure II.1

Basic Machine Block Diagram

-6-

In this way, if n PE's are connected io each memory we obtain an increase

in memory bandwidth of up to n.

There are n° memories 1n our computer, Conceptually these memories

are organized as a nXn array. Each memory is assigned a unique label

(1,)) where C s i,j< n-1. Every memory can he addressed independently

of all other memories. The memories operate synchronously, and any or

all of the memories may be active during any memory cycle,

Memory addressing on this machine is similar to that on conventional

machines with interleaved memories. To identify a single word in memory

it 1s necessary to specify both the memory in which the word is located and

its displacement within that memory. The way in which a memory address is

formed from these two items is shown schematically in Figure 11.2. For our

machine there are two different cases. When a memory address is obtained

from the PE array the memory identification is implicitly provided from the

label of the PE providing the address in a manner described later in this

section. In this case only the displacement need be specified. When access

is from the control unit both the memory identification and displacement must

be explicitly provided.

There are no PE's in our computer. Conceptually these PE's are

organized as a n X n X n array. Each PE is assigned a unique label (i,j,k)

where O < i,j,k < n-1. The PE's each have the basic arithmetic capabilita:s

normally found in a serial machine. All PE's obtain their instructions

simultiuneously from a single instruction stream, A PE is either enabled or

disal:led from executing instructions according to its local cnabie bit,

These cnable bits are set and reset by cither local tests or global enable-

setting instructions,

-T=

displacement Co] os

Figure II.2

Structure of Memory Addrerses

-8-

The control unit (CU) is the central element in the computer

structure, It is a computer in its own right, The instruction re-

pertoire of the CU consists of most instructions found in typical

serial machine repertoires, plus instructions for controlling the

parallel features of our machine. The instruction stream of the

machine is under control of the CU, Instructi>ns that pertain to E

the CU are executed locally, Instructions that pertain to other parts |

of the machine are decoded in the CU and sent to the appropriate part

of the machine in the form of control signals. Included among these

control signals are any common operands required by the PE's.

The memory - PE interconnection network provides the requisite data

transfer paths between the memories and the PE's. Which PE's are connected

to each memory depends on which of three memory access modes is used, In

any case, n PE's are simultaneously connected to every memory. Table II.1

describes the connections present for memory (i,j) in each of the access

modes. In this table, an entry of the form {1,j,*) represents the set of

all PE's whose labels have i and j as the first and second components

respectively,

The PE-PE interconnection netwo:l. provides the requisite processor

interconnections. As in the case of the memory-PE interconnecticn network,

there are three modes of opcration., In each of these modes the PE's are |

partitioned into n blocks of ne PE's each, Duta is exchanged only between

PE's in the same block. These exchanges take place simultaneously and in

an identical manner for all n blocks, Figure 11.3 shows the interconnections

established within a typical block of PE's when the interconnection network

is used in moc: 7Z, The interconnections are similar in the other two modes.

-9-

MODE PE Providing PEs Receiving Data PE Providing Data
Addresses When Fetching When Storing

X (0,1,3) (%,1,3) (0,1,3)

Y (1,0,3) (1,%,3) (1,0,3)

z (1,3,0) (1,9,%) (1,3,0)

Table 11.1

Memory-PE Interconnection Network Function

-10=

(0,0,k) (0,1,k) no (0,n-1,k)

(1,0,k) (1,1,k) : tee (1,n-1,k)

Figure II.3

Processor Interconnections for a typical block when in

mode = Z

| .

Table 11.2 describes these interconnections more precisely. This

table specifies the FE {1',3',k') that is at a distance d from PE

(1,3,k) in each of the three modes, that is if data is routed sa

distance Jd, the datum froin PE (i,Jj,k) ends up in PE (1',3',k").

In this table, an entry of the form (i,%,*) reprisents the set of all

PE's with labels whose first component is {i.

To further clarify the nature of the machine we now give examples

of several typical machine instructions, A more complete description of

the machine instructions is given in Appendix 1. The instructions are

described in a notation very similar to the ISP notation of Bell and

Newell [1971]. The main deviation from ISP is an extension to allow

description of the explicit parallel activities that occur in the machine.

To this end we define a new type of item that we call an index variable.

An index variable has us its value a set of integers, The appearance of

an index variable in a statement indicates that the statement is to be

executed simultaneously for every integer in the set associated with that

index variable. Index variables do not correspond to anything physically

present in the machine architecture but are merely a notational convenience,

In these descriptions we use the following symbolic coding conventions,

$PER1 is the symbolic name of Processing Element Register i, $CURi is the

symbolic name of Control Unit Register i, and $R is the symbolic name of

the Route register, The mnemonics used here are not necessarily those that

should be present in an actual assembly language but are chosen for their

descriptive quality. Since some of the PE and CU instructions have identical

mnemonics, we assume that the actual bit encoding of the instructions allows

the type of instruction, PE or CU, to be determined. We present CU

instructions first.

MODE 1 3 k' BLOCKS

X i ((n+Jj+k+d)/n) mod n (k+d) mod n (1,%,%)

Y ((n<i+k+d)/n) mod n J (k+d) mod n (*.3,*)

z ((n+1+j+d)/n) mod n (J+d) mod n k (*,%,k) |

Table 11.2

PE (1',3',k') that is at distance d from PE (i,j,k) in each mode.

-13-

£xample Instruction Comment

LOAD $CUR],N $CUR1 := MEMORY(N)

SUB $CURO, $CUR2 $CURO := $CURO - $CUR2

JP £Q,LABl if condition code indicates equal

then go to LABl

BCAST $CUR2, $ PER] for every PE that is enabled do

$PER]1 := $CUR2

The instructions LOAD, SUB, and JMP function like similar instructions in

a serial machine. The instruction BCAST is used to broadcast a single

datum to all the PE's.

We now consider PE instructions. All of these instructions, except

ROUTE, affect only PE's that are enabled. ROUTE affects all PE's,

Example Instruction Comment |

LOAD,X $PER],A $PER]1 := MEMORY(A) in aceess mode X

ADD $PERO, $PER3 $PERC := $PERO + $PER3

ROUTE,Y 3 route data between PE's a distance

d = 3 in routing mode Y

CMP $ PER], $ PER2 the condition code is set according

to $PERL : $PER2

SETE A,GE set the enable bit if and only if the

condition code indicates > or =,

These instructions are basically similar to typical parallel computer

instructions, The differences arise from the strategy used for memory

accessing and PE interconnections, The exact nature of these two items

was described previously in this section.

: as

III. COOMPUTATION OF MATRIX - MATRIX PRODUCTS

For an algorithm {o execute efficiently on a given computer the

organization of the algorithm must be suited to the structure of the

computer, To utilize the available computing resources as efficiently

as possible, algorithms should be selected with this in mind. As an

example, consider the computation of a matrix-matrix product.

Let A, B, and C be n X n matrices, Consider the equation

C = AB

This computation 1s to be performed in minimal time using arithmetic

operations on pairs of operands. It is easily shown, by a fan-in argument,

that the minimal time required for this computation is O(log n). By

introducing the maximum apparent parallelism into the classical serial

algorithm for computing matrix - matrix products, a parallel algorithm

that requires O(log n) steps when executed on the machine of Section Il

is developed,

It is well known that

n-1

C4 "2 agg + bk 0 < i,k < n-1
The computation of 83 . Pik is performed in PE (1,3,k). In this way
all no products can be computeu simultaneously provided sufficient operands

are available. To obtain these operands the matrices A, B, and C must be

stored in a manner that allows access to the entire matrix simultancously,

and that allows each PE access to the proper elements of the matrices. It

| | -16-

is easily verified that both these criteria are satisfied if the (1,3)

elements of A, B, and C are all stored in memory (1,3).

To complete the computation of the matrix - matrix product, the

summations

n-1

& (ay . by) 0 < i,k < n-1
must be evaluated. The interconnections provided are sufficient to

allow the computation of these summations. The following algorithm, where

Acc{i,i,k] is an accumulator, one of the $PER's, of PE (i,j,k), computes

a matrix - matrix product. The algorithm is given in an ALGOL~like

notation (Stone, 1973a]. In this notation an inequality of the form

(r <1 < 8) following a statement means the statement is to be executed

simul taneously for all values of the index in the specified range.

array A,B,c{0: n-1,0: n-1];

accfi,3,k] := Al1,3] x B{3,k], (0 s 1 <n-1), (0 s1 5 n-1),

(0 < k 5 n-1);

for ii := 1 step ii until n/2 do

Acc[1,3,k] := acc[i,3,k] + Acci,j+ii,k], (0 < i < n-1),

(0< Jj snl), (0sk<x<n-1);

cl1,k] := acc[1,0,k], (0 <1 <n-1), (0 < k s n-1);

The function of this algorithm is quite simple to understand. We

first form all no products 84 3 . bike We then apply the log-sum algorithm
nZ times in parallel to compute each of the Cik®

i.

To help illustrate the use of our machine, we now give a machine

language equivalent of this algorithm,

SETE cEnable all PEs

LOAD, Z $PERL, A $PE(1,J,k) gets

LOAD, X $PER2, B %PE(1,),k) gets B(J,k)

MPY $ PER], $ PER? %torm A(1,J) * B(J,k)

LOAD $CUR1, '1’ Pset 11=1

LOAD $CUR2, ndiv2 fndiv2 = n/2

JMP , X42 | $Skip increment first time through

Ll: ADD $CUR1, $CUR1 P11 ;= 11 + 14

CMP $CUR1, $CUR2

JMP GT,L2 %go to L2 if ii > n/2

LOADR $R,$PER] $load register to prepare for route

ROUTE, 2 $CUR1

ADD | $ PER], $R step of log sum
JUP ,L1

L2: STOREY $PER1,C %store results

-18- |

1V. SPEEDUP AND EFFICIENCY

One of the major reasons for building a parallel computer is to

increase the throughout, measured in an appropriate manner, of the

computer as compared with that obtainable with a serial machine using

equivalent technology. Although the maximum obtainable speedup is deter-

mined by the architecture of the machine, the actual speedup obtained is

determined by the particular algorithm being considered.

Oonsider the parallel computer described in Section II, With no

PE's the maximum obtainable speedup is ns. For the classical matrix - |

matrix product algorithm 0(n3) steps are required in the serial case while

the parallel version requires only O(log n) steps, assuming that the time

required for a maximal length route is comparable to the time required for

a typical arithmetic operation (For the ILLIAC IV a maximal .ength route |

takes 14 clocks while a typical floating multiply takes 9 clocks.) In

this case the interconnections prov.ded are only slightly sub-optimal and |
consequently matrix - matrix products can be computed in nearly minimal |

time. This gives a speedup of 0(n3/10g n). |

Although this is the speedup obtained for the classical algorithm,

it is not the speedup obtained for matrix - matrix products in general.

Recent work by Winograd [1968] and Strassen [1969] has shown that matrix -

matrix products can be evaluated in less than 0(n3) steps, Strassen presents

an algorithm requiring only o(n(1082 7)y steps, This reduces the speedup

obtained for matrix - matrix products to o(n{10€2 7) 10g n).

- - -19-

Although speedup is important, it is not as important as cost-

effectiveness when evaluating a parallel computer, One of the main

factors entering into the cost-effectiveness is resource utilization.

For the parallel) matrix-matrix product this is easily determined. In

this analysis we consider relative utilization as compared with that

for a serial machine. Resource utilization is evaluated as (results

generated / unit time) / unit of hardware. We consider two cases. For

the classical serial matrix-matrix product we obtain

2 InPE = (n° / 0(n”)) / 1 = O(1/n)

A 3
Memory = (n° / 0(n’)) / 1 = O(1/n)

For Strassen's method we obtain

PE = (n° / 0(n{2°82 T))) / 1 ~ 0(1/n2-8)

Memory = (n2 7 o(n{2%82 T)}) / 1 = 0(1/02-0)

For the parallel algorithm the results are

2 3
PE = (n~ / O(log, n)) / n° = 0(1/(n-log n))

e 2

Memory = (n” / O(log, n)) / n° = 0(1/log n)

From these figures we can determine the relative efficiency of resource

utilization for the parallel computer. The figures that we give are

obtained by comparing with the Strassen algorithm. If the comparison were

made with the classical algorithm the figures would be approximately nor

higner,

| | -20-

PE ~ 0(1/(nlog n))/0(1/n°-8) = o(1/(n%2 10g n))

Memory =0(1/1log n)/0(1/nl-8) = o(n°-%/10g n)

With present technology the main cost of the parallel computer would

probably be involved in the memory, Since the memory utilization of

the machine is quite good, the cost-effectiveness of this architecture

should be reasonably high. As for the PE's, although their utilization

is low current trends in integrated circuit technology indicate that

the costs of the PE's should be guite low, allowing them to be used

rather inefficiently without causing the cverall cost-effectiveness to

to be lowered significantly,

V. TRIANGULAR LINEAR SYSTEMS OF EQUATIONS

For a computer to be useful it should be capable of solving more

than a single class of problems. We now consider the problem of solving

triangular linear systems of equations on the machine of Section II.

We wish to solve problems of the form

My=D>D

where

oy!

oa Maz

SE = Im n m
3k, 3° 33

"n1 "n2 "n3 * + Pn

For the purpose of our derivation we choose to work withan equivalent

formulation, Consider evaluating sequences of the form

i-1

y(i) = 2 A(1,3) * y(1) + H(1) O<isN
A, H, and N are related to M, b, and n by

H(i) = by, / Mi+1, 141

= =- { . < -

A(1,3) = mig 501 Papyan 053 <3

N=n-1

-P2m

These sequences can be easily evaluated on a serial computer in the

following manner,

fori := 0 step 1 until N do y(1) := H(i);

forJ := 0 step 1 untilN-1 do

for 1 := J+1 step 1 untilN do

y(1) == y(1) + A(1,3) xX ¥(3); .

This algorithm requires N-:(N+1)/2 each of additions and multiplications.

The algorithm thus requires 0(N°) steps.

From the above serial algorithm we derive the following parallel

algorithm for a machine of the ILLIAC IvV-type.

y(1) := H(i), (0 <1 <N);

for J i= 0 step 1 until N-1 do
y(1) := y(1) + A(4,3) xX y(3), (J+1 s 1 < N);

This algorithm requires N each of addition and multiplication steps, each

consisting of up to N operations performed simultaneously in parallel,

This yields a speedup of (N+1)/2 as compared with the sequential algorithm,

We would like to obtain further speedup of the algorithm but there

appears to be no straightforward way in which this speedup can be obtained.

For each value of J the statement in the for loop requires the values of y

from the previous iteration. This situation is quite similar to that en-

countered in Stone [1973a] for tridiagonal systems. On this basis we apply

the techniques of recursive doubling to our problem,

-23-

VI. THE BASIC PRINCIPLE

The basic principle used in the development of our algorithm is

an extension of the technique termed recursive doubling by Stone [1973a].

This technique is discussed in detail in Kogge [1974], and the interested

reader is referred there for a more thorough discussion. By way of an

example, we now present sufficient .ackground to enable the reader to

understand the derivation of the next section.

Consider the problem of evaluating y(1), O < 1 < N, where y(1i) is

defined by the linear recurrence

y(0) = y,

y(1) = A(3) * y(3-1) , 1 21

We proceed by deriving a sequence of equations for y(1) of the following

form,

y(1) = A001) » y(1-2%) , A()(1) 2 a1)(q) » AlR-D)(y 2K

These equations, although valid in general, must be modified slightly to

account for the boundary conditions in the recurrence that occur at y(0),

In this way we derive a method for computing the values of y(i), 1 < 1 < N,

Let n = 10g, Nl. We evaluate a(®)(yy, 1 <1 < N, eccording to the above
formular. From the definition of a()(q) we know that

y(1) = RU * Yo l1s4i<N

Thus, after computing the first Mog, Nl sets of ak) (yy, the values of
y(1), 1 < 1 < N, are all available as the result of a single multiplication,

On an SIMD computer with appropriate interconnections this can be done in

O(log N) time and requires O(N) processors. We now proceed with our main

development,

| | -2h-

VII. A DOUBLING FORMULA

Consider evaluating y(1), O < 1 < N, where y(i) is defined by the

inhomogeneous linear recurrence

i-1

y(1) = 3 A(1,3) * y(3) + B(1) 120
J=0

We proceed, in the same manner as for our previous example, to derive a

sequence of equations for y(i) of the form

SE (x)(*) y(1) =) aA%,g) ya) +1) 120
J=0

A vacuous sum is interpreted as having the constant value O. From these

equations we can evaluate y(41) by

(kx) ry(i1) = BV/(1) , k 2 log, (1+1)]

To evaluate y(i), O < 1 < N, we derive the Mog, (N+1 15° set of equations
for y(1). We now give an inductive proof of the validity of (#) which yields

appropriate recurrence relations defining alk), 5) and 1%) (4).

Basis Step.

Let al%¢5 4) = A(i,jJ) and 1) (1) = H(i)

From this we have immediately

2’ (0) (0)
y(1) = A‘V/(4,5) *y(3) +HV/(L) , 120

J=0

-2>

Induction Step:

Assume that (*) is valid for k = n-1. We prove that (*) is also

valid for k = n, We know that

3-01

1) = 3° a ,0) = 500) + 1H)
J=0

Using the inductive hypothesis we substitute for y(1-2""1), y(1-2""1-1),

coy y(1-2"+1). This yields the following recurrence relations defining

A(®) (4,4) and 1) 4).
Case 1: 12 CR Cala

| 3-21 |

fa)=n Da) + FT aE) we)
J=1-2"41

1-221

AmD5 eT a (0) x aH)
k=i-2"+1

053 < 1-281-2"1

AP), -

g-ot-1

A010) + 5 AK) + aH,g)
k=§+2"}

1-2R42-221 <5 < 1-2"

Case 2: 2° S 1K Meaty

§- n-1

1(™) (4) = r(™1)y) + 5 a(=1) 4 4) » ("1 (5)
j=1-2"41

1-poh-1

A™1,5) = alt ,5) + TT amg) % a(x,5)
k=j+2™}

O0<3j< 3-2"

Case 3: al cy co”

g_on-1

aa) =u Dy + FT alg)» wg)
J=0

Case 4: i < 23

The four cases shown above can be reduced by noting that the differences

between the cases are due to different bounds on otherwise identical

summations,

-27-

VII1. THE ALGORITHM

We now present the algorithm used to evaluate the y(i). This

algorithm is obtained directly from the recurrence relations for

a®) (4,4) and nk) (4) derived in the previous section, In this algor-

ithm the arrays A and H contain the current values of a(®)(4, 4) and |

1%) (4), and the procedure P computes vector inner products. The |
language that we use here is slightly different from ALGOL in the

declaration and usage of arrays as parameters of procedures. A declar-

ation of a formal parameter as array A[*] indicates that the corresponding :

actual parameter is to be a one-dimensional array. Similarly, actual
parameters of the form A[1,*] and A[*,j] denote the 1*® row anda 3°

column of an array A.

1 begin

2 real array A[O:N,0:N];

3 real array H[O:N]; |

L real procedure P(U,V,FIRST,LAST);

5 real array U,v(*];

6 integer FIRST,LAST;

T begin

8 real array T[O:N]; comment T is used for temporary storage;

9 fk] :-0., (0 < k < N);

10 Mk] := U[k] x V(k], (FIRST Ss k s LAST);

11 for £:= 1 step £ until N do

-28- |

12 T(k] := T{k] + [k+l], (0 s x < N={);

13 P := T(0]; | |

14 end of procedure P;

15 INITIALIZE; comment this procedure initializes A and H;

16 for m := 1 step m until N do |
17 begin

18 ui) :- w[1] + p(A(4,*], H[*],max(0,1-2 X m+1),1-m),

19 (m £1 <N);

20 Al1,3) := A(1,3) + P(A[4,*],A[*,3],max(1-2 X m+, j+m),

21 i-m), (2Xms<isN), (0£]j<i-2 Xm);

22 end of main loop;

23 Y{1] := H(i], (0 s 1 < N);

24 end;

The actual function of this algorithm follows quite easily from the

definition of a(®) (4,3) and 1%) (4) derived in the previous section. The
statement in lines 18-19 determines the values of p(k) (4) grom H(*) ana

a(x) with procedure P computing the summation |

3 a) (1,3) x 15)
J

on some appropriate range for j. Similarly, the statement in lines 20-21

determines the values of AB) 4 5) from. alk) with procedure P computing

> aM (1,8) x ae,5)
£

on some appropriate range for£. The main loop of the program is executed

Mog, (N+1)] times. This allows the determination of y(1) as

-29-

y(1) = H(1)

To complete our development we now consider the execution time

and processor requirements of the algorithm, First we consider the

processor requirements. Each invocation of the inner product procedure,

procedure P, requires N+1 processors and for m = 1 there are about No/2

innter products to be computed. This yields o(N3) processors, For the

execution time we note that each invocation of the procedure P requires

log, (N+1) steps. This procedure is involved at most 2-1og,, (N+1) times
80 the total time required is 0(10g° N).

To show that this algorithm is suited for execution on our machine,

we consider a typical invocation of the procedure P, (Consider the

statement

| A[1,3) := al1,3] + p(a[1,%],A[%,31],...

We assign this computation to the set of PE's with labels (i,%,j). If

we store A in memory in such a way that A(i,J) is in memory (1,j) then

PE (1,3,k) will be able to access the necessary elements of A, The basic

operations performed by this algorithm are the same as those of the matrix-

matrix product algorithm except the limits on

2 fy Py
J

are different. From these results the suitability of our machine for

executing this algorithm can be seen,

-30- |

IX. COMBINATORIAL APPLICATIONS

The applications that we have considered thus far have all been

numerical in nature, As further examples of the versatility of our

machine, we now consider two combinatorial problems, namely soring and

permutations, The methods described are optimal in the sense of re-

quiring minimal time,

In the case of sorting we consider the following problem, Given

an array of n items, we.want to rearrange these items into ascending

order as quickly as possible, It can be shown, by an information theoretic

| argument, that the minimum number of comparisons required to do this sorting

is O(n*log n). This indicates that the best possible algorithm for a

serial machine mst require at least O(n‘log n) steps. For a parallel

machine with n processcrs the minimum possible would be O(log n) steps,

but the best known algorithm [Batcher, 1968] requires 0(1og” n) steps.

In this section we describe u method for sorting that requires O(log n)

steps when executed on the machine of Section II.

The strategy that we use for sorting is as follows. We first perform

comparisons on all n’ pairs of items, We assign a value of 1 to each

comparison that indicates < and a value of O to each comparison that

indicates = or >. Let 3 denote the value assigned to the result of
comparing the ith element with the 3th element. The value of the summation

n-1

pI1=0 H

-31-

is the position of the th element of the original list in the sorted

1ist 1f we count from O instead of 1 as the origin, This sum can be

determined in O(log n) steps, using the standard log-sum algorithm,

simultaneously for all n items under consideration,

To complete the sorting, we must now move the items into the correct

location, The method used to do this part of the sorting procedure is

also suitable for performing arbitrary data permutations, We proceed in

the following manner, Make n copies of the entire vector under consider-

ation. This is easily done on our machine in unit time. In the 1 th copy

of the vector we wish to select the element that is to end up in the ith

position of the output vector. To do this, in the ith copy of the vector

we zero out all entries except the one that is to end up in the y th position

of the output vector. After this modification, it is easily seen that the

sur: of all elements in the 3th copy of the vector is exactly the value of

the element that is to end up in the 1*® position in the output vector. To
compute these sums we again apply the log-sum algorithm, This requires

another O(log n) steps to perform the data permuting that is required,

Although this algorithm will work in the case where there are no

duplications in the list to be sorted, a minor modification must be made to

allow lists with duplications to be sorted. We make this modification in

such a manner as to generate what is referred to in Knuth [1973] as a stable

sorting algorithm, that is 1f there are items which have identical keys in

the list to be sorted they appear in the same relative order in the sorted

list as they did in the original list. We accomplish this by extending our

comparisons in such a way as to eliminate the possibility of two items

-32-

being equal. In particular, we consider that

it X(1) = X(J) and 1 < J then X(1) < x(J)

That is to say an item is less than another item if its key is less

or thelr keys are equal and it appears first in the original list,

Both the sorting and permuting methods use only n° PE's, Since

there are n> PE's available this results in a very low level of resource |

utilization, It would be desirable if there were some method of make use

of these idle PE's, From consideration of the nature of our machine and

the operations required for the algorithm, it can be seen that the entire

algorithm can be executed using only one block of n° PE's, If more than

one permutation were to be done then it would be possible to perform up

to n of them simultaneously by allocating a different block of PE's to

each permutation, This would increase the resource utilization when appli-

cable.

| | -33-

X. SUMMARY AND CONCLUSIONS

In this paper u machine architecture is presented that considers

processing elemcnts and memories to be independent resources, The

arcaltecture of such a machine is determined by the nature of the

interconnections between the processing elements and the memories. By

considering the mathematical formulation of a matrix-matrix product,

a machine architecture is developed that allows computation of matrix-

matrix products in O(log n) steps, where the matrices are n X n. The

machine has 2 memories and no processing elements, Stone [1973b] has

given some results on the suitability of certain algorithms for parallel

computation as related to questions of speedup and resource utilization,

These results indicate that this machine would be reasonable to use for

some classes of algorithms. Additionally, this architecture provides a

valuable method for increasing the logical bandwidth of the machine memory

without increasing the physical bandwidth in those cases where it is

applicable.

We also developed an algorithm for the solution to triangular linear

systems of equations that 1s as t1ast as the best algorithm known to this

au:hor. The algorithm requires 0(10g° n) steps for execution on the machine

presented here. The other algorithm known to exhibit equivalent time be-

havior requires a MIMD computer with o(n*) processors for execution,

The development of our algorithm is based upon the principle of

recursive doubling. In our proof we develop an extension of this principle

-34-

as compared to the work of Stone [1973a) and Kogge [1974]. This

technique seems to be very valuable for introducing parallelism into

problems which can be posed as recurrence problems,

At this writing the error behavior of the numerical algorithms

in this paper has not been investigated. The work of Kogge [1972]

indicates that the error behavior could be expected to be as good or

better than that of the serial algorithms,

Sorting and permutations are two importaut combinatorial type

problems. We have described methods for both of these problems that

require only O(log n) steps when applied to vectors of n elements using

our machine,

35<

ACKNOWLEDGEMENT

The author expresses his appreciation to Professor Harold Stone

of Stanford University for pointing out the paper by Heller (1973)

which inspired this work and to Bell Telephone Laboratories for the

financial support which made this work possible.

36<

BIBLIOGRAPHY

Bell, C. G. and Newll, A,, Computer Structures: Readings and Examples,
New York, New York: McGraw Hill, 1973.

Flynn, M. J., "Very high-speed computing systems,” Proceedings of the
IEEE, Vol. 54, no. 12, pp. 1901-1909, December 1366,

Heller, D., "A determinant theorem with applications to parallel algorithms,”
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, March 1973.

Knuth, D. E,, The Art of Computer Programming, Vol. 3, Searching and
Sorting. Reading, Massachusetts: Addison-Wesley, 1973.

Kogge, P. M., "The numerical stability of parallel algorithms for solving
recurrence problems,” Rep. Li}, Digital Systems Laboratory, Stanford
University, Stanford, California, September 1972.

Kogge, P. M., "Parallel algorithms for the efficient solution of recurrence
problems,” IBM Journal of Research and Development, Vol, 18, No. 2,
pp. 138-148, March 197%.

Stone, H. S., "An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations,” Journal of the ACM, Vol. 20,
No. 1, pp. 27-38, January 1973a.

Stone, H. S., "Problems of parallel computations,” Froceedings of the
Symposium on Complexity of Sequential and Parallel Numerical Algorithms,
New York, Ncw York: Academic Press, 1973b.

Strassen, V., "Gaussian elimination is not optimal,” Numerische Mathematik,
vol. 13, pp. 354-356, August 1969.

Winograd, S., "A new algorithm for inner product,” IEEE Transactions on
Computers, Vol. C-17, pp. 693-694, July 1968.

APPENDIX 1 37«

Definitions; |

Index Variable i = {0,1,...,n-1]}

Index Variabl- j = {0,1,...,n=1}

Index variable k = {0,1,...,n-1)

Memory MEM{O:max mem-1]; "This 1s the total memory of the system"

Register CUR[O:nreg-1]: "Control unit registers"

Register CU CC; "Control unit condition code register’

Register PC; ''Program counter’

Register PER[0:n-1,0:n-1,0:n-1][0:nreg-1]; "Processing Element Registers --

PER(1,j,k)(m) is the nt? register in PE({, j,k)"

Register ENABLE{O:n-1,0:n-1,0:n-1]; "Enable bits -- ENABLE(i,Jj,k) is the

enable bit for PE(i,j,k)"

Register PECC[0:n-1,0:n-1,0:n-1]; "Processing element condition code —-

PECC(i,j,k) is the condition code for PE(i,3,k)"

Register R[O:n-1,0:n-1,0:n-1); "Routing register -- R(i,j,k) is the

routing register for PE (i,3,k)"

Register 1{0:n-1,0:n-1,0:n-1]; "I(1,j,k) contains the value i"

Register J(0:n-1,0:n-1,0:n-1); "J(4,3,k) contains the value j"

Register K[O:n-1,0:n-1,0:n-1]; "K(i,j,k) contains the value Kk"

End of Definitions;

48<

"Control Unit instructions”

Functions;

cu_addr ~ (cu_reg2 = 0 — disp;

cu reg? #0 — disp + CUR(cu_reg2));

End of Functions;

Instructions;

" LOAD cu_regl,disp(cu_ reg?) Load"

LOAD := (CUR(cu_regl) «~ MEM(cu_addr));

" STORE cu regl,disp(cu_reg2) Store"

STORE := (MEM(cu addr) ~ CUR(cu_regl)); i

" ADD cu_regl,cu reg2 | Add"
ADD := (CUR(cu regl) + CUR(cu_regl) + CUR(cu reg2));

" SUB cu_regl,c: reg? Subtract”

SUB := (CUR(cu regl) « CUR(cu_regl) - CUR(cu reg2));

" MPY cu regl,cu reg? Multiply”

MPY := (CUR(cu_regl) « CUR(cu_regl) * CUR(cu_reg2));

" DVD cu_regl,cu reg2 . Divide"

DVD := (CUR(cu regl) «~ CUR(cu_regl) / CUR(cu_reg2));

" IOADR cu regl,cu reg? : Load Register"

LOADR := (CUR(cu regl) -- CUR(cu_reg2));

" CMP cu regl,cu reg? Compare’

OMP := (CUCC ~ CUR(cu regl) : CUR(cu_reg2));

" JMP cond,disp(cu_reg2) Transfer"

JMP := (comdACUCC — PC ~ cu_addr);

" BCAST cu_regl,pe_reg? Broadcast"

BCAST := (ENABLE(1,3,k) — PER(i,3,k)(pe_reg2) ~ CUR(cu-regl));

End of Instructions;

39<

"2rocessing Element instructions"

Functions;

pe_addr(i,J) ~ (mode = 'X' =~ (disp +

(cu reg2 = 0 =» 0; cu reg2 # 0 — CUR(cu_reg2)) +

(pe_reg2 = O = 0; pe_reg2 # 0 —~ PER(0,1,1)(pe_reg2)))

aJ(0,1,3)oK(0,1,]3);

mode = 'Y' — (disp +

(cu reg2 = 0 ~ 0; cureg2 # 0 ~ CUR(cu_reg2)) +

(pe_reg2 = 0 = 0; pe reg2 # O ~ PER(1,0,J)(pe_reg2)))

cx(1,0,J)aK(1,0,J);

mode = 'Z' - (disp +

(cu_reg2 = 0 = 0; cureg2 # 0 = CUR(cu_reg2)) +

(pe_reg2 = 0 — 0; pereg2 # 0 ~ PER(1,3,0)(pe_reg2)))

o1(1,3,0)03(1,J,0));

d ~ disp + (cu reg2 = 0 + 0; cureg? # 0 = CUR(cu_reg2));

End of Functions;

A0<

Instructions;

" LOAD,mode pe_regl,disp(cu_reg2,pe reg?) Load"

1OAD := (ENABLE(i,3,k) — PER(1,J,k)(pe_regl) ~ (mode = 'X' — MEM (pe_addr(j,k));

mode = 'Y' — MEM(pe addr(i,k));

mode = 'Z' — MEM(pe addr(i,j)));

" STORE, mode pe_regl,disp(cu_reg2,pe reg?) Store"

STORE := (mode = 'X' — (ENABLE(O, j,k) — MEM(pe addr(J,k)) ~ PER(0, J,k)(pe_regl));

mode = 'Y' — (ENABLE(1,0,k) — MBM(pe addr(i,k)) - PER(1,0,k)(pe regl));

mode = 'Z" — (ENABLE(1,3,0) = MPM(pe addr(1i,j)) «~ PER(1,3,0)(pe_regl)));

" ADD pe_regl,pe_reg2 Add’

ADD := (ENABLE(i,j,k) — PER(i,j,k)(pe_regl) «~ PER(1,J,k)(pe_regl) +

PER(1,J,k)(pe_reg2));

" SUB pe_regl,pe reg’ Subtract” |
SUB := (ENABLE(4,J,k) = PER(1i,J,k)(pe_regl) — PER(1,J,k)(pe_regl) -

PER(1,d,k)(pe_reg2));

" MPY Pe regl,pe reg? Multiply" |
MPY := (ENABLE(1,J,k) — PER(1,J,k)(pe_regl) « PER(1,J,k)(pe_regl)*

PER(1,J,k)(pe_reg2));

" DVD pe_regl,pe reg?2 Divide"

DVD := (ENABLE(1,J,k) = PER(1,J,k)(pe regl) ~ PER(1,J,k)(pe_regl) /

PER(1,J,k)(pe _reg2));

" LOADR pe_regl,pe reg? load Register”

LOADR := (ENABLE(i,Jj,k) — PER(1,J,k)(pe_regl) « PER(1,J,k)(pe_reg2));

“ CMP pe_regl,pe_reg> Compare"

CMP := (ENABLE(i,3,k) = PECC(1,J,k) ~ PER(i,J,k)(pe_regl) : PER(1,J,k)(pe_rcg2));

31<

" SETE mode, cond Set Enable Bit"

SETE := (ENABLE(1,J,k) ~ (mode = ' ' —~ condAPE CC(1,,k);

mode = 'A' = cORJAPECC(%,J,k)AENABLE(1,J,k);

mode = '0' = (condAPE_CC(1,j,k))VENABLE(1,],k);

mode = 'C' = —ENABLE(i,J,k));

" LDE, mode disp(cu_reg2,pe_reg2) Load Enable Bit"

IDE := (ENABLE(4,3,k) «~ (mode = 'X' — MEM(pe_addr(j,k))<i>;

mode = 'Y' — MEM(pe_addr(i,k))<j>;

mode = 'Z' = MEM(pe_addr(1,J))<x>;

" STE, mode disp(cu_reg2,pe_reg2) Store Enable Bit"

STE := (mode = 'X' — MBM(pe_addr(J,k))<i> — ENABLE(1,],k);

mode = 'Y' — MEM(pe_addr(1i,k))<j> ~ ENABLE(1,J,k);

mode = '2' — MEM(pe addr(1,J))<k> ~ ENABLE(4,j,k));

" ROUTE,mode disp(cu_reg2) Route" |

ROUTE := (R(1,3,k) ~ (mode = *X' = R(1,((n-J+k-d)/n) mod n, (k-d) mod n); |
mode = 'Y' = R(((n:1+k-d)/n) mod n,j,(k-d) mod n);

mode = '2' — R(((n-i+j-d)/n) mod n,(j-d) mod n,k));

End of Instructions;

