
STAN-CS-74~429 | :

Efficient Data Routing Schemes for

ILLIAC IV-Type Computers

by

Samuel E. Orcutt

Technical Report No, 70 |

April 107k

Digital Systems Laboratory |

| Stanford Electronics Laboratories

Stanford, California

This work was supported by Bell Laboratories and by the National

Science Foundation under grant GJ-41093.

{

I

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient's Accession No.

SHEET Technical Report No. 70

4. Title and Subtitle 5. Report Date

Ca April 1Efficient Data Routing Schemes for P ITH

7. Author(s) | 8. Performing Organization Rept.
Samuel E. Orcutt No.

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Stanford University

Digital Systems Laboratory 11. Contract/Grant No.
Stanford, California 94305 NSF @J-41033

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered

National Science Foundation technical
1300 G Street NW

15. Supplementary Notes

STAN-CS-T4~429

16. Abstracts

Much research has recently been done on processor interconnection schemes for

parallel computers. These interconnection schemes allow certain permutations to be

performed in less than linear time, typically C(log N) or O(N) for a vector of N
elements and N processors. In this paper we show that many permutations can also

be performed in less than linear time on a machine with an ILLIAC Iv-type inter-

connection scheme, that is connections to processors at distances of 11 and +,/N.
These results show that recently developed interconnection schemes yield less

speedup over the IILLIAC IV-type interconnections than was thought, These results

are of current interest due to the present ILLIAC IV programming effort.

17. Kev Words and Document Analysis. 17a. Descriptors

ILLIAC 1V, parallel computation, permutations, perfect shuffle, bit reversal,

bitonic sorting, data routing.

175. Identifiers/Open-Ended Terms

&

17c. COSATI Field ‘Group a. Sssee

18. Availability Statement 19. Security Class (This 21. No. of Pages

Report) 37Approved for public release; distribution unlimited UNCLASSIFIED
20. Security Class (This

Page AL 2UNCLASSIFIED 55.00/45
FORM NTIS-35 (REV. 10-73) ENDORSED BY ANSI AND UNESCO. THIS FORM MAY BE REPRODUCED USCOMM-DC 8265-P74

11

INDEX TERMS

ILLIAC IV, parallel computation, permutations, perfect shuffle,

bit reversal, bitonic sorting, data routing,

1

FIGURE CAPTIONS

Figure 3.1 Construction of a size 2m perfect shuffler

Figure 3,2 Size 16 perfect shuffler

Figure 4,1 Size 16 bit reversal network

k

Figure 5.1 Determination of (i,d(i))

|

i

|

|

i

|

|

|

i

|

|

i

|

i

|

i

|

|

!

|

|

!

|

!

: |

|

i

|

i

|

i

|

!

i

|

TABLE CAPTIONS |

Table 3.1 Decision table for perfect shuffle

Table 4,1 Decision table for bit reversal

Table 5,1 Decision table for general algorithm

|

Vi

EFFICIENT DATA ROUTING SCHEMES FOR

ILLIAC IV-TYPE COMPUTERS

by Samuel E. Orcutt

Abstract

| Much research has recently been done on processor interconnection

schemes for parallel computers, These interconnection schemes allow

certain permutations to be performed in less than linear time, typically

O(log N) or O(/N) for a vector of N elements and N processors, In this

+ paper we show that many permutations can also be performed in less than

linear time on a machine with an ILLIAC IV-type interconnection scheme,

that is connections to processors at distances of 11 and 1. /N. These

results show that recently developed interconnection schemes yield less

speedup over the ILLIAC IV-type interconnections than was thought, These

results are of current interest due to the present ILLIAC IV programming

effort.

-J- |

I. INTRODUCTION |

One of the factors involved in determining the usefulness of a

parallel computer is the facility available for communicating results

between processors. Much research has recently been done on these

interconnection schemes, Representative of the interconnection schemes

proposed are sorting networks [Rohrbacher, 1966), the shuffle-exchange

[Stone, 1971; Lang, 1973], p-ordered vectors { Swanson, 1973], and

Q-networks [Lawrie, 1973]. These interconnection schemes allow certain

permutations to be performed in less than linear time, typically

O(log N) or 0(/N) for a vector of N elements and N processors, In this

paper we show that these permutations can also be performed in less than

linear time on a machine with ILLIAC IV-type interconnections.

In the next section we describe the interconnection scheme that we

consider, and we give the notation used in the rest of the report,

Sections III and IV present specific algorithms for the perfect shuffle and

bit reversal. In Section V we present an algorithm capable of handling

a wide variety of permutations in 0(/N) time. Section VI describes the

- application of this algorithm to a specific problem, namely the p-ordered

vectors of Swanson [1973]. In Section VII an algorithm is presented that

is capable of doing any permutation in 0(/N 1og N) time. This shows that

recently developed interconnection schemes yield a speedup of at most

0(/N) as compared with the ILLIAC IV-type interconnections.

-2-

II, BASIC DEFINITIONS :

To analyze algorithms for parallel computers it is necessary to

make certain assumptions regarding the structure of the computer on

which the algorithms are to execute. So these analyses will be of

practical use, the assumptions made in this paper are consistent with

the structure of the ILLIAC IV,

| The basic organization of the machine we consider is Single

Instruction stream - Multiple Data stream (SIMD [Flynn, 1966]). In

this class of machine all Processing Elements (PE's) obtain their

instructions simultaneously from a single instruction stream. Each PE

will, in general, execute this instruction stream with different data. |

A PE is either enabled or disabled from executing instructions according

to its own enable bit.

We consider a parallel computer with N = ot PE's, for some even |

integer n, each labelled with a distinct index between O and N-1. A PE

is connected to PE's whose indices differ by #1 and +/N. In particular,

PE i is connected to PE's (i-/N) mod N, (i-1) mod N, (i+l) mod N, and

(i+yN) mod N. The ILLIAC IV interconnection scheme is precisely this

scheme for N = 6k,

Communication of data between PE's is accomplished by cyclically

shifting data between the PE's., This data transfer is referred to as a

) route, The physical interconnections that are present allow routes of

x1 and +/N to be done in a single step. These four routes are referred

to as unit routes, We assume that a single route instruction can be uscd

to route any distance k, 1 < k < N-1, The executionof a route instruction

a

is done by performing a sequence of unit routes in such a manner as to |

move data the required distance. For example, a route of distance 5

can be done as five routes of +1. The length of a route, {.(k), is the

minimum number of unit routes required to route a distance k, For

example, L(/N-1) = 2 since a distance of JN-1 can be obtained by a

route of +/N followed by a route of -1. It is easily shown that

1 s 4(k) < JN-1

The time required to route a distance k is given by

T(k) = a + bf (k)

where a and b are machine dependent constants.

The algorithms in this paper are given in an ALGOlL-like language

previously used by Stone [1973] and Kogge [1972]. The main difference

from ALGOL is an extension to describe the parallel features of algorithms

as follows:

| 1) An inequality of the form (r <£ i < s) following a statement
| indicates that the statement is to be executed simultaneously

| for all values of the index in the specified range.

2) If M is a logical vector, a vector whose elements are either

true or false, of appropriate dimension then an expression of

the form (M(i)) following a statement indicates that the

statement is to be executed simultaneously for all values of

the index corresponding to true elements in M. When used in

. this manner the vector M is called a control vector,

yy. | oo

Additionally, we make frequent use of the function

bit(1,])

. : th... : :
which yields the value of the J bit in the binary representation

of i where the least significant bit is bit O,.

In the analyses of algorithms that occur in subsequent sections,

we consider only the time used by route instructions when estimating

execution times. We let the execution time of an algorithm be given

by

T = a*R + b*L

where R is the total number of route instructions and L is the total

number of unit routes required,

: on

I11X. PERFECT SHUFFLE

An intercommunication pattern frequently encounteredis the

perfect shuffle, A shuffle of the elements of a vector is equivalent

to viewing the vector as a card deck, and shuffling them so that after

a shuffle the elements from the two halves of the vector alternate. |

Under this pattern the jth element is shuffled into position i' where

i' is obtained by shifting the bits in the binary representation of i

left one bit cyclically. In this section we consider performing the

perfect shuffle with a parallel computer having x1 and %/N inter-

connections,

The algorithm for performing the perfect shuffle is based on the

construction of a size Zm perfect shuffler from two size m perfect shufflers

and a size 2m adjustment network, Starting with size Z perfect shufflers,

which perform no interchanges, a size N = of perfect shuffler can be con-

structed in log, (N/2) = n-1 stages using only adjustment networks, A

typical stage of this process is shown in Figure 3.1. The complete network

for N = 1€ is given in Figure 3.2. Yor this method to be useful, the

adjustment networks must be easily implementable using the available inter-

connections, At stage k in the construction we are implementing adjustment

networks of size oH A network of this size performs interchanges based

upon bits C and k of the processor index as described in Table 3.1.

The algorithm for the perfect shuffle is easily derived from the

| description in Table 3,1, In this algorithm the array X contains the data

’ SE
so

2 h 9
11

® f mn &
® @

° i A ®
1

m-3 e | d
|

S

m=-=1 | N
m

€ ®
n ®
t

®

N

m m €

|
m+2 h o

® " | . ®
® f ®
® I ®

1

?m-1

Figure 3.1

Construction of a size 2m perfect shuffler

5 § | Lo

0 0 0 0

1 2 4 8

, XN 0 \
4

3 | | 9

So N/ VV VY

7 7 oo 7 11

8 8 8 4 |

9 10 12 /\ /\ / \ 12

11 11 /\ 13

12 12 XT 6
13 14 X | 14

15 15 15 15

Figure 3.2

Size 16 perfect shuffler

—f—

Table 3.1

bit k bit © action

0 0 “do nothing

k
O 1 route 2 -1

| k
1. 0 route -(2 -1)

1 1 do nothing

Decision table for perfect shuffle.

=f .

to be shuffled, the array TEMP is a temporary storage area and the

arrays MASK1l and MASK? are control vectors,

MASK1(i)} := —bit(i,k)Abit(i,0), (0 £ i < N-1);

MASK2(i) := MASK1(i- (2%-1)), (25-1 < i < N-1);

TEMP({i) := x(i+25-1), (MASK1(i));

TEMP(i) i= X(i-(2%-1)), (MASK2(i));

| X(i) += TEMP(i), (MASK1(i)VMASK2(i));

This algorithm works in a very straightforward manner, MASKl and

MASKZ determine which pairs of elements are to be exchanged according

to Table 3.1. The new values are stored in the vector TEMP while inter-

changes are being made, and then copied back into X when the interchanges

are completed.

To complete the presentation of this algorithm we now determine its

execution time, Since there are n-1 stages and each stage requires three

route instructions, the total number of routes is

) R = 3n-3 = 3+ log, N -3 = O(log N)

The evaluation of L is somewhat more difficult. L is given by

n-1

L= 5 340251)
k=1

This is quite straightforward except that the behavior of the function

| f(x) is quite peculiar. In particular if

-8-

x =a + JN +b a, 20, 0b<yN-1

— —_ o Pd -N-x a, JN +b, a, 0, 0 <b, VN 1

then

L(x) = min(a, + Dy, a, + b,,; ay + 1 +N = bys a, + 1 + /N - b,)

In this algorithm we know that 1 £ x € N/Z2-1, For x in this range it

is seen that

| min (a, + By a, + 1 + JN - b,) < min(a, + Py a, + 1 + /N ~ bs)

From this we conclude that

2(x) = min(a, +b, a, +1 +N - by) 1x <N21

By considering the form of the values of x required by this algorithm, it

is easily shown that |

k

6 -1 l £k £ n/2-1k

L(27-1) = Lsk—-n|: +1 n/2 € k € n-1
Using these values for {(x) we obtain

n/o=-1 n-1i
i Si-n/2

L=3¢ (27-1)+ 3+ > (2 + 1)
l=) i=n/2

: = 6(/¥-1) = 0(/N)

-0- SE

As compared with the straightforward permutation method which requires

R =0N-1 =0(N) and L = N-1 = O(N)

this method yields a speedup of O(/N).

This algorithm allows us to adapt parallel algorithms that utilize

perfect shuffle interconnections for execution on a machine of the type

we consider, Although the implementation of the perfect shuffle is

efficient, the algorithms developed by using this method to simulate the

perfect shuffle are not necessarily the best possible, For example, this

method can be used to adapt sorting and the Fast Fourier Transform, both

of which have the perfect shuffle as a natural intercommunication pattern,

for execution on a machine of this type, but these algorithms are not as

efficient as those developed directly for this type machine,

-10- |

IV. BIT REVERSAL |

Another problem of interest for computation on a parallel computer

is the Fast Fourier Transform [Pease, 1968]. An idiosyncracy of this

algorithm is that the results of the transform appear in bit reverse

order, that is, if 11 LI oo 1, 14 is the binary representation of

i then the iF component of the result is in position 1, Iy “re > 14 -
of the result vector, This unscrambling has recently been considered by

Polge et al. [1974] for the serial computer cases” In this section we
present an algorithm for efficient bit reversal on an SIMD computer with

interconnections similar to those of the ILLIAC IV. The algorithm given

here, although developed independently, is a parallel equivalent of their

algorithm, This algorithm illustrates the use of control vectors to re-

place loop structure when converting algorithms from serial to parallel.

The unscrambling of bit reversed vectors is done in stages as for

the perfect shuffle. At stage k, 0 < k £ n/2-1, interchanges are performed

based upon bits k and n-1-k of the processor index according to Table 4.1,

| Figure 4.1 shows a complete example of this procedure for N = 16. The

_ interchanges are performed in such a way that after kK steps all items are

in the correct PE with respect to the high and low order k bits of their

index,

We now present the actual unscrambling algorithm. The arrays X,

TEMP, MASK1l, and MASKZ2 are defined as in the previous section.

~11-

Table 4.1

bit k bit n-1-k action

0 O do nothing

0 1 route - (PEK

1. 0 route ("ELF

1 1] do nothing

Decision table for bit reversal,

| +- a_

0 0 0 |

1 8 8

2 2 | 4

| \ J]2 [OX > 2
X

: 5 A 106 XX 6 6
AAL7 14 14

XN10 3 5

ir /NX\ 13

13 11

14 / 7 7 |
) 15 15 15

Figure 4.1

Size 16 bit reversal network

| ~10-

for k := 0 step 1 until n/2-1 do begin.

MASK1(i) := bit(i,k)Abit(i,n-1-k), (0 < i < N-1);

| -n-1-k _k -1=-k _k

MASK2(i) := MASKL (i-(2" 1=k_5)), (27772 <1 Nl);
-1-k _k

TEMP(i) = X(i+2 = =2), (MASK1(i));
-1-k .k

TEMP(i) = X(i-(27 ~7=2%)), (mMAsk2(i));

x(1i) := TEMP(i), (MASK1{i)VMASK2(i));

end;

| This algorithm functions similarly to the previous one, MASK1l and

MASKZ2 determine the pairs of items that are to be exchanged, The exchanges

are made into the array TEMP and then copied back into X when completed.

We now determine the execution time for this algorithm. n/2 steps

are used each requiring 3 routes, This gives

R=3n/2= (3/2): log, N = O(log N)

n/e-1
-1-k Kk

k=0

Proceeding similarly to the analysis for the perfect shuffle, we obtain

CAS 0 < k < n/2-2
|=: k = n/2-1

This yields
n/ 2-2

L = (3/2) « 224 > 3 + (2Me-1-kpk)
k=0

-13- :

This again yields a speedup of 0(y/N) as compared to the straight-

forward algorithm.

Although the computation of the control vectors is shown as a

part of the main computation loop in both of the previous algorithms,

it is easily seen that the control vectors need only be computed once.

Precomputation of the control vectors provides for some savings in time

if the permutation is performed more than once.

-14- SE

V. GENERAL ALGORITHM |

In the previous two sections we developed algorithms for performing

several particular permutations on a machine similar to the ILLIAC 1V.

These results are of interest, but it is desirable to develop a more

general algorithm for performing permutations, In this and subsequent

sections we consider performing permutations that are specified as a

set of pairs (i,d{i)) indicating that element i is to be mapped into

element d(i). |

To simplify the discussion that follows we introduce some additional

notation. The particular notation that we use is due to Lang [1973].

Consider a permutation P: i—d(i) where 0 < i,d(i) =< N-1. d(i) is the

destination of i, that is the datum starting in PE i 1s to end up in

PE d(i), We consider permuting only the d(i) since the associated data

is moved in exactly the same way. We define (i,d(i))" to be the location

of d(i) after k steps of the algorithm. Clearly (i,d(1))° = i and

(i,a(i))™ = d(1i) where M is the required number of steps in the algorithm.
th : . cy k=1

The k= step of the algorithm performs the permutation P : (i,d(i)) =

(1,a(i))¥. The technique that we use is to develop a decomposition of P

into Pu Pi Po veo P, P, where each Py. can be efficiently realized using

the available interconnections and M is ''small enough’. To describe the

particular decomposition that we use, let the binary representation of i

be i i,...i,i, and the binary representation of d(i) be

(i), ,d(1) ,...d(i)d(1),. At step k we consider pairs of words i' and
i" where i' and i" are identical except bit k-1 of i' is 0 and bit k-1

of i" is 1,

-15-

Let d(j') be the tag currently in PE i' and d(j") be the tag.

currently in PE i'', We perform interchanges based upon d(d")y 1 and

d(3")_q simultaneously for all N/2 pairs of i' and i" according to

Table 5.1 From this it follows that

k k k

(i,d(i)) = d{(i) mod 2° + 2° Li 2X]

where [xX] denotes the integer part of x. This is shown schematically

in Figure 5,1. We perform these interchanges for k = 1,2,3,...,n. After

n steps all the d(i) are in the correct PE. This is easily seen from the

Cs : VK
definition of (i,d(i)) .

In the table describing the execution of this algorithm, Table 5.1,

certain entries are marked as not allowed, We now present a theorem that

describes the set of permutations that satisfy this requirement,

Theorem: A permutation P: i—d{(i) can be performed using the previous

k

algorithm if and only if Q : i~(i,d(i)) is a permutation for 1 < k = n,

Proof: See Lawrie [1973].

We now give the actual algorithm for performing the permutation,

" The array X contains the d(i) currently in each PE and the arrays TEMP,

MASK1l, and MASKZ are temporary storage and control vectors respectively.

for k := 0 step 1 until n~1 do begin

. . ~K
MASKL (1) := —bit{i,k)Abit(X(i),k)Abit(X(i+2),k),

k

(0 <i gs N-1-2);

_ k kK
MASK2(i) := MASK1(i-2), (2 <i < N-1);

k

TEMP(i) := X(i+2), (MASK1(i));

TEMP(i) := x(1-2"), (MASK2(1));

X(1) := TEMP(1), (MASK1(1)VMASK2(i)); |

end;

~16- |

Table 5.1

| «ft .

d(j oq d(J heey action

0) 0 not allowed

0 1 do nothing

1 0 exchange d(j') and d(j")

1 1 not allowed

Decision table for general algorithm,

Ho- AL

(i,d(1)) |

Figure 5.1

Determination of (i,d(i))

~17-

This algorithm functions the same as the last two except that

different pairs of elements are exchanged at every step.

We now evaluate the execution time of the algorithm, The

algorithm takes n steps each requiring 4 routes, This yields

R = 4n = ke log, N = O(log N)

n-1

L = > yoo £(20)
: = |

Similarly to previous cases we obtain

2 0 <j < n/2-1

2(2%) =

pd=v/2 n/2 <j < n-1

Substituting gives

n/2-1 n-1

J j-n/2

L

~18- | BE

VI. P-ORDERED VECTORS |

One of the main considerations in programming the ILLIAC IV is

the choice of data structure, From the standpoint of minimizing wasted

space the packed storage scheme is very attractive. A characteristic

of this storage scheme is that when accessing columns of an array stored

racked by rows the data comes out in permuted order, These particular

permutations have been called p-~ordered vectors by Swanson [1973]. In

this section we consider an algorithm for unscrambling p-ordered vectors

into normal order,

For this unscrambling we use the previous algorithm, To use this

algorithm we must show that no conflicts can arise, For p-ordered vectors

with p relatively prime to N the i"! clement of a vector is in PE (pi)

mod N, We choose q such that (p'q) mod N = 1. That such a q must exist

is easily shown. With this gq we can unscramble the vector by

d(i) = (g*i) mod N

To show that this can be done without conflicts we must show that

k .

. Q: i~(i,d(i))” is a permutation for all k. We do this by showing that

: k k : .

(1,,d(i))) = (1,,d(,)) = 14 = ro

We proceed as follows

k ko. k k k . ,.k

i) d{i,) mod 2° 4+ 27+ [i./2] = d(i,) mod 2° + 2 ‘Lie1 1 2

cs : k k

ii) i) = d(i,) mod 2 = d(i,) mod 2

~19-

iii) d{(i) mod Za (q*i) mod ok
Lk k

iv) ii) = (q 1) mod 2 = (gei,) mod 2
. i k k

v) iv) = qr (1; mod 2) = q*i, mod 2)
. . k |. k k k

vi) i) =2 Li,/27] = 2 ‘Li/27]
: : . a k Cs k

vii) vi) = i,-1, mod 2° = ii, mod 2

viii) vii) = g'i,-q'(i, mod 25) = q*i,.~q*(i, mod Ky1 1 a 2 2

ix) wv,viii) 2qi) = qi,

x) ix) = 1, = i, |

Since this shows that Q : in(i,a(1))F is a permutation for all k we can
use the algorithm of the previous section and know that it will function

properly. Thus the unscrambling of p-ordered vectors requires |

R = O(log N) and

L = O(/N)

—~20-

VII. UNIVERSAL ALGORITHM

The main drawback to the general algord th previously described

is the requirement that Q : in(1,d(i))" be a permutation for all k. It
is fairly easy to devise permutations that are important but fail to

satisfy these requirements. In fact, both the perfect shuffle and bit

reversal are permutations of this class, The restriction on Q was

removed in Lang [1973] by providing queues for the conflicts at each PE.

It is easily shown that for our interconnection scheme we have

R = 0(/N) and L = O(N) |

if we attempt to use this method. This is not a suitable solution. We

choose instead to make use of an entirely different approach.

Stone [1971] describes implementing the bitonic sorting algorithm

of Batcher [1968] on a parallel computer, This method was previously

proposed for interprocessor communications in Rohrbacher [1966]. In this

section we show that this algorithm can be utilized to perform permutations

efficiently on a computer with the interconnection scheme under consideration,

To perform permutations we use the Batcher algorithm to sort the d(i),

Since all d{(i) are distinct and O < d(i) £ N-1, it is easily seen that this

method will yield the correct permutation, As before, the algorithm presented

permutes only the d(i).

The Batcher algorithm consists of doing comparison-exchange operations

on items in PEs whose indices differ in only one bit. These comparison-

exchanges are done on bits in the order

| ~21- |

A Ror YE EE EREP EL PLY REEL EPR

The algorithm to implement this is very similar to the previous

algorithm. The additional complexity is due to a peculiarity of the

Batcher algorithm, A comparison-exchange operation may order its

outputs in either ascending or descending order, A set of mask bits

must be calculated to determine the appropriate mode for each comparison-

exchange operation, These mask bits are stored in the array MASK. The

| method used for computing these mask bits is not that originally used by

Stone, but is due to Knuth [1973, p. 237].

The algorithm we now present is derived directly from the above

description,

MASK(i) := bit(i,j+1), (0 £ i < N-1);

MASK1 (i) = wean (x42) > X(1)) © msi (1)),
(0 <i < N-1-2%);

MASK2(i) := MASK (i-25), (2* < is N-1);

TEMP(i) := x(i+2%), (MASK1(i));

TEMP(i) := x(i-2%), (MASK2(1i));

X(1i) += TEMP(i), (MASK (i)VMASK2(i));

end;

end;

-22- | |

We now evaluate the execution time of the algorithm.

n-1

R=: » (nk) =20 +2n
k=0

= 2 * log] N + 2+ log, N = 0(10g" N)

n-1 |

L =4 > (n-k) 22") = one 2% Cn + 16272- 16
k=0

= 2/N log, N - 6 log, N + 16/N - 16 = 0(/N log N)

This algorithm allows us to perform any arbitrary permutation in a

time of O{/N log N). It was shown in Stone [1972] that it is not possible

to perform these permutations in less than O(log N) time using any inter-

connection scheme with the same number of connections per processor. This

shows that the maximum speedup obtained by any interconnection scheme with

the same number of connections per processor as compared to ILLIAC 1IV-type

interconnections is only O(/N).

] An algorithm that could possibly be somewhat faster can be developed

by combining the algorithm of Section V with the previous algorithm in the

following manner. First apply the algorithm of Section V. Assume that the

first conflict occurs when considering bit k. The preceeding steps have

partitioned the data into oF groups in such a way that it is not necessary

to consider moving data between groups. To complete the permutation we

apply the previous algorithm to all groups in parallel. Clearly the |

23m

execution time of such an algorithm would be bounded by the execution |

times of the two Ld ividual algorithms, Since there is additional

bookkeeping to be done in this composite algorithm, whether or not this

algorithm would actually be faster would depend on how often the

permutation being performed partially satisfies the requirements of the

algorithm of Section V,

Dl

VIII. CONCLUSIONS |

In this paper we have presented a number of algorithms for

performing permutations on a parallel computer with an interconnection

scheme similar to that of ILLIAC IV. Particular algorithms are

developed for the perfect shuffle and bit reversal, Other algorithms

are developed for more general classes of permutations, All of these

algorithms require less than linear time for execution. These new

algorithms show that the speedup obtained by recently proposed inter-

connection network as compared to ILLIAC IV-type interconnections is

less than was thought,

Acknowledgement

The author would like to thank Professor Harold S. Stone and

Mr, Tomas Lang for their many helpful discussions on this topic,

| BIBLIOGRAPHY

Batcher, K. E., "Sorting networks and their applications,” 1968 Spring
Joint Computer Conference, AFIPS Proceedings, vol, 32, Washington,
D.C.: Thompson, pp. 307-31k, 1968.

Flynn, M. J., "Very high-speed computing systems," Proceedings of the IEEE,
vol, 54, no. 12, pp. 1901-1909, December 1966.

Knuth, D, E., The Art of Computer Programming, Vol. 3, Searching and
Sorting. Reading, Massachusetts: Addison-Wesley, 1973.

Kogge, P. M., "Parallel algorithms for the efficient solution of
recurrence problems,” Rep. 43, Digital Systems Laboratory, Stanford
University, Stanford, California, September 1972,

Lang, T., "Interconnections between processors and memory modules using
the shuffle-exchange network,’ Submitted to IEEE Transactions on
Computers (Available through IEEE Computer Society Repository,
no, R74~19).

Lawrie, D, E., Memory-processor connection networks," Ph.D, thesis,
Rep. 557, Department of Computer Science, University of Illinois,

Urbana, Illinois, February 1973.

Pease, M. C., An adaptation of the fast Fourier transform for parallel
processing,” Journal of the ACM, vol. 15, no. 2, pp. 252-264, April 1968.

Polge, R., J. et al,, "Fast computational algorithms for bit reversal,"
IEEE Transactions on Computers, vol. C-23, no, 1, pp. 1-9, January 197k.

Rohrbacher, D. L., "Advanced computer organization study,” vols. I and II,
~ Goodyear Aerospace Corp., Rep. GER-12314, April 1966 (DDC accession

nos, AD631870 and AD631871).

Stone, H, S., "Parallel processing with the perfect shuffle,” IEEE
Transactions on Computers, vol. C-20, no. 2, pp. 153-161, February 1971.

Stone, H. S., "Dynamic memories with enhanced data access,’ IEEE
Transactions on Computers, vol, C-21, no. 4, pp, 359-366, April 1972.

Stone, H. S., "An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations,” Journal of the ACM, vol, 20,
no, 1, pp. 27-38, January 1973.

Swanson, R. C., "Interconnections for parallel memories to unscramble
p-ordered vectors, Rep. 72, Digital Systems Laboratory, Stanford
University, Stanford, California, May 1973.

