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ABSTRACT

In an n-way interleaved memory the effective bandwidth depends

on the average number of concurrently active modules. Using a model

for the memory which does not permit queueing on busy modules and which
assumes an infinite stream of calls on the modules, where the elements
in the stream occur with equal probability, the average number is a
combinatorial quantity. Hellerman has previously approximated this

. 0.56
quantity by n 2 .

We show in this paper that the average number is asymptotically

mn 1 .

equal to = —-3 . The method is due to Knuth and expresses the com-

binatorial quantity in terms of the incomplete gamma function and its

derivatives.
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1. Introduction

1.1 n—way interleaved st..rage

To achieve a given storage capacity in a digital computer, it is
possible to supply all storage in a single module or to spread it over
several modules so that more than one access can take place at a time.
Since in a 'typical' program, successive accesses tend to be to
successive addresses, successive addresses are assigned to successive
modules in a cyclic fashion. Such a memory with n modules is said to
be n-way interleaved.

-~

1.2 Average number of active modules

The number of modules that operate concurrently is the number of
active modules and is a measure of the speed-improvement over a single-
module system. Assume that we have a: n-way interleaved memory.

Assume further:

1) an input stream of calls on the modules where each element

of the stream is an integer in the range 1 through n.

2) the elements in the stream occur with equal probability.

3) the input stream is infinite so that the memory never idles

for lack of work.

4) the time to inspect the input stream is zero or can be

overlapped with the access to the modules.

5) queueing of requests on busy modules is not permitted.



With these assumptions Hellerman {IJ has shown that the average

number of active modules N is -
avg

N . k?(n-l)!
T ex) i

Hellerman [1] has also suggested that a good approximation for

0.56 . _ N ,
N is N =n”?® 151 < 45 to within about 4%. The rest of this

avg avg

paper. is concerned with finding an asymptotic formula for Navg' We

mn 1 -3
show that N__ = [ .- 3 ¢ O(n *).

2, Asymptotic represcntation for Navz

2.1 Notation

For simplicity of presentation, let

B no
Q(n) = ' f%h——i (l)
k=1 (n-k)!n

. nd
[P(n,k)] n! P(n,k)
CTT o “

.., sum of a series where each term of Q(n) is multiplied by P(n,k).

2o [ (n_k+1)2] n

2
. -k+1 !
o (n) Ly )
K=1 n (n-k):

(1]

Trivially Q(n) = Q(n)
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Also N = Q (n) (3)

avg

sl

[ %%

The procedure used is to find a relation between Q (n) and Q(n)
and to use the asymptotic representation devecloped by Knuth [2] for Q(n).
| [ ]
Before doing that we have to compute Q (n) and other related quantities
in terms of the 'incomplete gamma function' and its derivatives (see below).

[ k2]

2.2 Computation of Q (n)

[(n—k+1)2]
Sections 2.3 and 2.4 below show how to compute Q (n) and
[n-k+1]
Q (n) in terms of the incomplete gamma function and its derivatives.
Then the formula for
[k L kn!
Q (n) = Z e can be found from
(n—k)'nk
k=1 ’
(k] [n-k+1] [1]
Q (n)+ Q (n) = (n+1)Q (n) = (n+1)Q{n) (4)
2 2
. [ (n-k+1)“] (¥ (k"]
Next, using formulas for @ (n) and Q (n), the formula for Q in

terms of the incomplete gamma function and its derivatives can be found

from
[ (n-k+1)%] 5 (k] (K"
Q (n) = (0~ +20+1)Q(n) -2(n+1)Q (n) + Q (n) (5)

[(n—k+l)2]
2.3 Computation of Q (n)

2.3.1 Consider the series
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, 2 n-1 n "
s, =1 12+n'22+-1-1—~32+.... +2 «n? (i) L L L
) 2! (n-1)! n!
We know that
3 .n+1
xex=x+x2+,->2(-ﬂ-+....-le'*: o
d Xy 3.2
Therefore §(xe )= 1+ 2x o+ (6)
- 2 2
d d , . x 2 2 3 2 n+l)” n
- & — = . EEDOEE S @ “n “n @ “n + -----
and dx"x dx<xe )] =17+ 2 o + A X
Therefore the above series
d [ d x4y
- Sp = _d?c[x-a; xe )Jx=n
= en(l+3n+n2) (7)
Next, consider
t L
% en(1+3n+n2) = n—;l-sz from (7)
n-1
n! 2 2 n 2
=—ﬁ[(l'1 + 2+ . .. -(n_—ﬂ!n )+
n
n
n 2
Gr(m1) s )
[(n-k+1)2]
_o(n) |+ Ry(n) (8)

Z n ! nk(_n+k+1)?'

where R2(n) = T

k20

2.3.2 Computation of Re(n)

Let y(a,x) denote the 'incomplete gamma function' ; i.e.,
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y (a,x) = _4 e tar (9)

Knuth [2] has shown that

x %2 xa+1 .Axa+2
€ Y (a’x) =-§_ + a(a+1) + a a+tl (a+2) + L KR (10)
X
Let G(a,x) = xe y(a,x)
xa+.‘t xa+2 xa|+3
= a + a(a+1) + a(a+1 (a+2) + ET (11)
Then 2-G(a,x) (a+1)xal + (a+2)xa+1 N (1
oA E T a a a+l) Tt 2)
g 2 [aG  (at1)® a s ar2)Z x o1
and lx— ] =-——x NETSE e
2_a+k
3 [.23G (a+k+1)x
Let Hg(a,x) ?[XPO ] Z a(a+l)...(atk)
k=0
2 n+k
B (n+k+1)“n
Then H2(n’n) - Z n(n+l)...(n+k)
_ (n+k+1) n®
= n"(n-1)! Z =K so that
k’O
n! H_(n,n)
2 2
Ro(n) = 55— (13)

n (n-1)!
From (11) we can find H2(a,x) to be
1{2(3;") = y(a,x)e” (l+3x+x2) + (3x+2x2)ex % v(a,x)

2
+ x2 e* -a—-—2 v(a,x) (14)
ox



so that from (13) and (1k4)

Rg(n) éz;— (1+3n+n
n: n (3n+2n2)
;E (n-1)}

=]

! n n®
;H ¢ To-1)7

[n-k+1]
2.4 Computation of Q (n)

[ -

[g‘; 'Y(a:x>] (n,n) +
ag a, X
T2 ¥ ( )1 (0, 1)

1n—k+1!n'

(nk)in

2.4.1 Let S, =11 + n+2 +.BE'
2!

1

From (6) above,

n-1
n

3+ es e +m

n

1]

A
d X n

From (17),
n! n
-r-lﬁ e (1+n) =
= P—! [(1’1
B
[n-k+1]
= g (n)
where

Rl(n) = Z

o
+

_t ne

+ Rl(n)

nt o (ntk+1)

(nt+k)!

k=0

- (15)

+ .b*o (16)

(17)



2,4.2 Computation of Rl(n)

)
Let H, (a,x) = == G(a,x) =-%§ [xe™y(a,x)]

Then from (12),

_atll) _a + (a+2)
Hy (ax) = %14 x ém *

(atk+1l) x°
:E: a+1)....(a+k

n+k+1) n®
:E% n+k )!
k>

(19)

so that
n+k
H (n.n) - (n+k+1)n
1( n) ;E: n(n+l).,..(n+k )
- k=0

= nn(n-l)! .

Therefore, H(n,n)
R (n) -
n (n-1):

From (11), we can find Hl(a,x) to be

iy (a,x) = & (um)ly(a,0] + x® D y(a,x)

so that

n

n-1)!
n

Ry(n) = 55_§:£ii22 [ n,nn} + Ei_:i____

e

(n-1)

n

S‘;[”Y(a)1) (n,n)

(20)

(21)
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2.3 Computation of %— v(a,x) and E—E v(a,x)
x ox
From (9),
-g—; y(a,x) = KL e7X (22)
and
82 a-1 =x iy A2 =X
— y(a,x) = -x" e+ (asl)x (23)
Jx
Therefore
o] n-1 -n
= Y(a’x)W(n,n) e (24)
and >
-2 - n-1 -n
-8—2 'Y(a,x)] (n,n) = ( n-l)nn e n"‘ n e ( 25)
x
o [k
2.6 Computation of Q (n)
From (21) and (24) we have,
R (n) = (1+n) [—}’Lrli-r)‘—)-] D (26)
n™
Then, from (18),
[n-k+1] , .n
n! e (1l+n
Q) -2l x )
From (20),
[n-k+1] n:t n n )
Q (n) = LS [1+n - Yn_i“, (1-tn)] - B
n L)
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Further, Knuth [2] has shown that,

n

qn) = 22 " [1— ni’;“-?-] (28)

From (27),(28) and (4) we get,

[k] ot n
Q (n) = =

nne- [1+n - %nﬁ) (14n) - (1+n) + %?—ir)l—,)- (1+n)]

[ kJ
Therefore Q (n) = n (29)

2.7 Computation of N
avyg

From (24), (25) and (15) we get

R, (n) = nlnen (1+3n+n2)[Yn£“1 F + 2n(14n) (30)

Therefore from (8),

Q(n) = 2 (143000%) - Ry (n)

n

[ (n—-k+1)2:| R

n

_h e (1+3n+n'2) [1- nin,)] -

n n-
n

2n(1+n) (31)
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From (%), 31), (29), and. (26) we obtain

[k2] 'n-k+1)2] 5 [x]
Q (n) = Q <n) - (n" + 2n + 1) Q(n) + 2(ntl) Q (n)

] - n I's .
LIS P 3n - na 12 en 1) [1 y(n,n)

[

2n (1+n) + 2n(l+n)

n
[1 Y n.’n)-] n
n-1 IJ

= nQ n) (32)

From (3) and (32) finally we obtain

N = «n) — (33)

2.8 Asymptotic formula for N
. avg
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Knuth [2] has given the asymptotic formula for Q(n) as

/ﬂn 1 1 [« I 1 , I -2
Q(n) =Jz - 3’ + 12 Sn "~ 1350 + 588 2.n3 + @(n ) (3l¥)

Hence we obtain the desired asymptotic formula for Navg as:

Navg V2 B-24+231 B AT b+ ogple J3r 0(n7) (35)

. 0. .

3.0 Comparison of Navg’ n 56 and the result computed by the asymptotic

formula

— ™ e: T3 [ - T3 4 28 /5
'Y 0,56 Cinl L 1T AR 13gn r 208/
,and

were calculated for values of n 2 through 50 on the HP 9100 programmable
calculator. The results are summarized below:

1.  The maximum percent error in the asymptotic result was

0.0713 at n=2,

2.  The minimum percent error in the asymptotic result was
0.00015 at n=50.

3. The percent error in the asymptotic result decreased
continuously with n.

4. The percent error and absolute error in the asymptotic
result were always less than the percent error and

absolute error in the empirical formula for N respectively.

avg’
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