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Some Thoughts on Proving

Clean Termination of Programs

by Richard L. Sites

Abstract

Proof of clean termination is a useful sub-goal in the process
of proving that a program is totally correct. Clean termination
means that the program terminates (no infinite loops) and that it
does so normally, without any execution-time semantic errors
(integer overflo&} use of undefined variables, subscript out of range,
etc.). In contrast to proofs of correctness, proof of clean termination
requires no extensive annotation of a program by a human user, but the
proof says nothing about the results calculated by the program,
just that whatever it does, it terminates cleanly. Two example proofs
are given, of previously published programs: TREESORT3 by Robert Floyd,
and SELECT by Ronald L. Rives-t and Robert Floyd.

This work was supported in part by the Fannie and John Hertz Foundation,
by the National Science Foundation and by IBM Corporation. Reproduction
in whole or in part is permitted for any purpose of the United States
Government.
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CERTIFICATION OF ALGORITHM 245[M1]

TREESORT? [Robert W. Floyd, Comm. ACM 7 (Dec. 196k4), 701]:

PROCOF OF CLEAN TERMINATION -- A NEW KIND OF PARTIAL CERTIFICATION

Richard L. Sites
Computer Science Department
Stanford University

Stanford, California 94305

Abstract

The certification of a program can include a proof that the program
always terminates cleanly, i.e., that as it runs on a real machine, it
generates no semantic errors and it encounters no infinite loops. As an
illustrative example, a previously certified algorithm, TREESORT?, is
examined and a hidden restriction is exposed which prevents it from

running properly on some machines.

Keywords and Phrases: proof of termination, debugging, certification,

sorting, proof of correctness.
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This certification differs from London's certification [2] in two
important respects: (1) it deals explicitly with running the algorithm
on a real machine which has restrictions on the validity of arithmetic
operations (roundoff error, overflow); (2) it deals only with proving
that the algorithm terminates cléanly, without examining what it
accomplishes (i.e., without proving that it sorts an array).

The need for such a certification follows from the fact that
TREESORT? will actually fail in realistic situations, although it has
been "rigorously proved correct". This flaw was noted in London's
reply to Redish [3].

Proving that an algorithm terminates cleanly means proving that as it

runs on a real machine it generates no semantic errors and that it encounters
no infinite loops. A semantic error is produced by attempting any operation
which the language specifies to be illegal or undefined, or any operation
which violates a restriction of a particular implementation of the language.
Many implementations fail to detect all semantic errors at run-time; this
produces meaningless results and is one of the tragedies of our profession.
Common semantic errors include arithmetic overflow, underflow, division by

zero, subscript out of range, case or switch expression out of range,

use of uninitialized variables, and use of a null pointer.
In the discussion below, it is assumed that the algorithm will run

on an ALGOL 60 machine with the following properties:

1. Integer overflow. The binary operations i+3j , i-3j , ixJj, i+J,
and i/j give the mathematically correct result if and only if i
and j have defined values and the result is in the range Imin

to Imax inclusive; otherwise a semantic error occurs. It is



assumed that Imi <0 and.Imax > 0 . Division by zero produces

n

a result outside of the range I.. to I ; i.e., a semantic
min max

error occurs.
No assignment of uninitialized.values. The operation i :=7 will
assign the value of j to i if and only if J has a defined value;
if j§ 1is uninitialized then a semantic error occurs. It is possible
to write algorithms which violate this restriction and still give
meaningful results, but more often violation of this condition
indicates an error which is best caught as soon as possible.
Subscript range checking. If A is an array with bounds [Al :Au]
then in all references to A[i] , it must be true that i is defined
and A, <i <A

L = —Tu
Mathematically correct comparison. The relation i < j always

produces the proper value true or false, even in cases where j-i

would produce an overflow. On a machine which has no compare
instruction, such as the CDC 6600, this property is not true; thus,
algorithms which are certified to execute and terminate cleanly on
the 6600 must be transformed so that every comparison is done as a
subtraction and a sign test, then all the subtractions checked for
overflow/underflow. Two representations of zero are allowed if

the implementation gives identical results for each.

Representable constants. Each integer constant must be between

I . and 1 inclusive.
min max

The proof of clean termination of TREESORT?, under suitable

restrictions on the parameters, 1s presented below in five parts:

a copy of the algorithm [1], the corresponding flow graph, a listing of



the assertions about semantic errors, a listing of the assertions about
loop termination, and proofs of the assertions. An appendix extends

the analysis to machines like-the CDC 6600.






ALGORITHM 25
TREESORT3 [M1]

Robert W. Floyd (Recd. 22 June 1964 and 17 Aug. 196k)

Computer Associates, Inc., Wakefield, Mass.

procedure TREESORT 3 (M,n);
value n; array M; integer n;

comment TREESORT 3 is a major revision of TREESORP[F. W. Floyd,
Alg. 113, Comm. ACM 5 (Aug. 1962), 43L] suggested by HEAPSORT

[J. W.J. williams, Alg. 232, Comm. ACM 7 (June 1964),347]
from which it differs in being an in-place sort. It is shorter and

probably faster, requiring fewer comparisons and only one division.

It sorts the array M[1:m] , requiring no more than 2 x (21 p-2) x(p-1) ,
or approximately 2 xn X(lOEQUﬁ'l) , comparisons and half as many
exchanges in the worst case to sort n = 2 tp-1 items. The algorithm
is most easily followed if M is thought of as a tree, with M[j +2]

the father of M[j] for 1 < j <n ;

begin

procedure exchange (X,y); real x,y;
begin real t; t :=x; x :=y; ¥y :=

end exchange;

procedure siftup (i,n); value i,n; integer i,n;
comment M[{i] is moved u£525§5 in the subtree of M[1l:n] of which
it is the root;
begin real copy; integer j;
copy :=M[i];
loop: j :=2 xi;
if j <n then
begin if j < n then
begin if M[j+1] > M[j] then j :=j+1 end;

if M[j] > copy thﬂ
begin M[i] :=M[j]; i :=j; go to loop end
end; T
M[i] :=copy

end siftup;



integer i;
for i :=n+2 step -1 until 2 do siftup (i,n);

for i :=n step -1 until 2 do

begin siftup (1,i);
comment Mk2] >M[j] for 1 < 3 <1i;
exchange (M[1],M[i]);
comment M[i:n] is fully sorted;
end
end TREESORT 3

The flow graphs are shown in Figures 1, 2, and 3. For reference
purposes, the arcs are numbered, and the nodes are lettered. The symbol
w is used to represent the value "undefined". Following threblock
structure rules of ALGOL 60, all local variables are set to w at

entry to the block.
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Figure 2. Flow graph of treesort3.



Figure 3. Flow graph of exchange.



Assertions About Semantic Errors

Assertions are generated locally and mechanically, based on the

operators in a node. The assertions about a node are attached to all

arcs which enter that node.

The mechanical style of assertion generation

and proof is intended to mimic a machine-generated certification of

clean termination.

Assertions for siftup

Node Assertion
C itw
M, <i <M
1 - - u
Mi] £ w
D itoe
Imin ses Tnax

I . <2xi<1I
n — = "ma

mi
E JFw
n#ow
F JFw
ntow

X

Reason generated

Cannot use uninitialized variable.

Subscript range. Ml and Mu are the

lower and upper bounds assumed for

array M

Cannot use uninitialized variable.

Cannot use uninitialized wvariable.

Constants must be in the representable

range.

Integer overflow.

10
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Node Assertion Reason generated
G Jtw
Imin sis Imax
Tmin < Jrl S-Imax

i+
MZ-S J l__<Mu

MJ+1] £ w
JFw
Mt Sds Mu

MGl # w

To keep this presentation more readable, the following trivial assertions

will be elided:

L. Inin S constant < I,, Assertions describing the largest and
smallest constants in each procedure will

be added at the end.

2. VAW Dropped when there is some other assertion
about v at the same node, i.e., any assertion
about the value of variable v implies the

additional assertion v £ w .

3. Any true expression involving only constants.
Node Assertion Reason generated
I .
i min Sl < Imax
I .
Ml <4 SMu
MIGT £ w
copy # w

11
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also

Assertions for treesort3

Assertion

M

M,

MIG] £ w
JFw

IA

i<M
—-u

IA

j<m

M, <i<M
!

copy £ w

2<TI
= "max

Node

C

=

Assertion

n £ w
itw
ifw
n#tw

ifFw

Iag Si-1<T o

ntw
ifw
ifw

Reason generated

Largest constant in procedure. Smallest
constant is 1 , which is greater than

Imin by assumption that Imin <0

Reason generated

Arguments passed to value parameters must

be defined at time of call.

[Other assertions about the arguments to siftup will be inserted

here after siftup is completely analyzed.]

Value parameter.

[Assertions relating to name parameters are all pushed into a copy

of EXCHANGE associated with this particular call.]

12



Node Assertion Reason generated

K ifw
Imin S i-1 S Imax
also 2 < Lhax Largest constant in procedure.
¢ .
L Assertions for exchange
Because it has NAME parameters oychange must be treated in strict
L, accordance with the copy rule. a ooy of exchange is made for each call,
h S2C1ange
> . .
[‘ with appropriate argument substitutions. The call at node J of

treesort3 is equivalent to:

el °l
M{1] :=M[i] |
E h!

Mli] :=t

p)

Node Assertion Reason generated
C My <1<y Subscript range.
M[1] £ w Cannot use uninitialized variable.
D M, <1 <M
£ - - u
M, <i<M
1 - - u
Mi] £ w
E M <1i<M
1 - - u

t £ w
13




Assertions hbout Toop Termination
sifttup

For any loop, asserting that it terminates is the same as asserting
that there exists a k > 1 such that on the k-th iteration of the loop,
one of the paths leading to an exit arc will be taken. The siftup
procedure has just one loop, in the sense that all cycles in the flow
chart pass through node D . The notation ik means the value of i
at the beginning of the k-th iteration of the loop, i.e., just before

the execution of the statement j := 2 xi1 in node D

The generalized loop termination assertion is:

3k > 1 s.t. [arc 5 taken] or
l[arcs 6, T, and 12 taken] or
larcs 6, 8, 9, and 12 taken] or

larcs 6, 8, 10, 11, and 12 taken]

This expression is expanded to reflect the branches taken to reach a

particular arc, using expressions in terms of values at the beginning

of the k-th iteration of the loop:
3k >1 s.t. {2xi, >0} or
{2 xi, < m and 2xiy > n  and Mk[2x1k]_< copyk} or

{EXikSnk and 2x:|.k<nk and

Ml2xi+1] <M [2xi ] and M [2xi ] < copyk} or

{2 xi, <n_ and 2xi, <n  and

k

M2 x L+l >M [2 x 4] and M [2 x1,+1] < copyk} .

k

In general, a loop termination assertion such as this is unprovable,

but there are a few important special cases which work for many loops.

14
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Two such cases are (1) strictly monotonic sequences of integers and
(2) pointers indexing through finite linked lists. 1p the siftup

loop, the fact that n -j,  is monotonically decreasing is one key to

proving loop termination.

treesort 3
first loop:
¥k >1 s.t. ik <2

second loop:

3k>1s.t. i

> g < 2

exchange -

No loops.

There is a shortcut to this general method of proving loop termination
which completely avoids analysis of the branching structure of the loop:
If any variable is monotonically increasing or decreasing inside the
loop, and the loop generates no semantic errors, then it terminates!
If a monotonic variable is found, then no other assertions, proofs, or
loop analysis is needed. The statements which modify the monotonic
variable cannot be executed an unbounded number of times without generating
an overflow, so proving that those statements generate no overflow
simultaneously proves that the loop terminates. This shortcut is

applicable to all the loops in treesort3 and siftup

15



Proofs of Assertions

As indicated in the program's initial comment, all intended
references to the array M involve subscripts in the range 1 to n.
In case the value of n 1s changed in the program, we will define the
variable n, equal to the value of n upon entry to treesort . All

*
subscript range assertions will assume that Mz: 1 and Mu =1, .'/

Assertions for siftup (note that n and 1 are bound in siftup, not

treesort3).

Arc Assertion Proof
2 i % w Value parameters are always defined.

1 <i< Ny ~ Not clear. Push back to arc 1 as an entry
condition for siftup. Eventually verify that

this assertion is true at each point of call.

Mli] # w Again, not clear. In fact, there is a need
to assert that ¥ 1 <# <n,, Mt] fw at
the very beginning of treesort? . Right

now, push this assertion back to arc 1.

3 i # W Used in previous node, hence i is defined or

a previous assertion would be false.

—
IN
n
A
—

The assertion Toin 2 2 is true because of
the assumption that Imin < 0 .Push the
assertion 2 < Imax back to arc 1 as an entry

condition for siftup.

I . <2xi<I Not clear. 1In fact, overflow will occur if
min = — "max

1=n, and n, > Imax/2 ~ We know from arc 2

that 1 < i , so Imi < 2 x1 . Push the

n
assertion 2x1 < I .. back to arc 1.

*
—/ It is possible to develop the proof of clean termination using only Ml
and Mu , but doing so makes it significantly harder to prove that the

siftup loop terminates when Ma =0 .

16
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Analysis of loop.

Values of variables at beginning of k+tl -st iteration in terms of

values at beginning of k-th iteration:

S
COpy,,, = COPY,

lk+l=2)<lk or 2xi +1

k
Jpr1 = Ly =@ x1  or 2xi+l
Mg = M, except Mk+l[1k] = Mk[e xi.,] or = Mk[2x1k+l}

Myl q] > copyy,q

TS 311y

b1 S

Thus n and copy are invariant in the loop; i is monotonically increasing

(since 2x i > i when i > 1 ); vari

arc Assertion Proof
4 J % w J is
ntw n is

and 1

5 1<i< Ny Still
copy # W True
loop.
6 JEw True
ntow True
17

ous elements of M change values.

defined in previous node.

defined originally as a value parameter,
s invariant within the loop.

true from arcs 3 and 15.

from node C and copy invariant in

from previous node.

from previous node.



arc Assertion
T 1<3<n,
MI3] # w
copy £ w

Proof

Not clear. On edge 7, j = n , and n is
invariant within the loop, so push the

assertion 1 < n < n, to arc 1.

Willbetrueif V¥ 1< g<ny, Mgl #w
on arc 1, since after that, an undefined
value can never be assigned to an element

of M in our machine model.

True from node C, and copy is invariant

within the loop.

For a more readable presentation we will elide the statement and proof for

all assertions which are true because they were true earlier in the program

and haven't changed.

8 Liin < 9t < Loy

1<j<n

MIJ+1] £ w

11 1<j<n

15 ifw

7 # w implies Inin < 3+ so clearly
Imin S_j+l . Because of test in node F,
j<n<I .»soFl<n<T -

From top of loop, < ik and j =2x1i

1 k
so 2<J, thus 3 < j*1 . From test in
node F, j <n , so j*1 <n Sno (see

arc 7).

2<J and j<n5no.
True because we have chosen to require all
elements of M to be defined on entry

(see arc T).

True from arc 8, where 1 <j+1 < n
M[j+1] # w from arc 8.

Just assigned a value.

May not be true. We know that ik&l <n

at this point, so push the assertion

2xn < Ima.x back to arc 1. Also see arc 3.

18
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Proof of termination of loop.

Since 1 is monotonically increasing, the loop terminates if no
semantic errors occur, i.e., if all the entry assertions are true.
We have now proven siftup to be free of semantic errors and

infinite loops, if the following assertions are true on entry:

(al) 1<1i<n, from arc 2
(a2) ¥1<42<n,, M2] £ w from arcs 2 and 7
(a2) 2 < TLax from arc 3
(alk) 2xi < Thax from arc 3
(a5) 1<n <n, from arc 7
(ab) exng I o from arc 15

These are sufficient (although not quite necessary: some elements
of M need not be defined) conditions for siftup to generate no
semantic errors as it executes on the "real" machine we have assumed.

Note that assertions al and al make assertion a3 redundant. Also, this
set of assertions could be further simplified if the programmer stated the
entry condition that is implied by the initial comment in siftup ,
1 <i<n<n. . The above set of assertions represents hidden restrictions
which are rarely included in the description of an algorithm. In
particular, if treesort? were used to sort an array of 30,000 elements
on a machine with 16-bit 2's complement integers (Ima.x = 32,767)
and > 16-bit addresses (such as a large PDP-11 or a 360 with half-word
integers), the statement

J = 2xi;
could be executed with i = 30,000 , either generating an overflow or

quietly assigning =-5536 to j . Either the overflow would terminate

19



execution, or (worse), the comparison M[j+1] > M[j] would terminate on
a subscript range error, or (worse yet, but somehow most likely) the

assignment M[i] := M[j] would store into a random location in memory

on the following iteration of the loop. _Thus, a mathematically correct,

certified program could generate complete garbage when run on a real

machine.

20
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Assertions for treesort? (remember that n

0 is the value of n upon
entry to treesort3 ).

Arc Assertion Proof
2 n ;4 w * Value parameters are always defined.
3 1w

Set in previous node.

Analysis of first loop:

T

1k+l = ik—l

so n is invariant and i is monotonically decreasing.

Lo n;éw_“

From arc 2 and n invariant in loop.
L 1tw
nf£w

True from previous node.

From arc 2 and n invariant in loop.

Assertions for call to siftup , with arguments i and n (bound in

treesort3 ) substituted for parameters i and n .

=1 30 2 <i , but it is not immediately clear

that i < ny - Since ik 1s monotoni-

cally decreasing, it is clear that if

il <n,, all other 1y will be < n

o -
But il = n+2 and 2511 , 8o to
enter the loop at all, nj >k, in
which case it is true that n, 2 <n o

(2) v 1 < 1 _<_nO,M[l] #/ o This must be an entry assumption for

treesort? . Move it to arc 1.

(3) 2xic< T ax Since n = n, , this assertion is

implied by (1) and (6).

21



Arc Assertion Proof

(5) 1<n <n, n =n, and we noted above that to
get to this arc at all, ny > Lo
(6) 2xn < Tax This must be an entry assumption for
treesort? . Move it to arc 1.
6 Ipin S 11 True because 1 >2 and I, <O

Analysis of second loop:

1k+l = 1k—1

n 1is invariant in loop.

Assertions for call to siftup , with arguments 1 and i substituted

for parameters i and n
10 (1) 1<1<i True ; 1 > 2 at this point.

(2) ¥1<1< nO,M[!] #w Entry condition for treesort3 , see

arc 5.

(5) 1_<_i§n True; izg)il=n=no)a‘ndi

0]
is monotonically decreasing.

(6) 2xi < Ima.x True because i < ny and
2xno < Ima.x is entry condition

for treesort3 (see arc 5).

11 [See analysis of exchange , below.]

12 Imin < i-1 True. 2 <1, Imin <O
also 2 < Ima.x Move to arc 1, as an entry condition.

22



Termination of loops.

Since each loop has a monotonically decreasing variable, i , each

terminates if it generates no semantic errors, i.e., if the entry

conditions for +treesort3 are satisfied.

Assertions for exchange (as called from node J in treesort3 ).

Arc Assertion Proof
2 1 < ny True. n, > 2 to get to this call at all.
MI1] # w Entry condition for treesort3 .
3 1 <n, True.
1<i< Ny True, 2 <1< n, within the treesort3
' loop.
Mi] £ w Entry condition for treesort3
L 1<i<ng True.
t £ w Defined in node C.
Conclusion

We have now proven treesort3 to be free of semantic errors and
infinite loops if executed on the machine described and if the following

assertions are true on entry:

(v 1<t S'no,.M[z] £ow from arc 5
(2) 2xny ST .o from arc §
(3) 2 <1 . largest constant

The second assertion is a hidden restriction which will prevent the proper
execution of the algorithm on large arrays on a machine with larger
addresses than integers (such as a large PDP-11 or a 360 with half-word
integers). Note in passing that siftup has the entry condition that

1 S’nO » but treesort3? does not require 1 < ny - A quick examination

23



of treesort3 shows that it works quite properly in this degenerate
case, skipping both loops and returning.

The only difficult parts in the morass of detailed proofs were:
(a) the proof that i 1is monotonically“increasing in the main loop
of siftup , in which we used the overly-stringent assumption that
i >1; and (b) the proof at arc 8 of siftup that 1 < j+l < n,

which used global information about the behavior of n inside the loop.

APPENDIX: Clean termination of treesort? on CDC 6600.
Because comparisons may generate overflow, the following additional

assertions are required:

Node Assertion Proof

(These proofs assume the additional constraint

that I . s Lpae » Rmin , and Ry 8Te

symmetrical about zero, i.e., that

Inin = Thax 7 Bnin = “Bnax )
sifttup
E Imin Sn-j < Loy j and n are both >1 (from node C),
and the difference of two numbers with
the same sign cannot overflow.
F I . <n-j <1I Same.
min- — “max
G R . < M{j+1]-M[j ] Cannot be proved without a restriction like
<R Y1<Z2 <ny R, +2 <mM[£] <R _*+2
or
V1<f<ny, O<MU]I<ZR
This is an additional entry restriction
on treesort? . This subtraction may
also generate an underflow if M[j+1] and
M[j] are very small and almost equal.
I Roin <Mlj ..., See node G above.
<R
— “max

2L
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Node Assertion Proof
treesort3
D . : . 2 3 .
Imln <i-2X< Ima.x On arc 3: Imin'2 <i <Ima.x72 from

node C, so the assertion is true if
Lin S (Imin-%E)-Q , i.e., if Imin < -3
Although not very interesting, this is a
valid entry restriction on treesort?

A more interesting one would be n > 2

On arc 7:since i > 1 at this point,
the assertion is true because of our

initial assumption that I ., < 0
min

H Imin §H1-2 < Imax On arc 8:since i = n , this becomes

the entry condition I , < n-2
min

On arc 13: since i > 1 at this point,

the assertion is always true.

Conclusion
treesort? will terminate cleanly on a CDC 6600 if the following

additional restrictions are true on entry:

(1) ¥ i,j such that 1 <1 <.§0 and 1 < j <n0'
Rnin < MIiT-M[j] < R oax -

Two sufficient forms of this are:

V1< KN =
_lsno, Rmin.ESM[l]SRmax.Q

and

¥Y1<g <n. , O<M12] <R
- =70 - — max

(2) Imin <n-2 and Imin < -8

25
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“ertication of algorithms hy proof. Since suitable techniques
now exist for proving thr rorrectness of many algorithms [for
example, 3-7}, it is possibleand appropriate to certify algorithms
with a proofl of correctness. This certification would be in addi-
tion to or in manveases instead of, the usual certification. Certi-
fiention by testing <till i3 u<eful beeause it s easier and because it
nlsopaavides, for exumple, niming data, Nevertheless che existenca
af 0 proof shoald e sweleame ndiitionnl sortitention of ne nbgo.
rithin “Phe proof shows that ao algorithi is debuggrzed Dby show-
ing conclasively that no bugs exisi.

Tt, does not mat ter whether all users of analgorithm will wish
.o, or be able to, verify a sometimes lengthy proof. One is not
required to accepta proof before using the algorithm any more
than one is expeeted to rerun the certification tests. In both
caces one could depend, in part at least, upon the author and the
refer ¢

AH anexample of a certification by proof, the algorithm
TREESORT 3 (2] is proved to perform properly itselaimed task
uf serting an array M{1:n} into ascending order, Thia algorithm
hasbeen previously certified [1], but in that certification, for
example, no arrays of odd length were tested. S8ince TREESORT 8
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is a fnst practieal algorithm for in-plneo Borting and one with
sufficicnt complexity so thnt its correctness is not immediately
apparent, its use as« the example is more than an abstraet exercise.
It is anexample of considerable practical importance.

OQutline of TREESORT 8 and method of proof. The algorithm is
most cnsily followed if the array is viewed a8 a binary tree.
Mlk+ 2] is the parent of M[k], 2 <k <mn.In other words the
children of M(j] nre Mi2;j}and M{2j+1} provided one or both
of the ehildrenexist.

The first part. of the algorithim permutes the Af array so that
for asegment of the nrrny, each parent is larger than both of the
children (one child if the second does not exist). Fach call of the
auxiliary procedure siftup enlarges the segment by causing one
more parent to dominate its children. The second part of the
algorithm uses siftup to mnkc the parentslargerover the whole
array, exchanges (1] with the last clement and repeats on an
arrny one element shorter. The above statements arc motivation
and not part of the formal proof.

That TREESORT 8 is correct is proved in three parts. First
the procedure siflup is shown to perform as it is formally defined
below. Then the body of TREESORT 3, which uses siftup in two
ways, is shown to sort the array into rscending order. (The proof
of the procedure ezxchange is omitted.) The proofs are by a method
described in [3, 4, 7): assertions concerning the progress of the
computation are made between lines of code, and the proof con-
sists of demonstrating that each assertion is true each time con-
trol reaches that assertion, under the assutnption thatthe previ-
ously encountered assertions arc true. Finally tcrminntion of the
algorithm is shown separately.

The lines of the original algorithm have been numbered aud the
assertions, in the form of program comtnents, are nutnbered cor-
respondingly. The numbers are used only to refer to codeand to
assertions and have no other significance. One extra begin-end
pair has been inserted into the body of TREESORT 3 in order
that the control points of two assertions(3.1and 4.1) could be dis-
tinguished. In siftup the assertions 10.1 and 10.2 express the cor-
rect result; in thebody of TREESORT 8 the assertions 9.3 and
9.4 do likewise.

Definition of siftup andnotation. W e now define formally the
procedure siftup(i,n), where n is a formal parameter and not the
length of the array M. Let 4 (s) denote the set of inequalities
Mk=2)> Mlk) for 2s <k <n. (If 8> n+2, then A(s) is » vacu-
ous statement.) If A(Z-+1) holds before the call of siftup(i,n)
and if 1 <i<n<Larraysize, then after siftup(i,n):

(1) A (i) holds;

(2) the segment of the array V{i] throngh Y(n} s permuted;
and

(3) the segment outside M[7] through M[n] is wnaltered.

In order to prove these properties of siftup, some notation is
required. The formal parameter 7 will be changed nside sifrup.
Since 7 is called by value, that change will be invisible outside
siftup. Nevertheless it is necessary to use the initial value of §
as well as the eurrent valne of 7 in the proof of aiftup. Tat 4y deviote
the value of 7 upon ontrey to aftup.

Siitnely dot My denodec the A nerny upon endry io siftup
The notation M = p(Ma) with M = copy” means i Mi| =
copy were done, M is some pernutation of A, as deseribed in (2)
and (3) of the definition of siftup.” “M = p(M,)”’ means the
same without the reference to Mli} := copy being done.

Code and asscrtions for siflup.
0 procedure siftup(i, n); value i, n; integer ¢, n ;
1  beginreal copy; integer j;
commen |
1.1: 1 <t=t<n<arraysize
1.2: A (fo+1)
1.3: M=p(Ms);

Communications of the ACM 3N

27



2 copy = M[il;
3 loop: j:=2 X 1;
comment
3.1: i<n
3.2: 2 =
33: 1 =1y 0ri>2i
3.4: M =p(My) with M{i):= copy
3.5: A (i) or (i =iy and A(fe+1))
3.6: M[i+2]> copy or i =%
3.7: Mi+2]2M[i] or i =is;
4 if j <nthen

5 begin if j<n then
6a begin if M[j+1]> M[j] then
6b j:=]+ 1 end;
comment
6.1:i=j+2

62: 2<j<n

6.3: 1 = 0 Or 12> 21y )

6.4: 3 = p(Mo) with M[i]:= copy

6.5: A (1) or (i = %o and A (fe+1))

6.6: M[i+2]>copy or i =1

6.7: M[i+2] > M[i] or i =1

6.8: (2i <n and M[j] = max(M[2{], M[2i4+1])) o r
(2i=n and M[j] = M([n])

6.9: M[1] > M[j] or i =1s;

7 if M{j] > copy then
8a begin M[i]:=M[j];
comment

8.1: 1 = dg0ri=>2t -~
82: 2t<j<n
8.3: M{j+2] = M[s] = M[j] > copy
8.4: M[i+2] 2 M[jl or i =1
8.5: M = p(Mo) with M{j]:= copy
8.6 : A (%0);
8b 1:=7;
comment
8.7: 1 >2ip
88: i =j<n
8.9: M[i+2]> copy
8.10: Mi+2]> M[i]
8.11: M = p(Mo) with M[i]:= copy

8.12: A(do);
8c go to loop end
9 end ;

comment

9.1: M[j] < copy if reached from 7 or
2 =j > n if reached from 4;
10 M[i] := copy;

comment
10.1: Al = p (M)
10.2 : A(d0);

11 end stftup;

Verification of the assertions of siftup. Reasons for the truth of
each assertion follow:
1.1-1.2: Assumptions for using siflup.
1.3: p is the identity permutation.
3.1-3.7: If reached from 2,
3.1 1.1
3.2: 3.
3.3, 3.56-3.7:i=1s by 1.1.
3.4: 1.3 and 2.
If reached from 8, respectively, 8.8, 3, 8.7, 8.11, 8.12,
8.9 and 8.10.
6.1: At3.2 j = 2i and by 6b, j might be 2i + 1. t = j+2 in either
case.
6.2: After 4, j <n.j is altered from 3.1 to 6.2 only at 6b. Before
6b,j<nby5. Hencej<nat 6.2.28 < j by 6.1.
6.3-6.7: 3.3-3.7, respectively.

3.5 also requires 1.2.
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6.8: If 4is true and 5 is false, j = 2i =n (using 3.2) 80 the
second clause of 6.8 holds. If 4 is true and 5 is true, then
at6a, 2i:=j<n(using 3.2) so M[j+1} = M[2i+1]is
dcefined. Now at 6.8, j = 2i or j = 2i41. In either cuse,
by 6a and 6b, the first clause of 6.8 holds.

6.9: By 6.5 i#togives A(1y).2i0 <21 <j<nby6.3 and 6.2.
Ilence A (i0) and 6.1 give M[i]=M[j+2]2> M{j).

8.1: 6.3.

8.2:6.2.

8.3: i =j+2by6.1, M[i] = M{j} by 8a and M[j] > copy by 7.

8.4: 6.7 nnd 6.9.

8.5: 6.4 requires that M[i] be replaced by copy. Since M[i]=

’ M{[j] by 8a, M[j]l may equally weli be replaced with copy.
8.1 and 8.2 give i, <i<n so that the change to M at 8a
is in the segment M[i] through M(n].

8.6: By 83 and if 6.8 (first clause) holds, M{}> M[2¢] and M[i]>
M[2i+1]. By 8a and if 6.8 (second clause) holds, M{i] =
M[j]= M{n] = M[2i] and M[2i{+1] does uot exist for this
call of siftup. A (ie+1) holds at 6.5 since A (i) implies
A(to+1). If 1 =15 , A(fo+1) and the relations above on
MI[i) give A (%). If © #9, then 8a, 8.4, A(io) at 6.5 aud
the relations above on M[Z] give A (7o) at 8.6.

8.7: 8b, 8.1 and 8.2

8.8: 8b and 8.2.

8.9: 8b and &3.

8.10: At 8.6, 2ip<j<n by 8.1 and 8.2. Hence by 8.6, M[j+2]>
M[j]. Use 8b on M[j+2] 2> M|j].

8.11: 8b and 8.5.

8.12: 8.6.

9.1: 9.1 is reached only if 7 is false orif 4 is false. 2i = j by 3.2.

10.1-10.2: If reached from 7,

10.1: 6.4 and 10. (6.2 and G.3 give 10 <i<n ensuring
the change to M at 10 is in the segment . M{is]
through M [n].).
10.2: By 10, 9.1, G.2 and 6.8, M[¢] = copy > M{j]=
M[2¢] and, if M[2{+1] esists, M{j] = M2i+41]. If
1t =1, 10.2 follows as in 8.6. Ii i #1, 6.6 and
10 give M [i+-2]>copy = M[i]. A () at 6.5 now
gives A (o) at 10.2.
If reached from 4,
10.1: 3.4 and 10. (3.1 and 3.3 give #e<i<n.)
10.2: 2i > m» means no relations in A () of the
form M[i]2> .-« . Ifi=1 , 3.5 gives 10.2. If
i #1% , 3.6 and 10 give M[z+2]> copy = M[i].
A (%) at 3.5 now gives 10.2.
Code and assertions for the body of TREESORT 8.
0 integer ¢t;
comment
0.1: A(n+2+1);
1 for t:=n+2step -1 until 2 do

2 begin
comment
2.1: A@G+1)

2.2: Assumptions of 8iftup satisfied;
3 siftup(i,n);
oommecent
3.1: A(3);
_4_ end;
comment
4.1: Mlp] < M[p+1] forn+ 1 <p<n—1
4.2: A(Q), i.e. Mk+2]> M[k] for 4 <k < n;
5 for t:=n etep -1 until 2 do
6 begin
comment
6.1: Mip)<Mlp+1) fori + 1 <p<n-—1
6.2: Mk+2]>M[k] for 4 <k<i
6.3: Mig+1]>2M[r]for 1 £r< i
6.4: Assumptions of siftup satisfied;
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7 siftup (1,3);
comment
7.1: M[p; < Mlp+llfori +1<p
P ME=+2] > Mkl for2 < k S
SMI > Mrlfor2 < r <
s MU+1) > M1};
8 r.zrhungc‘ (M1}, MIi]D);
comment
8.1: Mij>2M[r] for 1 £r<i-1
8.2: Mp]<Mp+ll for i £p<n-—1
3: Uk+2]> Mk) for 4 k<1~ 1;
9 end;
comment
1: Mlp]SMlp+1] for 2 <p<n—1
9.2: M[2] > M[1]
9.3: M{p]<Mp+1ll for 1 <K p<n— 1, ie M is fully
ordered
9.4: M is a permutation of Ma;

<n-1

Verification of the assertions for the body of TREESORT 8.
Reasons for the truth of each assertion follow:
0.1: Vacuous statement since 2(n+2+1) > n.
2.1: Ifreached from 0.1, by 1 substitute i =n+2in 0.1.
If reached from 3.1, by 1 substitute ¥ =i+ 1 in 3.1 to ac-
count for the change in ¢ from 3.1 to 2.1.
2.2: 2.1, the bound on i implied by 1 and the array size being n.
3.1: 2.1 and the definition of siftup(s, n).
4.1: Vacuous statement. -
4.2: If n>4, 3 is executed; hence 3.1 with 1= 2, If n <3,
vacuous statement.
6.1-6.3: If reached from 4.1,
G.1-6.2: By 5 substitute £=n in 4.1 and 4.2.
6.3: Vacuous statement for i = n.
If reached from 8.1, by 5 substitute 1 =74 1 in 8.2,
8.3 and S.I, respectively.
6.4: 5 and 6.2, i.e. A (2) for the subarray M[1:3].
7.1: Gl and (3) of siftup.
7.2: 6.2 and (1) of stftup.
3: 7.2 noting that M[1)=
tivity of >.
7.4: Vacuous for ¢ = n. Otherwise 6.3 for the appropriate r since
by (2) of siftup, M[1] at 7.3 is one of the M[r],1 <r <1,
at 6.3.
8.1: 7.3 with the changes caused by 8 (only M[l] and M(¢] are
altered by 8).
8.2: By 8 substitute M[i] for M[1] in 7.4; then 7.1 also holds for
p =i
8.3: 7.2 excluding only the one or two relations M[1]> ..., and
the one relation . 2> MI[z].
9.1-9.3: If n> 2, 8 is executed;
9.1: 8.2 with © = 2.
9.2: 8.1 with 1=2.
9.3: 9.1and 9.2,
If n <1, 9.1-9.3 nre vaenous sitatements,
0.4: ‘The only operations done to M nre siffup and exchange ull of
which leave M ns a permutation of M.

Mk+2)if k= 2 and using the transi-

Proof of termination of TREESORT 8. Provided siftup and ez-
change terminate, it s elear that TREESORT 8 terminates. Note
that ench parameter of siftup is called by value so that 4 is not
changedint he body of the for loops.

The proeedure exchange ccrtninly terminates. In siftup the only
possibility for an unending loop is from 3 to 8b and back to 3.
Note thatallchangesto i (only at 8b) and to j (only at 3 and Gb)
oceurin this loop and that on each cycle of this loop both i and j
are changed. By the test at 4, it is sufficient to show that j strictly
increnses in value. i > 1 means 2i > i. At 8b, j =$<2{ while at
3,7 =21, 1c j(at 3) =2i > i = j(at 8b). Hence each setting to j
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at 3 strictly increascs the valuo of j. The only other setting to j
(at 6b), if made, eimilarly increases the value of j.
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sorting, minimal storage sort-

Hibbnrd [1] hns coded this method in a way thatincreases the

speed signifienntly, In SHELLSORT, ench stage of each sift con-
#ists of sueeessive puir swaps, 'l‘hv madilieation replaces each vt
of n pair swaps by onc “save,” n— 1 moves, andone in.ertion,

Table 1 gives timing information for Avgowr, FORTR \N, and
Compass (assembly language) versions of SHELLSORT and the

TABLE I. SoRrTING TiMES IN SECONDS ForR 10,000 R ANDOMLY
ORDERED NUMBERS oN THE CDC 6400 CoMPUTER

Algorithm Sowrce Language
ALgoL FORTRAN COMPASS
SHELLSORT 53.40 7.1s 2.3s
SHELLSORT 36.56 5.98 1.87
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Abstract

This paper presents a system for proving that a computer program
contains no semantic errors and no infinite loops, and hence that it always
terminates cleanly. This work differs from other work on verification
of program correctness in two important ways: (1) it deals explicitly
with the finite limitations of real machines, and (2) it does not
examine what the program accomplishes; no description of the correctness
properties of the program is required. A recent ALGOL program for

computing medians is used as a running example.
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Much of the theoretical work in verifying program correctness has
concentrated on theorem proving techniques, formal language schemata,
formal logic, program synthesis, and program equivalence. A common
theme in this work is the process of describing a program by a set of
assertions, and then inductively proving that the assertions are true.
In such an approach, the assertions (or at least the important ones)
are usually supplied by a human, then the verification system tries to
prove them. At the successful conclusion of this process, the program
has been proved to do exactly what the assertions describe [Floyd],
[King], [Good].

One of the drawbacks of this approach is that it takes a lot of
effort to create the proper assertions -- to find assertions which
describe both what the program actually does and what it is intended
to do. It is easy to write down assertions which loosely describe what
the program does, but which happen to fail in degenerate cases (such as
the first time through a loop, or a normally positive variable starting
out exactly zero); 1t is also easy to write down assertions which do
not fully describe the intended functioning of the program, so that the
* program may be carefully proved to work as the assertions describe, but
it still would contain "bugs" in actual use. For example, the correctness
of-a program to sort elements 1 through n of an array A might be
described with a final assertion like this:

¥1<i<n-1 , Al2] <A[r+1]
While this is a perfectly reasonable description of the intended function
of the sort program, the following program can also be rigorously shown

to work as the assertion describes:



—fr— r— r— )

for i := 1 until n do
A[i] := 37;

Another problem with programs that have been proved correct is that
the proof applies only to ideal machines whose numbers have unlimited
precision and range. When run on real, finite, computers, such »rograms
may deliver improper results even after they have been rigorously
certified (see for example [Sites]).

Large "real-world" programs (such as a compiler) are usually

developed to the point that they appear to go through all the right

motions, that they basically work, and then the program enters a shakedown

period during which many test cases are run and perhaps new users are
allowed to try the program. The purpose of this shakedown is to eliminate
most anomalies and to improve the confidence level that the program is
working properly.

The rest of this paper describes a system to make this shakedown

process more rigorous and to detect errors due to the finite limitations

of real machines. Programs exhibit bugs in one of two ways: they produce

incorrect results, or they terminate abnormally. Correct results are
sometimes hard to describe rigorously (although there is a high payoff
in describing simple consistency checks), but abnormal termination can
be more precisely specified. In fact, we have no good notation for
describing what it means for a complicated program to be correct; many
data processing concepts, such as "this compiler produces correct object
code", have no simple rigorous form. A system which tries to prove that
a program will always terminate normally could be quite useful for

increasing confidence in the proper functioning of a large program. The

system would say nothing about what the program does (i.e., sort an array);



instead, such a system would report that whatever the program does, it
terminates cleanly. The system would verify that the program contains
no semantic errors or infinite loops -- no overflows, out-of-range
subscripts, references to null or undefined pointers, etc.

While proving that a program terminates is in general an unsolvable
problem, most real programs are intended to terminate and have good
reasons for doing so. Therefore, it is reasonable to expect that
automatic means could be used to prove termination of many useful
programs.

To make this concept more specific, let us consider a version of
a nontrivial program written by R. L. Rivest [Rivest and Floyd]. This
example will be used throughout the paper to illustrate the techniques
presented. See Program on next page.

To prove that this program terminates cleanly, it is necessary to
prove, for example, that line 19 produces no overflow; that in line 26, .
i is defined and in the proper subscript range for X ; and that the
loop at lines 28-29 terminates (without a bad subscript).

This paper discusses many of the issues in creating a mechanical
proof that Rivest's program terminates cleanly. It does not, however,
go into much detail about theorem proving techniques, or about the specific
theorems of Rivest's program. It will not deal with the recursive call
to select at line 17, essentially, the discussion below will only treat
the functioning of_select when r-Z < 600 . The dotted paths on the flow
graph below are intended to indicate that as an inexpensive byproduct of
the techniques presented here, some cases of recursion can be shown to
terminate by treating the recursive call as an assignment to the parameters
and a branch to the beginning of the program. Of course, treating the

call as a branch does not deal with what happens when the call returns.
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comment

procedure select(X,e,r,k); value f,r,k; array X;,

comment  select will rearrapze fhe vallies—of-X[2:r]so that
X[k] contains the (k-£+1)st_smallest value:~-*.

£ < i<k implies X[il.<.x[})] a4

k <i <r implies Xf1]>>kah
begin integer n,

while r=! >0 35

begin
if r-g > 600 then

i, J,

f, s, &d,

22, rr, t;

s = entler( 0.5 * exp(2*In(n)/3) ) ;

sd :

= entier(0.5 * sqrt(ln(n)*sx * sien(i-
2¢ := max( f, k - ixs/fy « og ;3 (n -s)/n) gn(i-n/2)

rr z=min( i, k # (n-i)*¥s/n + sd );

select(X, 4, rr, k)

end
1 + l;

then
exchan (—_T‘
while X[l] <t do
i :=1+l
while X[j] > t do
=3 - 1; T
if i < j then
begin
exchange( X[1],

end
if X[l] t then

—

else begin

X[e1);

X[31 )

exchange( X[£1, X[j] )

=34+ 1
exchange( X[J], X[r] )
end;
if jJ <'k then
£ - J + ]_
if k S'J then
r := j_ 1
end

end select

Program



This paper will not deal with lines 11-16 because they involve floating-

point numbers, which the prototype system is not prepared to handle,

and for which exposure to overflow, underflow, and division by zero

are much harder to avoid than for integers.

In summary, proofs of clean termination are useful for several

reasons:

(1)

(2)

(3)

(5)

This technique may be economically applicable to a larger set of
programs than more exacting proofs of correctness.

Machines are better than humans at mechanically examining

degenerate cases; it is difficult to create correctness assertions
which are trdue in all cases including the degenerate ones.

By examining programs run on real machines, with finite precision
and finite-range arithmetic, the system deals with a source of

bugs which other correctness techniques don't address at all.

If the program cannot be proved to terminate cleanly, then the

proof process should detail which parts of the program will always
terminate and which may not, thus focusing the user's attention on
the complicated, error-prone, or interesting part of a program.

For programs like operating system subsystems, it is often desirable
that the program always return control to the operating system, even

if it sometimes gives incorrect results.

Flow Graph Processing

Let us now take Rivest's program and apply to it a mechanical

process which is often able to prove clean termination. We start by

viewing the program as a flow graph (Figure 1).
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Figure 1.

The flow graph for Rivest's program
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T
T
exchange(X[21,%[j])
J <k
= T
X \
L := J+1
k < j
F T
Z
r := j-1

Figure 1 continued.
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In order to make analysis of the loops more manageable, ino flow

graph is modified according to the following set of rules.
First, we perform interval analysis [Allen &,b], [Allen and Cocke],

[Cocke], [Cocke and Schwartz] on the flow graph, and do any necessary

node splitting so that every loop has a single entry node. qyq point of

forcing all loops to have a single entry node is to avoid situations

like the one in Figure 2a.

Figure 2a. Flow graph which needs node splitting.

where it is impossible to determine the state of the program when entering

node B without having first examined the state of the program when

leaving node B . Node splitting produces the modified graph in Figure 2b,

Figure 2b. Same graph after node splitting.

in which the loop now has a single entry node, C

When applied to Figure 1, interval analysis leads to successive

reductions as shown in Figure 3. No node splitting is required.



Node A

F_Lr— e |
Nodes
L and M I

=
O
e .
o
©

Figure 3.

Node A Node A

O e el
Node B | Node B| |

| I
-
JI" | o
| Nodes l ’ Nodes |
C | l C ]
thru __J | thru | :
K Z !
. Y L
t- - 41
‘ _
Nodes I-—— —_— —
L
thru
Z
L

Interval analysis of Rivest's program.
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Second, at the head of each interval which is a loop, we add a

"loophead" node and reroute all the latchback arcs (arcs which branch
back to the head of the interval) and initial entry arcs through this
new node. The loophead node gives us a convenient place to attach
loop induction information and loop termination assertions. This
step generates four loophead nodes in our example, see Figure k.

(For simplicity, we shall henceforth ignore the dotted arcs, which

correspond to the recursion.)
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Start

Procedure
select (X, 2,r,k)

r-£ > 600

(=] =

i o= p+1 Stop

j :=r-1

exchange(X[1],X[?]) i

@ ®

Figure 4. Flow graph after interval analysis and insertion

of "loophead” nodes. Double lines are loop exit arcs.
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loophead #2

J“ — 7

| 100phead #3 '

———

I
X[i] < t
F T '
; Mth
i= i+l
— — |

loophead #hi l

N
X[j] >t
F T
0
o= g+l |
5 i<y .
g S_._
Q | .
R .
o i
Nodes
S thru 7
OO

Figure 4 continued.
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Third, in order to separate information related to the issue of
loop termination, we in general need to modify each loop so that every
path around the loop goes through a test which can exit the loop. We
make a separate, contained, loop out of any paths which do not exit
directly, as in Figure 5. There are no paths around the loops in Rivest's

program which require this modification.

—-——-I———— PU— ct——  — ———t———  ews  evw eEm—

— v ==
loophead #1 loophead #1

test A e ¥ }

loophead #2

exit
Ja. The paths of this flow graph are 5b. The paths of this flow graph
are described by the regular are described the regular
* * * *
expression (A(B+CDE)) ACD expression  ((AB) ACDE) (AB) ACD
Figure 5. Example of forcing each path around a loop to

go through an exit test.
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In generating loop termination assertions, we will essentially be

stating that "for some k , an exit path is taken on the k-th iteration
of the loop". It is convenient for the generation of such assertions

to have loops in which the exit tests are near the top of the loop.
Specifically, if there are embedded loops, function calls, or complicated
calculations between the loophead node and the various tests which exit
the loop, then it will be hard to describe the values of the program
variables at the test node in terms of their values at the loophead node.
Therefore, our fourth modification is to attempt to permute the nodes in
the loop so that all exit tests occur immediately after the loophead

node. Our modified flow graph for select now looks like Figure T, with

copies of loops 3 and 4, and loop 2 permuted.
This modification cannot always be done, as the third example
in Figure 6 shows. However, all loops with exactly one immediate
exit arc can be successfully permuted. The effect of these last two
modifications is put the programs in nested Eﬁi&ﬁ format. For another

method to accomplish this transformation, see [Ashcroft and Manna].
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loophead

N
)

{2k

loophead

exit

I
B

=

regular expression = (ABCDT-AX

EXAMPLE 6a. Transform this to 6b.

exit

regular expression = AB(CDAB)*C
EXAMPLE 6b. Leading test form of 6a.

loophea;j

4
(embedded loop )

<§mbedded log?)
||

exit exit

EXAMPLE 6¢. Cannot move both tests
to top of outer loop.

Figure 6. Examples of permuting loops' to create leading tests.
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With the flow graph put in the desired form, we are now ready

for the work of creating and proving assertions about clean termination.

II. Semantic Error Assertions

We start by attaching assertions to the arcs of the flow graph
stating that all operations in the subsequent node are well-defined and
that no semantic errors are generated. This is essentially an operation-
driven process of inserting assertions on all incoming arcs of a node,
specifying exactly what conditions must be true for the contained operations
to execute cleanlyll Typical assertions are:

Operation Assertion generated

i+] i fFwajfFoal,

min < i+j ai+j < Imax , where

W stands for "undefined", Imin is the smallest
representable integer in the machine on which the
program will execute, and Imax is the largest
representable integer.

Ali] it oA A, <iAadi<A , where A is the lower
bound for legal subscripts of A and Au is the
upper bound.

i o= jFw.

See Figure 8 for an example of this assertion synthesis process. Note
that if a node has many incoming arcs, the same set of assertions will
be attached to each arc. A detailed example of assertion generation
appears in [Sites].

If all the assertions generated at this stage are proved to be true,

then the program contains no semantic errors, i.e., it does not "blow up"
during execution, perhaps with a run-time error message.
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—

rEw A LE0 A

<r-1Ar-1<I A
- — "ma

I .
min X

. 0
Tming S 000 A 600 < Loax

r-f > 600
F T

Figure 8. Example of assertion generation.

In most cases, the generation is quite simple, but some complications

arise in handling procedure calls:

(i) Arguments passed to value parameters of a procedure are
treated like the right-hand side of an assignment -- the argument
expression must be defined and must not generate semantic errors when

it is evaluated at the point of call.

(ii) Procedures with name parameters must be handled strictly
according to the copy rule, making a unique copy of the procedure for
each call and logically inserting the body of the procedure instead of
that call. This is the only way to properly reflect the side effects
which can result from tricky use of name parameters. It is also a

reason that Algol 60 recursion is hard to analyze mechanically.

(iii) Procedures with array arguments have the problem that the
procedure does not specify the legal lower and upper bounds for
the subscripts. Either of two strategies can be adopted for generating

and proving assertions about-subscripts in the proper range: gympolic
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names (like A and Au ) can be used in all the assertions, and the

£
proof techniques can push back to the entry point of the procedure any
assertions (restrictions) which must be true on entry in order to avoid
subscript range errors; alternately, the programmer can supply an extra
statement to the proof system, describing the bounds for each array. The
first strategy is equivalent to asking, What are the necessary array
bound conditions for this procedure to always terminate cleanly?" The
second strategy is equivalent to saying, "Here are the conditions which
will always be true when the procedure is called; are they sufficient to
guarantee clean termination?"

If the programmer has definite assumptions about ranges of array
bounds in his mind, then it is best to state them to the proof system.
Failure to do so forces the system to try to synthesize the equivalent
information, a process which may well fail.

In the assertions and proofs which follow, it will be assumed that
the proof system has been told that X[lozro] is the declaration for
array X , where lo equals the value of £ upon entry to select ,
and r, equals the value of r upon entry. This binding allows the
- subscript range assertions to be independent of the fact that the

variables { and r change value as the program executes.
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III. Loop Termination Assertions

Loop termination assertions are harder to generate than semantic
error assertions because the goal is much more abstract. For semantic
errors, the assertions generated are a straightforward function of the
language definition and compiler/computer implementation restrictions.
For loop termination, however, synthesizing the proper assertion may well
be harder than proving it true.

Loop termination can be approached on a wide variety of levels of
abstraction. One extreme is to assert that control passes through each
loophead node a finite number of times. However, such a statement
®esn't lend itself to direct proof. Another extreme is to require all
loops to be FOR loops or DO loops in which the step and limit are
evaluated exactly once and the iteration variable cannot be changed
inside the loop. Such loops terminate by definition (if a zero step is
prevented). In between these extremes are some useful strategies.

One strategy is to use the taking of an exit branch as a goal to
drive the assertion generation. For any loop, asserting that it terminates
is equivalent to asserting that 3k > 1 such that on the k-th iteration
of the loop, one of the sets of tests leading to an exit arc will be
true. Given the form of loops with leading tests that we have specified,

it-is easy to generate such an assertion mechanically.
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loophead

A
= 2xi

.
Il

j = j'l'l

Mj] >ec

—t 1l

exit 2 i

Figure p. Example flow graph for discussion of loop

termination assertions.
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Using the notation ik to mean the value of variable i at the

loophead node on the k-th iteration of the loop, the termination

assertion for Figure 9 is:
gk >1 s.t. (2)(1k >nk) v

oy i . .
( xi <n A 2x1k >n, A Mk[2 xlk]gck)v

oy . .
(2xi <n_ A exi <n. A M2 xi+1]<c)

This expression was derived by substituting for j its value in terms
of the values of the program variables at the top of the loop. yote
that depending upon the path taken, this value is either 2 xik or
2xik+l .

While an assertion such as the one above can be generated from any
loop described in Section I, it is in general an unsolvable problem to
prove that the assertion is true. However, a small variety of techniques
based on monotonic variables, finite sets, and search loops can prove
the termination of most loops encountered in practical programs.

Also, this strategy of generating a & . .. assertion sometimes

allows a proof system to state that a loop definitely never terminates.

For instance, if the statement i1 := j were accidently left out of the

example loop above, then it can be shown that all variables in the

assertion are invariant within the loop. Thus, the existential

quantifier can be dropped, and the remaining assertion states that the

program exits the loop on the first iteration. If this assertion is true,

the loop terminates immediately; if it is false, the loop never terminates.
Another strategy is to use the existence of a monotonic variable

which does not overflow as a goal to drive the assertion generation. If
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a loop contains a monotonically increasing or decreasing variable which
never overflows when it is updated, then the variable takes on a finite
number of values, so the loop terminates. Assertions specifying no
overflow are already generated by the semantic error assertion mechanism,
so if a monotonic variable is found inside a loop, no other assertions
are needed: if the existing "no overflow" assertions are true, then the
loop terminates.

This simple strategy is beautiful when it works, but of course it
won't always work. For example, if the assertions are not true and an
overflow may occur, the proof system may not be able to state directly
that the program has an infinite loop. Also, if no monotonic variables
are found, this strategy doesn't suggest anything else to try.

Using the first strategy, we generate the following loop termination

assertions for Rivest's modified program:

Loop #1 3k > 1 s.t. (rk-zk < 0) v (rk-lk > 600)

Loop #3' 3k >1 s.t. Xk[ik] >ty

Loop #)'I" 3k 2 l S-t- Xk[Jk] Stk

Loop #2 3k >1 s.t. ik > Jy

Loop #3 3k > 1 st X (3] >t

- Loop #U 3k >1 s.t. Xk[jk] S‘tk.

Using the second strategy, we find that in loops 3', 4', 2, 3,

and } there are monotonic variables. We are going to be in trouble

later, however trying to prove that, at node M , i := i+l does not

overflow. In loop 1, we have another problem. Neither f nor r are

2l



monotonic, but their difference r-1 1is strictly decreasing. Using
the second strategy, it is not clear how to discover that r-1 is a

relevant expression.

IV. Proofs of Assertions

We now order the nodes in the modified flow graph according to the

following rules.

(1) Logically reduce each loop in the program to a single node (a loop
is the set, of nodes in an interval, plus the loophead node, minus
all nodes in the interval which have no path leading back to the
loophead node) .

(2) Topologically sort the nodes in the reduced graph, using the
(directed) arcs as the ordering.

(3) For each node in the reduced graph which represents a loop,
topologically sort the nodes within the loop, ignoring all
latchback arcs, then insert those nodes in the main topological
ordering as a single group, so that all nodes in the loop precede
any nodes which followed the loop in the reduced ordering.

(W) Apply step 3 until all loops have been expanded (see Figure 10) .
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(1) reduced graph

Start
A
B
C
D
E
F
G
H
1
Stop
I
J
(2) Ordering: ABDCEF (loop) K

(3) Ordering within (loop)

GHIJ

(4) Final ordering

ABDCEF GHIJ K

Figure 10. Example of node ordering.
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The proof mechanism will visit the nodes of the graph in the order
specified above. At each node, it will attempt to prove all assertions
on all incoming arcs. The order specified has a few fairly obvious
properties: (1) Except for loophead nodes, whenever a node is visited
by the proof mechanism, all predecessor nodes will have been visited.
(2) For loophead nodes, all initial entry predecessor nodes will have
been visited. (3) If a predecessor node is inside a loop, all nodes
in that loop will have been visited. () The question "Is node X
inside loop N ?" can be answered with a simple range test.

If a program consists of many non-recursive procedures, we process
the innermost Procedure first, so that each procedure will have been
completely processed before any calls to it are encountered.

We will process nodes in the modified flow graph of select
(Figures 7 and 1) in the order:

AB (loop 1) D

or AB CEF'HIJK L'M' N'O' IR LM NO STUWXYZ D

The processing at each node visited will be discussed in terms of

the model in Figure 11.

/

Given 1 —Given 2
arc 1 arc 2

Assertions 1 Assertions 2

Node

R —— resulting known information
v

Figure 11. Model node for assertion proofs.
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If the node being visited is not a loophead node, we try to prove
the assertions on each incoming arc, using the "given" information
attached to the same arc (the arc leaving the START node has empty
"given" information attached to it). More precisely, we try to prove
the theorems

Given 1 D Assertions 1

Given 2 D Assertions 2
If the node being visited is a loophead, We try to prove the assertions
on just the initial entry (non-latchback) arc(s).

If any assertion cannot be proved conclusively true, then a message
is printed for the--user.

To catch mistakes or state restrictions as early in the program as
possible, we try to move assertions which cannot be proven true back
toward the entry point of the procedure. This is purely an optional
step, in which we try to help the user by moving unproved assertions
to the earliest place in his program that he is likely to want to insert
a fix for the bug. We do this movement by taking an assertion and
attempting to "pass it through" the preceding node, attaching the
* (possibly modified) assertion to each incoming arc, as shown in

Figure 12.

assert it2 < 20

-

assert it2 < 20

d—assert i< 20

Figure 12. Passing an unproved assertion back through a node.
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Sometimes, it will not be possible to move an assertion because the

operations inside the node are not reversible (read, or perhaps a
NN

procedure call). When pushing an unproved assertion through a loophead

node, we don't attach it to any latchback arcs, since then the assertion

would be pushed around the inside of the loop forever. 1In general, it

is not useful to push an assertion back through a loop which modifies

any of the variables in the assertion, as in Figure 13.

assert k < 20

Figure 13. The unproved assertion cannot be pushed back usefully.

If we are visiting a loophead node, the processing is more

complicated. Our model node now looks like the one in Figure 14,
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initial ;I I
-

entry

arcs

. é—-—- latchback

arcs

loop termination
assertion

exit arcs

Figure 14. Model node for loophead processing.

First, we process all assertions on the initial entry arcs as
described above. Then we set all program variables to dummy symbolic
values, say 1 = iO sy J = jo y X =Xy and visit all the nodes in
" the loop body, propagating and merging the "given" information based on
these symbolic values, but not proving any assertions. We do not follow
the exit arcs, and we stop when the given information has been established
for all latchback arcs. (The given information on a latchback arc might
iblai <1l .)

We then feed the initial entry conditions and the once-around-the-loop

be something like i =

symbolic expressions on the latchback arcs to an induction routine that
tries to synthesize a range or set of values which each program variable

takes on at the loophead node. In this induction routine, particular
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care should be given to detecting variables which are invariant within
the loop, and those which are monotonic. e attach the induced ranges
and relationships as "given" information on the arc leaving the loophead
node. Using this information, we take a second pass over the body of
the loop, processing it in the normal way. Note that a loop nested n

levels deep will be processed a total of 2" times.

After visiting a node and handling the assertions on its incoming
arcs, our next step is to create the resulting "given" information to
attach to the exit arc(s). This information consists of all input arc
given information, plus all input assertions (since if we leave the
node cleanly, all the input assertions must have been true), modified
by any assignments which occur inside the node. If the node being
visited is a test, we add the relation or its negation to the true
and false exit arcs respectively.

If two or more incoming arcs specify different "given" conditions,
we take the most encompassing information, i.e., if one incoming arc
specifies i > 10 , and another i >1l , we use i > 10 . Whenever
information is lost by this merging process, we mark the resulting item
(the examples below use an asterisk) so that if later it becomes
significant whether i is exactly equal to 10 , we will know that there

*
* 1s a possibly useful refinement to the information 1 > 10 .

V. Application of Proof Process to Rivest's Program

Referring back to Figure 7, we find that the modified flow graph

for select consists of loops nested three deep, as shown in Figure 15.
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loop 1

(~loop)

loop 2

Figure 15. Structure of loop nesting in select.

We begin the first pass over loop 1l by attaching the symbolic

values

to the arc between the loophead #1 node and node C . On this first pass,
we will analyze the nodes inside loop 1 and develop induction expressions
relating the values of all variables after one iteration through the

loop to their values at the beginning of that iteration; the symbols

22



rO’IO""’XO represent these initial values. Following the process
given in Section IV, we visit (in order) nodes C , E, F', and H ,
developing the following information on the arc entering node I

(refer back to Figure 1 for the exact content of the nodes involved):

r r. AL =1L A k=k,. At =t A X=X, A

0 0 0 0 0
i = £O+1 A
Jj = ro-l A
0 < ry -1, < 600

One of the biases in our processing should be to reflect relationships in
terms of initial values at the top of the loop; thus we write 0 < ro-lo
instead of 0°< r-1 , the latter signifying the values of r and { at
the arc to which the relation is attached. If, say, r is changed, the
relation 0 < r-f may no longer be true, while 0 < ro-lo still would be.

After processing node I , we attach the following information to

the arc leading to node J

0 0 0
i= 25+l
j = rO-lA
0 <ry-y < 600 A
X[kyl = Xl 1A

X[lo] = Xo[ko] =t

X[m] =Xo[m] for m £ kO R IO

To develop the relations about X , we needed to examine two sub-cases in

node I : (1) Xk, £ 1 and (ii) ky = £, . In order to keep the

o’ 0

size of the information attached to the arcs manageable (and hence to
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keep the complexity of the proofs using this information manageable),
our information development algorithms must be biased toward mimicking
the human trait of finding useful lemmas which are true for as many
different cases as possible. In analyzing the assignments in node I ,
we should notice that the degenerate case kO = IO does not upset any
of the relationships from the general case: the relations above are a
true and complete description of the effect of executing node I , even
when we substitute"ko"for"lo"in all relations, so after this
checking we find no need to distinguish the degenerate Case.f/
In processing nodes J and K , we have to examine the degenerate
cases ro = kO andN lo = kb (ro cannot equal 20 because 0 < ro-lo;
if we fail to use this fact on the first pass through loop 1, it gets
much harder to keep track of all the assignments to elements of X ).

On the true exit from node J , we attach the lemma:

x[ro] < tAt= X[lo]

(which is true independent of the relationships between lO » Tg and ko )s

and the more detailed information

(ro # ko A Xo[ro] < Xo[ko]) v (ro = ky A Xo[lo] < Xo[ko])

After the exchange in node J , the lemma becomes:

X[£g]l <t A t = X[ry]
On the false exit from node J , we attach the lemma

t =X[lo] At< X[r,]

*
¥/ If the third assignment had been X[f] := t+1 , we would have the

following relationships, which do distinguish the two cases:
(ko # £y A X[ko] = xo[zo] At = Xo[ko] A x[zO] = Xo[ko]+l)

v (ky =t At= Xo[ko]/\ X[ky] = Xo[k0]+l)
In the second case, X[ko] £ Xo[lo] .
3



Moving on to the loophead #3' node in Figure 7, we have to merge

the information on the two initial entry arcs.

the two relationships

<tAt= Xr

th]_? t At= X[2

o)

ol

X[yl <t < X[ro]*

where the asterisk indicates that a refinement of the information is
available by considering the incoming paths seaprately.
fact will allow us to prove that the while loops on i and j

(3', k', 3, and %) all terminate, and do so without producing a

subscript-out-of-range error.

In loop 5',
Included in this set is r
Therefore,
3k > 1 s.t. Xk[lk]_ft

Thus loop 3' terminates,

The remainder of the processing will only be sketched.

In particular, we merge

This crucial

i takes on the set of values

O 4

the loop termination assertion for loop 3!,

k 3

arc are the relations:

X[i] > ¢

exit information:

< TA

* Similarly, loop 4' terminates with the following included in its
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since 0 < r -¢ i i
0 0 implies lo+l <r

is at worst true when i reaches

and included in the information on the exit



The first pass through loop 2 establishes that i1 is strictly
increasing and that j 1s strictly decreasing. This monotonicity means
that the test 1 < j will eventually be false, so loop 2 terminates
if loops 3 and 4 do. The second pass through loop 2 combines this
information with the exit conditions from loop 4' and with the truth
of the test i < j to establish that the exchange in node Q never
changes X[lo] or X[ro] . Thus, the relation X[!o] <t SX[rO]*
is invariant in loop 2, so on the second pass through loop 2, loops 3
and I can be shown to terminate.

For our present purposes, the only interesting thing about nodes S
thru Z is that either or both of the assignments

a —= j+l
r := j-1
are done in the context

lO <j<r

.

0
Thus, the quantity r-1 is strictly smaller than rO-Zo after one
iteration of loop 1, proving the termination condition for loop 1

3k >1 s.t. rk-zk <0 . This completes the first pass of processing
loop 1.

On the second pass through loop 1, the initial values of r and {
and the pseudo-declaration for X (discussed in Section II(iii) above)
are used to prove all the semantic error assertions in the loop. These
assertions deal mostly with subscript range errors, overflow errors,
and undefined variable errors. The proofs of all these are quite

easy, given the information on the bounded ranges of 1, J » T, and ¢

gathered on pass 1.
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VI. Conclusion

We have explored a structured collection of techniques for
mechanically proving that a program terminates cleanly. e then
applied these techniques to the proof of clean termination of a

non-trivial program, suppressing most of the detailed processing which

would be done by an actual computer implementation of such a system.
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