
SOME THOUGHTS ON PROVING

CLEAN TERMINATION OF PROGRAMS

BY

Richard L. Sites

STAN-CS-74-4l7

MAY 1974

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Ft

Some Thoughts on Proving

| Clean Termination of Programs

| by Richard L. Sites

! Abstract
Proof of clean termination 1s a useful sub-goal in the process

| of proving that a program is totally correct. Clean termination
means that the program terminates (no infinite loops) and that it

! does so normally, without any execution-time semantic errors
(integer overflow, use of undefined variables, subscript out of range,

| etc.). In contrast to proofs of correctness, proof of clean termination
requires no extensive annotation of a program by a human user, but the

| proof says nothing about the results calculated by the program,

\ just that whatever 1t does, 1t terminates cleanly. Two example proofs
are given, of previously published programs: TREESORT3 by Robert Floyd,

[and SELECT by Ronald L. Rives-t and Robert Floyd.

&

{

| This work was supported in part by the Fannie and John Hertz Foundation,
by the National Science Foundation and by IBM Corporation. Reproduction

in whole or in part 1s permitted for any purpose of the United States

1 Government.
-

L

£2
P

FY] '

C

L CERTIFICATION OF ALGORITHM 2L5[M1]

(TREESORT? [Robert W. Floyd, Comm. ACM 7 (Dec. 1964), 701]:
L

| PROOF OF CLEAN TERMINATION -- A NEW KIND OF PARTIAL CERTIFICATION
-

< Richard L. Sites

- Computer Science Department
Stanford University

Stanford, California 94305

«

|
| Abstract
L ddd

The certification of a program can include a proof that the program

“ always terminates cleanly, 1.e., that as it runs on a real machine, it

g generates no semantic errors and it encounters no infinite loops. As an
illustrative example, a previously certified algorithm, TREESORT?, is

oy examined and a hidden restriction is exposed which prevents it from
running properly on some machines.

—

‘ Keywords and Phrases: proof of termination, debugging, certification,
-

sorting, proof of correctness.

. | CR Categories: L.k2, k.hg, 5.24, 5.31

-

«

I.

.
[|—_—

© 1

\

™

| This certification differs from London's certification[2] in two
—

important respects: (1) it deals explicitly with running the algorithm

\ on a real machine which has restrictions on the validity of arithmetic

operations (roundoff error, overflow); (2) it deals only with proving

- that the algorithm terminates cleanly, without examining what it

} accomplishes (1i.e., without proving that it sorts an array).
~ The need for such a certification follows from the fact that
!

i TREESORTS will actually fail in realistic situations, although it has

- been "rigorously proved correct". This flaw was noted in London's
— reply to Redish [3].

Proving that an algorithm terminates cleanly means proving that as it

~ runs on a real machine 1t generates no semantic errors and that it encounters

Lo no infinite loops. A semantic error is produced by attempting any operation

which the language specifies to be illegal or undefined, or any operation

“ which violates a restriction of a particular implementation of the language.
Many 1mplementations fail to detect all semantic errors at run-time; this

- produces meaningless results and 1s one of the tragedies of our profession.
¢

. Common semantic errors include arithmetic overflow, underflow, division by

zero, subscript out of range, case or switch expression out of range,

I. use of uninitialized variables, and use of a null pointer.
In the discussion below, 1t is assumed that the algorithm will run

= on an ALGOL 60 machine with the following properties:

“ 1. Integer overflow. The binary operations i+] , 1-3 , ixJ, i+J,

and i/j give the mathematically correct result if and only if i
—

and j have defined values and the result 1s in the range Ln

“ to Tax inclusive; otherwise a semantic error occurs. It is

\

assumed that Tin <0 and IL > 0 . Division by zero produces

a result outside of the range Loin to Lax ; l.e., a semantic

error occurs.

2. No assignment of uninitialized.values. The operation i :=7 will

assign the value of j to i 1f and only if J has a defined value;

if J is uninitialized then a semantic error occurs. It 1s possible

to write algorithms which violate this restriction and still give

meaningful results, but more often violation of this condition

indicates an error which 1s best caught as soon as possible.

5. Subscript range checking. IfA 1s an array with bounds [4,24 |]

then in all references to A[i] , it must be true that i is defined

and A, <1 < A .

L. Mathematically correct comparison. The relation 1 < j always

| produces the proper value true or false, even in cases where j-1
would produce an overflow. On a machine which has no compare

instruction, such as the CDC 6600, this property 1s not true; thus,

algorithms which are certified to execute and terminate cleanly on

the 6600 must be transformed so that every comparison 1s done as a

subtraction and a sign test, then all the subtractions checked for

overflow/underflow. Two representations of zero are allowed if

the implementation gives identical results for each.

5. Representable constants. Each integer constant must be between

Lin and Lax inclusive.

The proof of clean termination of TREESORT), under suitable

restrictions on the parameters, 1s presented below in five parts:

a copy of the algorithm [1], the corresponding flow graph, a listing of

>

— the assertions about semantic errors, a listing of the assertions about

uo loop termination, and proofs of the assertions. An appendix extends

the analysis to machines like-the CDC 6600.

\

.

_

\

"

“

\

In

\

x

3 ALGORITHM 245

oo TREESORT? [M1]
| Robert W. Floyd (Recd. 22 June 196k and 17 Aug. 1964)
B Computer Associates, Inc., Wakefield, Mass.

| procedure TREESORT 3 (M,n);)
_ value n; array M; integer n;

X | comment TREESORT 3 is a major revision of TREESORT [R- W. Floyd,
Alg. 113, Comm. ACM 5 (Aug. 1962), 434] suggested by HEAPSORT

~ [J. W. J. williams, Alg. 232, Comm. ACM 7 (June 196k4),347]

. from which it differs in being an in-place sort. It 1s shorter and
probably faster, requiring fewer comparisons and only one division.

t It sorts the array M[l:n] requiring no more than 2 x (2 t p-2) x (p-1)/ /

L or approximately 2 xn Xx (log, (n)-1) , comparisons and half as many
exchanges in the worst case to sort n = 2 tp-1 items. The algorithm

| is most easily followed if M is thought of as a tree, with M[j +2]
the father of M[j] for 1 < j <n;

-

procedure exchange (X,y); real x,y;

begin real t; t :=x; X 1=7; vi=t
end exchange;

procedure siftup (i,n); value i,n; integer i,n;

comment M{i] is moved upward in the subtree of M{1l:n] of which
it 1s the root;

begin real copy; integer 7;

] copy :=M[i];
loop: J :=2 x1;

1f J <n then

begin if Jj < n then

begin if M[j+1] >M[j] then J :=j+1 end;

if M[j] > copy then oo
begin M[i] :=M[j]; 1 :=J; go to loop end

end; TT
M[i] :=copy

end siftup;

integer 1;

for 1 :=n+2 step -1 until 2 do siftup (i,n);

for 1 :=n step -1 until 2 do

begin siftup (1,1);

comment ME2] >MJ] for 1 < j <i;

exchange (M[1],M[i]);

comment M[i:n] is fully sorted;

end

end TREESORT >

The flow graphs are shown in Figures 1, 2, and 3. For reference

purposes, the arcs are numbered, and the nodes are lettered. The symbol

w 1s used to represent the value "undefined". Following tie block

structure rules of ALGOL 60, all local variables are set to w at

entry to the block.

6

|

0
:

siftup(i,n)
\

- B 1
COPY 2=® |

J s=w

.)
L

copy :=M[i]

: DN
L

Ly

| SEEDS{ - -. T
F 6

L 5 g
J <n

L

| Ca >is) >
_ P r

Ses
| n .

1 1>

| 12 MIi]:=M[j]=

16

«<> N
Figure 1. Flow graph of siftup. Double lines indicate loop exits.

7

treesort 3 (M,n)

5]

2 “

b

T

F 1
B

siftup(i,n)

: 5

:

3

C122 Qo
| 10

F

9 siftup(l,i)

| 11

exchange (M[1]1,M[i])

12

15

Figure 2. Flow graph of treesort3.

8

-
exchange (x,y) |

] El

2

L 5

| }

- 5

) Figure 3. Flow graph of exchange.

9

Assertions About Semantic Errors

Assertions are generated locally and mechanically, based on the

operators in a node. The assertions about a node are attached to all

arcs which enter that node. The mechanical style of assertion generation

and proof 1s intended to mimic a machine-generated certification of

clean termination.

Assertions for siftup

Node Assertion Reason generated

C if w Cannot use uninitialized variable.

M, <1 <M Subscript range. M, and M are the
lower and upper bounds assumed for

array M .

Mi] # w Cannot use uninitialized variable.

D i # Ww Cannot use uninitialized variable.

Lin S 2 ST ox Constants must be in the representable
range.

I. <2xi <I Integer overflow.
min -— — "max

E jE ow

nw

OF JE w

n £ w

10

—

.

_ Node Assertion Reason generated

G jt ow

I. <1K<KT
min — © = Tmax

]

_ min S JH <I,

. M, < JL <M| _

L

M[J+1] # w

| fa
C

i M, = =
MJ] # w

(To keep this presentation more readable, the following trivial assertions

| will be elided:
L. Lyin S constant< I,, Assertions describing the largest and

\ smallest constants in each procedure will
be added at the end.

i 2. v F w Dropped when there 1s some other assertion
about v at the same node, 1.e., any assertion

i about the value of variable v implies the
additional assertion v £ w .

oe 5. Any true expression involving only constants.

- Node Assertion Reason generated

I »
& min S Jr < Lax

I :

oy. = J =
- MG] # w

copy #£ w

| 11

Node Assertion Reason generated

J M, <i<M
L —- =u

M, = = My,
MIG] # w

K JF w

L M, <i<M
£ —- ="u

copy # w

also 2 Sax Largest constant in procedure. Smallest
constant 1s 1 , which 1s greater than

Loin by assumption that Loin <0 .

Assertions for treesort?

Node Assertion Reason generated

C n £ Ww

D i#£w

E 1 # Ww Arguments passed to value parameters must

n#£ uw be defined at time of call.

[Other assertions about the arguments to siftup will be inserted

here after siftup is completely analyzed.]

F 1 # w

Tin £ 171 5Tpax

G n #£ w

H i fw

I itw Value parameter.

J [Assertions relating to name parameters are all pushed into a copy

of EXCHANGE associated with this particular call.]

12

Node Assertion Reason generated

K i£w

“ -

= nin < 1-1 < LS

also SE Largest constant in procedure.

(

| Assertions for exchange
Because 1t has NAME parameters —oychange must be treated in strict

| accordance with the copy rule. a copy of exchange is made for each call,
A Saveur

b

| with appropriate argument substitutions. The call at node J of
treesort?3 1s equivalent to:

SE
t c= |

| t e=M[1]
;

El
M{1] :=M[1]

:

Mii] :=1

p)

Node Assertion Reason generated

C M, <1 <M, Subscript range.

M1] # w Cannot use uninitialized variable.

D M, <1l<M
£ — —- uu

M, <1 <M- © = Tu

Mi] A w

E M, < 1i<M
2 — —- u

tA w

15

siftup

For any loop, asserting that 1t terminates 1s the same as asserting

that there exists a k > 1 such that on the k-th iteration of the loop,

one of the paths leading to an exit arc will be taken. The siftup

procedure has just one loop, in the sense that all cycles in the flow

chart pass through node D . The notation 1p means the value of 1

at the beginning of the k-th iteration of the loop, i.e., just before

the execution of the statement j := 2 Xi in node D .

The generalized loop termination assertion 1s:

3k > 1 s.t. [arc 5 taken] or

[arcs 6, T, and 12 taken] or

[arcs 6, 8, 9, and 12 taken] or

larcs 6, 8, 10, 11, and 12 taken]

This expression 1s expanded to reflect the branches taken to reach a

particular arc, using expressions in terms of values at the beginning

of the k-th iteration of the loop:

3k >1 s.t. {xi >n} or

{o xi, <m and 2xi,> n_ and M [2x1] < copy, } or

{2 x i, <n, and 2xi_ <n_ and

Mm[2xi+1] <M[2x1] and M[2xi,] < copy,} or

{2 xi, <n and 2xi, <n and
— .

M [2 x i +1] >M[2 x i] and M [2 x1,+1] < copy, } :

In general, a loop termination assertion such as this 1s unprovable,

but there are a few important special cases which work for many loops.

14

f

8 Two such cases are (1) strictly monotonic sequences of 1ntegers and
(2) pointers indexing through finite linked lists. In the siftup

‘

L loop, the fact that n,-j, is monotonically decreasing is one key to

i proving loop termination.
| 4 treesort 3

_ first loop:

| 4k >1 s.t. i, <e
¢ second loop:

8 3 k>1s.t. i, <2

¢- exchange =

i No loops.

. There 1s a shortcut to this general method of proving loop termination
-

which completely avoids analysis of the branching structure of the loop:

| If any variable 1s monotonically increasing or decreasing 1nside the
(-

loop, and the loop generates no semantic errors, then it terminates!
4

| If a monotonic variable 1s found, then no other assertions, proofs, or

| . loop analysis 1s needed. The statements which modify the monotonic

C variable cannot be executed an unbounded number of times without generating
| an overflow, so proving that those statements generate no overflow
-

simultaneously proves that the loop terminates. This shortcut is

N applicable to all the loops in treesort3 and siftup .

-

\

15

\N

Proofs of Assertions

As indicated in the program's initial comment, all intended

references to the array M involve subscripts in the range 1 to n.

In case the value of n 1s changed in the program, we will define the

variable n, equal to the value of n upon entry to treesort> . All

subscript range assertions will assume that M, = 1 and M, = n, .

Assertions for siftup (note that n and 1 are bound in siftup, not

treesort3).

Arc Assertion Proof

2 i# w Value parameters are always defined.

1 < 1 <n, - Not clear. Push back to arc 1 as an entry
condition for siftup. Eventually verify that

this assertion 1s true at each point of call.

Mii] # w Again, not clear. In fact, there is a need

to assert that ¥ 1 <# <n, , Mt] Fw at
the very beginning of treesort) . Right

now, push this assertion back to arc 1.

3 it w Used in previous node, hence i is defined or

a previous assertion would be false.

. I. <2<1I The assertion I . < 2 is true because of

the assumption that Tin < 0 .Push the
assertion 2 <I back to arc 1 as an entry

— "max

condition for siftup.

I. <2xi <I Not clear. In fact, overflow will occur if
min — — “max

i=n, and n, >I [2 We know from arc 2
that 1 < i , so Loin S 2 x1 . Push the

assertion 2x1<I back to arc 1.

¥*

¥/ It 1s possible to develop the proof of clean termination using only M,
and M , but doing so makes it significantly harder to prove that the

siftup loop terminates when M = 0 .

16

Analysis of loop.
|

Values of variables at beginning of k+l -st iteration in terms of

.

L values at beginning of k-th iteration:

Brel = x
.

COPY,q = COPY

lip1 = 2 x iy or 2 xi +l

i J

| _ 3 _ . i

1 Ir 1 141 2 X 1 or 2 Sh 1

“ M = M, except M [1,1 =m [2 xi.,] or = M [2xi, +1]k+1 k k+1 7k ’ k k

Myyplige1] > copy,

\- LS dp Sy

| heel SO
L

Thus n and copy are 1nvariant in the loop; 1 is monotonically increasing

L (since 2x 1 > i when 1 > 1); various elements of M change values.

. arc Assertion Proof

4 4 J £ w J 1s defined in previous node.

= nf ow n is defined originally as a value parameter,
| and 1s invariant within the loop.

C 5 1<1 <n, Still true from arcs 3 and 15.
| copy # True from node C and copy invariant in
- loop.

6 JF ow True from previous node.
\

n £ w True from previous node.

a

L

arc Assertion Proof

T 1<J <n, Not clear. On edge 7, J = n , and n 1s
invariant within the loop, so push the

assertion 1 <n < n, to arc 1.

Mj] # w Willbetrueif VY 1<1g <n, Mig] A w
on arc 1, since after that, an undefined

value can never be assigned to an element

of M in our machine model.

copy # w True from node C, and copy is invariant

within the loop.

For a more readable presentation we will elide the statement and proof for

all assertions which are true because they were true earlier in the program

and haven't changed.

8 Lin < jtl < Lax J F Ww 1mplies Lin < J, so clearly
Loin < j*l . Because of test in node F,
J <n <Tax2 SO tl <n <I .» .

1 < jtl < ny From top of loop, 1 < i, and j = 2 X 1p
so 2<J, thus 5 < j+l1 . From test in

node F, Jj <n , so j+tl <n <n, (see
arc T).

1 <3 <n, 2 < J and J <n <n, -

M[j+1] # Ww True because we have chosen to require all

elements of M to be defined on entry

M3] # w (see arc 7).

11 1<3 <n, True from arc 8, where 1 <j+1< n .

M3] # w M{j+1] # w from arc 8.

15 iF Just assigned a value.

Tin <2x1< Lax May not be true. We know that Le] <n
at this point, so push the assertion

2xn < I ax back to arc 1. Also see arc J.

18

_ Proof of termination of loop.

| Since 1 is monotonically increasing, the loop terminates if no

“- semantic errors occur, 1.e., if all the entry assertions are true.

| We have now proven siftup to be free of semantic errors and

| BN infinite loops, if the following assertions are true on entry:
N (al) 1<i<ng from arc 2

i (a2) V1<i<n,, MU] fo from arcs 2 and7
C (a3) Zh NU from arc 3
i (ak) axl <1. from arc 3

(a5) 1 <n< ny from arc 7

I (ab) exo<I from arc 15
| These are sufficient (although not quite necessary: some elements

of M need not be defined) conditions for siftup to generate no

semantic errors as 1t executes on the "real" machine we have assumed.

Note that assertions al and ak make assertion a3 redundant. Also, this

set of assertions could be further simplified 1f the programmer stated the

entry condition that 1s implied by the initial comment in siftup ,

1 <i<nK< Ny The above set of assertions represents hidden restrictions

| - which are rarely included 1n the description of an algorithm. In

particular, if treesort? were used to sort an array of 30,000 elements

on a machine with 16-bit 2's complement integers | = 32,767) ,
max

and > 16-bit addresses (such as a large PDP-11 or a 360 with half-word

integers), the statement

J = 2x1;

could be executed with 1 = 30,000 , either generating an overflow or

quietly assigning =-5536 to j . Either the overflow would terminate

19

execution, or (worse), the comparison M[j+1l] > M[j] would terminate on

a subscript range error, or (worse yet, but somehow most likely) the

assignment M[i] := M[j] would store into a random location in memory

on the following iteration of the loop. _Thus, a mathematically correct,

certified program could generate complete garbage when run on a real

machine.

20

.
Assertions for treesort? (remember that n, is the value of n upon

entry to treesort?).

= Arc Assertion Proof

i 2 n # Ww " Value parameters are always defined.

(b 1 Fw Set in previous node.

Analysis of first loop:

Mel TT
L

t Lipp = i.-1

| sO n is invariant and 1 is monotonically decreasing.
> b n # w From arc 2 and n invariant in loop.

L 4 ifw True from previous node.
n # w From arc 2 and n invariant 1n loop.

_-

Assertions for call to siftup , with arguments 1 and n (bound in

~ treesort?) substituted for parameters i and n .

(1) 1 £1 <n, 2 <i , but it is not immediately clear

that 1 < Ny - Since Ly 1s monotoni-
cally decreasing, it 1s clear that if

iY o . '

1, <ny, all other 1, will be <n, .
But iy = n-+2 and 2 <i, SO to

enter the loop at all, n, >4 , in

| which case 1t 1s true that ny +2 <n 0

(2) v 1 < ¢ <n, M1] # w This must be an entry assumption for
treesort? . Move it to arc 1.

(3) 2xic< I. Since n =n, , this assertion is
implied by (1) and (6).

21

Arc Assertion Proof

(5) 1<n< n, n =n, and we noted above that to
get to this arc at all, mn, > Lo.

(6) 2xn < I ox This must be an entry assumption for
treesort) . Move it to arc 1.

6 Lin S i-1 True because 1 >2 and I. <O .

Analysis of second loop:

Lil = 1,71 .

n 1s 1nvariant in loop.

Assertions for call to siftup , with arguments 1 and 1 substituted

for parameters 1 and n .

10 (1) 1 <1<i True ; 1 > 2 at this point.

(2) Y 1 <1< n,, ML] # ow Entry condition for treesortl , see
arc 5.

(5) 1 <i<n, True; i>2, i, =n=n,, and i
1s monotonically decreasing.

(6) 2xi < I ox True because i <n, , and
. 2 Xn SL gx 1S entry condition

for treesort? (see arc 5).

11 [See analysis of exchange , below.]

12 Ln S171 True. 2 <i, I. <0.

also 2 < Lax Move to arc 1, as an entry condition.

22

| 3 Termination of loops.
Since each loop has a monotonically decreasing variable, i , each

he terminates 1f it generates no semantic errors, i.e., if the entry

conditions for treesort?® are satisfied.

C Assertions for exchange (as called from node J in treesort3).

Arc Assertion Proof

| : 1 < Ny True. mn, > 2 to get to this call at all.
L M[1] # Ww Entry condition for treesort3 .

i b 1 <n, True.
| 1 <i = Py True, 2 <i K< mn, within the treesort’
V | loop.

Mi] # w Entry condition for treesort? .
-

i 1 <iK< n, True.

; t £w Defined in node C.

|

Conclusion

We have now proven treesort? to be free of semantic errors and

infinite loops 1f executed on the machine described and if the following

assertions are true on entry:

(LDV 1 <¢ <ny, ML] £ ow from arc5

(2) exny SL oo from arc §

(3) 2 < Lax largest constant

The second assertion 1s a hidden restriction which will prevent the proper

execution of the algorithm on large arrays on a machine with larger

addresses than integers (such as a large PDP-11 or a 360 with half-word

integers). Note in passing that siftup has the entry condition that

1 < Ny but treesort? does not require 1 < ny A quick examination

22

of treesort) shows that it works quite properly in this degenerate

case, skipping both loops and returning.

The only difficult parts in the morass of detailed proofs were:

(a) the proof that i 1s monotonically increasing in the main loop

of siftup , in which we used the overly-stringent assumption that

i >1 3; and (b) the proof at arc 8 of siftup that 1 <j+l < Ny

which used global information about the behavior of n inside the loop.

APPENDIX : Clean termination of treesort? on CDC 6600.

Because comparisons may generate overflow, the following additional

assertions are required:

Node Assertion Proof

(These proofs assume the additional constraint

that Lin , Lax , Rmin , and R , are

symmetrical about zero, 1.e., that

Tin = “Tmax ’ Ruin = “Riax -)

siftup

E nin Sn < Loo J and n are both >1 (from node C),
_ and the difference of two numbers with

the same sign cannot overflow.

F I ._<n—-3 <1 Same.
min- — “max

G R.. < M[j+1]-M[]] Cannot be proved without a restriction like

<R Vi<? <ny R. +2 < M[2] SR oop +2
— "max

or

Vi<f <n, O<MIU]<R_

This 1s an additional entry restriction

on treesort? . This subtraction may

also generate an underflow 1f M[jJ+1l] and

’ ML3] are very small and almost equal.

I Rin <M, See node G above.
<R
— "max

2h

 -

Node Assertion Proof

treesort’

“ D I. <i-2 <1 i
min = 172 SL oo On arc 3: ln ™e <i <I axe from

node C, so the assertion is true if

Lin S (I, ¥2)-2 , dee, if IL <3
C Although not very interesting, this 1s a
8 valid entry restriction on tyreesort3 .

A more interesting one would be n > 2 .

On arc /:since i > 1 at this point,

\ the assertion 1s true because of our

§ initial assumption that I. < 0 .
min

g H Lin S 1-2 S Tax On arc 8: since i = n , this becomes
the entry condition I . < n-2 .

min

On arc 13: since i > 1 at this point,

the assertion is always true.

|.

Conclusion
[-

treesort? will terminate cleanly on a CDC 6600 1f the following

- additional restrictions are true on entry:

. (1) ¥ i,j such that 1 <i < ng and 1 < 7 <n,

Rosn < MILT -M[j] < Roon -

: Two sufficient forms of this are:

Vi<it <n = =<f <n, Riap+t2 SML] <R +2
and

¥1<t¢ <n. , 0 <M12]<R .
- = 0 — — max

(2) Tpin S02 and I. < -3.

25

Acknowledgment

Don Knuth suggested the shortcut for proving loop termination.

References

[1] Floyd, R. W., "Algorithm 245, TREESORT3," Comm. ACM 7 (Dec. 1964),

701. |

[2] London, R. L., "Certification of Algorithm 245," Comm. ACM 13

(June 1970),371.

[3] Redish, K. A.,” "Comment on London's Certification of Algorithm 2L5,"

Comm. ACM, January 1971, pp. 50-51.

26

|

_ Wn CONTINUE i8 a fast practical algorithm for in-plneo Borting end one withTEMP « COEINUM]) + SODINUY . : : : .

NINUT = =SSEINUMIY & CODINU) suflicient complexity so thnt its correctness is not immediately
FAN)Lo TEN apparent,itsuseas the example is more than an abstraet exercise.

c It is anexample of considerable practical importance.
c 1 NTERNAL PROCEDURE TO CALCULATE THE ROTATION CORRESPONDING TC

-- : THE VECTORIP.0. Outline of TREESORT8 and method of proof. The algorithm is
son on . ARS most cnsily followed if the array is viewed as a binary tree.

IF(0N «GT. PP) GN TO S10 Mlk 2} is the parent of Mlk], 2 <k <n. In other words the

.« onapg SORT(1s + t0O/PPI002) children of Mj} nre M{2;} and M{2j+41} provided one or both

— $10 Ir190 «£0. Ou) Gn 0230 very of the children exist.
820 C = P/NORM ’ The first part. of the algorithm permutesa the Af array so that

0 TO RETURN. (310043405360 } for a segment of the nrrny, each parent is larger than both of the
510 <= RE children (one child if the second does not exist). Fach call of the

= NORM oo auxiliary procedure siftup enlarges the segment by causing one

ro RETURN, 13143400380) more parent to dominate its children. The second part of the
- algorithm uses siftup to mnkc the parents larger over the whole

array, exchanges M{1] with the last clement and repeats on an

= arrny one element shorter. The above statements arc motivation
and not part of the formal proof.

That TREESORT38 is correct is proved in three parts. First
the procedure sifltup is shown to perform as it is formally defined

. below. Then the body of TREESORT 3, which uses siftup in two
- ways, is shown to sort the array into rsccnding order. (The proof

of the procedure exchange is omitted.) The proofs are bya method

_ CERTIFICATION OF ALGORITHM 245 [M1 |] described in [3, 4, 7]: assertions concerning the progress of the

TREESORT 3 [Robert W. Floyd, Comm. ACM 7 (Dec. SOPSE St mere eaeh time conv ’ ~— a ac euch -

ivi), [01]: PROOF OFF ALGORITHMS-A NEW trol reaches that assertion, under the assutnption that the previ-
} hND OF CERTIFICATION ously encountered assertions arc true. Finally tcrminntion of the
- RavenL. Loapox * (Reed. 27 Feb.1969 and 8 Jan. 1970) algorithm is shown separately.

Computer Sciences Department and Mathematics Re- The lines of the original algorithm have been numbered aud the
scarcli Center, University of Wisconsin, Madison, WI assertions, in the form of program comtnents, are nutnbered cor-

Co =3706 respondingly. The numbers are used only to refer to codeind to
assertions and have no other significance. One extra bepin-end

This work was supported by NSF Grant GP-7069 and the pair has been inserted into the body of TREESORT3 in order
Mathematics Research Center, US Army under Contract that the control points of two assertions (3.1and 4.1) could be dis-

- Nimber DAR-121-ARO-D-462. tinguished. In stftup the assertions 10.1 and 10.2 express the cor-
ABSTRACT: The certification of an algorithm can take the form rect result; in thebody of TREESORT$ the assertions 9.3 and
of «proof that the algorithm is correct. As an illustrative but 9.4 do likewise.

praciiol example, Algorithm 245, TREESORT8 for sorting an Definition of siftup andnotation. W e now define formally the
- 1irov. is proved correct. :

procedure siftup(i,n), where n is a formal parameter and not the
K1XYWORDS AND PHRASES: proof of algorithms, debugging, length of the array M. Let 4 (s) denote the set of inequalities
certificat ion, mctntheory, sorting, in-place sorting Mik=2)> Mlk] for 2s <k <n. (If 8> n-+2, then A(s) is a vacu-
CR CATEGORIES: 4.42, 4.49, 5.24, 5.31 ous statement.) If A(t+1) holds before the call of siftup(i,n)

— . and if 1 <1 <n <Larraysize, then aftersiftup(i,n):
(1) A (1) holds;

. (2) the segment of the array Vii] throughYn 1s permuted;
{'ertitiration of algorithms hy proof. Since suitable techniques and

i now exist for proving thr ecorrectness of many algorithms [for (3) the segment outside M[z] through M[n] 1s inaltered.
example, 3-7}, it is possibleand appropriate to certify algorithms In order to prove these properties of siftup, some notation is
with a proof of correctness. This certification would be in addi- required. The formal parameter ¢ will be changed inside sifrup.
tion to, or in many cases instead of, the usual certification. Certi- Since 7 is called by value, that change will be invisible outside

~~ fientian by testing <tHl 13 u-eful beeause 1t 18 easier and because it siflup. Nevertheless it is necessary to use the initial value of §
nlc paavides, for exwple, timing data, Nevertheless he existence as well as the eurrent value of © tn the proof of aiftup. Tat 1; denote
of n proof hand be welcome sddbioonnd cortinention of ne nga. thee value of 7 npon entry to afta,
rithm “The proof hows that ao algorithm is dehaggrsed by show- Simitnely dot My denote the AD nreny upon entry io sftp

o ing conclusively that no bugs exisi. The notation *M = p(Ma) with M i= copy’ means “if Mi] =
't. does not mat ter whether all users of an algorithm will wish copy were done, AM is sone permutation of AM, as deseribed in (2)

,o, or be able to, verify a sometimes lengthy proof. One is not and (3) of the definition of siftup.” “M = p(M,)’’ means the
requiredto accepta proof before using the algorithm any more same without the reference to M{i} := copy being done.

= than one is expected to rerun the certification tests. In both
cace« one could depend, in part at least, upon the author and the Code and assertions for siflup.
refer 0 procedure siftup(t, n); value i, n; integer ¢, n ;

o AH anexample of a certification by proof, the algorithm 1 begin real copy; integer j;
TREESORT 312] is proved to perform properly its elnimed task commen|
of sorting an array M{l:n) into ascending order. Thia algorithm 1.1: 1 <t=t<n<array size
hasbeen previously certified [1], but in that certification, for 1.2: A (to+1)
example, no arrays of odd length were tested. Since TREESORT $ 1.3: M=p(Ms);

Volume 13 / Number 6 / June, 1970 Communications of the ACM 371

27

2 copy = Mil; 6.8: If 4 is true and 5 is fulse,j= 2i =n (using 3.2) so the
3 loop: j:==2 X 1; second clause of 6.8 holds. If 4 i8 true and 5 is true, then

comment at 6a, 2i = j<n(using 3.2) so Mj+1] = M[2i+1] is
3.1: 1<€n dcfincd. Now at 6.8, j = 2i orj = 2i41. In either case,
3.2: 2t = 3 by 6a and 6b, the first clause of 6.8 holds.
33:1 = ip or i > 2is 6.9: By 6.5 i#togives A(10).210<21<j<nby6.3 and 6.2.
3.4: M = p(M,) with Mz) := copy [lenceA (40) and 6.1 give Mli]= M[j+2] => M(j}.
3.5: A (lo) or (i = ig and A(te+1)) 8.1: 6.3.

3.6: M[i+2]> copy or t=tp 8.2: 6.2.
3.7: M[i+2]2> M[i] or i =te; 8.3: i= j+2by6.1, Mi] = M{j}by 8a and M[j]> copy by 7.

4 if j <n then 8.4: 6.7 nnd 6.9.
5 begin if j< mn then 8.6: 6.4 requires that M{i] be replaced by copy. Since Mi] =
6a begin if M[j+1]> M[j] then M{j] by 8a, M[j] may equally weli be replaced with copy.
6b j =] + 1 end; 8.1 and 8.2 give 1, <i<n so that the change to M at 8a

comment is in the segment M{%] through M([n].
6.1: i = + 2 8.6: By 83 and if 6.8 (first clause) holds, Mti}=>M([2¢] and M[i]>
62: 2i<j<n M[2i+1]. By 8a and if 6.8 (second clause) holds, Mii] =
6.3: 71 = 1p or t > 21 Mj] = Mn] = M[2{] and M[2i4-1] does uot exist for this
6.4: M = p(Mo) with M[i]:= copy call of siftup. A(ie+1) holds at 6.5 since A (zs) implies
6.5:A (do) or i = 4p and A (to+41)) A@o+1). If t =14 , A(to+1) and the relations above on
6.6: M{i+2]> copy or 1 = 1s Mi) give A (Zo). If © #49, then 8a, 8.4, A(io) at 6.5 aud
6.7: M{i+2]2 Mi] or i=1¢ the relations above on M{[z] give A (70) at 8.6.
6.8: (2i <n and M[j] = max(M([2:i], M[2t41])) o r 8.7: 8b, 8.1 and 8.2.

(2i=n and Mj] = Mn) 8.8: 8b and 8.2.
6.9: M[i] > M[j] or i = te; 8.9: 8b and &3.

7 if M{j] > copy then 8.10: At 8.6, 2i<j<n by 8.1 and 8.2. Hence by 8.6, M{j+2]>
8a begin M[i]:= Mj]; M[j]. Use 8b on M[j+2]2= Mj].

comment 8.11: 8b and 8.5.

8.1: 1 = dg ori 22% ~ 8.12: 8.6.

82: 2iLj<n 9.1: 9.1 is reached only if 7 is false or if 4 is false. 2i = 7 by 3.2.

8.3: M{j=+2] = M[t] = M[j] > copy 10.1-10.2: If reached from 7,
8.4: M[z+2) > M[j] or i = 1 10.1: 6.4 and 10. (6.2 and G.3 give 70 <1 <n ensuring

8.5: M = p(M,) with M{;]:= copy the change to M at 10 is in the segment M{i;] :
8.6 : A (0); through M [n].).

8b 1:= 7; 10.2: By 10, 9.1, G.2 and 6.8, M[t]=copy 2 Mj] 2
comment M|2:}] and, if M[2¢+1] esists, Mj]> M2¢41]. If

8.7: 1 > 2p 1=1 , 10.2 follows as in 8.6. Ii i #1, 6.6 and

88: i =j <n 10 give M [1+-2]> copy = M[i]. A (3) at 6.5 now
8.9: M[i+2]> copy gives A (fo) at 10.2.
8.10: Mi-+2]> M[z] If reached from 4,
8.11: M = p(M,) with M{i]:= copy 10.1: 3.4 and 10. (3.1 and 3.3 give 4 <i<n.)
8.12: A(ze); 10.2: 2i > nn means no relations in A (i) of the

8c go to loop end form M[z]2 «+. Ifi=14 , 3.5 gives 102. If
9 end ; i #1% , 3.6 and 10 give M[t+2]> copy = M[:].

comment A (0) at 3.5 now gives 10.2.

2-1: MUj] < copy if reached from 7 or Code and assertions forthe body of TREESORT 3.
2: =] > n if reached from 4; 0 i .integer 1,

10 Mi] := ory; comm ent
commen 0.1: A(n+2+1);

10.1: Al = p (Mo) 1 for 2:=n+2step -1 until 2 do
10.2 : A (70); 2 begin

11 end siftup; — comment
Verification of‘the assertions of siftup. Reasons for the truth of 2.1: A(i+1)

each assertion follow: 2.2: Assumptions of 8iftup satisfied;
1.1-1.2: Assumptions for using stflup. 3 siftup(i,n);
1.3: p is the identity permutation. oommcnt
3.1-3.7: If reached from 2, 3.1: A(z);

3.1: 1.1. 4 end;
3.2: 3. comment

3.3, 3.6-3.7:i=1¢ by 1.1. 3.5 also requires 1.2. 4.1: Mlpl<Mp+1} forn+1<p<n-1
3.4: 1.3 and 2. 4.2: A2), i.e. M[k+2]> Mk] for 4 <k <n;

If reached from 8, respectively, 8.8, 3, 8.7, 8.11, 8.12, 5 for t:=m etep -1 until 2 do
8.9 and 8.10. 6 begin

6.1: At3.2 j = 2i and by 6b,j might be 2i + 1. t = §4+2 in either comment
case. 6.1: Mp) <Mlp+1l] fori+ 1 <p<n-—1

6.2: After 4,j <n.j is altered from 3.1 to 6.2 only at 6b. Before 6.2: M[k+2]2> Mk] for 4 <k<i
6b,j<nbyS5. Hencej<n at 6.2.21 <j by 6.1. 6.3: Mls+1]2M[rlfor 1 £r< i

6.3-6.7: 3.3-3.7, respectively. 6.4: Assumptions of siftup satisfied;

312 Communications of the ACM Volume 13 / Number 6 / June, 1970

28

-

= 7 siftup (1,3); at3 strictly increases the valuo of j. The only other setting to j
comment (at 6b), if made, eimilarly increases the value of j.

7.1: Mp} < Mlp+ljfori+1< p< n-—1 REFERENCES:
T2 M2] > MKk]for2 Sk S's 1. ABrams, 1°. S. Certification of Algorithm 245. Comm. ACM 8
73: M1] > Vrjfor2 <r <3 (July 1965), 445.
To M41] 2 M[1}; 2. Froyo, 11. W. Algorithm 245, TREESORT 3. Comm. ACM 7

8 exchange (M{1]}, M[i]); (Deo. 1964), 701.

comment 3 . Froyp, R. W | Assigning meanings to programs. Proc. of a
8.1: MU]> Mr] for 1 Sr<s—1 Symposium in Applied Mathematies, Vol.1 0 Mat hemout ical
8.2: Mp]< Mp+1l) for i <p<n-—-1 Aspects of Computer Science, J. I’, Schwartz (Eid), American
S.3: Mk+2]2 M[k] for 4 Sk<s— 1; Mnth. Society, ’rovidence, 11. 1, 1967, pp. 19-X.

9 end; ©" 4, Knut, D. Ii. The Art of Computer Programming, Vol. 1—

comment Fundamental Algorithms. Addison-Wesley, Reading, Mass.,
0.1: Mp] Mlp+1] for 2 <p<n—1 1968, Sec. 1.2.1.
0.2: M[2] > M[1} 5. McCARTHY, J. A basis for a mathematical theory of computa-
9.3: M{p]<Mp+1] for 1 Sp<Sn—1, ie Mis fully tion. In Computer Programming and Formal Systems, I’. Braf-
ordered fort and D. Hirschberg (Eds.), North Holland, Amsterdam,

9.4: MM is a permutation of Mo; 1963, pp. 33-70.
6. MCCARTHY, J., AND PAINTER, J. A. Correctness of a compiler

Verification of the assertions for the body of TREESORT 8, for arithmetic expressions. Proc. of a Symposium in Applied
Reasons for the truth of each assertion follow: Mathematics, Vol. 19—Mathematical Aspects of Computer

0.1: Vacuous statement since 2(n+2+1) > n. Science, J. T. Schwartz (Ed.), American Math. Society,
2.1: If reached from 0.1, by 1 substitute i =n+2 in 0.1. Providence, R. I, 1967, pp. 33-41.

If reached from 3.1, by 1 substitute 3 =i 1 in 3.1 to ac- 7. NAuUR, P. Proof of algorithms by general snapshots. BIT6
count for the change in? from 3.1 to 2.1. (1066), 310-316.

2.2: 2.1, the bound on i implied by 1 and the array size being n.
3.1: 2.1 and the definition of siftup(z, n).
4.1: Vacuous statement. -.

4.2: If n>4, 3 is executed; hence 3.1 with t= 2, If n <3,
vacuous statement.

6.1-6.3: If reached from 4.1,

G.1-6.2: By 5 substitute ¢ =n in 4.1 and 4.2.
6.3: Vacuous statement for i = mn.

If reached from 8.1, by 5 substitute + =t4 1 in 8.2,

8.3 and S.l, respectively.
6.4: 5 and 6.2, i.e. A (2) for the subarray M{1:1]. REMARK ON ALGORITHM 207 [MI]
7.1: Gl and (3) of siftup. SHELLSORT [J. Boothroyd, Comm. ACM 6 (Aug. 1963),
7.2: 6.2 and (1) of siftup. 445]

7.3: 2 noting that M[1)= M[k+2]if k= 2 and using the transi- J. P. CuanpLer ax W. C. HARRISON® (Recd. 19 Sept.ivity of =.

7.4: Vacuous for 2 = n. Otherwise 6.3 for the appropriate * since 1969)
by (2) of siftup, M[1] at 7.3 is one of the M[r], 1 <r <4, Department of Physics, Florida State University, Talla-
at 6.3. hassee, FL 32306

8.1: 7.3 with the changes caused by 8 (only M[1l] and Ms] are

altered by 8). * * This work was supported in part by AEC Contract No. AT-

p=1L University Computing Center.
8.3: 7.2 excluding only the one or two relations M[1]2>..., and

the one relation . +> M[z]. KEY WORDS AND PHRASES: sorting, minimal storage sort-
9.1-9.3: If n> 2, 8 is executed; ing, digital computer sorting

~ 9.1: 8.2 with 2 = 2. CR CATEGORIES: 5.31
. 9.2: 8.1 with 1=2.

9.3: .1and 9.2. Hibbnrd [1] hns coded this method in a waythatinereasesthe
If n <1, 9.1-9.3 nre vacuous statements. speed signifienntly, Tn SHELLSORT, cnch stage of each sift con-

0.4: ‘The only operations done to M wre siftup and exchange ull of gists of successive pair swaps, The modification replaces each cet
which leave Mons a permutation of Ms . of n pair swaps by onc “gave,” n-— 1 moves, and one in ertion,

Table I gives timing information for Argor, Form \~N, and
Proof of termination of TREESORT 8. Provided siftup and ez- Compass (assembly language) versions of SHELLSORT and the

change terminate, it 1s clear that TREESORT3 terminates. Note
that each parameter of siftup is called by value so that t is not -_—s memeame“e— § mr
changed int he body of the for loops. TABLE I. SorTING TiMEs IN SECONDS For 10,000 RANDOMLY
The procedure exchange ccrininly terminates. In stftup the only ORDERED NUMBERS oN THE CDC (400 CoMPUTER

possibility for an unending loop is from 3 to 8b and back to 3. -_————" —
Note thatallchanges to i (only at 8b) and to j (only at 3 and Gb) Algorithm Sowrce Language
aceurin this loop and that on each cycle of this loop both i and j ALgoL FORTRAN COMPASS

are changed. By the test at 4, it is sufficient to show that j strictly SHELLSORT 53.40 7 1s 7 39
Inereases in value. 12> 1 means 2i >i. At 8b, j=1<2 while at SHELLSORT 36.56 508 1.87
3,7 =2t,1c. j(at 3) =2i > i = j(at 8b). Hence each setting to j

Volume 13 /Number6 / June, 1970 Communications of the ACM 373

29

PROVING CLEAN TERMINATION OF COMPUTER PROGRAMS

\

- Richard L. Sites

Computer Science Department

Stanford University

C Stanford, California 94305

Abstract

« This paper presents a system for proving that a computer program

contains no semantic errors and no infinite loops, and hence that it always

terminates cleanly. This work differs from other work on verification

« - of program correctness in two important ways: (1) it deals explicitly
with the finite limitations of real machines, and (2) it does not

— examine what the program accomplishes; no description of the correctness

C properties of the program 1s required. A recent ALGOL program for
ee

computing medians 1s used as a running example.

.

= Keywords and Phrases: proof of termination, proof of correctness

\ CR Categories: 5.24

.

_

1

\

Much of the theoretical work in verifying program correctness has

concentrated on theorem proving techniques, formal language schemata,

formal logic, program synthesis, and program equivalence. A common

theme in this work 1s the process of describing a program by a set of

assertions, and then inductively proving that the assertions are true.

In such an approach, the assertions (or at least the important ones)

are usually supplied by a human, then the verification system tries to

prove them. At the successful conclusion of this process, the program

has been proved to do exactly what the assertions describe [Floyd],

[King], [Good].

One of the drawbacks of this approach is that 1t takes a lot of

effort to create the proper assertions —-- to find assertions which

describe both what the program actually does and what it 1s intended

to do. It 1s easy to write down assertions which loosely describe what

the program does, but which happen to fail in degenerate cases (such as

the first time through a loop, or a normally positive variable starting

out exactly zero); it 1s also easy to write down assertions which do

not fully describe the intended functioning of the program, so that the

* program may be carefully proved to work as the assertions describe, but

it still would contain "bugs" in actual use. For example, the correctness

of-a program to sort elements 1 through n of an array A might be

described with a final assertion like this:

v1<#<n-1 , Ale] <A[#+1] .

While this 1s a perfectly reasonable description of the intended function

of the sort program, the following program can also be rigorously shown

to work as the assertion describes:

2

| for i := 1 until n do
- Ali] := 37;

\ Another problem with programs that have been proved correct is that
the proof applies only to ideal machines whose numbers have unlimited

i precision and range. When run on real, finite, computers, such wrograms

‘ may deliver improper results even after they have been rigorously
L certified (see for example [Sites]).

| Large "real-world" programs (such as a compiler) are usually
¢ developed to the point that they appear to go through all the right

motions, that they basically work, and then the program enters a shakedown

| period during which many test cases are run and perhaps new users are

“- allowed to try the program. The purpose of this shakedown is to eliminate

g most anomalies and to improve the confidence level that the program is
working properly.

“ The rest of this paper describes a system to make this shakedown

: process more rigorous and to detect errors due to the finite limitations

L of real machines. Programs exhibit bugs in one of two ways: they produce

“ incorrect results, or they terminate abnormally. Correct results are
sometimes hard to describe rigorously (although there 1s a high payoff

a in describing simple consistency checks), but abnormal termination can

) be more precisely specified. In fact, we have no good notation for
L describing what it means for a complicated program to be correct; many

| data processing concepts, such as "this compiler produces correct object

&- code", have no simple rigorous form. A system which tries to prove that

i a program will always terminate normally could be quite useful for
increasing confidence in the proper functioning of a large program. The

_ system would say nothing about what the program does (i1i.e., sort an array);

~ 3

L

instead, such a system would report that whatever the program does, it

terminates cleanly. The system would verify that the program contains

no semantic errors or infinite loops -- no overflows, out-of-range

subscripts, references to null or undefined pointers, etc.

While proving that a program terminates 1s 1n general an unsolvable

problem, most real programs are intended to terminate and have good

reasons for doing so. Therefore, it is reasonable to expect that

automatic means could be used to prove termination of many useful

programs.

To make this concept more specific, let us consider a version of

a nontrivial program written by R. L. Rivest [Rivest and Floyd]. This

example will be used throughout the paper to illustrate the techniques

presented. See Program on next page.

To prove that this program terminates cleanly, it 1s necessary to

prove, for example, that line 19 produces no overflow; that in line 26,.

i 1s defined and 1n the proper subscript range for X ; and that the

loop at lines 28-29 terminates (without a bad subscript).

This paper discusses many of the issues in creating a mechanical

proof that Rivest's program terminates cleanly. It does not, however,

go into much detail about theorem proving techniques, or about the specific

theorems of Rivest's program. It will not deal with the recursive call

to select at line 17; essentially, the discussion below will only treat

the functioning of select when r-f< 600 . The dotted paths on the flow

graph below are intended to indicate that as an inexpensive byproduct of

the techniques presented here, some cases of recursion can be shown to

terminate by treating the recursive call as an assignment to the parameters

and a branch to the beginning of the program. Of course, treating the

call as a branch does not deal with what happens when the call returns.

4

g
l. procedure select(X,2,r,kx); value brs ks array X:, -2. comment select will rearrange the values—of X[f:r] so tha

Lo 3. X[k] contains the (k-f+1)st smallest value:
4. £ <i < k implies X[1]<.¥[}] ar 4
5. k <i<r implies Xi] > X[k],
6. begin integer n, i, J, fs, sa. £8, rr, t;
{- while r=f > 35
8. "begin
9. if r-f > 600 then

10. begin
11. n := r-0+1;
12. 1 := k-f; |

15. S := entier(0.5 * exp(2*1In(n)/3))3,
. 14. sd := entier(0.5 * Sqrt (1n(n)*s*(n-s) /n) * sign(i-n/2))

16. rr z=mmin(ir, k 4 (n-i)*s/n + sd);| 17. select(X, 24, rr,k)
18. end;

| 19. 1 t= 2 + 1;
| 20. J := r - 1;

21. t = X[k];
22. X[k] :=Xx[2];
23. X[2] := t;

| 2h, if X[r] <t then
N 25. exchange(X[r], X[£]);

26. P: while X[i] <t do
27 . 1 :=1 + 1;

28. while X[j] >t do
9. Ji=3 - 1;
20. if 1 < Jj then
31. begin
32. exchange(X[i], X[j]);
33. 1 := 1 + 1;
34. J =7J-1;
25. go to P
36. end:

© 37. if X[2] = t then
38. exchange(X[2], X[j])
59. else begin
Lo. i T= 9 + 1;
Li. exchange(X[j], X[r])

43 . 1f J <k then
44. £ TZ 3+ 1;
45. if ¥ < J then
46. r =] — 1
Lh. end
48. end select

Program

5

This paper will not deal with lines 11-16 because they involve floating-

point numbers, which the prototype system 1s not prepared to handle,

and for which exposure to overflow, underflow, and division by zero

are much harder to avoid than for integers.

In summary, proofs of clean termination are useful for several

reasons:

(1) This technique may be economically applicable to a larger set of

programs than more exacting proofs of correctness.

(2) Machines are better than humans at mechanically examining

degenerate cases; 1t 1s difficult to create correctness assertions

which are trde in all cases including the degenerate ones.

(3) By examining programs run on real machines, with finite precision

and finite-range arithmetic, the system deals with a source of

bugs which other correctness techniques don't address at all.

(4) If the program cannot be proved to terminate cleanly, then the

proof process should detail which parts of the program will always

terminate and which may not, thus focusing the user's attention on

the complicated, error-prone, or interesting part of a program.

(5) For programs like operating system subsystems, it is often desirable

that the program always return control to the operating system, even

1f 1t sometimes gives incorrect results.

I. Flow Graph Processing

Let us now take Rivest's program and apply to it a mechanical

process which 1s often able to prove clean termination. We start by

viewing the program as a flow graph (Figure 1).

6

[

C |

E>
- B a - 1

. Procedure | |
. select(X, {,r,k)

- (7,
Cet >0 2 |

|

T |
. F

n i=...

s &... |
~— ~ | sd =...

|

- |

Le” NJ

| i ¢= I+1
\

J = r-1

t := X[k]

= X[k] := X[1]
.

| X[2] := +t

| exchange(X[r],X[1])

CEnit_> (8)

Figure 1. The flow graph for Rivest's program

I

Em oa
F

FP

of5
[=]

~3<3
7 T

exchange(x[i],x[3])

R i := itl

DET
7 T

| J i= 3+1 exchange (X[21,%X[j1]) |

exchange(x[j1,%lr])

MCIsk OD1] T
:

HET
7 T

|

Figure 1 continued.

8

3 In order to make analysis of the loops more manageable, ino flow

| i graph 1s modified according to the following set of rules.
BN First, we perform interval analysis [Allen a,b], [Allen and Cocke],

| [Cocke], [Cocke and Schwartz] on the flow graph, and do any necessary
node splitting so that every loop has a single entry node. Tp¢ point of

forcing all loops to have a single entry node 1s to avoid situations

like the one in Figure 2a.

0
¢ [<= 7) oo

a ~

i Figure 2a. Flow graph which needs node splitting.
where 1t 1s impossible to determine the state of the program when entering

g node B without having first examined the state of the program when

leaving node B . Node splitting produces the modified graph in Figure 2b,

0

(=
Figure 2b. Same graph after node splitting.

in which the loop now has a single entry node, C .

When applied to Figure 1, interval analysis leads to successive

reductions as shown in Figure 5. No node splitting is required.

9

|

Node A | Node A |
_ |
= 7] a

T o ¢

I a || |.

Nodes | Nodes i. NodesC C C
. |

thru thru 1 | thru |K | K Z
Lo

ry | | I lo — 1
| Nodes Nodes | L — — |L and M | | L

| Nodes | |
| Z

| —

Figure 3. Interval analysis of Rivest's program.

10

|) Second, at the head of each interval which 1s a loop, we add a
| N "loophead" node and reroute all the latchback arcs (arcs which branch

back to the head of the interval) and initial entry arcs through this

- new node. The loophead node gives us a convenient place to attach

loop induction information and loop termination assertions. This

step generates four loophead nodes in our example, see Figure Ak.

| (For simplicity, we shall henceforth ignore the dotted arcs, which
¢ correspond to the recursion.)

|

|

11

LE

Procedure

select(X,2,r,k)

| (0) loophead #1

RED
CTE

J i=r-1

| |

| HC) <3 T

F |

|
V/A exchange(X[1],X[11)

Figure 4. Flow graph after interval analysis and insertion

of "loophead"” nodes. Double lines are loop exit arcs.

12

| SE
| r — —|—I |d #3 N

BEER:oo - | In| = I 1 a—f_ _ — | |— | oa

| ECHR1] HE
] L _ ===] |
| EY.—

JLHEE
Lo

Third, in order to separate information related to the issue of

loop termination, we 1n general need to modify each loop so that every

path around the loop goes through a test which can exit the loop. We

make a separate, contained, loop out of any paths which do not exit

directly, as in Figure 5. There are no paths around the loops in Rivest's

program which require this modification.

— me | —— —— om LJ PE

[EST TESTloophead #1 loophead #1

| | | loophead #2 |
gin | J

<=> ul AAS

i LY || » |
exit | |

| E |
exit

ba. The paths of this flow graph are 50. The paths of this flow graph

are described by the regular are described the regular
* W* W* *

expression (A(B+CDE)) ACD expression ((AB) ACDE) (AB) ACD

Figure 9. Example of forcing each path around a loop to

go through an exit test.

14

| In generating loop termination assertions, we will essentially be
. stating that "for some k , an exit path is taken on the k-th iteration

of the loop". It is convenient for the generation of such assertions

to have loops 1n which the exit tests are near the top of the loop.

\ Specifically, 1f there are embedded loops, function calls, or complicated

“~ calculations between the loophead node and the various tests which exit

the loop, then it will be hard to describe the values of the program

& variables at the test node in terms of their values at the loophead node.

| Therefore, our fourth modification is to attempt to permute the nodes in
the loop so that all exit tests occur immediately after the loophead

a node. Our modified flow graph for select now looks like Figure 7, with

| copies of loops 3 and 4, and loop 2 permuted.
This modification cannot always be done, as the third example

_ in Figure 6 shows. However, all loops with exactly one immediate

exlt arc can be successfully permuted. The effect of these last two

. modifications 1s put the programs in nested while format. For another

method to accomplish this transformation, see [Ashcroft and Manna].

15

loophead

E

B| loophead

exit

| *
regular expression = (ABCD) AX

EXAMPLE 6a. Transform this to 6b. B
exit

regular expression = AB(CDAB)*C

EXAMPLE 6b. Leading test form of 6a.

| | loophead |
| {embedded loop |

embedded loop |

exit exit

EXAMPLE 6¢. Cannot move both tests

to top of outer loop.

Figure 6. Examples of permuting loops' to create leading tests.

16

"

—Nf

| [“Loophead #1] oo
:

1 F 7

| E r-£ > 600
F T

L P|
| nodes Stop

H-K

~ loophead #31

] Cla] <3 Loop #3)

loophead #4

<TR». loop flr

i prs a
loophead #p |

L

Bs 1
BN loop #4

~+pusc [+ ploy graph of select a

format, with 1-permffeforcing into nested WH.

With the flow graph put in the desired form, we are now ready

for the work of creating and proving assertions about clean termination.

II. Semantic Error Assertions

We start by attaching assertions to the arcs of the flow graph

stating that all operations in the subsequent node are well-defined and

that no semantic errors are generated. This is essentially an operation-

driven process of inserting assertions on all incoming arcs of a node,

specifying exactly what conditions must be true for the contained operations

to execute cleanly. Typical assertions are:

Operation Assertion generated

i+] ifwaj Foal, <i+jaityj <I, where

| W stands for "undefined", Tin 1s the smallest
representable integer in the machine on which the

program will execute, and Lax 1s the largest

representable integer.

Ali] iA wA A, <iAaigA , where A, is the lower

bound for legal subscripts of A and Al 1s the

upper bound.

i ==] jE.

See Figure 8 for an example of this assertion synthesis process. Note

that 1f a node has many incoming arcs, the same set of assertions will

be attached to each arc. A detailed example of assertion generation

appears 1n [Sites].

If all the assertions generated at this stage are proved to be true,

then the program contains no semantic errors, 1.e., 1t does not "blow up"

during execution, perhaps with a run-time error message.

18

: rfEw A LEO A

Lin <r-1Ar-1K I ax A

rin < 000 A 600 < Lax
X

r-£ > 600

3 F T

C

i Figure 8. Example of assertion generation.

- In most cases, the generation is quite simple, but some complications

| arise in handling procedure calls:
(1) Arguments passed to value parameters of a procedure are

.

L treated like the right-hand side of an assignment —-- the argument

expression must be defined and must not generate semantic errors when

= it is evaluated at the point of call.

_ (11) Procedures with name parameters must be handled strictly

_ according to the copy rule, making a unique copy of the procedure for

" each call and logically inserting the body of the procedure instead of

that call. This is the only way to properly reflect the side effects

which can result from tricky use of name parameters. It is also a

reason that Algol60 recursion 1s hard to analyze mechanically.

(111) Procedures with array arguments have the problem that the

procedure does not specify the legal lower and upper bounds for

the subscripts. Either of two strategies can be adopted for generating

and proving assertions about-subscripts in the proper range: gymholic

19

names (like A, and A) can be used in all the assertions, and the

proof techniques can push back to the entry point of the procedure any

assertions (restrictions) which must be true on entry in order to avoid

subscript range errors; alternately, theprogrammer can supply an extra

statement to the proof system, describing the bounds for each array. The

first strategy is equivalent to asking, What are the necessary array

bound conditions for this procedure to always terminate cleanly?" The

second strategy is equivalent to saying, "Here are the conditions which

will always be true when the procedure 1s called; are they sufficient to |

guarantee clean termination?"

If the programmer has definite assumptions about ranges of array

bounds 1n his mind, then 1t 1s best to state them to the proof system.

Failure to do so forces the system to try to synthesize the equivalent

information, a process which may well fail.

In the assertions and proofs which follow, it will be assumed that

the proof system has been told that X[4y:r,] 1s the declaration for

arrayX , where ¢s equals the value of ££ upon entry to select ,

and r, equals the value of r upon entry. This binding allows the

- subscript range assertions to be independent of the fact that the

variables { and r change value as the program executes.

20

:
| III. Loop Termination Assertions

EN Loop termination assertions are harder to generate than semantic

| error assertions because the goal 1s much more abstract. For semantic

errors, the assertions generated are a straightforward function of the

{ language definition and compiler/computer implementation restrictions.

- For loop termination, however, synthesizing the proper assertion may well

3 be harder than proving it true.
(Loop termination can be approached on a wide variety of levels of

| abstraction. One extreme is to assert that control passes through each

| loophead node a finite number of times. However, such a statement
- desn't lend itself to direct proof. Another extreme is to require all

loops to be FOR loops or DO loops in which the step and limit are

] evaluated exactly once and the iteration variable cannot be changed

inside the loop. Such loops terminate by definition (if a zero step is

prevented). In between these extremes are some useful strategies.

One strategy 1s to use the taking of an exit branch as a goal to

drive the assertion generation. For any loop, asserting that it terminates

1s equivalent to asserting that 3k > 1 such that on the k-th iteration

of the loop, one of the sets of tests leading to an exit arc will be

true. Given the form of loops with leading tests that we have specified,

it -is easy to generate such an assertion mechanically.

el

ny.

V4

exit 1 Ca<n2

Figure p. Example flow graph for discussion of loop

termination assertions.

22

| i Using the notation ik to mean the value of variable i at the\ loophead node on the k-th iteration of the loop, the termination

assertion for Figure 9 1is: }

dk> 1 s.t. (2x1, >n,) V
‘

_ (2 xi, <n. A ax i >n_ A M [2 xi, 1 < cp) Vv

] (2 xi, <n_ A 2x iy <n, A M2 x i+1] <c) |
(

This expression was derived by substituting for j its value 1n terms

of the values of the program variables at the top of the loop. pote

that depending upon the path taken, this value 1s either 2 Xi or

” exi tl .
_ While an assertion such as the one above can be generated from any

loop described 1n Section II,1t 1s 1n general an unsolvable problem to

prove that the assertion 1s true. However, a small variety of techniques

based on monotonic variables, finite sets, and search loops can prove

the termination of most loops encountered in practical programs.

Also, this strategy of generating a gk . . assertion sometimes

J allows a proof system to state that a loop definitely never terminates.

For instance, if the statement i := j were accidently left out of the

example loop above, then it can be shown that all variables in the

assertion are invariant within the loop. Thus, the existential

quantifier can be dropped, and the remaining assertion states that the

program exits the loop on the first iteration. If this assertion 1s true,

the loop terminates immediately; if it is false, the loop never terminates.

Another strategy 1s to use the existence of a monotonic variable

which does not overflow as a goalto drive the assertion generation. If

25

a loop contains a monotonically increasing or decreasing variable which

never overflows when it 1s updated, then the variable takes on a finite

number of values, so the loop terminates. Assertions specifying no

overflow are already generated by the semantic error assertion mechanism,

so 1f a monotonic variable 1s found inside a loop, no other assertions

are needed: if the existing"no overflow" assertions are true, then the

loop terminates.

This simple strategy 1s beautiful when 1t works, but of course it

won't always work. For example, 1f the assertions are not true and an

overflow may occur, the proof system may not be able to state directly

that the program has an infinite loop. Also, 1f no monotonic variables

are found, this strategy doesn't suggest anything else to try.

Using the first strategy, we generate the following loop termination

assertions for Rivest's modified program:

Loop #1 3k > 1 s.t. (ry =2y < 0) vv (rp =f, > 600)

Loop #31 3k > 1 s.t. X, [1] > ty

: .

Loop #4 3k > 1 s.t. X[3] Sty

. Loop #2 3k >1 s.%. 1 > Jy

Loop #3 3k > 1 s.t. x [1] >t

. Loop #h 3k >1 s.t. X, 13, < tg

Using the second strategy, we find that in loops 3', 4', 2, 3,

and 4 there are monotonic variables. We are going to be in trouble

later, however trying to prove that, at node M , i := itl does not

overflow. In loop 1, we have another problem. Neither{ nor r are

2L

monotonic, but their difference r-1 1s strictly decreasing. Using

the second strategy, 1t 1s not clear how to discover that r-1 is a

relevant expression.

u .

L

-

IV. Proofsof Assertions

- We now order the nodes in the modified flow graph according to the

h following rules.

(1) Logically reduce each loop in the program to a single node (a loop

“. is the set, of nodes in an interval, plus the loophead node, minus

all nodes in the interval which have no path leading back to the

loophead node) .

N (2) Topologically sort the nodes in the reduced graph, using the

} (directed) arcs as the ordering.

(3) For each node in the reduced graph which represents a loop,

C topologically sort the nodes within the loop, ignoring all

— latchback arcs, then insert those nodes in the main topological

| . ordering as a single group, so that all nodes in the loop precede

C any nodes which followed the loop in the reduced ordering.

g (4) Apply step 3 until all loops have been expanded (see Figure 10).

.

“

25
\

|

(1) reduced graph

;

| O

(2) Ordering: ABDCEF (loop) K

(3) Ordering within (loop)

Stop > GHIJ
(4) Final ordering

ABDCEF GHIJ K

Figure 10. Example of node ordering.

26

8

~ The proof mechanism will visit the nodes of the graph in the order

N specified above. At each node, it will attempt to prove all assertions

} on all incoming arcs. The order specified has a few fairly obvious

8 properties: (1) Except for loophead nodes, whenever a node is visited

{ by the proof mechanism, all predecessor nodes will have been visited.
|

L (2) For loophead nodes, all initial entry predecessor nodes will have

been visited. (3) If a predecessor node is inside a loop, all nodes

¢ in that loop will have been visited. (4) The question "Is node X

_ inside loop N ?" canbe answered with a simple range test.

If a program consists of many non-recursive procedures, We Process

‘- the innermost Procedure first, so that each procedure will have been

completely processed before any calls to it are encountered.

We will process nodes 1n the modified flow graph of select

CC (Figures 7 and 1) in the order:

AB (loop 1) D

L or AB CEF'HIJK L'M' N'O' RR LM NO STUWXYZ D

4
4 The processing at each node visited will be discussed in terms of

the model in Figure 11.

| .
-

« Given 1 —\ [civen 2arc 1 arc 2

- Assertions TT A 2
Node |

‘

_ | TT resulting known information

| Figure 11. Model node for assertion proofs.

C 1
-

If the node being visited 1s not a loophead node, we try to prove

the assertions on each incoming arc, using the "given" information

attached to the same arc (the arc leaving the START node has empty

"given" information attached to 1t). More precisely, we try to prove

the theorems

Given 1 OD Assertions 1

Given 2 DO Assertions 2 .

If the node being visited is a loophead, We try to prove the assertions

on just the initial entry (non-latchback) arc(s).

If any assertion cannot be proved conclusively true, then a message

1s printed for the--user.

To catch mistakes or state restrictions as early 1n the program as

possible, we try to move assertions which cannot be proven true back

toward the entry point of the procedure. This 1s purely an optional

step, 1n which we try to help the user by moving unproved assertions

to the earliest place 1n his program that he 1s likely to want to insert

a fix for the bug. We do this movement by taking an assertion and

attempting to "pass it through" the preceding node, attaching the

* (possibly modified) assertion to each incoming arc, as shown in

Figure 12.

\ assert i+2 < 20 \ — assert i+2 < 20

t—-assert 1< 20

|

Figure 12. Passing an unproved assertion back through a node.

28

Sometimes, it will not be possible to move an assertion because the

3 operations inside the node are not reversible (read, or perhaps a

procedure call). When pushing an unproved assertion through a loophead

node, we don't attach it to any latchback arcs, since then the assertion

'S

would be pushed around the inside of the loop forever. In general, it

1s not useful to push an assertion back through a loop which modifies

] any of the variables in the assertion, as in Figure 13.
C

|

assert k < 20 —

Figure 15. The unproved assertion cannot be pushed back usefully.

If we are visiting a loophead node, the processing is more

complicated. Our model node now looks like the one in Figure 14.

29

initial >
entry
arcs

1 [e— latchback
arcs

loop termination ———————————
assertion

loop

body

— exit arcs-

Figure 14. Model node for loophead processing.

First, we process all assertions on the initial entry arcs as

described above. Then we set all program variables to dummy symbolic

values, say 1 = 1g ,y J = Jo , X = X , and visit all the nodes in

"the loop body, propagating and merging the "given" information based on

these symbolic values, but not proving any assertions. We do not follow

the exit arcs, and we stop when the given information has been established

for all latchback arcs. (The given information on a latchback arc might

be something like i = ijtl A i < 11.)

We then feed the initial entry conditions and the once-around-the-loop

symbolic expressions on the latchback arcs to an induction routine that

tries to synthesize a range or set of values which each program variable

takes on at the loophead node. In this induction routine, particular

50

care should be given to detecting variables which are invariant within

the loop, and those which are monotonic. |e attach the induced ranges

T and relationships as "given" information on the arc leaving the loophead
node. Using this information, we take a second pass over the body of

- the loop, processing it in the normal way. Note that a loop nested n
levels deep will be processed a total of 2 times.

After visiting a node and handling the assertions on its incoming

. arcs, our next step 1s to create the resulting "given" information to

attach to the exit arc(s). This information consists of all input arc

given information, plus all input assertions (since 1f we leave the

- node cleanly, all the input assertions must have been true), modified

. by any assignments which occur inside the node. If the node being

visited 1s a test, we add the relation or its negation to the true

. and false exit arcs respectively.

If two or more incoming arcs specify different "given" conditions,

we take the most encompassing information, 1.e., 1f one incoming arc

specifies i > 10 , and another 1 >1l1 , we use i > 10 . Whenever

information is lost by this merging process, we mark the resulting item

(the examples below use an asterisk) so that if later it becomes

- significant whether i 1s exactly equal to 10 , we will know that there

+ is a possibly useful refinement to the information 1 > 10° :

\

V. Application of Proof Process to Rivest's Program

Referring back to Figure 7, we find that the modified flow graph

for select consists of loops nested three deep, as shown in Figure 19.

NN

31

L

loop 1

(Loop)

/
loop 2

|

Figure 19. Structure of loop nesting in select.

We begin the first pass over loop1 by attaching the symbolic

values

and XxX = Xx,

to the arc between the loophead #1 node and node C . On this first pass,

we will analyze the nodes inside loop 1 and develop induction expressions

relating the values of all variables after one iteration through the

loop to their values at the beginning of that iteration; the symbols

52

r

C

“ Toslos. 5X represent these initial values. Following the process

« given 1n Section IV, we visit (in order) nodes C , E, F', and H ,

| developing the following information on the arc entering node I

(refer back to Figure 1 for the exact content of the nodes involved):

C r=ry AL =1L, A k=ky At =1%,A X =X5 A
.. 1 = fol A

Jj = ro-1 A

C 0 <r,-1, < 600

One of the biases in our processing should be to reflect relationships in

terms of initial values at the top of the loop; thus we write 0 < rod

8 insteadof 0°< r-1 , the latter signifying the values of r and{ at

the arc to which the relation is attached. If, say, r 1s changed, the

relation 0 < r-f may no longer be true, while 0 < TnL, still would be.

L After processing node I , we attach the following information to

the arc leading to node J :

r=ry AL =1L A k= ky A

\ i = £,+1A

j= ro=1A

. 0 < ryt, < 600 A

L X[k] = X,(2,]A

— X(2,] = NEN = t

X[m] = Xm] for m £ LN UN .
C

To develop the relations about X , we needed to examine two sub-cases 1n

_ node I : (1) kj Fol , and (ii) ky = 2, . In order to keep the
size of the information attached to the arcs manageable (and hence to

_

33

|

keep the complexity of the proofs using this information manageable),

our information development algorithms must be biased toward mimicking

the human trait of finding useful lemmas which are true for as many

different cases as possible. In analyzing the assignments in node I ,

we should notice that the degenerate case Ky = Ly does not upset any

of the relationships from the general case: the relations above are a

true and complete description of the effect of executing node I , even

when we substitute " ky " for " 4," in all relations, so after this

checking we find no need to distinguish the degenerate case.

In processing nodes J andK , we have to examine the degenerate

cases ry = ky and f, = kj (rg cannot equal £, because 0 < ry-f,;

1f we fail to use this fact on the first pass through loop 1, 1t gets

much harder to keep track of all the assignments to elements of X).

On the true exit from node J , we attach the lemma:

X[r,] < tAt-= X[e,]

(which is true independent of the relationships between [£, , r, and kj)s

and the more detailed information

(rg # ko AN Xlrgl < X[koD) v (rg = ky A Xgl2g] < X5lky1)

After the exchange in node J , the lemma becomes:

X[£5] <t A t = Xlr,]

On the false exit from node J , we attach the lemma

t = X[£,] At< X[r,] .

¥/ If the third assignment had been X[Z] := ttl_, we would have the
following relationships, which do distinguish the two cases:

(ky £ to A XI] = X[81 At = X[k1 A X[24] = Xo [ky +1)

Y, (k, =L At= X[k, IA X[k] = Xolky1+1) ,

In the second case, X[k,] £ X05]
3h

Co ——————————————

: Moving on to the loophead #3' node in Figure 7, we have to merge

the information on the two initial entry arcs. In particular, we merge

~ the two relationships

X{4,] <tAt-= X[r,] ,

X[r,] >t At= X(2,]

y into
L Xl2,] <t < xrT"

| where the asterisk indicates that a refinement of the information 1s
available by considering the incoming paths seaprately. This crucial

L fact will allow us to prove that the while loops on 1 and
(31, br, 3, and4) all terminate, and do so without producing a

- Subscript-out-of-range error.

1 The remainder of the processing will only be sketched.

In loop 5', 1 takes on the set of values UHL te) +3, [| MK 0)
| Included in this set 1s To 1 since 0 < 7s implies ttl < ry -

Therefore, the loop termination assertion for loop 3',

3k> 1 s.t. X lil >t, is at worst true when i reaches ry
Thus loop 3' terminates, and included in the information on the exit

arc are the relations:

Ne < iL TA

Xi] > t .

© Similarly, loop 4' terminates with the following included in its

exit information:

fy < J < ro-1 A

X[j] <t A

INES <1iK< Ty A

X[i] >t A

X[1,] <t < X[r 7— 0

55

|

The first pass through loop 2 establishes that 1 1s strictly

increasing and that j 1s strictly decreasing. This monotonicity means

that the test i < j will eventually be false, so loop 2 terminates

if loops 3 and 4 do. The second pass through loop 2 combines this

information with the exit conditions from loop 4' and with the truth

of the test 1 < J to establish that the exchange in node Q never

changes x[e,] or X[r,] . Thus, the relation X[2] <t <Xlr,]"
is invariant in loop 2, so on the second pass through loop 2, loops J

and 4 can be shown to terminate.

For our present purposes, the only interesting thing about nodes S

thru Z is that either or both of the assignments

a = j+l

r := J-1

are done in the context

fy <J <7, .

Thus, the quantity r-1 1s strictly smaller than ry=4, after one

iteration of loop 1, proving the termination condition for loop 1

3k >1 s.t. rb <0. This completes the first pass of processing

"loop 1.

On the second pass through loop 1, the initial values of r and {

and the pseudo-declaration for X (discussed in Section II(11i) above)

are used to prove all the semantic error assertions in the loop. These

assertions deal mostly with subscript range errors, overflow errors, |

and undefined variable errors. The proofs of all these are quite

easy, given the information on the bounded ranges of 1, J » T , and 2 |

gathered on pass 1. |

56

VI. Conclusion

L

We have explored a structured collection of techniques for

mechanically proving that a program terminates cleanly. ye then

applied these techniques to the proof of clean termination of a
| §

non-trivial program, suppressing most of the detailed processing which

would be done by an actual computer implementation of such a system.

L

- _—

[.

7

: Lo

.

i

References

BN [Allen a]. Allen, F. E., "Control Flow Analysis," Proceedings of a

L Symposium on Computer Optimization, SIGPLAN Notices, July 1970.

[Allen Db]. Allen, F. E., "A Basis for Program Optimization,"

IBM Research Report RC 3138, T. J. Watson Research Center,

= Yorktown Heights, N. Y., November 1970, pp. 3-6.
{

[Allen and Cocke]. Allen, F. E., and Cocke, J., "Graph-Theoretic

- Constructs for Program Control Flow Analysis," IBM Research

Report RC 292%, T. J. Watson Research Center, Yorktown Heights,

CC N. Y., July 1972, p. 28 ££.

[Ashcroft and Manna]. Ashcroft, E., and Manna, Z., "The Translation

= of ‘Go To' Programs to 'While' Programs," Information Processing 71,

North-Holland Publishing Company, 1972, pp. 250-255.

— [Cocke]. Cocke, J., "On Certain Graph-Theoretic Properties of Programs,"
IBM Research Report RC 2391, T. J. Watson Research Center,

— Yorktown Heights, N. Y., June 1971.

C [Cocke and Schwartz]. Cocke, J., and Schwartz, J. T., "Programming

— Languages and Their Compilers: Preliminary Notes," Courant

Institute of Mathematical Sciences, New York University, New York,

N. Y., April 1970, pp. Lk2-L6E1.

L [Floyd]. Floyd, R. W., "Assigning Meanings to Programs," Proceedings

1 of a Symposium on Applied Mathematics, American Mathematical

Society, Volume 19,1967, pp. 19-32.

CO [Good] . Good, D. I., "Toward a Man-Machine System for Proving Program
Correctness," (Ph.D. Thesis at University of Wisconsin), Texas

— University Computation Center TSN-11, Austin, Texas, June 1970.

[King]. King, J. C., "A Program Verifier," (Ph.D. Thesis),

- Carnegie-Mellon University, Pittsburg, Pennsylvania, September 1969,

255 pp. Clearinghouse # AD6992L48.

[Rivest and Floyd]. Rivest, R. L., and Floyd, R. W., "Bounds on the

Expected Time for Median Computations," Combinatorial Algorithms,

i. ed. by Randall Rustin, Algorithms Press, 1973, pp. 69-76.

[Sites]. Sites, R. L.,' "Certification of Algorithm 245 TREESORT3:

— Proof of Clean Termination -— A New Kind of Partial Certification,"

, Companion paper 1n this report.
&

— 38

