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= QUOTATIONS

| Oh where, oh where, hasmy little dog gone? | }

~~ Oh where, oh where can he be?

| With his tail cut short, and his ears cut long, | |

@ Oh where, Oh where can he be? | | |
| | | [Nursery rhyme] oo | |

° | oo You must look where it is not, as well as where it is.

: | [Gnomologia - Adages and Proverbs. |

by T. Fuller (1732)] | |

| | ic |





. |

® | | . a. | |
TABLEOF CONTENTS

Le) | SECTION | oo PAGE

. © 1 INTRODUCTION | oo 1
1.1 ATTRIBUTES, RECORDS, AND FILES | 4

SE 1.2 QUERIES | 5

- 1.2.1 INTERSECTION QUERIES oo 5
oo 1.2. 2 BEST-MATCH QUERIES oo g

1.2.3 QUERY TYPES TO BE CONSIDERED | 8

@ 1.3 COMPLEXITY MEASURES | 9

© 1.4 RESULTS TOBE PRESENTED on

. 2 HSTORCAL BACKGROUND Tas |
oo 2.1 ORIGINS IN HARDWARE DESIGN C13

: 2.2 EXACT MATCH ALGORITHMS | 1a

a 2.3 SINGLE-KEY SEARCH ALGORITHMS 16

oo 2.4 PARTIAL-MATCH SEARCH ALGORITHMS 7

3 HASHING ALGORITHMS FOR PARTIAL MATCH QUERIES 22
@ I



© 3.1 CONSIDERATION OF THE AVERAGE SEARCH TIME 25 | &
. } 3.1. 1 THE OPTIMAL SHAPE OF A BUCKET FOR BINARY | |

| oo . RECORDS : 26 | |
oo oo 3.1.2 THE OPTIMAL SHAPE OF A BUCKET FOR BN oY

oo | © GENERAL RECORDS 39 .
: © 3.1.3 NUMBER OF BUCKETS EXAMINED | 41 |
oo an 3.1.4 A SAMPLE APPLICATION 44 ©

. | 3.2 ANALYSIS OF WORST-CASE SEARCH TIME 48 |

| Lo 32 1 FORMAL DEFINITION OF ABD’S | Bl IE .
| 3.22 CHARACTERISTICS OF ABD’S 52 oo oo

© 3.2.3 CONSTRUCTION THEOREMS FOR ABD’S 54 B
oo © 3.2.4 ANALYSIS OF ABD SEARCH TIMES | 61 CE

) 3.2.5 IRREGULAR ABD'S SA oo 65 |
: © 3.2.6 CONCLUSIONS ON ABD'S oo 66
© 3.3 BENEFITS OF STORAGE REDUNDANCY es e

4 TRIE ALGORITHMS FOR PARTIAL MATCH QUERIES | 71

© 4.1 DEFINITION OF TRES oo 71 .
| 4.2 ALGORITHM FOR SEARCHING TRIES 74
I 4.3 UPPER BOUND ON THESEARCHTIME oo 76 |

: 4.4 LOWER BOUND ON SEARCH TIME I 77 Ce



| | | oo |

- 5 HASHING ALGORITHMS FOR BEST-MATCH QUERIES 81

| | 5.1 THE ALGORITHM : 82 |

5.2 A SAMPLE APPLICATION 84

5.3 ANALYSIS OF ASYMPTOTIC RUNNING TIME | 88

oo 5.4 OPTIMAL BUCKET SHAPES 88

CA © 6 APPENDIX - NOTATION Co 93

7 REFERENCES 9%6

Q oo oo

@ oo



=

|

|
|

|



° LIST OF FIGURESAND TABLES

oo TITLE EE | : PAGE

” | Table of values for A(x) and A(x) | | 30
| | Graph of A(50,w,(t) versus t for w=b, 25, and 50 43 | |

@» Graph of «(h) versus w | | : a6

A | Graph of «(ht) versus t B | oo | 47

- oo A Hash Function | | | 29
=~ | ~ A perfect matching on Ry | 00 |

| Buckets examined per query bit given | _

oo An ABD(8,7)
® An ABD(16,13) oo ce

| Permissable values of (kw) | | | 57
N An ABD(8,6) I oo Cw
> Rows of an ABD(16,9) | co

| | Performance of an ABD(8,6) | | oy
| | Behavior of the ABD(16,9) | 52 |

- An “irregular” (3,2) design | 65
Behavior of the previous design | | | 65 |

. | An "irregular" (4,2) design | | | 66



Behavior of the irregular (4,2) design B | 66 |

Afull trie | ) I 73 |

oo The corresponding compact trie | | | u oo 74 | |

| | Plot of «(h) versus p ) | | oo | 87 a



* oo CHAPTER 1 oo
INTRODUCTION

| In this thesis we examine algorithms for “"associatively” searching a direct-

: access file to determine their optimal form and achievable efficiency. This |

fo chapter presents an abstract model of the file and query specifications, and we

: analyze the search algorithms within this framework. Chapter 2 discusses the |

| historical development of the “associative search" problem, and reviews

CA previously published search algorithms. Chapters 3 and 4 examine partial-match

search algorithms, and chapter 5 studies a best-match search algorithm.

N | An information retrieval system must consist of at least the following parts:

= | (iy a collection of information, called a file. An individual unit of this |
oo collection is usually called a record. [f records may be added to or deleted from -

oo the file (that 's, the file may be updated), the file is said to be dynamic, otherwise |

| it is said to be static. |

| | (ii) a storage or recording procedure by which to represent the file (in the |

@ abstract) on some physical medium for future reference. This operation we call
the encoding of the file. The encoded version of the file must of course be
distinguishable from the encoded versions of other files. The medium used is



| entirely arbitrary: for example, punched or printed cards, ferromagnetic cores, | ®
magnetic tape or disk, holograms or knotted ropes. There are clearly many |

| possible encoding functions, even for a given storage medium. To choose the | |

| | best one for an application is called the encoding or data structure problem. ©
- il) a method by which to access and read (or decode) the encoded file. |

| | The access method depends only on the storage medium used, while the encoding | ;
function determines what interpretation should be given to the accessed data. )

| ~The encoded version of the file will in general consist of the encodings of its .

constituent records, together with the encoding of some auxiliary information. If I.
{the encoded version of) any particular item of information can be independently

oo accessed with (approximately) unit cost, we say the file is stored on a direct- : |
oo access storage device. - Card files and magnetic disks are thus direct-access, i

| whereas magnetic tapes are not. The access cost usually consists of two
| independent quantities: the physical access time needed to move a reading head

Co or some other mechanical unit into position, and the transmission time required to | €
oo actually read the desired data. The transmission time is proportional to the |

© amount of information read, while the physical access time usually depends on the |

relative location of the last item of information read. Devices such as core | ¢

memory have zero physical access time. | . I |



(iv) a user of the system. This person hs assumed to have one or more

oo NB J queries (information requests) for the system. The response to a query is |
} Lo | assumed to be a subset of the file - that s, the user expects some portion of the
- records of the file to be retrieved and presented to him. If the user presentshis |

| queries one at a time in an interactive fashion, we say that the retrieval system is | |

3 | | being used on-line, otherwise we say that it is being used in batch mode. In this |
: thesis we shall only consider on-line systems. | | | _

oo (v) a search algorithm. This is a procedure for accessing and reading part |

< of the encoded file in order to produce a response to a user’s query. It is of oo
course dependent, but not entirely, on the choice of storage medium and encoding

function. This algorithm may be performed either by a computer or some |
- individual who can access the file (such as a librarian). | | |
— ~The above broad outline of an information retrieval system needs to be

oo | fleshed out with more detail in order to make precise the problem to be studied. |

N We now present some formal definitions required for the rest of this thesis. .
These details restrict the model's generality somewhat, although it remains a good

approximation to a large class of practical situations. |

« oo
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Ll ATTRIBUTES, RECORDS,AND FILES oo . ©

A record R is defined to be an ordered k-tuple (r1,rs, .. ork) of values (that | |
- is, each record contains exactly k keys, or attributes). We will assume that the e

- E | j-th key can have at most v; values, for some finite vj, 25 Vj<oo, so that | -

| | - O< ri<vj for 1<j<k and any record R. For simplicity we shall usually assume that .
oo | all the vy's are equal to a particular value v. In addition, we will usually consider oo :
- | only the case v = 2, since any other record type can easily be encoded as a |

~~ binary string. Binary records are thus in a certain sense the most general case. | '
| In this situation each record is a binary string (or word) of length k. Let Rr = |
oo {R1, Rp, ...} denote the set of all valid records, so that |R| = vivpeeovy. We oo

oo also reserve the notation Ry for the set of all binary words of length k. A file F ©

oo is defined to be any nonempty subset of R. We shall consistently use the letter oo

| n to denote [F|, the number of records in the file being considered. oo oo | N
~ These conventions are not the most general possible. For example, in the |

| model oroposed by Hsiao and Harary [Hs70], a record is defined to be an arbitrary |

| collection of (attribute, value) pairs rather than a complete list of values for a | I~
IE predetermined set of attributes. A study of the complexity of associative | |

: retrieval in this more general setting, however, would certainly require many |

additional assumptions about the file characteristics. | .



» oo

= | 1.2. QUERIES |

| | Let Q denote the set of queries the information retrieval system is |

=~ designed to handle. For a given file F, the proper response to a query QeQis |

| denoted by QF") and is assumed to be a (perhaps null) subset of the records in |

= » |

| | The following sections give a framework within which to categorize query

types, and describe the particular query types to be considered in this thesis. .

3 1.2.1. INTERSECTION QUERIES.

. The most common query type is certainly the intersection query, which is | |

oo named after the defining characteristic of its response: a record in the file F is
= to be retrieved if and only if it is also in a predetermined subset QR) of R ,

so that | y

0 QF) =get F 1 QR). | 0 Sm
| The notation here is consistent since if F=R then (1) implies Qi(F) = Qi(R).

| N The sets Qi(R) completely characterize the functions Qi(F') for any file F by |

id the above intersection formula. Intersection queries enjoy the property that |
| whether some record ReE is in Qi(F") does not depend upon the rest of the file

| | | (that is, upon F-{R}), so that no "global" dependencies are involved. The class | |



of intersection queries contains many important subclasses which we present in a Ce

hierarchy of increasing generality: | SE |
I (1) Exact match queries Each Q(R) contains just a single record of R : : |

oo } An exact match query thus asks whether a specific record is present in | | ”

| oo (2) Single-key queries: Qi(R) contains all records having a particular value for ‘
| a specified attribute. For example, consider the query defined by .

| QR)= {RR | ra =11}. | oo | (2) | |

u (3) Partial match queries: A "partial match query Q with t keys specified” | y=
| | (for some t < k) is represented by a record ReR with k-t keys |

| : replaced by the special symbol * (meaning “unspecified”. If Q; = (qi, | )
oo oo | qj2s «9 Gk) then for t values of J we have Osqjj<v; and for the other | :

| values of j we have j="+". The set Qi(R) is the set of all records B |

| agreeing with 0 in the specified positions. Thus, | | =

| | QR) = {RR | (¥j,1 <j<k)l(g;j=+) V (qjj=r;)]} 3 N |
| : a | A sample application might be a cross-word puzzle dictionary, where a R

| . typical query could require finding all words of the form | "BTR" (that | N
© is: BATHER, BATTER, BETTER, BETTOR, BITTER, BOTHER, BUTLER,

© BUTTER). We shall use Qj throughout to denote the set of all partial .
Lo match queries with t keys specified. | oo N oo | |



| | | :

hd oo (4) Range quetrics: These are the same as partial match queries except that a
range of desired values rather than just a single value may be specified

for each attribute. For example, consider the query defined by |

QR)= { RR [(1<r1<3)A(l <rps 4) (4)

(5) Best-match queries with restricted distance: These require that a

@ | | distance function d be defined on R . Query Q will specify a record
HN Re, and a distance A; , and have oo |

oo QR) = { RR | dRR) < 2) } (5) |

| Query Q; requests all records within distance x; of the record Re, to be

| retrieved. The distance function d(R,R") is usually defined to be the |

- | | number of attribute positions for which R and R’ have different |

oo values; this is the Hamming distance metric. |

| (6) Boolean queries: These are defined by Boolean functions of the | |

“ | attributes. For example, consider the query Q defined by |

EE QR)= {RR |r] =0)v(rg=1)Alrg#3)} 6)
| The class of Boolean queries is identical to the class of intersection |

queries, since one can construct a Boolean function which is true only for |

records in some given subset Q;(R) of R (the characteristic function of

= Qi(R)). | |



- | Note that each intersection query requires total recall, that is, every record | ©

| in F meeting the specification must be retrieved. Many practical applications |

| | have limitations on the number of records to be retrieved, so as not to burden the

user with too much informationif he has specified a query too loosely. |

oo 1.2.2. BEST-MATCH QUERIES. oo | oo

| | A different query type is the pure best-match query. A pure best-match | &)

oo query Q; requests the retrieval of all the nearest neighbors in EF of the record

~~ Rj ¢ R using the Hamming distance metric d over R. Performing a pure best- oo |

match search is equivalent to decoding the input word R into one or more of the

"code words" in F, using a maximum likelihood decoding rule (see Peterson oo oo

oo [Pe72]). Thus we have | | &
| oo QF) = {RF | (IRF )dR R)<dRR)) } | (7) | oo

© 1.2.3. QUERY TYPES TO BE CONSIDERED. . oo

In this thesis we shall only consider partial-match and best-match queries. |

The justification for this choice is that these query types are quite common yet |

have not been "solved" in the sense of having known optimal search algorithms to e
answer them. In addition, these query types are the ones usually considered as |

| the paradigms of "associative" queries. The simpler intersection query types |



a |

- oo seem to already have adequate algorithms for handling them. The more general |
| | situation where it is desired to handle any intersection query can be easily shown

| | to require searching the entire file in almost all cases, if the file is encoded in a |

“ | reasonably efficient manner. (Besides, it takes an average of |R] bits to specify
which intersection query one is interested in, so that it would generally take |

~ oo | longer to specify the query than to read the entire file!) A practical retrieval |

system must therefore be based on a restricted set of query types or detailed |

‘knowledge of the query statistics. | | oo oo

@ | I oo |

The difficulty of performing a particular task on a computer is usually |
- oo measured in terms of the amount of time required We shall measure the

oo | difficulty of performing an associative search by the amount of time it takes to
oo a perform that search. | To .. ; Co

® | Our measure is the "on-line" measure, that is, how much time it takes to
answer a single query. This is the appropriate measure for interactive retrieval

. | systems, where it is desired to minimize the user’s waiting time. Many
| ~ information retrieval systems can of course handle queries more efficiently in an |

| "off-line" manner - that is, they can accumulate a number of queries until it

- oo |



| becomes efficient to make 3 pass through the entire file answeringall the queries il

| | at once, perhaps after having sorted the queries. The practicality of designing a |
oo retrieval system to operate "on-line" thus depends on the relative efficiency with | |

| oo which a single query can be answered. That is thus the study of this thesis. =
| oo | When a file is storedon a secondary storage device such as a magnetic

| oo disk unit, the time taken to search for a particular set of items can be measured | | )
in terms of (0) the number of distinct accesses, or read commands, issued, and (ii) 7

- the amount of data transmitted from secondary storage to main storage. For most

of our modeling we shall consider only the number of accesses. Thus, for the |

| generalizations of hash-coding schemes discussed in §3, we count only the number |

) of buckets accessed to answer the RLY. | | | | |
| Several measures are explicitly not considered here. The amount of el

| storage space used to represent the file is not considered, except in §3.3 to |
| | B ~ show that using extra storage space may reduce the time taken to answer the |
| query. The time required to update a particular file structure is also. not | -

oo ‘considered - this can always be kept quite small for the data structures :

examined. | a | oo

NB 10 I



Co |

+ © 1.4. RESULTSTO BE PRESENTED oo oo

. | A brief exposition of the historical development of the subject is presented
- in §2. | | | |

Co In §3 generalized hash functions are. studied as a means for answering |
partial match queries. A lower bound on their achievable performance is proved, |

-» and the class of optimal hash functions is precisely characterized. A new class of

a | combinatorial designs, called associative block designs, is then introduced. When
| interpreted as hash functions, associative block designs are found to have |

N excellent worst-case behavior while maintaining optimum average retrieval times.
We also examine a method for utilizing storage redundancy (that is, we examine

oo the achievable efficiency gains obtainable from storing each record in more than |
*

one place). |

| In §4 we study tries as a means for responding to partial match queries.

Pa "Tries" (plural of "trie") are a particular kind of tree in which branching decisions . |
: are made only according to the specific record being inserted or searched for, and | | |

not according to the results of comparisons between that record and others in the |

@ | | ~~ tree. Their average performance turns out to be nearly the same as the optimal
| hash functions of §3. | oo |



~The results of §3 and §4 seem to support the following.

| | Conjecture: There is a positive constant c such that for all positive

: oo integers n, k, and t the average time required by any algorithm to answera single ~~ ©

oo | partial match query Qe¢ Qy must be at least - |

| | c nik-t}/k | | | |

| where the average is taken over all queries Q ¢ @y and all files F of n k-bit | oa

oo records which are represented efficiently on a direct-access storage device.

(That is, no more than snk bits of storage are used, for some small constant s.) ‘
In §5 we again consider hash functions, this time as a means for answering

~~ best-match rather than partial-match queries. An algorithm due to Elias is proved

| © tobe optimal. | 6



@ oo |

@ : | |

oo The class of associative search problems was first discussed by people |

oT interested in building associative memory devices. According to Slade [SI64] the

o | first associative memory design was proposed by Dudley Buck in 1355. Many |
oo other designs soon appeared in the literature (see Slade & MacMahon [SI57] or |

| | Kiseda [Ki61]). These memories could perform arbitrary partial match searches, |

@ as well as searching for the maximum or minimum record stored, or finding all |
records between specified limits (interpreting a record as a number in radix v

oo n notation. ) | -
“ . The hoped-for technological breakthrough allowing large associative |

| memories to be built cheaply has not (yet) occurred, however. Small associative

| memories {on the order of 10 words) have found applications - most notably in

@ | | "paging boxes” for virtual memory systems (see [De70]). The only large

B associative processor available commercially is the STARAN S, introduced by

Se | | | .



. | ‘Goodyear Aerospace Corp. in 1971 [Ru72]. This $500,000 system has 512 ©
| 256-bit words of associative memory (as well as 24K of random access core oo |

: | mernory). An associative search for a partial match query takes 150 nanoseconds SE
oo per bit specified. STARAN is cost-effective only for applications demanding very | i}

| | high data rate processing in real time - such as air traffic controlling.  Minker |

N [Mi72] has written an excellent survey of the development of associative n &
| N oo orocessors up to the appearance of STARAN. | - | | | |

© 2.2 EXACT MATCH ALGORITHMS ~~ oo oo - c

New algorithms for performing searches on a conventional computer with |

: | random-access memory were also being rapidly discovered at the same time. .
The first problem studied (since it is an extremely important practical problem) |

| was the problem of searching for an exact match in a file of single-key records. |

Binary searching of an ordered file was first proposed by Mauchly [Ma46]. ‘The oo ©
| use of binary trees for searching was invented in the early 1950s according to : oo

| | [Kn72], with published algorithms appearing ‘around 1960 (see for example |

‘Windley [Wie0] - there were also many others). | “

| Tries were first described about the same time by Rene de la Briandais oo

E [deb 9]. These are similar to binary trees, gnaph that the i-th key or bit of a |

| | | | 14 oo hE | |



- record R is used to make the i-th branching decision, instead of using a | |
| comparision between all of R and the record associated with the current tree

| node (treating them as binary numbers). Tries are roughly as efficient as binary | |

- trees for exact-match searches. We shall examine trie algorithms in chapter 4 | |
for performing partial match searches. | oo

oo | Hash-coding (invented by Luhn around 1953 according to Knuth (Kn72. |
- oo | vol. 3]) seems to provide the best solution for many applications. Given b

| storage locations {with b 2 n) in which to store the records of the file, a hash IE
A . function h: R = 1, 2, ...,b} is used to compute the address h(R) of the storage |

| location at which to store cach record Ri. The function h is chosen to be a |

| N suitably “random” function of the input - the goal is to have each record of the
a file assigned to a distinct storage location. Unfortunately this is nearly impossible

to achieve (consider generalizations of the "birthday phenomenon” as in Knuth

. [Kn72,56.4)), so a method must be used to handle “collisions” (two .records
® oo hashing to the same address). Perhaps the simplest solution (separate chaining)

maintains b distinct lists, or buckets. A record R; is stored in bucket Bj |

® | | (where 1 <j < b) iff KR) = j. Each bucket can now store an arbitrary number |

of records, so collisions are no longer a problem. To determine if an arbitrary

record Ri¢R is in the file one need merely examine the contents of bucket |
@ oo oo |



| | oo | oo ‘

oo Bh(R) to see if it is present there. Since the expected number of records . ©
| oo present in each bucket is small, very ttle work need be done. Chaining can be | |

N implemented easily with simple linear linked list techniques (see [Kn72,§6.4]). | ”

| | | 2.3. SINGLE-KEY SEARCH ALGORITHMS | |

“The next problem to be considered was that of single-key retrieval for oo ;
oo | records having more than one key (that is, k > 1). This is often called the | :

| _ problem of "retrieval on secondary keys". L. R. Johnson [Jo61] proposed the | .
oo use of k distinct hash functions hy and k sets of buckets B, -forl cick N | |

Co and 1 < jb Record Ry, is stored in k buckets - bucket Byer for

ER y k . Thisis an efficient solution, although storage and updating time will | i
| oo | grow with Kk. Prywes and Gray suggested a similar solution - called Multilist - in | | |

which each attribute-value is assigned a unique bucket through the use of indices | Co .
(search trees) instead of hash functions to compute bucket addresses (see [Gr59], | oo

| I. [Pr63]). Davis and Lin [Da65] describe another variant in which list techniques SE
FEE are replaced by compact storage of the record addresses relevant to each - CC @

| ~~ bucket. The above class of ‘methods are often called inverted list techniques oo :
since a separate ist is maintained of all the records having a particular Attribute |

value, thus mapping attribute to records-rather than the reverse as in an ordinary - ©



oo

= 24 PARTIAL-MATCH SEARCH ALGORITHMS oo B

| | . Inverted list techniques, while adequate for single-key retrieval of multiple
= | key records, do not work well for partial match queries Unless t, the number of |

| : keys specified in the query, is small. This is because the response to a query is |
oo the intersection of t buckets of the inverted list system. Thus the amount of | |

@ work required to perform this intersection grows with the number of keys given, |

| while the expected humber of records satisfying the query decreases! One would
expect a "reasonable" algorithm to do an amount of work that decreases with |

- | | . EQ), the expected size of the answer. One might even hope for an amount | |

| of work proportional to the number of records in the answer. Unfortunately, no |
| such "linear" algorithms have been discovered that do not use exorbitant amounts | |
- | | of storage. The algorithms presented in chapters 3 and 4, while non-linear, easily | | |

| “outperform inverted list techniques. These algorithms do an amount of work that |
oo decreases approximately exponentially with t, the number of bits specified in the |

? | query. ‘When t=0, the whole file must of course be searched, and when t=k unit |
| work rust be done. In between, log(work) decreases linearly with t | |

“ J. A. Feldman’s and P. D. Rovner’s system LEAP [Fe69] allows complete

| generality in specifying a partial match query. LEAP handles only 3-key records, |

oo | however, so that there are at most eight query types. This is not as restrictive |

* oo



: - as might seem at first, since any kind of data can in fact be expressed as a | &

collection of “triples”: (attributename, objectname, value). While arbitrary |
| | | Boolean queries are easily programmed, the theoretical retrieval efficiency is
- equivalent to an inverted list system. | | | =

| | ~~ Several authors have published algorithms for the partial match problem | | |

different from the inverted list technique. One approach is to create a very large | @
| number of tiny buckets so that the response to each query can always be oo oo

CL constructed as the union of some of the buckets, instead of an intersection. | |

| Wong and Chiang [Wo71] discuss this approach in detail. Note, however, that the | |
| requisite number of buckets is at least IR] if the system must handle all partial Co

. match queries (since exact match queries are a subset of the partial match

| | queries)! Having such a large number of buckets (most of them empty if n<<|R|, “

| as is usual) is not practical. A large number of authors (C. T. Abraham, S. P. | |
| | Ghosh, D. K. Ray-Chaudhuri, G. G. Koch, David K. Chow, and R. C. Bose ~ see |

references for titles and dates) have therefore considered the case where F is =

not allowed to exceed some fixed small value t’ (for example, t =3). It is easy oo

| to see that the number of buckets required is now at most | | |

oo = ciyzeeesipck Vip¥iat Vip) | | | ~

oo s Clit”) (max vt’ . (8) |

oo : 18



: (Here C{k,¢’) denotes the binomial coefficient “k choose t’".) This is achieved by |

reserving a bucket for the response to each query with the maximal number t’ | | |

- | of keys given; the response to other queries is then the union of existing |
| | buckets. Note that each record is now stored in C(k,t’) buckets, however! The

| papers referred to show how to reduce the number of buckets used and record |

@ redundancy somewhat, by the clever use of combinatorial designs, but another |
| | approach is really needed to escape combinatorial explosion. oo |

| N The first efficient solution to an associative retrieval problem is described

& | by Richard A. Gustafson in his Ph. D. thesis [Gu69,Gu71]. Gustafson assumes

oo that each record Rj is an unordered list {rj1,tio,...} of at most k’ attribute oo

: values (these might be keywords, where the records represent documents). Let

- E w be chosen so that C{w)k’) is a reasonable number of buckets to have in the |

| system, and let a hash function h map attribute values into the range {1, 2, ..., :
EET | wl. Each bucket is associated with a unique w-bit word having exactly k’ |

” | ones in it, and each record Ris stored in the bucket associated with the word : |

oo having ones in positions hri) ro), coy Dre). (If these are not all distinct

@ positions, extra ones. are added randomly until there there are exactly k’ ones. )
A query specifying attributes aj, ap, ..., at (with tsk’) need only examine the

| C(w-t,k’ -t) buckets associated with words having ones in positions hay), hap), oo | |



oo ~..., hat). The amount of work thus decreases rapidly with. t . Note that the | &
I response to the query is not formed merely by taking the union of the relevant B

| buckets, since records not satisfying the query may also be Stored these Lo
| oo buckets. We are guaranteed, however, that all the relevant records are stored in | | "
oo | the examined buckets. In essence Gustafson reduces the number of record types | | :

‘by creating w attribute classes, a record being filed according to which attribute | é
| classes describe it. His method has the following desirable properties: | I |
oo ~~ (a) each record is stored in only one bucket (s0 updating is easy), and |

E | (b) the expected amountof work required to answer a query decreases = 3

approximately exponentiallywith the number of attributes specified.
| His definition of a record differs from the one used here, however, so that the | |

allowable queries in his system correspond to a proper subset of our partial Co | ©

| ~ match queries- those having no zeros specified. (Convert each of his records

| | into a very long bitstring having ones in exactly kK" places - each bit position
oo corresponding to a permissible keyword in the system.) | | | =)

oo i Terry Welch, in his Ph.D. thesis [We71], studies the achievable
performance of file structures which include directories. His main result is that ) | |

oo the size of the directory s the critical component of such systems. He briefly ©
| considers directoryless files, for which he derives a lower bound on the required B

. 20 I oo



- average time to perform 5 partial match search with hash-coding methods that is I

much smaller than the precise answer given in §3. He also presents Elias’ |

algorithm for handling best-match queries without proof of optimality. EE |

CI oo

® | | oo
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. CHAPTER 3 DE
I HASHING ALGORITHMS FOR PARTIAL MATCH QUERIES

| The problem is: given a universe R of possible records, and a number b | |
oo | of lists (buckets) desired in a filing scheme, construct a good hash function h:R |
9 » 11,2 ..., b} so that partial match queries can be answered efficiently (either | |

| on the average or in the worst case). A record R¢ F is stored in bucket B; iff |
| h(Ry=j, with collisions handled by separate chaining. In a notation analogous to

" that used for the responses to intersection queries, we define |
: | Bj(R,h) = {ReR | h(R)=j}, oo | | | (9)

a | | Bj(F,h) = Bj(R,h) 1 F, for any F ¢ R. | | (10) | -
When a particular hash function h is understood from context, we shall usually |

| omit it from the argument list of B;. The set Bi(R,h) we call the extent, and |

- oo | | B;(FF,h) the contents, of bucket j. This notation is consistent since (10) is an |
identity when F' = R. We shall often denote the extent Bj(R) of a bucket by S

" the notation B; » When no confusion can arise. The sets By, Ey By form a |
| partition of R since they are disjoint sets whose union Is R.A hash function is | |

| said to be balanced if Bil = |[R|/b for 1<j<b. To answer a query Q; ca , the |- | contents of the buckets whose indices range over oo |
| | MQ; =gef 1 J | (Bj n Q(R)) # null } : (11) | |



or equivalently, | | : I oo oo | | a
oo Qi) = URQu(R) {hRYE, - ay N
. | must be examined to find the response to Q; (that is, Q(F)). Here we make the . "
oo natural extension of h onto the domain Q. : oo | oo

| Here we present the basic retrieval algorithm: | |
oo oo oo 6

| procedure SEARCH({B{,B2,. . - BphhQ); oo oo | | |
I comment SEARCH finds the response to query QQ, given that the file FcR is |

stored in the buckets By, Bo using the hash function h. | oo | | -
begin integer i; record R; oo | oo | Co |

| - | for each i ¢ hQ) do B é
oo oo for each R Bi(Fh) do | | Co
: oo if R¢Q(R) then print( R N
© end SEARCH; | | oo

| The difficulty of computing the set hQ) depends very much on the nature -
| : of the hash function h. it is conceivable that for some pseudo-random hash- | he

| ) functions tis more time-consuring to determine whether j¢h(Q) than it is to |

read B{(F) trom the secondary storage device! (For some hash functions the | | CC .
relation (12) Is the only way to compute hQ) .) Such hash functions are of course



o | useless, since one would always skip the computation of h(Q) and read the entire

oo file in order to answer a query. We will restrict our attention to hash functions

- h for which the time. required to compute hQ) is always negligible in

’ oo comparison with the time required to read the required bucket contents. |
oo ~ We shall use the following notation for the average and worst case costs of Co

o . | using various hash functions to answer a partial match query with t keys oo
| : specified: IEE oo _ oo

- (ht) =gef | Zo, IQ) ) / 1Q4] a. (13)

- oo oo Alht) =def max Ih(Q)] oo _ : (14) oo
| Qe

‘These are the average and worst-case number of buckets examined by SEARCH |

* to answer a query Q ¢ Q as a function of the hash function h used. If the

| second argument is omitted from the function «, we assume that the average is
oo | taken over all queries in a. | | | | |

* Ah) =def ( Egg INQ) / IQ} as)

| We shall also use the following notation for the best possible cost of any

. . hash function: | | oo
| | AWEY) =get ming «lhyt) | : (16) |

: where h ranges over all balanced hash functions mapping R - {1,..,b}. This s |

@ the minimum possible average number of buckets examined by SEARCH to answer |
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| a partial match query Q¢Qy, over all balanced hash functions h. We assume that oo e

oo the file contains k-key records, and that b = 2W buckets are used. All the vi’s oo

© are assumed to be equal to the v given, with the convention that if v is omitted, I ®
| v= 2Iis assumed. | | | -

| © Note that the number of buckets examined in either case does not depend EE

oo at all upon the particular file F being searched, but only upon the particular | =
- hash function h being used. - | oo

© 3.1. CONSIDERATION OF THEAVERAGESEARCH TME ~~ oe

oo For some applications it is easy to construct an efficient hash function. For |

oo example, suppose we wish to construct a “crossword puzzle” dictionary for six- e
| letter English words. Let b = 212 pe the number of buckets used. Given a .

I word (for example, "SEARCH") we can construct a 12-bit bucket address by oo

oo forming the concatenation - oo - | I

oo of six two-bit values; here g is an auxiliary hash function mapping the alphabet oo | |

into two-bit values. For a query with t letters given we have | | | *

wht) = ht) = 212-26 oo (18)

| This approach is clearly feasible as long as b 2 2k , since one or more bits of the oo -



S oo |

bucket address can be associated with each attribute ‘position. A similar |

| technique has been oroposed by M. Arisaws [Ar71] in which the i-th key

| | | determines, via an auxiliary hash function, the residue class of the bucket address | |
hd 3 modulo the i-th prime (see also [Ni72]). | | | |

| : oo 3.1.1. THE OPTIMAL SHAPE OFA BUCKET FOR BINARY RECORDS. | |
® ) When k > w, where b = 2W | it is not immediately clear what should be’

done. Terry Welch in [We71] suggests, but does not prove, that extracting the

first w keys of each record for a bucket address may be optimal. His |

hi conjecture is correct for binary records; in this section we give a or oof of this
fact. }

We will say that two buckets B and B’ have the same "shape" if there

N | exists ga permutation of the bit positions, followed by the complementation of bits oo
| oo in certain positions, which transforms every record of B into a record of B’. In |

- | : other words, B and B’ have the same shape if there is an automorphism of R
| | which carries B into B” . | |

| We introduce the notation #(B) to denote the number of queries in @

» | which examine a bucket B." More orecisely, | : |

oo 3B) =gef If Q ¢ Q@ | QR) NB # null }] . | (19)

Let m(s,k) denote the minimum possible number of queries in @ which examine oo
CI | | | | oo -



any bucket B with an s element extent chosen from the record space R,. More | ©

| precisely, oo I | oo | | |

7(s,k) =def Ming #(B), | (20) |

| where the minimum is taken over all s-element subsets B of Ri. Let n(sk) = oo :

| if s > 2K and let n(1,0)=1, ®(0,0)=0. The characteristics of an s-element |

bucket B chosen from Ry which achieves the minimum &(B) = n(sk) will be B ©

those of an optimal bucket. We will investigate individual s-element buckets to

: find what characteristics they must have in order be optimal. Then we may |
| | | | =

. construct an optimal balanced hash function by selecting b optimal buckets which

cover R, (if possible), since oo

C=(Ego MD /1Q oo oo oo e

} oo = (number of pairs B;Qj such that B;nQ;##) / |1Q| : oo

Cb r(Ryl/bk)/IQ I (21) oo

| We require that the hash function be balanced in order to avoid the e

degenerate solution having all the records in a single bucket (costing one bucket } N

per search). If we also counted the cost of reading each record, by arguments of
oo symmetry we would find a balanced hash function to be optimal, once the =

oo  2r | | “©



S | oo

CE expected cost of reading a bucket becomes commensurate with accessing it.

| Furthermore, the physical constraints imposed by a particular storage device, such | |
oo as magnetic core, sometimes make a balanced hash function the only reasonable oo

- model. | | | |
| | Theorem 1. Let s = 2u for some integer u, 1 < us k, and let B be an

a s-element subset of Ry. Then 5(B) = 1(s,k) if and only i B is a "subcube" of |
Ry; that is, if and only if B is a cartesian product |

© B=D;xDyx..xD B (22)
® oo where each D; is a nonempty subset of {0,1}.

Proof: Let T(s,k) denote the s-subset of Ry consisting of those records

- which have binary value less than s when interpreted as binary numbers. In - | |
| | other words, Tsk) consists of the s “tiniest” k-bit numbers (for those who like |

mnemonics). We will first prove that T(s,k) is an optimal bucket for any Sy not 5
a | just s a power of two. This will imply the "if" part of our theorem, since T(s,k) |

| is a subcube of Ry whenever s is a power of two. We wil then examine the

| proof a little more closely to derive the “only if" part of the theorem. :

We first need to derive #(T(s,k)). We will do this by defining an auxiliary
function A(x), then proving that *(T(s,k))=a(x) if x is the record in T(s,k) with |

E largest binary value. (The binary value of x will of course be s-1.) Define A |
~ by the following recurrence relations: | oo
I 28 | . oo



| A(Ox) = 2 A(x), and oo oo I oo a oo (24)
Caw =2aakheam (25) e

oo Here we treat A's argument as a string of 0’ and 1’s, and define A in terms of | } |

oo shorter strings. We denote the length of x by [x], so that the notation 1IXI
oo . represents a string of x] Is. The notation Ox (or 1x) stands for the =
- N concatenation of 0 (or 1) and the string x. Let x denote the binary value of I
BE the string x. | | | | | | | . |

| Lemma. #(T(s,k)) = a(x) if x is the record in T(sk) with the largest binary |

) value, oo | oo | oo

| Proof: By induction on |x| = k. It is clearly true for k =], since A(0) = 2 :
| and A(1) = 3 are correct. tis true for x = Ox’ by (24) since all of the records oo
oo in T(sk) will have a 0 in first | position. Thus any query ‘which examines . | |
 Tésk-1) = T(<x’>+1,]x'|) may be preceded by either a "0" or 8 "g" to obtain a a -
a ~~ query which examines T(s,k). On the other hand, if x = 1x’ then T(s,k)

© contains two different kinds of records: 2-1 will begin with a zero and finish " SU |

| - | in all sossible ways, and the remaining s - 2k=1 will begin with a 1 and finish &
oo up identically to the records in T(s-2%1k-1) = T(<x' >+1k-1). The first term of |

(29) thus counts all queries beginning with a "0" or a "+", while the second term  @
counts al queries beginning with a "1". This completes the proof of the lemma. |



3 oo The rightmost column of the following table gives the value of A(X) for
some small strings x. (The rest of the table shall be used later.) |

| | | null | 1 CO 1 :
0 1 1 | 2

oo | | 00] 1 2 1 | 4
- | ol | 1 3 2 | 6 oo

| . of. 1 4 3 8 |

| | 001 | 1 4 5 2 | 12 Co
| 010 | 1 5 7 3 | 16 B |

- Olt] 1 5 8 4 | 18 |
- | 100 | 1 6 10 5 | 22 |

101] 1 6 11 6 | 24 | : |
: | 110 | 1 6 12 /7 | 26 | |

| | 111 | 1 6 12 7 27 |

| Figure 1. Table of values for A(X) and A(x) |

oo We must now show that A(x) = m(sk) (again, assuming that x is the record
? IE of T(s,k) with largest binary value). To do this, we must first prove the

recurrence | | : | |

IE n(s,k) = min { r(max(fq,f),k-1) + n(fo,k-1) + (fq ,k-1)], (26) |
where the minimum is taken over all pairs of nonnegative integers fo, f1 such that oo

| fo +f; = s. Suppose a bucket B containing $ records has fg records which | :
- | |

oo 30 NB |



Co oo | e

| begin with a zero and fy records which begin with a 1. Then n(fp,k) + n(f{,k) e

- : is the number of queries which examine B which begin with a digit. The number

| of queries which | examine B which begin with a "x" is clearly at least
| | r{max(fo,f1),k). Furthermore, it can be held to this value by requiring that the ”

number of distinct k-1 tuples ocurring in positions 2 through k of the records of B

| | | | be held to this number. Thus, if fo>f1 and ly ¢ B {for some string y, ly|=k-1), | | “
oo we would require that Oy ¢ B as well. This proves (28). oo | | | |

| ~ We will need the following two lemmas. oo | oo

Lemma. *

n oo A(x 1) = 3 A(X), for any string x of O's and 1’s. (27)

oo | Proof: If Mx) = #(T(s\K)), then A(x1) = &(T(2s,k+1)). For each query d |
| counted in #{T(s,k)), the queries q0, ql and gx are counted in B(T(25k+1)), since | | ©

| | x ¢ T(s,k) implies that x0 and x1 are both in T(2s,k+1). | | | |

5 Let p(x) denote 2 where j is the number of zeros in the string x. | oo .
oo E A(x) - x(x - 1) = p(x), for any stringx of 0s and 1's, <x> # 0. (28)

| | Here x - 1 denotes the string y of length |x| such that <y> = <x> - 1, “

| | Proof: By induction on |x|. By inspection of Figure (1) it is true for Ix] s 3.

| oo For larger values of |x| it will be true from the inductive hypothesis and the |



( oo definition of x when x and X - 1 begin with the same digit. The exceptional
case occurs when x = | 0k-1, x -1=0 1k-1, But here we have

oo AX) = Alx-1) = (2 + K-14 k=l) _ 5, gk] _ 2k-1, (29)
BN since A(0k-1y = 2k=1 "This proves the lemma. |

3 } To prove a(x) = n{s,k), it now suffices by (26) to prove that |
« AX) = 2 Ay) + Mz), (30)

- for any pairs of strings vy, z such that yl = lz] = |x| - 1, <y> + <z> + | = <>,
| and <y> > <z> since AM0) = n(1,1) = 2 and X(1) = (2,1) = 3. The proof is by

( | Induction on |x| = k, although it goes from the right end of x to the left, instead of | |
oo the other way around. | | |

The proof of (30) how proceeds by a four-part case analysis, depending on -

CI | the right-most digits of y and z. It will also be an inductive proof, so we |
oo ASTUTE that (30) holds for all strings x’ shorter than the current x. The last

NB three cases will have two subparts as we reduce (30) in two different ways using | |
| ~~ the lemmas. In each case at least one of the two reductions must be true.

| Case I: y=y' 1, z=2"1, and x=x’1. | | |

} - Here (30) is implied directly by the inductive hypothesis, since it is
equivalent in this case to: | | | |

oo 3 Mx") = 6xy) +3 AZ’ ); oo (31)
- | with ext > = <y'> 4 <2"> 4 l, and y' >» 2. oo oo |

32



| . Case 2: y=y’0, z=2' 1, and x=x"0. e

oo | Here we reduce (30) to the two inequalities: |
| | BAX 1) + 2p(x’) <6 Ay -1)+4ply)+ 32), and (32)

| | 3 NI - p(x") < 6 Ay”) - 2 oly’) + 3 AZ). (33) - =
Since <x’ -1> = <y’ “15 Ra > + and <x'> = <y’> + <2'> + 1, we may

oo reduce these two equalities using the inductive hypothesis to the statements .

oo p(x’) < 2 ply’) and p(x) 2 2 ply’), at least one of which must be true. | oo ~
oo © Case 3: y=y' 1,222’ 0, and x=x'0._

B In this case we get (30) reducing to: &
| Bax 1) + 2px) < B Aly!) + 3 AZ -1) + 2 plz), and (34) |

3 Mx) = p(x") « 3 Ay") +3 AZ) - p(z’). (35)

| Using the inductive hypothesis we get that (34) and (33) are equivalent to =
| p(x") = pz") and p(x’) > p(z’), at least one of which must be true. There is the

| exceptional case when <z’>=0, where (34) is sufficient (if we define Az’ -1) to )

| be zero), since x’ -1=0y’ and p(2z’ )2p(X’ ). | oo | oo | | | ©
. Case 4: y=y’' 0, 77 0,and x =x1. | |

In this case (30) can be reduced to the two inequalities: |

3 a(x’) < 6 aly’) - 2 oly’) +3 A(z’ -1) + 2 p(2’), and | (36) ®
3 a(x’) < 6 Xy -1)+4ply)+ 3a) + plz’). - (37)

| &



a oo |

Since <x'> = <y’> + <2 -]> + | = <y'-1> + <2'> ny we invoke the inductive
hypothesis twice to obtain p(y’) < p(z’) and ply’) 2 p(2’)/4. These can not

oo both hold simultaneously so one of these reductionswill suffice to prove (30) in |
= oo this case. This argument must be amended to consider two exceptional |

. conditions: when <2’ >=0, so that 3 A(z’ -1) is undefined in (36), and when y’ =2'

| so that the condition y’ -132’ does not hold for the inductive hypothesis used on

: | (37). In the first condition we have Oy’ =x’, and that (30) is equivalent to

3 A(X) ¢ 6 aly’) - 2ply’) + 2p(2'). | (38) |

: The other exception to this argument occurs when <y’ >=<z' >#0, so that the

oo inductive hypothesis can not be invoked to reduce (37). Here though we have |

| p(y’ )=p(z’), so the proof follows from (36). | oo oo

« oo This completes the proof of the "if" portion of the theorem, since for any oo

| | bucket B such that |Bl|=s,we will have *(B) = #(T(s,k)) if B has the same "shape"

| ~ as T(s,k). |
S EB The “only if" part of the theorem shall again be proved by an induction on

| Ix|=k, using the previous analysis as a foundation. What needs to be proved is .
| that if s is a power of two then (30) will hold with equality only if y = 2. Here

= . we have s = 24, so that x = ok-u 1u. it is clear that equality does obtain when |

| y =z. It needs then to be shown that (30) holds with equality only when y - . |
This is equivalent to | | | |

“

@ |



| 3 20 1u-1y <2 +0 1u-1y + A(C-i +0 u-1y (39) | ©

for all i, 1i<24=1-1. This reduces directly to

a A101) < Ai-1) + A(1U-1 -i). _ (40) ©
| | It is in fact easier to prove the general statement: | | | | |

| En Ax) < Ay) + A(z), oo | oo | (41)
| for IXI=lyl=|zl=k, <y> + <z> +1 = <>, and <y> > <z>. We shall prove this by an c

induction on k. If x=0x’, then y=0y’ and 2207, so that the theorem follows | |

Lo | directly from (24). Similarly, if x=1x" and y=1y’ then we may turn both of these
oo initial I's into O’s and lose an equal amount from each side of (41). The remaining e

case is when x=1x’, y=0y’, and z=0z’. Divide y and z into two pieces each so

oo that <y|> + yp + 1 = yr, <zp> + <zp> =z, and ly)] = Iya) = lz] = |zol = k, and |

) furthermore such that <y1” + <zy> + ] = <0 1K-1>, so that <yp> + <20> + 1 = |

. <x’> as a consequence. This can be done in such a fashion that the k-bit

| | representations of y1, Y2, Z1, and zo all begin with a 0. (There is " trivial B -

| - exceptional case when <y> = <z> = 0.)
| oo ‘Then we can derive | SE |

(0 Tl < ayp ea and Cw"
| Al! ) < AMy9) + 222), yielding oo | (43) |

AX) < Ay) + A(z), immediately. oo | (44) | | e

. This proves the "only if" portion of the theorem. | | | |

| oo 3%



@® Our theorem implies the following corollary. |

| Corollary: For binary records, the hashing function which extracts w of the |

| key-bits to use as a bucket-address, where w = log(b), minimizes the expected

= number of buckets examined over all balanced hash functions, assuming that each
partial match query is equally likely. |

9 | Note that there may be other optimal hash functions with respect to the
oo | expected search time. In fact, we shall examine others in the following sections.

| The preceding theorem gives a good characterization of the bucket shapes

I | which will minimize $(B), the number of queries in Q which will examine B. We

- shall next prove that the same shapes are optimal when the queries are
oo restricted to Qy, for some t, O<t<k. The "only if" portion of the preceding

“ | theorem shall not again be proved, however. | |

| Let &4(B), and m{s,k) denote the functions & and n{sk) restricted to |

3 ‘counting queries in Q4 rather than @. The following theorem makes the relevant
assertion. | -

Theorem 2. . Let s = 2Y for some u, | <u sk, and let B be an s- |

| oo element subset of Ry. Then 24(B) = 7t(s,k) if B is a "subcube” of Ry; that is, |
| if Bis a cartesian product

B=DyxDox... xDy | (45)
| | |

where each D; is a nonempty subset of {0,1}. | |

36
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} Proof: This proof is almost identical to the preceding one, so only the &
oo . changes necessary shall be indicated. oo | |

- | Let x(x) be defined by the recurrence relations (here |x|=k): | oo

| | | A(X) =def 1, forall x. | | | (46) |

- . Anully =def O for 21. | | | | | (47) |

2 oo A(0x) “def (1 + apop(x), for bl and all x. (48) oe

- a At 1x) cof Ap(1K) + ap- (1K) + A-1(x), for t21 and all x. | (49) a

The values of AX) for some small values of t andx are displayed in the table. oo c
| . The following lemmawe state without proof, as it is essentially identical to the
| | proaf of the corresponding lemma of the preceding theorem.

- Lemma. B1(T(s,K))=2¢(x) if X is the record in T(s)k) with largest binary &

| value. | | | | oo
| | oo Again, the following identity can be proved in a manner similar to the proof |
a of its corresponding identity in the preceding theorem. Co | -®

oo rty(s,k) = min [ mp(max(fo,f 1 )k) + m1 (fok) + myo 1(f1,K)], (50) | |

where the minimum 's taken over all pairs of nonnegative integers fo, f1 such that c

oo To prove that x(x) = mi(s,k), where x is the largest record in T(sk), by | |

(50) it is only necessary to show that =

MX) = Aly) + Ao 1(y) + A102), (51)



s EE oo

i where |y|=|z|=]x|-1=k-1, <y> + <z> + 1 = <x>, and <y> > <2>, since Af(x)=T(s,k)

for x=0 and x=1. This proof will again use induction on |x|, proceeding from the

: - | right end of x to the left. The following two lemmas will be used instead of the

= | corresponding lemmas of the last theorem. oo oo ; | |
| | Lemma. | | } |

| Af(x1) = 2 2px) + Apdx). oo (52)

oo Proof: For each query q counted in A 1(x)=04.1(T(s)k)), we have queries |

| q0 and ql counted in A4(x1)=¢(T(2s,k+1)). In addition, for each query gq counted

= in 24(x)=¢4(T(s,k)) we have the ery g* also in Ap(x1). |

| Let p(x,t) denote the value Cllx|-1), where j is the number of zeros in the

“ string x. Then the following lemma can be easily proved by induction onk {proof |
oo omitted here): oo | E

| Lemma. | | | | |

| } A(X) = ap(x=1) = plx.t), for Ost<k, xeRy, <x>#0. 0 . (53)

| B ‘The rest of the proof follows the same four-part case analysis as the proof

| of the Theorem 1. It shall be omitted here as there it is merely a variation on

= the preceding analysis, using At for x and p(x,t) for p(x). | |
This theorem can not be oroved in the "only if" direction for all t, since it is

| not true for the cases t=0 or t=k. ~~ | |

- Q. ED. oo
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| © 3.1.2. THE OPTIMAL SHAPE OF A BUCKET FOR GENERAL RECORDS. e

| . | It turns out that binary records are in fact the most difficult case to

oo analyze. In this section we derive the optimal bucket shape for nonbinary oo
: records. Let | | N | oo i

| | R =4ef Xl iek On vit | (54) | |

be the record space under consideration, where Vi € V2 5 eee 5 Vy, and let «

| = n(s,fvl, ..., Vich be the minimum possible number of queries in Q which examine |

| - a bucket B consisting of s records chosen from R. Corresponding to (26) we have

© the definition: oF

| oo m(s,{V1, ..., VK} = min [ (max; fisiVoy + Vk) BN

I } * Zoic m(fi{vo, «oy vid) (55) Ce

: | where the minimum is taken over all sets of nonnegative integers fg, ..., fvi-1 | |

such that Z0cicvy fi = S. oo Co, | .
| | | Here we can perform the analysis by passing to the continuous case. The | |

| | | analog of (55) would then be: | | |

oo rn (s,{V1, . Vk) =def inf [7 (sup <x 5 v FXDiiva Vid) e

| N where the infimum is taken over all nonnegative functions f(x) such that =

0 Jo l fx) dx =s. If we let w(snul)=1 for O<s<l, m(s,null)=efor s>1, and

| EE (s,nullj=0 otherwise then (56) turns out to have the solution: |



- I oo

@ | W(siVin.. vi) =0 ifs=0,

: | | = (sl/k4 yk if O<s<vik, E

| : N oo if viKi<s cv eenvy,

io | =  f Vi $00 Vk < s, ] (57)

| | oo The function ni" is obviously a lower bound for n. The optimal function f(x)

. i's then a step function which is equal to s/s’ for O<xs<s’ and OQ otherwise, where |

$s =def min(vy,s1/k), This proves the following theorem.

Theorem 3. It R = X{.jck 10) ..,vj=1} then ®(B)=Ti(s,{v1, CV) if

~ | B= X)<ick Dis (58)

| | where each Dj « 0, ..., vi-1}, [ick IG = s and there is an integer gz |

| oo 2 - z < max; vj, such that for all i, 1 <i<k we have IDil < z and -furthermore, |

| ID;] < z implies [Dj] = vj. |

| | The theorem says then that our crossword-puzzie hashing scheme of §3. 1

= | is in fact optimal, as long as the function g divides the alphabet into four exactly |

| equal pieces. (This is not possible for a 26-letter alphabet, but we conjecture

| | that four nearly equal pieces are optimal in this case.) | |

cy | 40
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. 3.1.3. NUMBEROF BUCKETS EXAMINED. | | e

What then is the behavior of such an optimal hashing scheme for the

| | "classic" case of retrieving k-bit words for partial match queries with t bits | |

given? Let w =4o¢ logo(b) (and assume this is integral), and let our optimal

| | bucket system use (say) the first w bits of a record as the bucket address. We |
© then have oo B

Co Akw =ClTI EL Cow) Clkewyt-i) 29

I | = b C(k,t)~] Z0ict C(w,i) Clk-w,t-i) 27 | . (59) |

The number of buckets examined satisfies the following inequality, for all b=2W | |

© (with kyw)andallt,0st sk: N oo

| C Alkw,t) 2bl-t/k | (60) | &

| This inequality is a special case of a well-known mean value theorem [Ha59:Thm

- . 86], which says I | | Ce - oo

Co =0sict A #0xj) 2 Heit Xi | (61) |
Co for any positive numbers gi which sum ‘to one and any continuous convex

| function #(x). Here we have | | &

B | gj = Cik,t)~1 Clw,i) Clk-w,t-i), and oo | (63) | | N

oo Ce=X (64)

oo | | 4 | |



The inequality (60) will be strict unless k = w, in which case equality holds.

Figure 1 graphs (60) for k = 50 and w = 5, 25, and 50. The value A(kw,t)

is an achievable lower bound on the performance of a balanced hashing scheme

for binary records. Note that performance similar to Gustafson’s is obtained, i. e. | :

| each record is stored only once, but search time decreases approximately

° exponentially with the number of bits given in the query. |
N Theorem 1 adequately characterizes the optimal "shape" of a single bucket, - |

but does not tell us what the best number of buckets is. This question can be

- answered by using an accurate model of the particular storage device used.

@ | oo

@

| | 42 |
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Se | 3.1.4. A SAMPLE APPLICATION. |

- Let us consider a particular application in detail, in order to illustrate the
oo preceding sections and to show how one would proceed to select the proper

id - number of buckets for a hashing scheme. |

Suppose we have a file of n = 220 100-byte records, each having k =

- 32 one-bit keys, which we wish to store on an IBM 2314 disk storage device.
| | Let us determine the optimal number, b , of equal-sized buckets for this device, |

oo assuming that all partial match queries are equally likely to occur. Let b = 2W | .
s for some w, 1sw<32, and let a record be stored in the bucket whose address is

| the first w of the one-bit keys. If i of the first w bits are specified in a |

| query, then only 2W- buckets need to be examined to answer the query. The

» time required to access these buckets is composed of three parts: head access |
| | time, rotational delay, and data transfer time. The head access time is at most | |

| | E | the minimum of 75 milliseconds ver bucket, or 25 milliseconds per cylinder
° | required to store the entire file (1440 records can be stored per cylinder), since |

| each seek is at most 75 ms., but the time to access an adjacent cylinder is only

" 25 ms. The rotational delay is 12.5 milliseconds per bucket accessed. The
data transfer time will be .32051 n 2° milliseconds on the average (where | is |

defined as above). | Let c,liw,n) be the time required to access 2W-! buckets, |
> B as computed using the above information. Thus we have: |

| 44 So -



| .  cgliyw,n)= min(5n/288,75.2W™) + 27(12.5.2W+.32051n). (65)

| ~The expected timeto answer a query with t bits given is then: Co oo

N oo why) = 20 iow Ciw,i) Clk-w,t-i) Clk,t)1 Coli Wyn). | | (66) | -

oo | The averase time to answer any partial match query is then |

oo Ch = Eg Ck 23h oo (67) &
- © Figure3 shows «(h) plotted against w. The optimal value of w is seen to be oo

: 13 , with an average response time of 5.123 secs. This compares very

| DE favorably with the 336 secs. requiredto read the entire file if it is stored e

: compactly. Figure 4 gives ‘w(hyt) plotted against t, for w= 8, 13, and 20, and

for O<tek. a oo - oo : a
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+ 3.2. ANALYSIS OFWORST-CASESEARCH TIME

a | The hashing functions of the previous section, while providing good average |
BN response time to a query with t keys given, tend to have disastrous worst-case |

| behavior. The entire file may be searched if none of the keys given are used by oo -
| the hash function to compute the bucket address. We will show how the worst- | |

=) ‘case performancecan be made to approach the optimal expected time of the | | |
| previous section by using either more complicated hash functions, or by using |

| some storage redundancy. |

= First, let us consider the non-redundant case - that is, each record will be oo
| ‘stored in a single bucket. Section 3.3 will consider the storage redundancy case. : |

| Our hash function |

- h:R-1{1,2 ...,b} | (68)
| must now depend on all of the keys of a record, so that each key specified Nn

] oo contributes approximately equally to decreasing the search time. This is simple |
? when ksTlogo(b)1, so we shall assume that k>rlogo(b)1 from now on | We shall

furthermore assume for simplicity that each record is a k-bit word (that is, |

- vi = 2 for lsisgk). | |
| There is one other assumption we shall make: that the buckets are shaped = |

the same as in the optimal average search time case - that is, each bucket will

| 48 oo
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|

|

| | contain |R|/b records which agree in WwW = log o(b) bits and vary in the other k- &
w bits. Each bucket is thus a Boolean sub-cube of dimension k-w of R. The

E justification for this assumption is that this minimizes the average retrieval time,

which is of course a lower bound on the worst-case time. We have no proof, |

© however, that these bucket shapes are optimal in the worst-case hash function. oo |

| | The reader may be wondering if we aren't studying exactly the same hash oo Cc
| functions as before, where we extract w bits to use as a bucket address. SE

| Indeed, these are still candidates for the best worst-case hash function, but there
areothers. Consider the hash function of Figure 5, with k = 4 and b = 8. : &
: 1.234 « bit position
| | 1100 x 0 | oo

. 211 0 0 x | |

| B ~ bucket 3] x 1 0 O |
| | oo address 4] 1 = 1 0 } oo oo &

Figure 5. A Hash Function oo LE

Here one row is given for each bucket describing the records that can be |
| © stored there (where "+" is a "don’t care" character, as before). Thus h(0110) = |
SE 6 and h(1110) = 4. It is simple to verify that each record is assigned a unique

| bucket by h. This function was first pointed out to me by Donald E. Knuth, and

| canbe interpreted as a perfect matching on the Boolean 4-cube (see Figure 6). | £

REE oo Ce



\ | 0101 |

= 00009 000] | EE |
| ~~ Figure 6. A perfect matching on Ry | a oo

| How well does this hash-function perform? The symmetry of this design |
| decreases the amount of work done in the worst case. For example, any query | |

oo with 2 bits specified need only examine 3 buckets (e.g. query "10x" requires |

9 | only buckets 2, 3, and 5). Figure 7 gives the relevant statistics for each case. | | || | bt 1o 1 2 3 a4 |
| ACh, t) |] 8 5 3 2 1 |

| | FAC4, 3, t) | 8 5 3 2 1 oo

= Figure 7. Buckets examined per query bit given |

: This is clearly as good as one can hope to do, since the worst-case time |
Co must be at least as big as A(4,3,}). |



3.2.1. FORMAL DEFINITION OF ABD'S. ob
Let us call a hash function presented in tabular form as above an . |

| oo "associative block design with parameters k and w" (where b = 2W), or an
"ABD(k,w)" for short. More precisely, an ABD(k,w) will be such a hash function oo | -

that is "uniform" with respect to each key. oo | |

Definition: An ABD(k,w) is a table with b = 2W rows and k columns with entries I
| over {0, 1 3 such that : oo |

(i) each row contains exactly w digits and k - w. £s, |

SEE (ii) given any two rows, there exists at least one column in which the two | e
rows contain differing digits, and oo -

| | iii) each column contains the same number b-(k-w)/k of £'s. N - | |
Condition (i) guarantees that distinct buckets are disjoint, while condition (i) &

) ensures that each bucket is of the same size. Each record will be associated oo

with a unique bucket since the disjoint buckets contain a total of 2K ‘records, |
| Condition (iii) restricts ABD's to hash functions having at least some uniformity -

with respect to how each individual bit- affects the bucket address computations. B E |

| This ensures that an ABD will have minimal worst-case search time for queries oo o
; : with one bit specified (that is, t = 1). Since each row of the ABD represents a |

a bucket which is actually a subcube of Ry by condition (i), an ABD is guaranteed to |

© have minimal average search time as well. oo oo | | N &



5. The construction of ABD'sof arbitrary size is a difficult combinatorial design

problem, comparable to the construction of balanced incomplete block designs (see .
| [Co52]). In fact, an ABD will be a group-divisible incomplete block design of 2k |

- | objects (one object type for each digit type of each column) each replicated
| wb / 2k times in b blocks of size w, where there are k groups (the

| columns) with two objects in each group, and where two objects of the same

” group hever occur together in the same block, if there is a number Xo such that
| each pair of objects of differing groups appear in exactly A blocks together

= } (see [Bob2]). This requirement is an additional constraint, which may exclude |
oo many valid ABD’s. In addition, not every group-divisible incomplete block design | |

of the proper type will be an ABD, since the definition of a group-~divisible |

= incomplete block design does not suarantee that condition (ii) above will be met. |
Thus the question of the existence of ABD’s of arbitrary size does not seem to be

| answered by any Drevious results of combinatorial design theory.

oo | 3.2.2. CHARACTERISTICS OFABD’S. I

~ The following lemmas give some additional details on the characteristics of |

+ ABD’. |
Lemma 1. There must be an equal number of Os and 1°s in each column of an

| ABD. oo



Proof: There are an equal number of vectors in Ry having a 0 in a given column L

| as there are having a | . Furthermore, each ow with * in that column |
contributes an equal number of cach type. Finally, there are ah equal number of |

+’s in each row so a digit in a column always contributes exactly 2K-W vectors |

| of that type. | oo |
oo Corollary. The value of bw/2k must be integral (this is the number of 0's or 1’s in | - c

each column). | | - . | oo | |
| oo Lemma 2. The number of rows having u bits in common with any given record,

| for O <u < w, is exactly Clw,u). | | | €
oo Proof: Let z, be the numberof rows having u bits in common with the given - |

: | record. We must have | : | | oo
| | Zu = Clk) - 2 ven 2y Clk-W,U-) | (69) .&

| to cover all the vectors in Ry having exactly u bits in common with the given oo }
| record. This equation is satisfied, uniquely by induction on u, by Co : .

- zy = Clw,u). | (70) |
| In particular, this lemma tells us how many rows there are having exactly u zeroes | |

(or u ones). a EE | pt



*

» 3.2.3. CONSTRUCTION THEOREMSFOR ABD'S, BN |

oo | | The following theorem, due to Ronald Graham, establishes the existence of |
| an infinite class of simple ABD’s. | |

® Theorem 4. An ABD(2M 2M-1) exists for all m > 2.
. | Proof: |

@ | We shall use an extended notation for an ABD, using the symbol in |
- addition to the usual symbols of "0% "1", and "+". A row having s "a" will |

represent 2° actual rows of the ABD, obtained by independently replacing each

” "-" of the row with a "0" or a "1". | | | a

| | The construction consists of two parts: |

| (i) The first m+1 rows have "-"s in positions m+2 through k = 2M The |

* i-th of these rows has a "+" in position i. The other positions are filled

| | in with digits in such a fashion as to satisfy condition (ii) of the definition
oo of an ABD. This is easy to do; the rotations of the string « 1 om-1

"oo | will work, for example. |
(if) The remaining rows are divided into k-m-1 pairs. The rows of the i-th

@ pair have "-"s in positions m+2 through k except for a "+" in
. position m+1+i. The first m+] positions are filled in with digits in a |

: manner consistent with the definition of an ABD; this is simple to do. |

54 |



| E it is easy to verify that this yields an ABD(2M,2M-1), | |

| QED | | oo Co

| To illustrate the above construction, here is an ABD(8,7) constructed by e

Graham's method (that is, this is the construction for m = 3): | |

010m... | oF
00xl-=== |
| | 100% ~ - = — |

I 0000 — —- — |

| oo | | 1010 =-% =~ oo |

| I | 1101 - =x =
: | | 11 10---x% | |

| - | 1 11 1 = = =x re

] - I Figure 8. An ABD(8,7) |

| | oo This general idea, of dividing the columns into two groups and filling in each : :

| | part seperately, can be carried a little further; the following figure gives an ~

| ~ABD(16,13), also discoveredby Graham. SE - }



* |

- | | | |
| HOO) EE Eo ——— | .

| $010] == § =mere | :

| $01] ————k 4 ——mmmme |
1000 ——————f % ——~

= | 1x0] 0==—m————kx —
| © 101 1%=x

| O) EJ TRE E—— |
| 01%0] ———%¥ ~~ |

| 110] —————% % ————

| 0014 0—mmmmm ms x
« | | 101 %¥0—=——vmmmx % |

oo 110%mmmmeme
000] == ¥ =e meme mee | oo

B | SDN 0) ETT —— | | |
oo | | C01] Immem =m |

00000——~—————x% x |
- | [ ———_— |

Figure 9. An ABD(16,13) |

| The designs of Theorem 4 are not useful hash functions, however, with the |

| possible exception of the ABD(4,3), since the ratio k/w of key bits to bucket

address bits approaches 1 as the designs get larger. What is really desired is a |

way to construct large designs with fewer buckets. The following theorem gives
-

oo a basic upper bound on the ratio k/w achievable for a given k (hat is, given a |

number of keys, it gives a lower bound on the number of buckets required for an

@ ABD(k,w) to be possible).
Theorem b. | |

k < (W2/2)«(2W/(2W-1)). | (71)
- | |

56 | |
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| Proof: Between cach pair of rows of an ABD there must be at least one column in | i

| oo which they contain differing digits. There must be at least C(b,2) such row-row-

: | column differences. On the other hand, there are only wb/2k Os and 1's | per

| oo column. Thus we must have = | | |

| k (wh/2k)2 > Cb,2) | | | (72) |

| “which directly yields our theorem. oo ©
IE Q. E. D. oo | |

| oo As a consequence of the above theorem and lemma 2 of §3.2.2, we can | |

| oo tabulate the nontrivial pairs (kw) for which ABD(k,w)’s may exist, for small k. ~ | -

oo | 8 | 4, 5 6, 7 |

| 12 | 6, 9

| | 16 | 6, 7, 8 9, 10, 11, 12, 13, 14, 15 | a.
oo 18 | 6, 9 12, 15 | LL | |

: | Figure 10. Permissable values of (kw) | ~

- | One can also show, by an extension of theorem 5,that an ABD(8,4) is also

| impossible. | | |

oo The following theorem gives a basic way of creating larger ABD’s from |

smaller ones. | oo



- Theorem 6. (Concatenation) It is possible to construct an ABD(k+k’ ,w+w’)
from an ABD(k,w) and an ABD(k",w"), if k/w =k’ /w’.

| Proof: Form the set of all 2%*W' rows of length k+k’ obtained by concatenating

| each row of the second design onto the end of each row of the firs: design. It is

oo easy to see that this is an ABD(k+k’ ,w+w"). | | |

. . Q.E.D.
| Thus we can form an ABD(8,6) or an ABD(12,9) from the design of Figure |

| 5. Figure 11 gives the ABD(8,6) so constructed. oo |

s 12345678 12345678 12345678 12345678 |
| l} 00: 000: 0 17] +10000«0 33] 11%100+0 49] x01100%0 |

| 2] 00+ 0100x 18 *100100% 34] 11x1100+ 50] *011100% |
| 3] 00+0¢100 19] #100%#100 35] 11x1x100 51] *011%100

| 4) 00%01x10 ~~ 20] #100110 36] 11x11x10  52| #01i1#10
S| 00:011x1 21] *10011%x1 37] 11#111%1 53] #01111%1 |

- 6] 00+0011% 22] +100011% 38] 11x1011x« 54: %011011+ |
/| 00+0+011 23] #100x011 39] 11x1x011 55 *011x011 |
gl 00100x01 ~~ 24] %1000+01 ~~ 40] 11%¥10¢01 ~~ 56 #0110%01
5 100%00:0 25] 1x1000%0 ~~ 41} 011%x00x0 57 0%0100%0

10] 1004100: 26] 1+10100+ 42] 011%#100+= 58 0:01100% |
@* 11} 100+%100 27) 1+¥10+100 43] 011x100" +58 0x01x100"
- | 12] 100«1%10 28] 1%101¥10 44] 011%1%10 60" 001110

13] 100«11x1 29] 1x1011x1 45] Ollsll¥l 61] O%xO111#1 |
14] 100+011x 30] 1%10011% 46] O11x011%¢ 62] 0:01011«

| 15] 1004x011 31] 1x10%011 47] O11%x011 63] 001x011
16] 100:0401 32] 1%100%01 48] 011%0%01 64] 0+010%01

| Figure 11. An ABD(S,6) | |

Theorem 6 does not allow us to increase the achievable record |

58
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| length/bucket address length (k/w). One might suspect that 4/3 is perhaps an =
oo upper bound for k/w. The following theorem shows that arbitrarily large ratios |

: are possible. | | oo oo . | |
| oo Theorem 7. (Insertion) it is possible to construct an ABD(kk’ ww’) from an i

| I ABD, w) and an ABD(K Ww’). | oo

oo | Proof: We will construct the larger ABD by independently replacing each digit of . | .
| : the first ABD by a row from the second, and each # of the first ABD by a string |

| of kK "+s. If the digit being replaced is a zero, we choose a.row from the top |

I half of the second ABD (that is, from the first 2W~1 rows) to replace it. If the | rs
digit being replaced is a one, we use a row from the bottom half of the second

| . ABD. (Actually, any division of the second ABD into two halves may be used.) | |
oo Fach row of length k thus generates 2W -1)W rows of length kk’ , so that -

} WW’ rows are generated altogether. Each such row has w(k’-w’) + (k-w)k=
N | kk” - ww’ "ss. Each pair of rows generated will differ in at. least one place, }

oo since rows used to replace differing digits differ, or if the two rows were NB | i
cenerated from the same row of the first design, then one of the digits replaced | |
will have been replaced with different rows from the second design, which must . e

| | differ in at least one olace. Finally, the p—— of "+"s in each column is | |

CA (ew) 29K) + Cw 2W=1 Jky((k -w') 2W flew’ -1yw-1 73)

=2WWI KK ww) kK EE (74) |



- Therefore this construction yields a valid ABD(kk” ww”). |
| | Q. E. D.

| The above theorem allows us to form ABD’s with arbitrarily large ratios
hd k/w. For example, we can now construct an ABDX(16,9) or an ABD(64,27) {in |

| general, an ABD(4™3™) for m1) from the ABD(4,3) of Figure 5. The following
figure illustrates the rows generated for an ABD(16,9).

| 00% 0 > 00x 000% 0x 4% 00% 0 | |

00x 000% Ox +x 1 00x |
| oo | 00% 000 0% ++ % x 1 00 oo

00x000xOx+xxx1x10

@ 00x0100+ xxx 000 oo

| 100% ~ 11% 100% 000% 0% %
| 1110004100% xxx

oo | 11%10001%10% xxx

io 0+01 = 00% 0% # 00% 01 1% 1
| 00% 0x xx 00x 001 1 |

000+ %%%x00%0%x011 |

Po. | ABD( 4, 3) rows =>  ABD( 16, 9) rows

| Figure 12. Rows of an ABD(16,9) .

@



3.2.4. ANALYSIS OF ABD SEARCH TIMES. *

| How well do these ABDs perform as hash functions for associative retrieval

a of binary records? Let use derive the worst-case behavior of ABDs constructed -
| by concatenation and insertion. | | | | *

Let us consider the concatenation of an ABD(k,w) with an ABD(k’ ,w’). Let |

Ag.) and s{g’,}) be the respective worst-case number of buckets examined in .
| each case for a query Q Q; and let A(ht) be the same function for the ”

oo resultant ABD. ‘Since g g and h are fixed, we are considering the associated |
oo functions4 as functions of t only. We can then easily derive | | oo oo ©

Alh,t) = max jay=t Agu) Ag v) y | (75)

oo | for Os<t<k+k’, usk, v<k’. | For example, concatenating an ABD(4,3) with itself |
| yields an ABD(8,6) with worst-case retrieval times: e

| | Ath ty | 64 40 25 16 10 6 4 2 |
oo | ra(g,6,t)1 | 64 40 25 15 3 6 4. 2 1 BR |

- | ) } Figure 13. Performance of an ABD(8,6) oo | oo e

| Also shown are the values of rA(8,6,t)1, which is a lower bound for Alht). The oo

| | ABD(8,6) is seento do nearly as well as possible. The exact asymptotics for the | &
oo | worst-case behavior of the repeated concatenation of an ABD with itself are

| | quite simple to figure out for given valuesof k and w. Suppose we concatenate



- | an ABD(k,w) with worst-case behavior g(gt) with itself m times, yielding an |

ABD(rk,mw). Consider a partial match query Q «¢ Qi. Let y; be the number of |

| k column blocks which have exactly specified bits, for Ozick, so that

IPR (lL | | | (76)

” Z0ciak Vim | | (77)

| We also have, of course, the condition that

yi 2 0 for Osick. | (78)

| The worst-case behavior ght) of the resultant ABD(mk,mw) is defined by

| . _ Yi |

where the maximum is taken over all sets of integers yp, ..., yy satisfying (77) -

| (79). Let @'(ht) = log(atht) and 4'(gt) = log(algt)) for all t. Then (79)

“ becomes | a |

A’ (ht) = max Z0.iek AED Yn, | (80)

transforming the above into a integer programming problem in k+1 dimensional

- space. Since we are considering the asymptotic behavior as m=, the solution to |

: the corresponding linear programming problem, in which each y; is replaced by the |

corresponding fraction x; = y;/m, will give us the asymptotic behavior. The

oo problem to be solved is thus: | |

| maximize A’ (ht) = 20 cick Agi) Xi, | (81) |



oo Zo. ixi=tmad (83) Ce
: - Xi 20 for Osisk. a | | } | (84) | oo
| N We must have at least k-1 of the X;'s equal to zero in the optimal solution, since |
oo there are only k+3 constraints for this problem in k+1 dimensions. Let x; and Xj | i
oo be the two nonzero values, with i<j. if 4’ (gt) s a concave function we have

i = Lt/m] = -1 | oo | NB (85) €
| and - | | - |
oo A(ht) = A(giXi-t/m)/(i-j) + A (8, Xj=t/m)/(j=i). (86)

This is the general solution. ‘When t/m is a multipleof 1/k, then only Xty/m is BC
| | nonzero, and it is equal to one. This solution does not apply when A(gt) is not |

| | concave. (For example, the & (at) for our ABD(4,3) is not quite concave, since | |
A(g,3)=2 is a little too large. This convexity is the cause of the discrepancies of =

oo ) Fig. 13). One can ‘show, by a combinatorial argument, that If s(g,t)=Ak,w,t) for |

O<t<k, then Ah) =Atmk mw) for Ost<mkas well. Thus concatenation of ABD’s | @
| | can be expected to oreserve near-optimal worst-case behavior. | :

oo | The behavior of an ABD constructed by insertion is more difficult to work |

| out. It seems the worst-case here occurs when the specified bits occur together N |



-. in blocks corresponding to the digits of the first ABD used in the construction

| (that is, the one whose digits were replaced). (I have no proof of this.) Figure

oo 14 gives the worst-case behavior of an ABD(16,9) constructed by inserting the |

hd ABD(4,3) of Figure 5 into itself, (computed using the assumption that the worst- |
| case behavior occurs with the queries having the specified bits occurring in

| blocks). Shown below the worst-case behavior g(ht) for the above design are |
8 | | |

~~ the values of A(16,9,1), which are a lower bound for the number of buckets that . |

| must be examined in the worst case. |

* Ah ty | 368 272 224 176 116 76 56 36 Co
rAC 16, 9,t)1 | 368 263 186 131 91 63 43 30 |

| tp... 8__10 11 12 13__14__1516 : |
shyty | 33 24 16 8 5 3 2 1 |

~ rAC 16, 9, ty | 20 14 9 6 A 3 2 1 | |

Figure 14. Behavior of the ABD(16,9) oo |

| E . We see the the lower bound is nearly achieved, that is, the worst-case |
- behavior of this hashing scheme approximates the average time. On the other |

© hand, it is quite likely that even better designs for an ABD(16,9) exist - the |

regular fashion in which this one was constructed probably degrades its worst- |- case performance somewhat. An exhaustive search by computer for better |

designs appears to be infeasible, so that a better construction method is needed. |

CH



| (| was unable to determine whether an ABD(8,5) exists or not, using one hour of *

| - computer time and a sophisticated backtracking procedure. ) | |

oo 3.2.5. IRREGULAR ABD'S. oo I.
oo The difficulty of constructing ABD’s leads one to attempt simpler, less |

| tightly constrained hash functions. Such ad hoc hash functions are easy to

~~ construct for small values of k and w. For example, consider the case P = 3, :

| oo w= 2 (which does not satisfy the divisibility constraint of the corollary to Lemma
| | | 1, so that an ABD(3,2) can not exist). The following “design” yields reasonably | |
| | good worst-case performance. ) EE SE oo oo ¢

co 1] 0 0 + | |

| oo Figure 15. An “irregular” (3,2) design | |
| Here bucket 4 contains both records 010 and 101. This hash function has worst- oe

| case behavior: | oo | oo | . oo |

oo | Figure 16. Behavior of the previous design oo oo



@ | |

. Concatenating this function with itself will yield larger "designs" having a k/w B
ratio of 3/2 and having good worst-case retrieval times. Another "design" |

| | yields the k/w ratio of 2; | |

- 1234 SE
| | 1] 0 0 x =« | |

| Co 21 = 1 x 0

| 31 = 1 1 1 | |
I 1 0 1 «x

| | 1 0 0 = | ol

Figure 17. An "irregular" (4,2) design |

“ LT EB The above hash function has worst-case behavior: | |

oo Ahty | 4 4 3 2 1 |

Figure 18. Behavior of the irregular (4,2) design | Co
* | oo oo Co

| 3.2.6. CONCLUSIONS ON ABD’S. | | | |

oo Associative block designs will have exactly the same average retrieval time

a | as those hash function discussed in section 3.1, where w key-bits were - |

oo | | extracted to use as bucket address bits, since the buckets have the same shape. | |
But by appropriately permuting the entries in each row, we can drastically reduce

. | the worst-case time without affecting the average retrieval time. The recursive

| or iterative nature of the ABD construction theorems lends itself to simple

s | Co



| | implementation. In summary, we see that the worst-case performance of hashing ¢

| “schemes can be nearly minimized without increasing the average retrieval time or |

| | the amount of storage used. So oo oo |

oo | SE oo oo oo | CC .



’ | | oo |

- 3.3. BENEFITS OF STORAGE REDUNDANCY

| | The serhaps difficult problems involved in constructing an ABD for a

= | particular application can be circumvented if the user can afford a moderate
amount of storage redundancy to achieve good worst-case behavior. By

| moderate | really mean moderate - the redundancy factor is not subject to

ou combinatorial explosion as in the designs of Ghosh et al. Furthermore, both the =

worst-case and average behavior is even slightly improved over the designs of

oo §3.1 and the ABD's of § 3.2. | n

- E The technique is actually quite simple, and will be illustrated by an

| example. Suppose we have a file of n = 220 100-bit records (that is, each oo

i | record consists of 100 one-bit keys). The method of the previous section would

N . have required the construction of an ABD(100,w), for w near 20 - a difficult |

| ‘task. Let us instead simply create five (= 100/20) bucket systems, and let each |
Po record be filed once in each system. Each bucket system will have 220

| buckets. The first system will use the first 20 bits of each record as its bucket

address, the second bucket system will use the second 20 bits of the record, and

- | $0 on.

| Now suppose we have a query Q ¢ Qt. At least one of the five bucket

“systems will have at least rt/57 bits specified for its bucket address - so we can

68
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© use this bucket system to retrieve the desired records. The number of buckets N e

| oo BN searched is no more than 220-T/37 at worst. |

oo In general, if b : Ww is the number of buckets per bucket system, and we <
| . | have k-bit records to store (records with non-binary keys can of course always oo
| . be encoded into binary), we will establish m = k/w distinct bucket systems, |

divide the record intom w-bit fields, and use each field as a bucket address in Ce
- . one of the systems. oo . | oo | |

The worst-case behavior of this scheme follows a strict geometric | |

inequality: | IE } - | | ¢
. a(ht) < oW-Twi/k | | | (87) ST

This surpasses even the best achievable average behavior of hash functions with |
| | oo no storage redundancy, although not by very much. If half of the bits are given in i
aquery ( ie t= K/2), then only sqrt(b) = 2w/2 buckets at most need be |

| SE searched. The average behavior of this scheme is difficult to compute, but it | | o
oo ‘seems likely that it will approach the worst-case behavior, “especially if wis N

large. oo E oo | | |
| | | | The above idea can be generalized further. Instead of taking each of the oo &

| m subfields of the record and using it directly as an address, one can treat each | |
| subfield as a record and use an ABD(k/m,w) or some other method (such as the |



@ |

9 | trie algorithm of §4) to calculate an address from each subfield. The efficiency of
this composite method will of course depend on the efficiency of the the methods )

chosen for each sub-field. oo
-

« | -

=

|

. oo

70 : |



e



9 |

9 CHAPTER4

- Theorem 1, which states that an optimal bucket shape for a hash table is a

| subcube of R, suggests that another data structure might be preferable to hash

@ | tables. A trie also has the property that the set of records under consideration |

| at any point of the trie is a subcube of R, which is recursively split into smaller |

subcubes at each level. Tries might thus behave like the best hash functions.

| ‘They have the advantage that the data is structured all the way down to the )
| terminal nodes (the records), in contrast with hash tables, where each bucket

merely contains an unordered list. In this section we will try to estimate the

average search time for a partial match query when the file F is maintained in |

~ random-access storage as a trie. | B

| 4.1. DEFINITIONOF TRIES |

“Tries” were first described by Rene de la Briandais [de59] and were

9 elaborated on by E. Fredkin in [Fr60] (see also [Kn72,§6. 3]). | |

~ Definition. A trie is a tree such that | | |

(i) Records are its terminal (external) nodes. |

71 oo |



| oo (ii) Each internal node N specifies an attribute position j, such that attribute =
: j has not been specified on any node on the path from the root of the trie to N. |

In a standard trie the attribute position specified is always J, where j is the level .

© of the node N in the trie. Nonstandard tries were first introduced by G. &
© Gwehenberger [Gw68], Each internal node is said to be associated with all of

oo “the records of its corresponding subtrie, and oo | | i}
. oo (ii) if node N specifies attribute jy then node N has vj subtries, one for | -

~~ each bossible value of attributej. The records associated with node N are each

Co placed into the subtrie of N corresponding to their value for attribute j. | c
Two kinds of tries will be considered. A full trie will have all records at ~~

level k+l (where the root is at level 1). | Any subtrie associated with zero |
: : records will be 3 special null node at some level less than k+1. A compact trie Ce

| oo will place the terminal node corresponding to a record at the uppermost level |

possible. In other words, a compact trie has a terminal node whenever the B
| corresponding node in the full trie is associated with only one record, and all of | e

| oo the ancestors of the node in the full trie are associated with more than one | |
| record. Figure 19 and 20 illustrate full and— tries for the file of three-bit | |

records F' = { 000, 100, 101, 111 }. : | Lo | | | &

oo oo oo I cs



9

| . =0 /  \ =] |

| | bit2] | bit 3]
# 20/ A = =0/ \=1i I

. / \ / A |
Cy \ \

| bit 3] NULL | bit 2] | bit 2 | B |
-« CC =0/  \=1 =0/ \ =I / =0 \ =1

| | / \ | / \ / \ | |

| 000| NULL | 100| NULL | 101 | | 111 |
a me Beene mmm m— |

Figure 19. A full trie NB

73

J | N | | |



Lo | : ee oo

| | | | | 101 | | 111 | | |

| Figure 20. The corresponding compact trie |

| oo To perform an associative search of a trie is quite simple. Given a partial |

| | match query Q the search algorithm worksas follows: | |
Associative Search of a Trie | oe

| | | | Step 1. Set pointer p to the root of the trie. oo |



- | Step 2. If p points toa terminal node, print the associated record if it |

satisfies Q and return. | | | |
| | Step 3. (Here p points to an internal node N specifying attribute j). If

- attribute j is specified in the query, search the corresponding subtrie
: | of N, otherwise search all subtries of N. (These recursive searches

| | use this algorithm beginning at step 2). |
° What is the average running time of this algorithm? Let the time be the

| | average number of nodes (both internal and external) examined by the algorithm. oo |
oo CL We shall use a slightly different assumption about the file, in order to make the

° mathematics easier. Instead of letting our file F be a randomly chosen subset | |
of I of size exactly n, let us instead assume that each record R « R is chosen to | | |

) | be in F independently with probability p = n/|R|. Thus EGE) =n, but BF |
may also have some other size. There will be no significant bias in our results |

| due to this change in assumption. The following notation denotes our cost
- | measure: | oo |

| f(k,t) = the average number of nodes examined by the above algorithm |

| | | | to answer a partial match query Q «¢ Qt, where the file F | |
* | | | “consists of (approximately) n distinct records, each having k | |
B | ~ one-bit keys.



| EE There is an interesting optimization problem resulting from the use of | e

| nonstandard tries. The problem is to select the attribute positions with which to
label each internal node in such a fashion as to minimize the expected number of

oo nodes examined for any partial match query. The interesting point here is that it *
| will be the most unbalanced trie which will have the minimal search time, since oo

nodes deep in the trie are seldom examined. To actually determine the optimal : R
trie seems to be a difficult optimization problem, and we shall not remark upon it | i

| further. In fact, we shall restrict our attention to standard tries. | | oo

© 4.3 UPPER BOUND ON THE SEARCH TIME I

: oo The close relationship between tries and hash functions which extract bits
oo to use as ] bucket address Allows an upper bound on (kit) to be derived very oo ©

“We first note that the probability ®(N) that a particular node N will be I .
| | examined is basically a function of the level I(N) of Nin the trie: | : |

8yN) = Ck) ZL CNL) ClkeNyeLtp 27 oo
= 2 NHL AGIN-L). oo (88) i

| As noted above, since $(N) decreases so rapidly with IN), of all the n-node tries |

it will be the most balanced tries which have the highest average retrieval time. CC ®

. oo oo | oe



9 oo Thus we derive an upper bound for f(k,t) by only considering the most balanced |
oo oo tries of n nodes. Thus it is very simple to derive the bound:

| f(k,t) < 2 Alk,j,b), (89) |
~ | <jsTlogolnm)n

since there are 2)-1 nodes on each level | of the most balanced trie except
| possibly the last. The dominant term in this sum will generallybe the last one,

4 | corresponding to the highest level. Thus we see that tries will not generally do
| worse than the best hashing functions which use about n buckets. In the next

| section we will see that they do not perform significantly better, either.

4.4. LOWER BOUND ON SEARCH TIME I ol

Eo We shall here assume that the file is stored as a full trie and not a compact

‘trie. While a practical implementation would certainly use compact tries, we shall |
- examine the full trie case since the mathematics is a little simpler. Compact tries

- are more efficient by a factor of at most | -

| k/logoln) =1 - (logolp)/logolny). (90)

This approaches 1 in the limit if we keep p fixed and let now. We shall |? proceed with our analysis with the understanding that compact trees could be |
more efficient by this amount. | |

® We now prove our basic theorem for this section, which says that the |



| expected search time for a trieis bounded below by a exponentially decreasing | &
| function of the amount of information specified in the query. oo |

© Theorem 8. I | |

| kt) 2 lke ks plketyfk ket oo (91)

- Proof: The basic recurrence for f(kt) is the following: |

oo Kk) = 1 + (1-6 (2 f(k=1,b)Xk=t)/k + f(k-1,t-1) t/k), for k>1. . (92) &

oo Here we define - | a a. | -

4 =def (1-P)} (93)

to be the probability that Fis empty. The value (k=t)/k is the probability that

| | ‘the bit named at the root of the trie is not specified in the query, and t/k is the | |

| | | | orobability that it is specified in the query. The 2 is in the first term because if oe

the bit named in the root is not specified in the query, then we have to search
: both subtries, otherwise we only have to search one. | |

| So We will prove (91) by induction on k, using (32). The basic inductive step ®

| . we heed to prove is therefore the following inequality.

oo olk-t/k gk-t oo _ | |

oo | Coo] + 2k tt - € (k=) /K) ptk-t-1)/(k-1) + t/k plk-t)/(k=1)y (9a) | e
If we prove (94), and also prove a basis for the induction, then (91) follows.

| oo Defining z to be: | | | a |

I | oo »



@ |

- | we then get that (94) is equivalent to: | | |

| 1 oy 2k ptk-tifk — (12 q) 2)) | (96) |

“> oo If we can show that |

oo zy plkb/k (97)
oo then (96) reduces to showing that | oo

ss 1 yg 2k tplk-tizk (98)

| So we will first prove (37), and then (98). Now (97) is equivalent to the :

following. | | |
- |

olk-t)/k < (k-t)/k plk=t-1)/(k-1) + t/k plk=t)/(k-1) (99) |

oo This is the same as | . oo

@ pt/Kk=1) < (k-tysk + tk pl/tk-1) | (100)

But this is just an instance of a well-known mean-value theorem [Thm. 37,Ha59]. B

We shall now prove (98). This is equivalent to |

he | | ly q 2Kp(2pl/kt, (101) |

| | Since ¢ is independent of t we may set t=k if 2 pl/K < 1 to maximize the right |

EN hand side, reducing (101) to a trivial statement. Otherwise we set t = 0. |

| Differentiating the resultant right-hand side with respect to p, we find that it |
reaches a maximum at | |

- pg =1/ (2% +1). (102) |



| © But since 2 I/k < only d e (10 1/k *
B Po" we only need to prove (101) for 2 p [k = 1, in which

| case it is again trivial. } | I | - oo |

Therefore (91)is proved except for the basis for the induction. But for | ..
k = 1, (91) reduces to } REC | | oo oo |

oo f(1,0) > 2p, oo oo N - - (103)
: EP : I oo a | Ce

a oo | CHL) 2 1 : | - | | (104)
Equation (104) is certainly true, since the root node must always be examined. oo

| oo Equation (103) requires computing the average work for a file of 1-bit records *
~~ for a query with no keys specified. There are four possible files: F={0,1},

| F={0}, F={1}, and F={}, which occur with probabilities p2, p(1-p), p(1-p), and oo |

(1-p)? respectively. The number of nodes examined in each of these cases is | -
| 3, 2 2, and 1 respectively. Equation (103) thus reduces to proving the :

| following. | DE IE EE 6

2p s 3p? +2p(l-p+2p(l-p) + (1-p)2=1 +2p (105) |
QED oo oo oo .

| | :



@ | oo

"oo © CHAPTER 5 oo

oo a HASHING ALGORITHMS FOR BEST-MATCH QUERIES

| The task of searching a file for all best matches to a query has probably |

| ~~ been more extensively studied than the the task of searching for all partial |

* | matches, due to the fundamental nature of identification problems when only |

| ‘partial and perhaps incorrect attribute data is available. Finding the pest-match | |
k for a lransmitted -message is the crux of the decoding problem, for example.

* Nevertheless, only very recently has significant theoretical progress been made on | |
| | this problem. As late as 1969 Marvin Minsky conjectured that | |

| "Even for the best [algorithms], the speed-up value of large memory | |

* | ) redundancies is very small, and for large data sets with long word lengths

| there are no practical alternatives to large searches that inspect large |
. | oo parts of the memory.” [Mi6S,p. 223] | | | | | | |

We shall see that the situation is not that bad, and that best-match searches may

often be made extremely rapidly, requiring the examination of only the smallest

Ie : fraction of the file. | |

. : oo

| | | 81 | | |

5 |



© 5.1. THE ALGORITHM oo oo oo oo oo"

. The method is due originally to Peter Elias, according to [We71], although Lo

© Burkhard has apparently independently discovered the dea more recently [Bu73]. -
| | The algorithmis a variant of the hash-coding scheme, with slightly different

I hash functions. We shall therefore Use the same notation as §3. We divide the
: space R of records into b regions Bi(R,h), Bo(R)), ..., Bx(R,h) as before. | .

| Given an input record Q for which we want to find the best-match, we hope to
limit our examination of the file to just a few buckets. To do this we need to find .

B an appropriate hash function. | | | | |
| } Due to the natureof the problem, it seems likely that the buckets should

| | be “neighborhoods” or “spheres” ofR rather than subcubes. This conjecture is | i,
| proved later on. One simple method of dividing R up into neighborhoods is to } |

| choose a set of "reference" records R’ = {Ry Ro... Riph and then to . |
oo associate one bucket with each reference record. A record is placed in the | | 2

| | bucket(s) correspondingto the nearest reference record(s) using the Hamming | E

| | distance metric d. Thus, | | n | | |
BR) =gef | RAR | ~(3i <i<b){(I£AR [RIER RT} (106) ¢

| Note that a record may belong to more than one bucket under this scheme. | | |

: B Clearly the reference records can be chosen in different ways. A large } B |

I oo | ¢



amount of research going under the name of “cluster analysis” is directed at

choosing the reference records to be records of F near the centers of naturally |

- | occurring “clusters” in F (for example, see [Ja71}). This method has the
| advantage of being tailored to the particular file in question, but has difficulties in

| | terms of maintaining this structure while the file is being modified and in terms of

@ | organizing the search, since it is hard to determine whether a given bucket needs

to be searched (that is, whether it could possibly ‘contain a record closer to R

than the closest found so far in the search). |

* | For the purposes of this discussion, we will assume that the file F' is a |

randomly chosen subset of size n of R. Thus it is unlikely to expect the records | |

of F' to be nicely clustered in any way. How should the reference records be

* | chosen in this situation? One would suspect that they should be rather evenly |
distributed throughout R.

For the case of binary records, R” can be easily chosen if b is a power of

® - two, so that b = 2W, and there exists a perfect (kw) error-correcting code, with
| | minimum distance 2 2 + 1. Then R” will be the set of codewords, and Bi(R) will |

i be the set of all k-bit words which would be interpreted under the decoding rule | |
to be R™S. (While it has been shown (see [Ti73]) that there are no unknown |

perfect codes, in those cases where a perfect code does not exist one can do |
- nearly as well by using a quasi-perfect code [Pe72], or the best code available.) |

83 |



oo To perform a best-match search, the following algorithm is performed. | =

Essentially the buckets are examined in order of increasing distance of their

. centers from the query until all the closest records-are found. oo oo | | |

procedure SEARCH2({By, ..., BohhQ); |

© comment SEARCH2 finds all records stored in buckets By, ...,By, which |
| are nearest to the record (query) Q. | | | oo oo
| | The value » is the minimal value such that every record is within distance &
| BE » of a reference record. ; | | | |

begin set W, W, Y; integer m,n, |, j
I | m=o; Wendl; Ye{1,2,...,b} |
| | ‘while Y # nul do | | | 0

~ begin | ,
| | | je min {|G eY)AdR;Q) = miney dR,Q) oo |
oo if B{(F) # null then | |

| oo - | begin |

| | m « MiNReB;(F) d(R,Q); oe
| | | W' « {Re Bi(F) | RQ) =m" }; |
| oo ifm =mthen We WUW oo oo

oo : ~~ else if m" <mthen | | |
oo | } begin We W;mem end oo

end; | I
Ye lildRQ smerny -{j} |

| 3 | | printf W, m) . | |
| : end SEARCHZ; | | | &

5.2. ASAMPLE APPLICATION :

| Let us consider a particular application. Suppose we have a file of n=219

SE A oF



23-bit words which we wish to organize for best-match searching. We can make

| use of the Golay perfect (23,12) code (see (Pe72, §5.2]) in our hash function.
» We will thus have 4096 buckets, each containing about 8 records on the average.

The Golay codeis capable of correcting all patterns of up to three errors, so that

the minimum distance between codewords is 7. | | |

9 | To derive the average time needed to answer a best-match query, proceed
oo as follows. Let p be the probability that a particular record is in F (here p - | |

| 215/223 = 00390625), and let «(h) be the expected number of buckets a

. examined. Then | I a

| wth) = Z,  , C(23,1) 2-11 Z ejc23 pe(j) nbi,j) (107)

@ where pe(j) is the probability that the nearest record to 3 “typical” query is at

| distance j. This is an average, taking as separate cases the distance i of the

query from the center of its bucket. That is | | |

. pe(j) = (1-pV23J-1) (1 = (1-p) (23, J), (108)
where Vik,j) is the volume of a sphere with radius j in binary k-space, that is, |

| V(k,j) = Z ie C6) (109) | |

The quantity nb(i,j) in (107) denotes the average number of buckets that need | |

| to be examined to find all words within distance j of R for a typical word R¢R |

» where the distance from R to the nearest code-word is |. The values of nbi,j) |

85 oo |



for 0<i<3 and 0<j<23 were determined with a computer program. Figure 21

oo plots «(h) versus p. For our application (p = 215/223) we see that no more than | | |

| | 37 buckets need be examinedon the average. | | | | .

oo | .
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oo 5.3. ANALYSIS OF ASYMPTOTIC RUNNING TIME «

| | How well does the above algorithm perform? The expected number of |
records examined will be at most b C(k,m+2), where m is the distance from the

| query to the nearest record in F, and x is the common radius of the buckets. . oo
oo | For fA small in relation to K, this will be a negligible fraction of the file. |

To consider the asymptotic performance, let k =» © and w = o« proportional | | ¢

| to k.. This corresponds to the case where p, the file density, remains fixed. |
. Then it is well-known that there are codes such that the minimum distance of |

| these codes will increase in proportion to k. The fraction of the file examined is | *

| - at most Clk,m+r)27K. This fraction goes to zero as k goes to infinity, since the
| expected value of ” goes to (1-p) and A remains a fixed fraction of k. | oo

© 5.4. OPTIMAL BUCKET SHAPES

© The above algorithm has been previously published, as noted before. The ®
following theorem demonstrates ts optimality. E | |

| Theorem 9. For answering best-match queries from a file of binary :
records, «t(h) is minimized over all balanced hash functions h having a given ©

| number b of buckets if each bucket is shaped like a "sphere" -- that is, if each |

| 88 oo oo |

oo SIE . i"



bucket Bj(Ry) consists of a center point (record) R"; and all records within 3

| distance A of R’ . | |

# Proof: Since we are considering balanced b-bucket hash functions, «(h) will be

minimized if each individual bucket of size 2X/b has a minimal probability of being

examined, over all bucketsof the same size. A bucket must be examined if it

Ee contains any records as close to the input record as the closest record found | a
previously in the search. There are2X possible input queries. For a given | |

9 query, there is a probability of (1-p)Vikd-1) that the nearest record to the input

| query will be at a distance of at least d. For a given bucket B let S(B,d) be the

| set of records in Ry which are at distance d from the nearest record in BIR).
ed | The chance that B must be examined is then:

¥(B) =gef 2X Z,_,| ISB) (1-p)Vikid-1) (110)

o since if the query is in (Bd), B is only examined if the sphere of radius d-1 |
| | | around the query contains no records in F. This sum is minimized by making the | |

values of |S(B,d)| as small as possible for small values of d, since (1-pyVik,d-1) _ |
- | is a decreasing function of d. In fact, if we are given two buckets B and B’, then

oo ~ ¥(B) will be less than ¥(B") if and only if the vector (IS(B,O),IS(B,1)], ..., |S(B,k)])
| is lexicographically less than the corresponding vector for B’, since a

” ¥(B) - ¥(B) = 2k Zoi ISB DI=ISBi(1-p)Viki-1) (111) |
| Assume that |S(B,i){=[S(B’,i)| for O<i<j, and that IS(B,))I<|S(B’,j)|. Since |

» | 89 | | |



18®DHS = T,;,, (SEIHSE OD, ay
N we have oo oo | B y oo | .

| :  w(B)- vB) =2k 2 icilIS® NI-IsB,iN(1-pyViki-1) (113) Ce
oo >» 27K (158DI-ISBHN(1-p)Viki D(1-p)Vkii)y (114

| | 20 (115) |
N For twa buckets of the same size, B will be examined less frequently than B’ if -

IS(B,1)] is less than 158.1). Note that |S(B,1)| is the discrete analog of the |

surface area of a region B, so that what we are about to show is that a sphere | N .
has minimal surface ares. | | | oo

| Consider the mapping:Rx =» Ry._1, obtained by dropping the first bit of

| each record in Ry. The set of records in B may be divided into two subsets | e
| according to their first bit. Dropping the first bit, we get two subsets Bg, Bj of | |
oo | Ry.1 correspondingto the set B in Ry. Using IS(Bg,1)| and S(B1,1)] to denote | I

| - the surface area of the sets Bg and By in Ri-1 we have the relationships: |
| oo BB] = |Bgl . Bl, and | oo | (1 16) oo |

N N IS(B,1)] = 1S(Bo,1)] + |{S(B1,1)] oo | &
| + [Bg - (By U S(B1,1))} +B; - (Bg V S(Bo,1)| | | (117)

The problem of selecting the optimal set B from R is thus reduced to the problem | oo
B of selecting the proper sets Bp and By from Ry; | E | | -



Consider a given bucket B" (or rather, its corresponding sets Bp and B ;

oo In Ry_1). Let us “deform” this bucket into a new bucket B by making Bp and Bj |

‘ be sets of the same size as Bj and B"| but which are spheres centered at the

| origin of Ry.1. We will show that

IS(B,1)] < [S(B,1)], | | is
3) using an inductive proof on the dimension k; thus IS(Bp,1)| and |S(By,1)] can be

| | assumed to be minimal over all buckets in Ry. of the same sizes. oo
) | We may assume that [Bg| 2 |B] without loss of generality. Thus the last

term of (117) will be zero since By « Bg. It is now clear that IS(B,1)] is minimal
over bucketsB such that [Bp|=[By’| and [By|=|B}’|, since any decrease in the

* | term [Bg - (By U S(By,1))| could only come at the expense of a corresponding | |
increase in the term IS(B,1)]. That is, either Bg ) @ J SEL is zero i |

which case [S(B,1)] is obviously minimal) or else By US(By,1) « Bp. In the latter |

| case there will exist several choices for By which will minimise S(B,1) (in fact, any
| By will do which maintains By US(By,1) « Bg), one of which is a sphere.

? | Thus a sphere will have minimal surface area of any bucket of size IB’ |, |
since a sequence of the above deformations using each of the k bit positions in | |

~~ turn will transform any bucket B into a sphere. Although other shapes may also

| have minimal surface area, the sphere will also have the minimal expected chance | EB
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| of being examined, since B U 5(B,1) is also a sphere when B is, so that the vector |

(|S(B,1)], IS(B,2)],.. ., 1S(B,k)|) is lexicographically minimal by induction on the index

| j of the S(B,j)’s. | - | |

oo Q. E. D. | | | |

oo oo | | ¢



CHAPTER 6

APPENDIX - NOTATION uN

B The following notation is used consistently throughout: |

SYMBOL MEANING | |

» oo Alk,w,t) The minimal number of buckets examined to answer a query
with t bits given out of k, with b = 2W buckets in the system. |

. | b Number of buckets used in a hash-coding scheme. |

. | C{m,n) The binomial coefficient "m choose n", | |
E(x) The expected value of the variable x. |

i IF The current file. |
| h A hash function mapping R = {1,2,. .. b}. |

i k The number of keys in a record. oo |

| n The number of records in the file I. |
Q The universeof legal queries. | oo

| Q A query in Q. | | | |
Qi A query in Q, or a function mapping subsets F of R into |

» | subsets of I (that is, Q;(F') is the response to query Q;, given



| | Qt The set of all partial match queries having exactly t keys | 8
| given. | | oo . oo oo

R | The universe of legal records. : oo | &
Ry ~The set of all binary words of length k. | oo | |

: R :  Avrecordof R. | oo | |
oo Ri } The i-th record of the file F. | BE 2

| rij | | | The j-th ey of record R;. oo |
Ct oo "The number of keys specified in a partial match. query. | oo -

| | | Vj ~The number of values the j-th keyof a record can have. | oo i
| | v N The common value of all the vi's, if it- exists. |

V(k,i) ~The number of points in binary k-space within distance | of the Ce
origin. |

ow The value logy(b). oo oo |

oo IX] The cardinality of the set X. . | oo . 2
rx | The least integer greater than or equal to x. | - |
xd | ~The greatest integer less than or equal to x. - |

XGA The cartesian product of sets Aj. oo | ©
X <<y The value of x is “very much less” than the value of y. | |

x(h) The average number of buckets examined by SEARCH when | «

| using hash function h to answer a partial match query Q ¢ Q. |



oo (ht) The average number of buckets examined by SEARCH when

| using hash function h to answer a partial match query Q ¢ Qy.

= | Alh,t) The worst case number of buckets examined by SEARCH when

| using hash h to answer a partial match query Q « Qt.

&(B) oo The number of queries in Q which examine bucket B. |

ke | $4(B) The number of queries in Qt which examine bucket B. |
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