}STANFORD A_RTIF IaAL INTELLIGENCE LABORATORY
MEMO AIM -224

'STAN-CS-73-403

HINTS ON PROGRAMMING LANGUAGE DESIGN

BY

C. A. R. HOARE

SUPPORTED BY
ADVANCED RESEARCH PROJECTS AGENCY
- ARPA ORDER NO. 24vy4
PROJECT CODE 3D30

DECEMBER 1973

COMPUTER SCIENCE DEPARTMENT
_ Sc hool of Humanities and Sciences
)IANFORD UNIVERSITY
/

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY OCTOBER 1973
MEMO AIM 224

COMPUTER SCIENCE DEPARTMENT REPORT NO. CS-403

HINTS oN PROGRAMMING LANGUAGE DESIGN
C. A. R. Hoare*_‘/
ABSTRACT:

This paper (Based on a keynote address presented at the SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, Boston, October 1-3,
1973) presents the view that a programming language is a tool which should
assist the programmer in the most difficult aspects of his art, namely
program design, documentation, and debugging. It discusses the objective
criteria for evaluating a language design, and illustrates them by
application to language features of both high level languages and
machine code programming. It concludes with an annotated reading list,

recommended for all intending language designers.

*/ On leave of absence from the Queen's University of' Belfast.

The work on this paper was supported in part by the National Science
Foundation under grant number GJ 36473X and by ARPA Research Contract
DAHC 15-73-C-0435. The views expressed are those of the author.

Introduction

I would like in this paper to present a philosophy of the design
and evaluation of programming languages which I have adopted and
developed over a number of years, namely that the primary purpose of
a programming language is to help the programmer in the practice of his
art. I do not wish to deny that there are many other desirable properties
of a programming language, -—- for example, machine independence, stability
of specification, use of familiar notations, a large and useful library,
existing popularity, or sponsorship by a rich and powerful organization.
These aspects are often dominant in the choice of a programming language
by its users, but I wish to argue that they ought not to be. I shall
therefore express myself strongly. I fear that each reader will find
some of my pgints wildly controversial; I expect he will find other
points that are obvious and even boring; 7T hope that he will find a
few points which are new and worth pursuing.

My approach is first to isolate the most difficult aspects of the
programmer's task, and state in general terms how a programming language
design can assist in meeting these difficulties. I discuss a number of
goals which have been followed in the past by language designers, and
which I regard as comparatively irrelevant or even illusory. 7T then
turn to particular aspects of familiar high level programming languages,
and explain why they are in some respects much better than machine code
programming, and in certain cases worse. Finally, I draw a distinction
between language feature design and the design of complete languages.
The appendix contains an annotated reading list; I recommend it as a
general educational background for intending language designers of the
. future.

The form of this paper owes much to the kind suggestions of

Don Knuth.

2. Principles
If a programming language is regarded as a tool to aid the programmer,
it should give him the greatest assistance in the most difficult aspects

of his art, namely program design, documentation, and debugging.

° Program Design

The first and very difficult aspect of design is deciding what the
program is to do, and formulating this as a clear, precise, and acceptable
specification. Often just as difficult is deciding how to do it, -- how
to divide a complex task into simpler subtasks, and to specify the purpose
of each part, and define clear, precise, and efficient interfaces between
them. A good programming language should give assistance in expressing
not only how the program is to run, but what it is intended to accomplish;
and it should enable this to be expressed at various levels, from the
overall strategy to the details of coding and data representation. It
should assist in establishing and enforcing the programming conventions
and disciplines which will ensure harmonious cooperation of the parts of
a large program when they are developed separately and finally assembled

together. —-

m Programming Documentation

The purpose of program documentation is to explain to a human reader
the way in which a program works, so that it can be successfully adapted
after it goes into service, either to meet the changing requirements of
its users, to improve it in the light of increased knowledge, or just to
remove latent errors and oversights. The view that documentation is
something that is added to a program after it has been commissioned seems
to be wrong in principle and counterproductive in practice. Instead,
documentation must be regarded as an integral part of the process of
design and coding. A good programming language will encourage and assist
the programmer to write clear self-documenting code, and even perhaps

_ to develop and display a pleasant style of writing. The readability of

" programs is immeasurably more important than their writeability.

° Program Debugging

Program debugging can often be the most tiresome, expensive, and
unpredictable phase of program development, particularly at the stage
of assembling subprograms written by many programmers over a long period.

The best way to reduce these problems is by successful initial design of

the program, and by careful documentation during the construction of

code. But even the best designed and documented programs will contain
errors and inadequacies which the computer itself can help to eliminate.

A good programming language will give maximum assistance in this. Firstly,
the notations should be designed to reduce as far as possible the scope
for coding error; or at least to guarantee that such errors can be
detected by a compiler, before the program even begins to run. Certain
programming errors cannot always be detected in this way,and must be cheaply
detectable at run time; in no case can they be allowed to give rise to
machine or' implementation dependent effects, which are inexplicable in
terms of the language itself. This is a criterion to which I give the
name "security". Of course, the compiler itself must be utterly reliable,
so that its user has complete confidence that any unexpected effect was
obtained by his own program. And the compiler must be compact and fast,
so that there is no appreciable delay or cost involved in correcting a
program in source code and resubmitting for another run; and the object
code too should be fast and efficient, so that extra instructions can be
inserted even in large and time-consuming programs in order to help

detect their errors or inefficiencies.

A necessary condition for the achievement of any of these objectives
is the utmost simplicity in the design of the language. Without simplicity,
even the language designer himself cannot evaluate the consequences of his
design decisions. Without simplicity, the compiler writer cannot achieve
even reliability, and certainly cannot construct compact, fast and
- efficient compilers. But the main beneficiary of simplicity is the user
of the language. In all spheres of human intellectual and practical
activity, from carpentry to golf, from sculpture to space travel, the
true craftsman is the one who thoroughly understands his tools. And this
applies to programmers too. A programmer who fully understands his
language can tackle more complex tasks, and complete them quicker and
more satisfactorily than if he did not. 1In fact, a programmer's need

for an understanding of his language is so great, that it is almost

impossible to persuade him to change to a new one. No matter what the
deficiencies of his current language, he has learned to live with them;

he has learned how to mitigate their effects by discipline and documenta-
tion, and even to take advantage of them in ways which would be impossible
in a new and cleaner language which avoided the deficiency.

It therefore seems especially necessary in the design of a new
programming language, intended to attract programmers away from their
current high level language, to pursue the goal of simplicity to an
extreme, so that a programmer can readily learn and remember all its
features, can select the best facility for each of his purposes, can
fully understand the effects and consequences of each decision, and can
then concentrate the major part of his intellectual effort to understanding
his problem and his programs rather than his tool.

A high standard of simplicity is set by the machine or assembly
code programming for a small computer. Such a machine has an extremely
uniform structure, for example, a main store consisting of o words
numbered consecutively from zero up, a few registers, and a simple
synchronous standard interface for communication and control of peripheral
equipment. There is a small range of instructions, each of which has a
uniform format; and the effect of each instruction is simple, affecting
at most one register and one location of store or one peripheral. Even
more important, this effect can be described and understood quite
independently of every other instruction in the repertoire. And finally,
the programmer has an immediate feedback on the compactness and efficiency
of his code. Enthusiasts for high level languages are often surprised at
the complexity of the problems which have been tackled with such simple
tools.

On larger modern computers, with complex instruction repertoires,
and even more complex operating systems, it is especially desirable that
a high level language design should aim at the simplicity and clear
modular description of the best hardware designs. But the only widely
used languages which approach this ideal are FORTRAN, LISP and ALGOL 60,
and a few languages developed from them. I fear that most more modern
programming languages are getting even more complicated; and it is
particularly irritating when their proponents claim that future hardware

designs should be oriented towards the implementation of this complexity.

3. Discussion

The previous two sections have argued that the objective criteria
for good language design may be summarized in five catch phrases:
simplicity, security, fast translation, efficient object code, and
readability. However desirable these may seem, many language designers
have adopted alternative principles which belittle the importance of
some or all of these criteria, perhaps those which their own languages

have failed to achieve.

3.1 Simplicity

Some language designers have replaced the objective of simplicity
by that of modularity, by which they mean that a programmer who cannot
understand the whole of his language can get by with a limited under-
standing of only part of it. For programs that work as the programmer
intended this may be feasible; but if his program does not work, and
accidentally invokes some feature of the language which he does not know,
he will get into serious trouble. If he is lucky, the implementation
will detect his mistake, but he will not be able to understand the diagnostic
message. Otherwise, he is even more helpless. If to the complexity
of his language is added the complexity of its implementation, the
complexity of its operating environment, and even the complexity of
institutional standards for the use of the language, it is not surprising
that when faced with a complex programming task so many programmers are
overwhelmed.

Another replacement of simplicity as an objective has been
orthogonality of design. An example of orthogonality is the provision
of complex integers, on the argument that we need reals and integers and
complex reals, so why not complex integers? 1In the early days of hardware
design, some very ingenious but arbitrary features turned up in order
codes as a result of orthogonal combinations of the function bits of an
instruction, on the grounds that some clever programmer would find a use
for them, -- and some clever programmer always did. Hardware designers
have now learned more sense; but language designers are clever programmers

and have not.

The principles of modularity, or orthogonality, insofar as they
contribute to overall simplicity, are an excellent means to an end;
but as a substitute for simplicity they are very questionable. Since in
practice they have proved to be a technically more difficult achievement

than simplicity, it is foolish to adopt them as primary objectives.

3.2 Security

The objective of security has also been widely ignored; it is
believed instead that coding errors should be removed by the programmer
with the assistance of a so-called "checkout? compiler. But this
approach has several practical disadvantages. For example, the debugging
compiler and the standard compiler are often not equally reliable. Even
if they are, it is impossible to guarantee that they will give the same
results, especially on a subtly incorrect program; and when they do not,
there is nothing to help the programmer find the mistake. For a large
and complex program, the extra inefficiency of the debugging runs may be
serious; and even on small programs, the cost of loading a large debugging
system can be high. You should always pity the fate of the programmer
whose task is so difficult that his program will not fit into the computer
together with your sophisticated debugging package. Finally, it is
absurd to make elaborate security checks on debugging runs, when no
trust is put in the results, and then remove them in production runs,
when an erroneous result could be expensive or disastrous. What would
we think of a sailing enthusiast who wears his lifejacket when training
on dry land, but takes it off as soon as he goes to sea? Fortunately,
with a secure language the security is equally tight for production and

for debugging.

3.3 Fast Translation

In the early days of high level languages it was openly stated that
speed of compilation was of minor importance, because programs would be
compiled only once and then executed many times. After a while it was
realized that the reverse was often true, that a program would be compiled

frequently while it was being debugged; but instead of'constructing a fast

translator, language designers turned to independent compilation, which
permits a programmer to avoid recompiling parts of his program which he
has not changed since the last time. But this is a poor substitute for
fast compilation, and has many practical disadvantages. Often it
encourages or even forces a programmer to split a large program into
modules which are too small to express properly the structure of his
problem. It entails the use of wide interfaces and cumbersome and
expensive parameter lists at inappropriate places. And even worse, it
prevents the compiler from adequately checking the validity of these
interfaces. It requires additional file space to store bulky intermediate
code, 1in addition to source code which must, of course, never be thrown
away. It discourages the programmer from making changes to his data
structure or representation, since this would involve a heavy burden of
recompilation,. And finally the linkage editor is often cumbersome to
invoke and expensive to execute. And it is all so unnecessary, if the
compiler for a good language can work faster than the linkage editor
anyway.

If you want to make a fast compiler even faster still, I can suggest
three technniques which have all the benefits of independent compilation

and none of the disadvantages.

(1) Prescan.

The slowest part of a modern fast compiler is the lexical scan
which inputs individual characters, assembles them into words or numbers,
identifies basic symbols, removes spaces and separates the comments. If
the source text of the program can be stored in a compact form in which
this character handling does not have to be repeated, compilation time
may be halved, with the added advantage that the original source program
may still be listed (with suitably elegant indentation); and so the
amount of file storage is reduced by a factor considerably greater than

two. A similar technique was used by the PACT I assembler for the IBM 701.

(2) Precompile.
This is a directive which can be given to the compiler after submitting
any initial segment of a large program. It causes the compiler to make

a complete dump of its workspace including dictionary and object code, in

a specified user file. When the user wishes to add to his program and
run it, he directs the compiler to recover the dump and proceed. When
his additions are adequately tested, a further precompile instruction
can be given. If the programmer needs to modify a precompiled procedure,
he can just redeclare it in the block containing his main program, and
normal ALGOL-like scope rules will do the rest. An occasional complete
recompilation will consolidate the changes after they have been fully
tested. The technique of precompilation is effective only on single-
pass compilers; it was successfully incorporated in the Elliott ALGOL

programming system.

(3) dump.

This is an instruction which can be called by the user program
during execution, and causes a complete binary dump of its code and
workspace into a named user file. The dump can be restored and restarted
at the instruction following the dump by an instruction to the operating
system. If all necessary data input and initialization is carried out
before the dump, the time spent on this as well as recompilation time
can be saved. This provides a simple and effective way of achieving
the FORTRAN effect of block data, and was successfully incorporated in
the implementation of Elliott ALGOL.

The one remaining use of independent compilation is to link a high
level language with machine code. But even here independent compilation
is the wrong technique, involving all the inefficiency of procedure call
and all the complexity of parameter access at just the point where it
hurts most. A far better solution is to allow machine code instructions

to be inserted in-line within a high level language program, as was done
in Elliott ALGOL; or better, provide a macro facility for machine code,
as in PL/3€0.

Independent compilation is a solution to yesterday's problems; today
it has grown into a problem in its own right. The wise designer will

prefer to avoid rather than solve such problems.

3.4 Efficient Object Code

There is another argument which is all too prevalent among
enthusiastic language designers, that efficiency of object code is no
longer important; that the speed and-capacity of computers is increasing
and their price is coming down, and the programming language designer
might as well take advantage of this. This is an argument that would be
quite acceptable if used to justify an efficiency loss of ten or twenty
percent, or even thirty and forty percent. But all too frequently it is
used to justify an efficiency loss of a factor of two, or ten, or even
more; and worse, the overhead is not only in time taken but in space
occupied by the running program. In no other engineering discipline
would such avoidable overhead be tolerated, and it should not be in

programming language design, for the following reasons:

. The magnitude of the tasks we wish computers to perform is

growing faster than the cost-effectiveness of the hardware.

° However cheap and fast a computer is, it will be cheaper

and faster to use it more efficiently.

° In the future we must hope that hardware designers will pay

increasing attention to reliability rather than to speed and cost.

. The speed, cost, and reliability of peripheral equipment is

not improving at the same rate as those of processors.

L If anyone is to be allowed to introduce inefficiency it

* should be the user programmer, not the language designer. The user
programmer can take advantage of this freedom to write better structured

~and clearer programs, and should not have to expend extra effort to

" obscure the structure and write less clear programs just to regain the
efficiency which has been so arrogantly preempted by the language

designer.

There is a widespread myth that a language designer can afford to
ignore machine efficiency,' because it can be regained when required by
the use of a sophisticated optimizing compiler. This is false: there is

nothing that the good engineer can afford to ignore. The only language

10

which has been optimized with general success is FORTRAN, which was very
specifically designed for that very purpose. But even in FORTRAN,

optimization has grave disadvantages:

° An optimizing compiler is usually large, slow, unreliable, and late.

° Even with a reliable compiler, there is no guarantee that an optimized
program will have the same results as a normally compiled one.

° A small change to an optimized program may switch off optimization
with an unpredictable and unacceptable loss of efficiency.

° The most subtle danger is that optimization tends to remove from
the programmer his fundamental control over and responsibility for

the quality of his programs.

The solution to these problems is to produce a language for which a
simple straightforward "non-pessimising" compiler will produce straight-
forward object programs of acceptable compactness and efficiency —-- similar
to those produced by a resolutely non-clever (but also non-stupid) machine
code programmer. Make sure that the language is sufficiently expressive
that most other optimizations can be made in the language itself; and
finally, make the language so simple, clear, regular, and free from side
effects that a general machine-independent optimizer can simply translate
an inefficient program into a more efficient one with guaranteed identical
effects, and expressed in the same source language. The fact that the
user can inspect the results of optimization in his own language

mitigates many of the defects listed above.

3.5 Readability

The objective of readability by human beings has sometimes been
denied in favor of readability by a machine; and sometimes even been
denied in favor of abbreviation of writing, achieved by a wealth of
default conventions and implicit assumptions. It is of course possible
for a compiler or service program to expand the abbreviations, fill in
the defaults, and make explicit the assumptions. But in practice, experience
shows that it is very unlikely that the output of a computer will ever be
more readable than its input, except in such trivial but important aspects

as improved indentation Since in principle programs should be read by

11

others, or reread by their authors, before being submitted to the computer,
it would be wise for the programming language designer to concentrate on

the easier task of designing a readable language to begin with.

b, Comment Conventions

If the purpose of a programming language is to assist in the
documentation of programs, the design of a superb comment convention is
obviously our most important concern. In low level programming, the
greater part of the space on each line is devoted to comment. A comment
is always terminated by an end of line, and starts either in a fixed
column, or with a special symbol allocated for this purpose.

_ LDAX [THIS IS A COMMENT
The introduction of free format into high level languages prevents the
use of the former method; but it is surprising that few languages have
adopted the latter.

ALGOL 60 has two comment conventions. One is to enclose the text of
a comment between the basic word comment and a semicolon.

comment this is a comment;

This has several disadvantages over the low-level comment convention.

(1) The basic word comment is too long. It occupies space which
would be better occupied by the text of the comment, and is particularly
discouraging to short comments.

(2) The comment can appear only after a begin or a semicolon,
although it would sometimes be more relevant elsewhere.

(3) If the semicolon at the end is accidentally omitted, the compiler
" will without warning ignore the next following statement.

(4) One cannot put program text within a comment, since a comment

must not contain a semicolon.

The second comment convention of ALGOL 60 permits a comment between

an end and the next following semicolon, end or else. This has proved

most unfortunate, since omission of a semicolon has frequently led to
ignoring the next following statement:

. end this is a mistake A[i] :=x;

12

The FORTRAN comment convention defines as comment the whole of a

line containing a C in the first column.

C THIS IS A COMMENT
Its main disadvantages are that it does not permit comments on the same
line as the code to which they refer, and that it discourages the use of
short comments. An unfortunate consequence is that a well annotated
FORTRAN program occupies many pages, even though the greater part of each
page is blank. This in itself makes the program unnecessarily difficult
to read and understand.

The comment convention of COBOL suffers from the same disadvantages
of FORTRAN, since it insists that commentary should be a separate
paragraph.

More recently designed languages have introduced special bracketing
symbols (e.qg. “/* and */) to enclose comments, which can therefore be
placed anywhere in the program text where they are relevant:

/¥ THIS IS A COMMENT */ .
But there still remains the awkward problem of omitting or mispunching
one of the comment brackets. In some languages, this will cause omission
of statements between two comments; in others it may cause the whole of
the rest of the program to be ignored. Neither of these disasters are
likely to occur in low-level programs, where the end of line terminates

a comment.

5. Syntax

Another aspect of programming language design which is often considered
trivial or arbitrary is its syntax. But this is also a mistake; the
designer should select and observe the best possible syntactic framework

for his language, for two important practical reasons:

(1) In a modern fast compiler, a significant time can be taken in
assembly of characters into meaningful symbols, —-- identifiers, numbers
and basic words, and in checking the context-free structure of the program.
(2) When a program contains a syntactic error, it is important that

the compiler should be able to pinpoint the error accurately, to diagnose

15

its cause, recover from it, and continue checking the rest of the program.
Recall the first American space probe to Venus, reportedly lost because
FORTRAN cannot recognize a missing comma in a DO statement. In FORTRAN
the statement

DO 17 I = 110
looks to the compiler like an assignment to a (probably undeclared)
variable DO1T7I:

DOITI = 110

In low-level programming, the use of fixed field format neatly
solves both problems. The position and length of each meaningful symbol
is known, and it can be copied and compared as a whole without even
examining the individual characters; and if one field contains an error
it can be immediately pinpointed, and checking can be resumed at the very
next field. _

Fortunately free format techniques have been discovered which solve
the problems nearly as neatly as fixed format. The use of a finite
state machine to define the assembly of characters into symbols, and one
of the more restrictive forms of context-free grammars (e.g. precedence
or topdown or both) to define the structure of a program, —-- these must be
recommended to every language designer. It is certainly possible for a
machine to analyze more complex grammars, but there is every indication
that the human programmer will find greater difficulty, particularly if
an error is present or even only suspected. If a compiler cannot diagnose
the syntax of an individual statement until it reaches the end of the
program, what hope has a poor human?

As an example of what happens when a language departs from the best
known technology, that of context-free syntax, consider the case of the
labelled END. This is a convention whereby any identifier between an END
and its semicolon automatically signals the end of the procedure with that
name, and of any enclosed program structure, even if it has no END of its
own. At first sight this is a harmless notational convenience, which Peter
Landin might call "syntactic sugar"; but in practice the consequences are
disastrous. If the programmer accidentally omits an END anywhere in his
program, it will automatically and without warning be inserted just before
the next following labelled END, which is very unlikely to be where it was

wanted. Iandin's phrase for this would be "syntactic rat poison". Wise

1k

programmers have therefore learned to avoid the labelled END, which is a
great pity, since if the labelled END was used merely to check the
correctness of the nesting of statements it would have been very useful,
and permitted earlier and cleaner error recovery, as well as remaining
within the disciplines of context free languages. Here 1is a classic
example of a language feature which combines danger to the programmer
with difficulty for the implementor. It is all too easy to reconcile

criteria of demerit.

6. Arithmetic Expressions

A major feature of FORTRAN, which gives it the name FORmula TRANslator,
is the introduction of the arithmetic expression. AILGOL 60 extends this
idea by the introduction of a conditional expression. Why is this such an
advance over assembly code? The traditional answer is that it appeals to
the programmer$% familiarity with mathematical notation. But this only
leads to the more fundamental question, why is the notation of arithmetic
expressions of such benefit to the mathematician? The reason seems to be
quite subtle and fundamental. It embodies the principles of structuring,
which underlie all our attempts to master a complex problem or control a
complex situation by analyzing it into simpler subproblems, with clean
and narrow interfaces between them.

Consider an arithmetic expression of the form

E+F ,
where E and F may themselves be simple or complex arithmetic expressions.
(1) The meaning of this whole expression can be understood wholly in
terms of an understanding of the meanings of E and F ; (2) the purpose
of each part consists solely in its contribution to the purpose of the
whole; (3) the meaning of the two parts can be understood wholly
independently of each other; (4) if E or F is itself an arithmetic
expression, the same structuring principle can be applied to the analysis
of the parts as is applied to the understanding of the whole; (5) the
interface between the parts is clear, narrow, and well controlled -- in
this case just a single number. And finally, (6) the separation of the
parts and their relation to the whole is clearly apparent from their

written form.
15

These seem to be six fundamental principles of structuring, —-
transparency of meaning and purpose, independence of parts, recursive
application, narrow interfaces, and manifestness of structure. In the
case of arithmetic expressions these six principles are reconciled and
achieved together with very high efficiency of implementation. Byt the
applicability of the arithmetic expression is seriously limited by the
extreme narrowness of the interface. Often the programmer wishes to deal
with much larger data structures, for example, vectors or matrices or
lists; and languages such as APL and LISP have permitted the use of
expressions with these structures as operands and results. This seems to
be an excellent direction of advance in programming language design,
particularly for special purpose languages. But the advance is not
purchased without some penalty in efficiency and programmer control. The
very reason why arithmetic expressions can be evaluated with such efficiency
is that the operands and results of each subexpression are sufficiently
small to be held in a high-speed register, or stored and recovered from
a mainstore location in a single instruction. When the operands are too
large, and especially when they may be partially or wholly stored on backing
store, it becomes much more efficient to use updating operations, since
then the space occupied by one of the operands can be used to hold the
result. It would therefore seem advisable to introduce special notations
into a language to denote such operations as adding one matrix to another,
appending one list to another, or making a new entry in a file, for example:

A.+B instead of A :=A+B if A and B are matrices
Ll.append(L2) if L1 and 12 are lists

Another efficiency problem which arises from the attempt of a language
to provide large data structures and built-in operations on them is that
" the implementation must select a particular machine representation for the
data, and use it uniformly, even in cases where other representations might
be considerably more efficient. For example, the APL representation 1is
fine for small matrices, but is very inappropriate or even impossible for
large and sparse ones. The LISP representation of lists is very efficient
for data held wholly in main store, but becomes inefficient when the lists
are so long that they must be held on backing store, particularly discs

and tapes. Often the efficiency of a representation depends on the relative

16

frequency of various forms of operation, and therefore should be different
in different programs, or even be changed from one phase of a program to
another.

A solution to this problem is to design a general purpose language
which provides the programmer with the tools to design and implement his
own representation for data and code the operations upon it. This is the
main justification for the design of "extensible" languages, which so many
designers have aimed at, with rather great lack of success. In order to

succeed, it will be necessary to recognize the following:

(1) The need for an exceptionally efficient base language in order
to define the extensions.

(2) The avoidance of any form of syntactic extension to the language.
All that is needed is to extend the meaning of the existing operators of
the language, an idea which was called "overloading" by McCarthy.

(3) The complete avoidance of any form of automatic type transfer,
coercion, or default convention, other than those implemented as an

extension by the programmer himself.

I fear that most designers of extensible languages have spurned the

technical simplifications which make them feasible.

7. Program Structures

However far the use of expressions and functional notations may be
extended, a programmer will eventually require the capability of updating
his environment. Sometimes this will be because he wants to perform input
. and output, sometimes because it is more efficient to store the results of
a computation so that the stored value can be used rather than recomputed
at a later time, and sometimes because it is a natural way of representing
his problem -- for example, in the case of discrete event simulation or
the monitoring and control of some real world process.

Thus it is necessary to depart from the welcome simplicity of the
mathematical expression; but to attempt to preserve as far as possible the
structuring principles which it embodies. Fortunately, ALGOL 60 (in its

compound, conditional, for, and procedure statements) has shown the way in

17

which this can be done. The advantages of the use of these program
structures is becoming apparent even to programmers using languages
which do not provide the notations to express them.

The introduction of program structures into a language not only
helps the programmer, but does not injure the efficiency of an implementa-
tion. 1Indeed, the avoidance of wild jumping will be of positive benefit
on machines with slave stores or paging hardware; and if a compiler makes
any attempt at optimization, the clear indication of the control structure
of a program can only simplify this task.

There is one case where ALGOL 60 does not provide an appropriate
structure, and that is when a selection must be made from more than two
alternatives in accordance with some integer value. In this case, the
programmer must declare a switch, specifying a list of labels, and then
jump to the is=th label in this list.

switch SS = L1, 12, L3;

go to SS[i];

Ll: Ql; go to L;

I2: Q,3 g0 to Lj

L3: Q5;

L
Unfortunately introduction of the switch as a nameable entity is not only
an extra complexity in the language and implementation, but gives plenty
of scope for tricky programming and even trickier errors, particularly
when jumping to some common continuation point on completion of the
alternative action.

The first language designers to deal with the problem of the switch
proposed to generalize it by providing the concept of the label array,
into which the programmer could store label values. This has some peculiarly
unpleasant consequences in addition to the disadvantages of the switch.
Firstly, it obscures the program, so that its control structure is not
apparent from the form of the program, but can only be determined by a
run-time trace. And secondly, the programmer is given the power to jump
back into the middle of a block he has already exited, with unpredictable
consequences unless a run-time check is inserted. In ALGOL 60 the scope

rules make this error detectable at compile time.

18

The way to avoid all these problems is a very simple extension to
the ALGOL €0 conditional notation, a construction which I have called the
case construction. In this notation, the example of the switch shown above
would take the form:
case i of

o,

Qs

Q13

This was my first programming language invention, of which I am still most

proud, since it appears to bear no trace of compensating disadvantage.

8. Variables

One of £he most powerful and most dangerous aspects of machine code
programming is that each individual instruction of the code can change the
content of any register, any location of store, and alter the condition of
any peripheral: it can even change its neighboring instructions or itself.
Worse still, the identity of the location changed is not always apparent
from the written form of the instruction; it cannot be determined until
run time, when the values of base registers, index registers, and indirect
addresses are known. This does not matter if the program is correct, but
if there is the slightest error, even only in a single bit, there is no
limit to the damage which may be done, and no limit to the difficulty of
tracing the cause of the damage. In summary, the interface between
every two consecutive instructions in a machine code program consists of
the state of the entire machine -- registers, mainstore, backing stores
and all peripheral equipment.

In a high level language, the programmer is deprived of the dangerous
power to update his own program while it is running. Even more valuable,
he has the power to split his machine into a number of separate variables,
arrays, files, etc.; and when he wishes to update any of these, he must
quote its name explicitly on the left of the assignment so that the identity
of the part of the machine subject to change is immediately apparent; and
finally, a high level language can guarantee that all variables are disjoint,
and that updating any one of them cannot possibly have any effect on any
other.

19

Unfortunately, many of these advantages are not maintained in the
design of procedures and parameters in AIGOL60 and other languages.
But instead of mending these minor faults, many language designers have
preferred to extend them throughout the whole language by introducing
the concept of reference, pointer, or indirect address into the language
as an assignable item of data. This immediately gives rise in a high
level language to one of the most notorious confusions of machine code,
namely that between an address and its contents. Some languages attempt
to solve this by even more confusing automatic coercion rules. Worse
still, an indirect assignment through a pointer, just as in machine code,
can update any store location whatscever, and the damage is no longer
confined to the variable explicitly named as the target of assignment.
For example, in ALGOL 68, the assignment

x ¥y
always changes x , but the assignment
X:=y+1;

if x is a reference variable may change any other variable (of appropriate
type) in the whole machine. One variable it can never change is x !
Unlike all other values (integers, strings, arrays, files, etc.) references
have no meaning independent of a particular run of a program. They cannot
be input as data, and they cannot be output as results. If either data
or references to data have to be stored on files or backing stores, the
problems are immense. And on many machines they have a surprising
overhead on performance, for example they will clog up instruction
pipe-lines, data lookahead, slave stores, and even paging systems.
References are like jumps, leading wildly from one part of a data
structure to another. Their introduction into high level languages has

been a step backward from which we may never recover.

9. Block Structure

In addition to the advantages of disjoint named variables, high level
languages provide the programmer with a powerful tool for achieving even
greater security, namely the scope and locality associated with block

structure. In FORTRAN or ALGOL 60, if the programmer needs a variable for

20

the purposes of a particular part of his program, he can declare it locally
to that part of the program. This enables the programmer to make manifest
in the structure of his program the close association between the variable
and the code which uses it; and he can be absolutely confident that no
other part of the program, whether written by himself or another, can

ever interfere with, or even look at, the variable without his written
permission, i.e., unless he passes it as a parameter to a particular

named procedure. The use of locality also greatly reduces the width of

the interfaces between parts of the program; the fact that programmers no
longer need to tell each other the names of their working variables is only
one of the beneficial consequences.

Like all the best programming language features, the locality and
scope rules of ALGOL 60 are not only of great assistance to the programmer
in the decomposition of his task and the implementation of its subtasks;
they also permit economy in the use of machine resources, for example
main store. The fact that a group of variables is required for purposes
local only to part of a program means that their values will usually be
relevant only while that part of the program is being executed. It is
therefore possible to reallocate to other purposes the storage assigned
to these variables as soon as they are no longer required. Since the
blocks of a program in ALGOL 60 are always completed in the exact reverse
of the order in which they were entered, the dynamic reallocation of
storage can be accomplished by stack techniques, with small overhead of
time and space, or none at all in the case of blocks which are not procedure
bodies, for which the administration can be done at compile time. Finally,
the programmer is encouraged to declare at the same time those variables
which will be used together, and these will be allocated in contiguous
locations, which will increase the efficiency of slave storage and paging
techniques.

It is worthy of note that the economy of dynamic reallocation is
achieved without any risk that the programmer will accidentally refer to
a variable that has been reallocated, and this is guaranteed by a
compile-time and not a run-time check. All these advantages are achieved
in ALGOL 60 by the close correspondence between the statically visible

scope of a variable in a source program and the dynamic lifetime of its

21

storage when the program is run. A language designer should therefore
be extremely reluctant to break this correspondence, which can easily
be done, for example, by the introduction of references which may point
to variables of an exited block. The rules of ALGOL 68, designed to
detect such so-called "dangling references" at compile time, are both

complicated and ineffective; and PL/I does not bother at all.

10. Procedures and Parameters

According to current theories of structured programming, every large
scale programming project involves the design, use, and implementation of
a special-purpose programming language, with its own data concepts and
primitive operations, specifically oriented to that particular project.
The procedure and parameter are the major tool provided for this purpose
by high level languages since FORTRAN. In itself, this affords all the
major advantages claimed for extensible languages. Furthermore, in its
implementation as a closed subroutine, the procedure can achieve very
great economies of storage at run time. For these reasons, the language
designer should give the greatest attention to this feature of his
language. Procedure calls and parameter passing should produce very
compact code. Lengthy preludes and postludes must be avoided. The effect
of the procedure on its parameters should be clearly manifest from its
syntactic form, and should be simple to understand and resistant to error.
And finally, since the procedure interface is so often the interface
between major parts of a program, the correctness of its use should be
subjected to the most rigorous compile time check.

The chief defects of the FORTRAN parameter mechanism are:

(1) It fails to give a notational distinction at the call side
between parameters that convey values into a procedure, that convey
values out of a procedure, and that do both. This negates many of the
advantages which the assignment statement has over machine code
programming.

(2) The shibboleth of independent compilation prohibits compile time
checks on parameter passing, just where interface errors are most likely

and most disastrous and most difficult to debug.

22

(3) The ability to define side effects of function calls negates

many of the advantages of arithmetic expressions.

A-t least FORTRAN permits efficient implementation, unless a
misguided but all too frequent attempt is made to permit a mixture of
languages across the procedure interface. A subroutine that does not
know whether it is being called from ALGOL or from FORTRAN has a hard
life.

ALGOL 60 perpetuates all these disadvantages, but not the advantage.
The difficulty of compile time parameter checking is due to the absence
of parameter specifications. Even if an implementation insists on full
specification (and most do), the programmer has no way of specifying the
parameters of a formal procedure parameter. This is one of the excuses
for the inefficiency of many ALGOL implementations. The one great advance
of AIGOL 60 is the value parameter, which is immeasurably superior to
the dummy parameter of FORTRAN and PL/I. What a shame that the name
parameter is the default!

But perhaps the most subtle defect of the ALGOL 60 parameter is
that the user is permitted to pass the same variable twice as an actual
parameter corresponding to two distinct formal parameters. This
immediately violates the principle of disjointness, and can lead to many
curious, unexpected effects. For example, if a procedure

matrix multiply (4,B,C)
is intended to have the effect

A := BxC,
it would seem reasonable to square A Dby

matrix multiply (A,A,A) .
. This error is prohibited in standard FORTRAN, but few programmers realize
it, and it is rarely enforced by compile time or run time check. No
wonder the procedure interface is the one on which run time debugging

alds have to concentrate.

11. Types

Among the most trivial but tiresome errors of low level programming

are type errors, for example, using a fixed point operation to add floating

25

point numbers, using an address as an integer or vice versa, or forgetting
the position of a field in a data structure. The effects of such errors,
although fully explicable in terms of bit patterns and machine operations,
are so totally unrelated to the concepts in terms of which the programmer
is thinking that the detection and‘éorrection of such errors can be
exceptionally tedious. The trouble is that the hardware of the computer
is far too tolerant and forgiving. It is willing to accept almost any
sequence of instructions and make sense of them at its own level. That is
the secret of the power, flexibility, and simplicity, and even reliability
of camputer hardware, and should therefore be cherished.

But it is also one of the main reasons why we turn to high level
languages, which can eliminate the risk of such error by a compile time
check. The programmer declares the type of each variable, and the
compiler can work out the type of each result; it therefore always knows
what type of machine code instruction to generate. In cases where there
is no meaningful operation (for example, the addition of an integer and
a Boolean), the compiler can inform the programmer of his mistake, which
is far better than having to chase its curious consequences after the
program has run.

However, not all language designers would agree. Sane languages, by
complex rules of automatic type transfers and coercions, prefer the
dangerous tolerance of machine code, but with the following added

disadvantages:

(1) The result will often be "nearly" right, so that the programmer
has less warning of his error.

(2) The inefficiency of the conversion is often a shock.

(3) The language is much complicated by the rules.

(4) The introduction of genuine language extensibility is made

much more difficult.

Apart from the elimination of risk of error, the concept of type is
of vital assistance in the design and documentation phases of program
development. The design of abstract and concrete data structures is one

of the first tools for refining our understanding of problems, and for

2k

defining the common interfaces between the parts of a large program.

The declaration of the name and structure or range of values of each
variable is a most important aspect of clear programming, and the formal
description of the relationship of each variable to other program
variables is a most important part of its annotation; and finally an
informal description of the purpose of each variable and its manner of use
is a most important part of program documentation. 1In fact, I believe

a language should enable the programmer to declare the units in which
his numbers are expressed, so that a compiler can check that he is not
confusing radians and degrees, adding heights to weights or comparing
meters with yards.

Again not all language designers would agree. Many languages do
not require the programmer to declare his variables at all. 1Instead
they define-complex default rules which the compiler must apply to
undeclared variables. But this can only encourage sloppy program
design and documentation, and nullify many of the advantages of block
structure and type checking; the default rules soon get so complex that
they are very likely to give results not expected by the programmer, and
as ludicrously or subtly inappropriate to his intentions as a machine
code program which contains a type error.

Of course, wise programmers have learned that it is worthwhile to
expend the effort to avoid these dangers. They eagerly scan the compiler
listings to ensure that every variable has been declared, and that all
the characteristics assigned to it by default are acceptable. What a pity
that the designers of these languages take such trouble to give such

trouble to their users and themselves.

12. Language Feature Design

This paper has given many practical hints on how not to design a
programming language. It has even suggested that many recent languages
have followed these hints. But there are very few positive hints on
what to put into your next language design. Nearly everything I have
ever published is full of positive and practical suggestions for

programming language features, notations, and implementation methods;

25

furthermore, for the last ten years, I have tried to pursue the same
objectives in language design that I have expounded herc; and T have
tried to make my proposals as convincing as I could. And. yecl ihave
never designed a programming language, -- only programming language
features. It is my belief that these two design activities should

be more clearly separated in the future.

(1) The designer of a new feature should concentrate on one feature
at a time. If necessary, he should design it in the context of some
well known programming language which he likes. He should make sure
that his feature mitigates some disadvantage or remedies some incomplete-
ness of the language, without compromising any of its existing merits.
He should show how the feature can be simply and efficiently implemented.
He should write a section of a user manual, explaining clearly with
examples how the feature is intended to be used. He should check
carefully that there are no traps lurking for the unwary user, which
cannot be checked at compile time. He should write a number of example
programs, evaluating all the consequences of using the feature, in
comparison with its many alternatives. And finally if a simple proof

rule can be given for the feature, this would be the final accolade.

(2) The language designer should be familiar with many alternative
features designed by others, and should have excellent judgment in
choosing the best, and rejecting any that are mutually inconsistent.

He must be capable of reconciling, by good engineering design, any
remaining minor inconsistencies or overlaps between separately designed
features. He must have a clear idea of the scope and purpose and range
of application of his new language, and how far it should go in size and
complexity. He should have the resources to implement the language on
one or more machines, to write user manuals, introductory texts,
advanced texts; he should construct auxiliary programming aids and
library programs and procedures; and finally, he should have the
political will and resources to sell and distribute the language to its
intended range of customers. One thing he should not do is to include

untried ideas of his own. His task is consolidation, not innovation.

26

-

13. Conclusion

A final hint: listen carefully to what language users say they
want, until you have an understanding of what they really want. Then
find some way of achieving the lapter at a small fraction of the cost
of the former. This is the test of success in language design, and

of progress in programming methodology. Perhaps these two are the same

subject anyway.

APPENDIX

Annotated Reading List

Report on the Algorithmic Language ALGOL 60.
ed. P. Naur.

The more I ponder the principles of language design, and the
techniques which put them into practice, the more is my amazement and
admiration of ALGOL 60. Here is a language so far ahead of its time,
that it was not only an improvement on its predecessors, but also on
nearly all its successors.

Of particular interest are its introduction of all the main program
structuring concepts, the simplicity and clarity of its description,
rarely equalled and never surpassed. Consider especially the avoidance
of abbreviation in the syntax names and equations, and the inclusion of

examples in every section.

Remaining Troublespots in ALGOL 60.
D. E. Knuth
Comm. ACM. 10, 10 (October 1967).

Most of these troublespots have been eliminated in the widely used
subsets of the language. When you can design a language with so few
troublespots, you can be proud. The real remaining troublespot is the

declining quality of implementations.

27

A Contribution to the Development of ALGOL.
N. Wirth and C. A. R. Hoare
Comm. ACM 9,6 (June 1966).

This language is widely known as ALGOL W. It remedies many of the
defects of ALGOL 60, and includes many of the good features of FORTRAN IV
and LISP. Its introduction of references avoids most of the defects
described in Section 9. It has been extremely well implemented on the

IBM 360, and has a small and scattered band of devoted followers.

PL/360.
N. Wirth
Journal of the ACM. 15, 1 (January 1968).

This introduces the benefits of program structures to low level
programming for the IBM/560. It was hastily desigend and implemented
as a tool for implementing ALGOL W; it excited more interest than

ALGOL W, and has been widely imitated on other machines.

The Programming Language PASCAL.
N. Wirth
Acta Informatica 1, 1 (1971), 35-63 .

Designed to combine the machine-independence of ALGOL W with the
efficiency and control of PL/}éO. New features are the simple but
powerful and efficient type definition capabilities, including sets
and a very clean treatment of files. When used to write its own
translator, it achieves a remarkable combination of clarity of structure

and detail together with high efficiency in producing good object code.

Structured Programming. (Academic Press, 1972)
0-J. Dahl, E. W. Dijkstra, C. A. R. Hoare.

Expounds a systematic approach to the design and development and
documentation of computer programs. The last section is an excellent

introduction to SIMULA 67 and the ideas which underlie it.

Recursive Functions of Symbolic Expressions and Their Computation by
Machine. Part 1.

J. McCarthy

Comm. ACM. 3, 4 (April 1960).

Describes a beautifully simple and powerful fully functional language

for symbol manipulation. Introduces the scan-mark garbage collection

28

technique which makes such languages feasible. LISP has some good
interactive implementations, widely used in artificial intelligence
projects. It has also been extended in many ways, some good and some

bad, some local and some short-lived.

ASA Standard FORTRAN
Comm. ACM 7, 10 (October 196k4).

This language had the right objectives. It introduces the array,
the arithmetic expression and the procedure. The parameter mechanism is
very efficient, and potentially secure. It has some very efficient
implementations for numerical applications. When used outside this field
it is a little more helpful or machine-independent than assembly code,
and can be remarkably inefficient. Its input/output is cumbersome, prone
to error, anq surprisingly inefficient. The standardizers have maintained
the horrors 6f early implementations (the equivalence algorithm, second
level definition), and have resolutely set their face against the advance
of language design technology, and have thereby saved it from many later

horrors.

ASA Standard COBOL.
Codasyl COBOL Journal of Development, 1968.
National Bureau of Standards Handbook 106.

Describes a language suitable for simple applications in business
data processing. It contains good data structuring capability, but poor
facilities for abstraction. It aimed at readability, but unfortunately
achieved only prolixity; it aimed to provide a complete programming tool,
in a way few languages have since. It is poor for variable format
processing. The primacy of the character data item make it rather
inefficient on modern machines; and the methods provided to regain
efficiency (e.g. SYNCHRONISED) often introduce machine-dependency and

insecurity.

29

