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1. Introduction

Algorithm 472 [5] provided a set of Algol () procedures for the

calculation of interpolating natural spline functionc of degree om-1 .

Since the case of a cubic natural spline is of frequent occurrence, a

procedure for this special case was also iuc:uded. he special procedure

is very much faster than the general procedure when used with m = 2 +to

produce the same results. :

The next most useful case is that of the quintic natural spline

which can, of course, be obtaine’ by using the general procedures of

Algorithm 472 with m = 5 . However, the calculations can be greatly

simplified by considering this special case as described below. The

procedure, QUINAT, which is given here, takes advantage of these simpli-

fications and is much faster than the general procedure with m = 7 ,

An even faster procedure QUINEQ treats the case of equidistant knots.

Also included in the present set of procedures is the procedure QUINDF

which treats the case in which the first derivative as well as the

functional value is given at each of t'ie knots.

2. Formulation of the Problem and Description of the Procedures

Let (x55) y, 1 = N1,Nl+l, ...,N2 be a set of data points where

it is assumed that *N1 < XN1+1 < eve < Xo The interpolating quintic

natural spline function S(x) with the knots Kg? co Kyo has the
‘following properties: (i) S(x) is a polynomial of degree 5 in each

interval (%49%4,7) y 1 =N1l,...,N2-1. . (ii) 8S(x) and its derivatives

s'(x) , 8"(x) , s'"(x) and S""(x) are continuous in (X17 X52) .

(111) 8" (x;) = 5"' (xp) = 8™"(nyy) = 80) = 0. (1v) 8x) ~y;
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i =Nl,...,N2 . It is known that if NZ > Nl+1 , then there is a unique

quintic natural spline function which has the properties (i)- (iv).

(See e.g. Greville [3,4].) This spline function can be reprecented

in the rorm

(2.1) S(x) = Ve +B.t+C, t+ Dt +E + Ft
i i i i i i

with t = X=X, for x; < X < Xir1 , 1 =N1,...,N2-1.

If at one or more of the knots Xs one also specifies the

derivative yi , thus requiring 8*(x,) = y} then the condition that

S""(x) be continuous at the knot x, need not hold. If the second

derivative yy is also specified thus requiring §"(x,) = yi then

S"'(x) also need not be continuous at Xg - If the values of the

derivative vi are specified at all the knots x; then S""(x) need

not be continuous at the knots and also SHE and S$"! (x0) need
not be zero. Such a spline is said to be of deficiency 2 . It is not

of interest to specify the first and second derivatives at each knot

because in this case the quintic polynomial is completely determined in

each interval independently of all the other intervals. |

The procedure QUINAT computes the coefficients B, ’ Cy , Dy y Fs ’ Fe

of the quintic natural spline represented as in equation (2.1) for an

arbitrary set of data points (x55¥4) as specified ebove. The procedure

QUINEQ treats the case of equidistan’ knots Xs If the knots are known

to be equidistant QUINEQ should be vsed as it is much faster then QUINAT.

In this case it is not nececsary to specify the values of X, The

representation (2.1) is still used but now t = (x=x4)/h where

h = Xie1"% , the constant spacing of the knots.
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QUINAT can also be used for the case in which the first and second

derivatives are specified at an arbitrary set of the knots. To specify

the value of the first derivative Y] at x3 one increases the number

of knots by one, setting X41 = x (and renumbering the knots and values

to the right). Then one chooses Vieg = op . Then the spline function

computed by QUINAT will have the property S(x,) = yy 5° (xy) = Yie1

To specify alsc the second derivative, note that if x4 = X41 = X40

then S(x,) =¥y S* (xy) = Vie ? 5" (x4) = Vien For further
details see Section 3.2.

The procedure QUINDF computes the coefficients of the quintic

natural spline of deficiency 2 when the values of the function Ys and

the values of the first derivative Yi are given at each knot. QUINDF

is much faster than QUINAT.

5. Procedure QUINAT

A: in the general case of Algorithm 472 [5] the calculation of the

coefficients of the spline function is carried out in a numerically

stable manner following a method described by Anselone and Laurent [1].

The basic ideas on which the method is based were given earlier by

Schoenberg [6]. The method is specialized to the case of the quintic

natural spline and uses minimum support B-splines [2,4] of degree 2 to

form a basis for the class of third derivatives of the quintic natural

splines. Instead of specializing the formulas of Algoritim 472 [5] by

setting m = 5 , we derive the necessary formulas directly and indeed choose

a different numbering and a different normalization for the B-splines.
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5.1 Distinct Knots

We assume that the knots are strictly monotone increasing. In order

to simplify the notation we shall choose Nl = 0 and let N2 =n so

that the data poinis are denoted by (x55) , 1=0,1,...,n . This is

merely a translation of the subscripts and involves no loss of generality.

We denote the B-spline of degree 2 by M, (x) and require that it

vanish outside the interval (%; _19%540) . M, (x) and M} (x) must be

continuous at each of the knots. Let h, = X.41"%g t =x RII

U=X-=X, 5 V=X-X Then we must have

M (x) = Ate be <X<Xi i-1 —= i

, _ J
(3.1) = B+Cu-Du X; £X < X44.

= E(v-h )2 Xx < xX <Xi+ i+l - i+2 )

Hence also

— 1" —

M; (x) = 2At Mj (x) = 2A X;4 Sx <x

(3.2) = C -2Du = =2D Xg Sx <Xgoq

= 2E(v -hy,q) = 2F Xipg SX <Xun

Imposing the continuity requirements at Xe 5 Xgq vields

2 2 2
Ang = B B+Chy = Dh, = Eng.

oAh, 5 = C C - 2h, = -2Eh, 4 .

Hence up to a camon factor

A 1 Boodsl Lo __ 2
hy(Bs +h) Bya*thy byyt By

(3.3)

I © Rie Si 05 i 1
(hy; *By)hy(hy +b, 0) hy, (By +h)
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Choosing these values of the coefficients we find that

«© om

J My (nt (x) ax = J M] (x)£* (x) dx
! X41 *j+2

(3.4) =2A| f(x)ax-20 [ fr(x)ax+2E [ 1'(x)ax
Xi Xy Xi41

= (00x Xy10%;0) = FOX_15%55%5,5))

using the usual notation for divided differences. This is a very

convenient choice of normalization of the M; (x) .

Next we need the Inner products of the basis B-splines. Since each

M, (x) is different from zero in only 3 consecutive intervals it is clear
that

on

(3.5) MN M (x) (x) dx = 0 if ji-jl >2 .

If we use the representations of M, (x) in (3.1) we obtain

> 2 "1-1 2.2 Ps 2,2 Fe! 2
3 | [M, (x) dx = 50 [ (AtS) “dt+ 20 | (B+ Cu - Du) du + 30 | E(v-h, .)%dv .- i 0 0 0 i+]

If we substitute the constants from (3.3) and carry out the integrations

we obtain

an 2.
(3.6) 20 | M(x) dx = T;+T, +1,
where

p, b,
| 6h] _; 6h, 1

i-1 1 i Ti+l

I, =
2 2 2y..2 2 2 2

. 50m; _qbi,1+(h,_j+h, Dh, (WOK, ho +140 )+HC(16(RY +he 0 )+b2n, Gh. o+hng)
i 2 2 )

(hy yh) (hgh,)
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In the same way we find that

[- -

(3.7) 0 J M, (XM, 4 (x)dx = Ty + Tg
where

oop? a-a(By? hy) + 3b +h) (hy +3h,.,)
hy © Ty 2

(by1 +hy)(hy +h, ,)

2 Byop(hyvhy LG) + 5h,+h 5) (Oh thy)
Tg = Bey 2

(hy +hy 4) (hyy+ hy, 0)
and

® hy,
(3.8) 30 MOM (ax = —— Fm ———

ah (hy + hy 0) (yy *+hy,0)

Note that all terms in these expressions are positive and consequently

no cancellations can occur.

Now the third derivative §5"'(x) will vanish outside the interval

(x50 x) and it can be expressed in terms of the basis functions:
n-2

(3.9) sg" (x) = 2 607 M4 (x) ‘J=1 J

If we multiply equation (3.9) by z M; (x) y 1=12,...,n-2 and integrate,
we obtain a well-conditioned system of linear equations for the determina-

tion or tle 75 :

n-2 @ 1 o™
(3.10) z (30 | M; (x)M, (x)ax)7 =5 J My (x)sm (x)ax , 1=121,2,..0yn-2.J= - 0 -

If we use (3.4) and (3.5) we see that (3.10) is a pentadiagonal system

of linear equations and can he written in the form

6



4, © T, 0 71 1e, 4% ¢ I 72 ©

f f ¢
1 %2 BH 5 Tf 73 3

(3.12) f, e 4 e 1 A I EC
LJ » bd > . . .

L) . . i. . . .
v . ° . .

0 Ta-5 ®n-l 4-3 “n-3 Tn-3 n-3
tho), “n-2 4-2 "n-2 “n-2

where

® 2

Lo 2]

@®

f, = 0] M, (x)M, | (x) dx ’ i=1,2,...,n=k

C1 T Y4i,4+41,442 "V1a1,1,141 1=152..,n02 .

The values of d 4 , f, are obtained from (3.6), (3.7), and (3.8).

This system of equations can be solved for the 7j by using
Gaussian elimination to reduce the matrix of coefficients to upper

triangular form. This is conveniently done by annihilating the elements

below the principal diagonal a row at a time. Note that the £, are

never changed. We use di , es and dy R es to denote the new values
: |

of d, ) e5 as they are formed by the annihilation of fio and ej.1

in the i-th row. Before the elimination process operates on the i-th row,

the form of the system is:

T



1" " ”

dy e & : 74 ©y
Ld) [] 13

dio &5.0 fio 750 Cj_2

4 | 11 4

0 diy &. Tia 75.1 Ci-1

0 f.0 851 4 & 0h 73 4

The equations for the annihilation of £2 are

py = Ty0/85

' = - 1"

®i-1 © &-17Pi1%2

ai =; =P

ci =; "PC

and those for the annihilation of & 1 ire

a; =e; y/9

no _ At "n

dy = 4d; -938.1

& =e "fa

°1 7% "4%

Note that ei.1 need not be calculated because ei.1 = ei_1 . This

follows by induction because if ei 1 = ei 1 then

£
1-1

e! = e, - gi €;_ = e .
i 17d "1-1 i
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Thus gq{= ei 1/ al 5 . For the first step of the elimination

(operating on the 2-nd row) the above formulas are valid if we choose

= 0

When the coefficients 73 have been found, 8"'(x) is given by
the equation (2.9). We want to find the coefficients of S(x) as

expressed in equation (2.1). Clearly

5 "ne Tu" v

(3.12) Dy = 8 (x,+0)/6 » By = 8 (x,+0)/24 > Fy = 8 (x,+0)/120 ,

i = 0,1, ceosn=1 .

But because M, (x) vanishes outside the interval (X5 19% 540) , S"v(x)

can be represented in the interval [x55%,4) in the very simple form

1 " -
(3.13) 5 8" (xytt) = yy GM, (x 4E) +7 M(x Ht) Hs ML (x48)

with 0 St <h , i=23...,n-3.

Then also

1 "ey -— t  } ld(3.14) 25 8" (x+t) =, Mp (x48) +7, M] (x, +t) +7501M 1 (X54)

1 .v _ " " "
(5-15) go 8 (xy¥t) = yy (My) (x40) + 7Myx+t) +7, MIL, (32)

On the right hand sides of equations (3.13) - (3.15) we insert the values

from equations (3.1) - (3.3). If we make use of (3.12) then we find that

(3.16) OS Ts IA be ©
10 h, ;¢+ h,

E Ys =7

i-1 4

(3.18) F, = = SN OS Bf
i h, h, +h, h, ,+ h,

9



These formulas can also be used for 1 = 1,n-2,n-1 Dy adding the

convention that Yo = "pl =p C O . Also (5.18) can be used for

1 =0 by setting 7_, =0 . ((3.16) and (3.17) also yield the correct

required values D, = E, = O with these conventions.)

Next we want to find the values of B, and oh . Remembering that

S(x) and its first four derivatives are continuous at Xx, but that

S'(x) need not be continuous we can write polynomial expressions for

S(x) valid for the intervals on either side of X;

S(x)= y,+B.t+C 24D t+ Ett + FLL X, <x <Xi i i i i i ’ i — —- "itl

S(x) =y,+B.t+C t°+D rE tt 4p £” X <x <Xi i i i i i=l ! i=-1l—-" —- 1

with t = X-X¢ in both cases, 1 = 1,2,...,n-1 . Then

S(x,. .) =Yy = y +B,h, +C.h°+D ho +E bh + F ho
i+1l i+1 i ii i711 ii ii ii

and |

_ Cv 2 5.5 CE 5
S(x;_3) = 95. =; Bb *CyBy , -DyhGGY EDB oFBE

Since Dy » Ey ’ F. and Fig are already known we can solve these two

equations for Bs and Cs obtaining

i h, 1+ bh, h. h. 4+ h, h, ii-171

h h
i-171 5 z

"ER aby (By By) cp hy (Fiat TY)
and

10



y -y Ys ~Jy
1 i+1 VY4% i “i-1

(3.20) C fe + D,(h, ,=h,)1 * b_ +h, bh, bya 17-170
3 3

- By iSa tr (Fy by 1 Fyhy)
i-1 74 P41 4 TTT

These formulas are valid for 1 = 1,2,...,n-1 .

Finally we have to find the coefficients at the end points Xy 2 X,

In the interval (x5%,) we have (since Dy = By = 0)

S(x) = y.+B.t+C t2+04+0+F t°Cc “0 0 0

with ¢ = X=Xy - Hence also

S"(x) = 2C. + 20F t”= 2C, 0 .

Since S(x) and S"(x) must be continuous at x = x, Wwe have
2 2

Yo* Bolo * Cop* Foy = Na

>
Xo* 20F h = x, .

Therefore

(3.21) Cn =C. - 10F.h>
0 1 00

¥1~ 30 4

(3.22)  B, = al Coby Foy

In the interval (x _y5%,) ve have (since 8" (x) = 8""(x) =0)

S(x) =y +B t+C t°+0+0+F _t~n mn n n-1

with t = x-x . (Here B = S'(x.) » c, = "(x )/2 .) Hence also
pyr" —

s"(x) = 2+20F,.t7 .

11



Since S(x) and S"(x) must be continuous at x = x.1 Ve have

e p
Yn" Banat CiPpa1 "Father T Yna

>
Lp -20FqPpa = pa

Therefore

(3.23) C =C_.+10F .n°) n n-1 n-ln-1l

y -vn ‘n=l 4 i
(3.24) By = —p——* Ch Fpgh

n-1

5.2 Coincident Knots

By relaxing the condition that the set of knots X, be strictly

monotone increasing and allowing two consecutive knots x3° xXj+1 to be
equal we can use the procedure QUINAT to find a spline function for which

the first derivatives are specified at an arbitrary number of mots in

addition to the specification of the function values at the knots. In

order to understand this situation consider two knots xj and x+1

which are close together. Let Xie17%y = ¢ where ¢ is small and

positive. Instead of specifying 8(x,) = ¥; and 8(xy,,) = Yip ve

may instead specify S(x5) = ¥, and the first divided difference

S(xs5%4,1) = (¥340 = ¥3)/e = Vy 341° The two data specifications are

completely equivalent. Now when ¢ 4s small, S(xy5%4,,) is very close

to 8'(x,) and indeed S(xy%y,4) ~ 8! (x,) as ¢ -0 . Hence if

Xj41 = Xj it is entirely reasonable to adopt the convention of

12



specifying S(x,) as Vs and 8*(x,) 88 Yip The procedure
QUINAT has been written making use of this convention. For the spline

function produced by QUINAT in this case, the fourth derivative S""(x)

and the fifth derivative 3¥ (x) have jump discontinuities at xi"
However S(x) , 8'(x) , 8"(x) and S"'(x) are all continuous at xy
Table 1 shows the imput and output values of QUINAT corresponding to the

subscripts J and J+l1 .

= S(x = S'yy = 8x) Yse1 (x,)

= ! ==

By S (x,) Bry

C, =8"(x,)/% = C

D, =8"'"(x C = D.

E. = 8" -0)/24 E = 8"" (x .+0)/2L

F, = 8¥(x,-0)/120 = 8V(x,+0)/123 = 8 (x,=0)/ Fipq = § (x,+0)/120 |

Table 1. Double Knot | x = X51

When one uses the equation (2.1) to calculate S(x) in the interval

EVEL IY one should remember that Viel appearing there is in fact

S(%,,1) = S(x,) = vy and not the Yi41 of the input data. Rather

Bin hag the value of the input Yie1 .

In the same way one may choose x, = X51 = X50 in QUINAT and
speci S(x as St(x as and S"(x as .

For the spline function produced by QUINAT in this case, the derivatives

Ss" (x) , 8""(x) and s¥(x) all have jump discontinuities at Xg .

15



However S(x) , S'(x) and 8"(x) are continuous at xy Table 2
shows the input and output values of QUINAT corresponding to the subscripts

J,» j*l1 and Jj+2 .

vy = Sx) Vp = STO) gp = 87x)

= ! = = ;
B, S (x,) Bisa Biya

D, = s"* (x,-0)/6 Dsyg = © Dip = 5"1 (x,+0)/6

E, = 5""(x,-0)/2k Egg = O Epp = 87" (x +0) /2k
- \'2 _ _ A"2

Fs = S (x4-0)/120 Fiop =O Foro = 8 (x,+0)/120

Table 2. Triple Knot X = X41 = X 4p

When one uses the equation (2.1) to calculate S(x) in the interval

EINE IY one should remember that Yeo appearing there is in

fact S(xy,5) = S(x,4) = Sx) =; and not the Yep of the input

data. Rather Biro has the value of the input Yis1 and 2X 540 has

the value of the input Ys+0

L. Procedure QUINEQ ]

The calculation of the coefficients in QUINEQ for the case of

equidistant knots is carried out in the same manner as in QUINAT for

the general case. However, there are a number of simplifications which

result in considerable economy of computational effort. It is not

1k



necessary to specify Xy . Hence we can assume Xs = 31 . Then h, = 1

for all 1 and the coefficlents of M, are independent of 1 as are

also the inner products. Thus equations (3.1) reduce to

1.2

M, (x) = 5t 1-1 <x<1i

(4.1) = z+ u-u° i<x<i+l

= 3 (v=)? 1+1 < x < 1#2

with t = x-(4-1) , u =1x-1, v =x=-(i+1) .

The inner products become

® 2
(4.2) 0 IM; (x) ] ax = 66/h

- XN

R

(4.3) 30 J M, (X)M, (x) = 26/b
© ,

(b.L) 30 J M, (X)M, s(x)ax = If.

The divided differences become ordinary differences so that equation (3.4)

becomes

(5:5) J MOEA = 20x) = 30x) + 300) - 2x)
I.
= b r(x) . |

If instead of equation (3.9) we take

(4.6) Ss" (x) = 1207 M.. (x)
jo IH

then the system of linear equations for the calculation of ¥3 can be
written in the form

15



. 3

66 26 1 70 A Yo
3

26 66 26 1 71 a"y4
5

1 26 66 26 1 75 8°y,

1 26 66 26 1 ys Ky,
(4.7) . . . . =

3

5

1 26 66 7ne3 A Yp-3

The solution of this system of equations is somewhat simplified

because the matrix of coefficients is a set of constants.

The equations for the determination of the spline function coefficlents

then become |

Dy
(4.8) T= Yio*t 74-1

Ey

(8:10) Fy = 775077050

(4.11) B, = E (y -y -F -F,)-D) i e ‘7i+l “i-1 “i-1 “i i

(4.12) Cy = 3 (Vyoq*¥_1*Fy_q-F) =v, -E,) i 2 ‘“i+l Yi-1 "i-1 “1 i “1

These formulas are valid for 1 =1,2,...,n~1 with the canvention that

Y1 = Tap =p = O . Also equation (4.10) can be used for 1 = 0

by setting 7_, = 0 . (Equations (4.8) and (4.9) also yield the correct

values D, = E, = 0 with these conventions.)

16



Finally the coefficients at the end points are given by

= C, - 10F,

Bo = ¥1-¥5-C9 "Fo

Cn = Chat 10F, 1

By = YW VnatCh-Faa

5. Procedure QUINDF

We now assume that S(x;) =y; and S'(x,) = yj are specified at

each of the knots. We must exclude the possibility that xX, = Xi as

this would imply a multiplicity of four which is not feasible for

quintic splines.

As in Section > we shall use minimum support B-splines of degree 2

to form a basis for the class of third derivatives of the quintic

natural splines. Since the spline we are seeking is of deficiency two

because the derivatives are specified, so also our B-splines must be of

deficiency two. Specifying a derivative at a knot is equivalent to

considering a knot to be a double knot as we saw in Section 5.2. Hence

the desired deficient splines of degree 2 can be derived from those used

in Section 2.1 by pemitting two knots to become coincident. However

we prefer to derive these B-splines directly. Two cets of such deficient

splines are possible.

As in Section 5.1 we assume that the knots are strintly monotone

increasing and we again choose Nl =0 , N2 =n . The specified data

are denoted by (%5¥45¥§) , 1i=0,1,...,n .
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We denote a B-spline of one set by M, (x) and require that it

vanish outside the interval (x, 19X41) . M, (x) and M3 (x) should
be continuous at X31 and Xi41 but continuity is required at Xy

only for M, (x) and not for M; (x) + As usual, let h, =x,..-X

t = X-Xs 1 y UU = X=X, . Then

(5.1) M, (x) = AtS xX <x 7° |i 1-1=" 7g

- B(u-h,)° X, <X <Xi i-~- i+]

Hence also

4 a— 1" -—

(5.2) Mj (x) = 24t M(x) = 24 xgg SX <x

= 2B(u-h,) = 2B X; SX <x.

Imposing the continuity requirement at Xs yields

2 2

Hence up to a common factor

(5.3) A = —5— B = =
h h
i-1 i

We denote a B-spline of the other set by N, (x) and require that

it vanish outside the interval (%55%,1) . N, (x) should be continuous

at X; 0 Xp but no continuity is required for the derivative. We can

clearly choose

2

(5.4) N, (x) = 2 u(h, -u) xy <x < X541
1

with u = X=X; Then also

(5.5)  N!(x) = == (hb, -2u) N(x) = - = x <x<Xi A | i - 2 i- +1
h h
i i
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Our choice of coefficients implies the following two relations

oe a

(5-6) J M, (x)£'(x) ax = -J Mj (x) £* (x) ax

Fxg) - 2x9) 1.1 Plx;,1) - 2(%5)
= 2{——7 - — Fr = £1(x,) + ——=—"—n° Bi By 1 h

i-1 i

eo] L* -]

(5.7) I N, (x) £"' (x)dx = - I Ni (x) f(x)

£'(x,) £r (x; 4)i 2 i+l

= {5 - J (£(xy,,) - £(xy)) += .i i i

The basls for the third derivatives of the deficient quiatic

natural splines is the set of B-splines

{Ny(x) »M, (x) »N, (x) My (x) s N(x) ERRM(x)N(x) } .

We need the inner products of these basis functions. We easily find that

(5.8) 20 J [M, (x) Jax = 6(hy + hy) ’ i =1,2,...,n-1
- 0

(5.9) 0 [ INj(x)}7ax = bn, i=01,...yn-1
-

oo

(5.10) oJ Ny (x)M,,,(x)dax = 30, , i =0,1,...,0=2
[- -

(5.11) 30 [ N; (x)M; (x)ax = 3h, i=1,2,...,n-1
-

faa)

(5.12) 0 M, (XM, (x) ax =h, , 1 =1,2,...,0-2 .
211 the other inner products are zero.
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Now the third derivative S"'(x) can be expressed in terms of

the basis functions:

n-1 n-l

(5.13) s"'(x) =60( Z BM, (x) + 2 7 Ny (x) .
J=1 J=0

If we multiply equation (5.13) by = M, (x) and ZN, (x) respectively and
integrate we obtain the well-corditioned system of linear equations for

the determination of 83 and 73 :

to i net w(20 | M,(x)M (x)ax)p. + (30 [ M,(x)N,(x)dx)yJ=1 - ® 1 J J j=0 J 1 J J

- : [ M(x)s" (x)ax , 1=1,2,...,n-1
= co

(5.1h)

n-1 © n-1 ®

=z (20 | N, (x)M, (x) ax)8, + =z (30 | N, (%)N, (x)ax)y

- 1 [ N,(x)8"'(x)dx i=0,1 n-1

Thies is a positive definite pentadiagonal system of linear equations.

The values of the non-zero coefficients are given by equations (5.8)-(5.12)

and the right hand sides by equations (5.6) and (5.7). The system can be

written in the form

20



© fH © %0 ©

Ih 9; & hy 0 By >
0 8 © £, 0) 7 ¢y

h, f, 4d, & hy Po bs

0 & e, Lo 0 75 = Cs

h, £5 d, 8 hy Bs os

0 8z ez fy 0 73 Cs

ho theo 4-1 €n-1 Phe1 Pn-1

0 €n-1 ®n-1 Tn-1 ®n-1

where

ty = hy » i = 0,1,...yn=2

84 - oh, » i = 1,2, ...,n=1 .

Yi: = Vs y -y
b i "i-1 _ I SN y! Pt 2 Sl § P i = 1,2,...50n=1
i ne hy 4 h, i he

i-1 i

A 2 Yi+1
C4 “2 C2 (Yi47 =¥4) My ’ i1=01,...n=1 . )

i i i
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This system of equations can be solved for the pj and 7j by
using Gaussian elimination to reduce the matrix of coefficients to upper

triangular form. This is conveniently done by annihilating the elements

below the principal diagonal in two rows at a time. Note that the &s
; ' ' ' " " "

and h, are never changed. We use dy y ©3) £3 and dy ’ €§ £5 to

denote the new values of d, > & fs as they are formed by the

annihilation of h, 4 ’ £i 1 and 84 in the i-th pair of rows. Before

the elimination process operates on the l-th pair of rows the form of

the system is

1" ? ”

€, £5 0 7s 5

- |] UY 9 [3 -
di.1 8.1 Bia By-1 by-1

" " ped "
0 ej fia 73-1 3-1

hyp fi 44 & By By by

0 0 gy e; ty 0) 75 ci

The equations for the annihilation of h, , are

ug = by ,/d3, |

' = -

fiaa = fi" m80

dj = dy-why

t - - ”"

bj = by u, by .

22



Those for the annihilation of £31 are

— 1" |
| vo = fale,

no _ - '

4 = 43-V3%ia

bf = PiTViCia

and those for the annihilation of g are

J 1]

vgo= g/d)

"oo o_ -

°1 T ®1 78

£5 = fi-vyhy

C { = Cs -W;b, .

Note that £13 need not be calculated because

q - - ' = - ' = 1 ]

fia = fia-(y 5 /a00)eyy= fy 5-(8 p/h) = fi, |

For the first step of the elimination (operating on the 2nd and >rd

rows) the above formulas are valid if we choose u, =0.

When the coefficients By and 7, have been found, S5"'(x) is
given by equation (5.13). We want to find the coefficients of S(x) as

expressed in equation (2.1) with B, = vi «. Clearly

(5.15) D, = 8"'(x,+0)/6 , E, = S""(x,+0)/2k4 , F, = 8'(x,+0)/120 ,i i i i i i

i =0,1,...5n=1 »

But because M, (x) vanishes outside the interval (x5 _y9%447) and

N, (x) vanishes outside the interval (x3X44 9) » S"'(x) can be
represented in the interval [x,5%,,4) in the very simple form
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1 “LA -
(5:16) 75 8" (xt) = BM (xy*t) + By My(Xypg) + 74M(x48)

Also

1
L "et -— ’

(9.17) oS (x4+t) = BM] (x, +t) + ByeMien (X5+E) + Ni (x41) .

1 Vv — rt I" '
(5.18) ZS (x,+t) = BMJ (x,+t) + Bip iMieq (Xy+E) + 7M] (x,+1) .

On the right-hand sides of equations (5.16)-(5.18) we insert the values

from equations (5.1)-(5.3). [f we make use of (5.15) we find that

Dy
(5.19) 0 = B4

E 7: =B

(5.20) + = 2d i=1,2,...,n2 .
5 h

i

B, -27, +B |
(5.21) F; =a

h.
i

These formulas can also be used for i = 0, n-1 by adding the convention

that By =p=0 .

Next we want to find the values of the C; - We cen write 8S(x)

in the form (2.1) for x; $x < X41 . Then we can use either

S(X5,1) = ¥i41 OF 5° (%;,4) = ¥i,q - We prefer the latter because the

resulting formula has less danger of cancellation. We have at once

vy! -y!
I 2Si -4E 1h - SF.b°

Sf Si 3Dghy -4E.hy - 5Fb7

LY



If we substitute from equations (5.19)-(5.21) this becomes

y! -y!
_ ier

(5.22) x, = h hy(158,+ 107,+ Bis1)

This formula can be used for i =0,1,...,n=1 but not for {I =n.

In order to get C_ We could write the polynomial for S(x) in

(%,.12%y) in powers of x-x and then use 8" (x, _q) = ¥;., - However,

it is more convenient to obtain ancther formula for C N valid for

i=1,2,...,n by writing the polynomial for S(x) in (xy _q0%4] in

powers of x-x, and then using S' (x; _4) =yj_, + We have

_ , *2 *3 #4 x5
S(x) = yy tyjb+Cit +Dyt +Et +F.t y Ky <x <x

with t = XX, . Then

DF = 5" (x,-0)/6 , Ef =s"(x,-0)/2k , F; = 8"(x,-0)/120i i ? i i ¢ i i ’

i - 1,2, “os epll .

Proceeding as in the derivation of (5.19)-(5.21) we find that

D
4 _ 810 = i

E, B,-7
. = a i = 2555 ¢0.5n=1 *

1-1

x Pima thy
FPF, = ——"= =

i he
i-1

These formulas can also be used for 1 = 1, n by adding the convention

Bo = Pn =0 .
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If we now use the relation S*(x5_q) =Yy}_q » ve find

* Yi -¥i.1 * * 2 * 3
a TE 3Dyhy_y ~4Eshy 3 + 5FihG

* * * |

Substituting the above values for D3? E, s F3 yields

»  YiT¥ig

This formula can be used for 1 = 1,2,...,n but not 1 =0 .

Since 8S" (x) 4s continuous for x = X; i=12,...n-1,

formulas (5.22) and (5.23) must yield the same values for these values

of 1. We use (5.23) only for i =n .

6. Tests

These procedures have been tested in Algol 60 on the Telefunken TR-LLO

computer at the Leibniz Rechenzentrum of the Bavarian Academy of Sciences,

Munich, and in Algol W on the IBM 360/67 at the Stanford Center for

Information Processing. The latter tests included timing tests of the

procedures with the number of knots N = N2-N1+1 ranging up to 1000 .

The time was found to be approximately proportional to the number N of

knots. The time T 1n seconds for the execution of the procedure

QUINAT was found to be approximately T = .00212N whereas for the

procedure NATSPLINE of Algorithm 472 [5] with m = 3 it was found that

T = .01324N or over six times as great. For the procedure QUINEQ the

time was approximately T = .00073N whereas for the procedure NATSPFLINEEQ

of Algorithm 472 with m = 3 it was T = .OOLION or nearly six times
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as great. For the procedure QUINDF the time was approximately

T = .001l16N whereas for the procedure QUINAT with 2N knots, consecu-

tive knots being equal in pairs, the time was T = .00360N or over three

times as great. Moreover, in order to compute the same results the

procedure QUINAT requires approximately 75 per cent more storage for

the arrays used than does the procedure QUINDF. Note also that from

the above formula for the time required by the procedure QUINAT, the

time for 2N distinct knots would be T = .O0OL2UN which can be

campared with T = .00360ON given above for N pairs of equal knots.

The reduction for the case of double knots probably occurs because some

calculations are amitted when knots are coincident.

These timing comparisons show that it is definitely advantageous

to have these special procedures for the quintic natural spline instead

of using the general cases given in Algorithm 472 with m = 3 .

Tests of the accuracy and correctness of the coefficients computed

by the procedures QUINAT, QUINEQ and QUINDF were carried out as

described in Algorithm 472 [5]. Table 3 shows the results of a typical

run using QUINAT for 5 equidistant points. The first line of each box
gives the tabulated quantities at the given value of x which is the

left-hand endpoint of the subinterval and the second line of the box

gives the tabulated quantities at the right-hand endpoint of the same

subinterval. The close agreement of the quantities S(x) , 8'(x) » |
s"(x)/2 , s"'(x)/6 and S""(x)/24 shows that the quintic spline

function and its derivatives satisfy the required continuity conditions.

This is a good indication of the correctness of the results. Almost

identical results were obtained from the same data using QUINBEG. The
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1.000000 | 1.000000 -3.199998 2.299998 0 0 -0.09999990

0 0.8999977 1.299998 | -0.9999990 -0.4999995 | -0.09999990

2.000000 | © R 0.8999997 1.299999 | -0.9999996 -0.4999995 0.2999997
1.000000 1.907349" -06 | -1.699997 L.768372 -07 0.9999990 0.2999997

3.000000 | 1.000000 | 5.66241 -0T -1.699999 | -5.960L6L'-O7 $.9999990 { -0.2999997
5.364418 -07 | -0.9000010 1.299996 | 0.9999983 -0.4999992 | -0.2999997

4.000000 | © -0.8999985 1.299998 | 0.9999985 -0.k999992 |  0.09999985

. 0.9999982 3.199994 2.299995 | © 0 0.09999985

Table 5. Quintic Spline. 5 Equidistant Knots. Coefficlents calculated by QUINAT.

| (Machine precision approximately 7 decimal digits.)



procedures NATSPLINE and NATSPLINEBQ of Algorithm L472 also produced

essentially the same results.

Table 4 shows the results of a typical run using QUINDF for 5

nonequidistant points. The values of the function and its first

derivatives were specified and the results are given in the same

format as in Table 5. Note that the fourth and fifth derivatives are

now discontinuous. Essentially the same results were obtained by using

QUINAT with 10 knots, equal in pairs.

29



-3.000000 7.000000 2.000000 -6.106372 0 2.956281 =0.7145936

11.00002 15.00002 7.674892 -4.933L91 -4.189653 -0.7145936

-1.000000 11.00000 15.00000 7.674872 -1.933500 -8.157616 5.4162L6

26.00000 10.00001 -1.908858 16.59850 18.92361 5.416246

C 26.00000 10.00000 ~1.908856 16.598L8 -9.059000 1.246089

55.99988 -27 .00012 =5.264510 20.03847 9.632335 1.246089

3.000000 | 56.00000 -27 . 00000 -5.264L45 | 20.03851 -21.28369 6.509629

29.00002 ~29,99995 -7.TSU762 }.005432' -05 11.26L45 6.509629

al al ll I

| Table 4. Quintic Spline. 5 nonequidistant knots. Values and first derivatives

specified. Coefficients calculated by QUINDF. (Machine precision

approximately 7 decimal digits.) |
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APPENDIX I

Algol 60 procedure QUINAT

procedure QUINAT(N1,N2) data:(x,y) result:(B,C,D,E,F);

value N1,N2; integer N1,N2; array Xx,y,B,C,D,E,F;

comment QUINAT computes the coefficients of a quintic natural spline

S(x) interpolating the ordinates y[i] at points x[i], 1 = N1 through

N2. For xx in [x[i}],x{i+1]) the value of the spline function S(xx)

1s given by the fifth degree polynomial:

S(xx) = ((((F{ilxt + E[i])xt + D[i])xt + C[i])xt + Bli])xt + y[i]

with t = xx - x[i].

Input:

N1,N2 subscript of first and last data point respectively, it is

required that N2 > Nl + 1,

X,Y[N1:N2] arrays with x[i] as abscissa and y[i] as ordinate of

i-th data point. The elements of the array x must be strictly

monotone increasing (but see below for exceptions to this).

Output:

B,C,D,E,F[N1:N2] arrays collecting the coefficients of the quintic

natural spline S(xx) as described above. Specifically

B[1] = s'(x[1]), c(i] = s"(x[i})/2, D[1] = s"'(x[1])/6,

E[1] = s""(x[1])/2}, F[1] = 8¥(x[1]+0)/120. F[N2] is neither

used nor altered. The arrays B,C,D,E,F must always be distinct.

Options:

1. The requirement that the elements of the array x be strictly

monotone increasing can be relaxed to allow two or three consecutive

abscissas to be equal and then specifying values of the first and

second derivatives of the spline function at some of the

interpolating points. Specifically

if x(J] = x[j+1] then S(x[J]) = y[J] and 8*'(x[j]) = ylJ+1],

if x[J] = x[j*+1] = x[j+2] then in addition 3" (x[j]) = y[j+2].

Note that S""(x) is discontinuous at a double knot and in

addition 8"'{x) is discontinuous at a triple knot. At a double

knot, x{J] = x[j+1], the output coefficients have the following

values:
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B(J] = 8 (x[3]) = B{j+1] :

cll = s"(xlyN)/2 = C[J+1] |
D[J) = 8" (x[31)/6  =D[j*1]

E[J] = s"*(x[3]-0)/2k E[j+1] = S"n(x[J]+0)/24

F[§) = sV(x[3]-0)/12e F[4+1] = SV(x[3]+0)/120
The representation of S(xx) remains valid in all intervals

provided the redefinition y[{j+1l] := y(J] is made immediately

after the call of the procedure QUINAT. At a triple mot,

x{j) = x{j+1] = x[j+2], the output coefficients have the

following values:

Bj] = s'(x(3]) = B{3+1] = B[j+2]

cy] = s"(x[jl)/2 = C[3+1] = C[j+2]

Df] = s"'(x[j]-0)/6  D[j*1] =O D{j+2] = s"*(x[j]+0)/6

E[j] = s"™(x[j]-0)/2% E[3J+1l] =O E(J+2] = s""(x[j}+0)/2k

Flj1 = sV(x[j]-0)/120 F[j*l] =0 Flj+2] = s'(x[J1+0)/120
The representation of S(xx) remains valid in all intervals

provided the redefinition y{j+2] := y{j*+1] := yl{j] is made

immediately after the call of the procedure QUINAT.

2. The array x may be monotone decreasing instead of increasing;

~~ if N2 >N1 + 1 then

begin

integer i,m;

real bl,p,pq,pqqr,pr,p2,p3,q,q9r,92,93,r,r2,s,t,u,v;

comment Coefficients of a positive definite, pentadiagonal matrix

stored in D,E,F[N1+1:N2-2];

m := N2 = 23

q := x[N1+1] - x[N1]; r := x[N1+2] - x(N1+1];

q2 := gxg; r2 :=rxr; qr := gq + Ir;

D[N1] := E[N1] := 0.0;

D[N1+1] := if q = O then 0.0 else 6.0xaxq2/(qrxqr);

for1 := Nl + 1 step 1 untilm do

begin :
Pp :=q; q :=7r; r := x[i+2] - x[1i+1];

P2 := g2; Q2 = r2; r2 :=rxr; pq :=qQr; qr :=q + r;

if q = O then D[i+1l] := E[i] := F[i-1] := 0.0

else
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begin

qQ> := Q2xQ; Pr := PXr; paqr i= paxqr;

D(i+1] == 6.0x33/(qrxar);

D{1] :=D[i] + (q+q)x(15.0xprxpr + (p*+r)xgx(20.0xpr + T7.0xq2)

+ @2x(8.0x(p2 + r2) + 21.0xpr + q2 + ¢2))/(paqarxpaqr);

D(1-1] := D[1-1] + 6.0xq3/(Paxpa);

El1] := ¢2x(pxar + 3.0xpax(gr+r+r))/(paqrxqr);

E{1-1] := E[1-1] + q2x(rxpq + 3.Oxarx(pa+p*p))/(pagrxpa);
Fli-1] := q3/paqr

end q <>0

end i;

if r £ 0.0 then D{m] := D[m] + 6.0xrxr2/(qrxqr);

comment First and second order divided differences of the given

function values stored in B[N1+1l:N2] and C[N1+2:N2] respectively.

Take care of double and triple knots;

s := y[N1};

for1 :=N1+ 1 step 1 until N2 do

if x[i] = x[1-1] then B[i] := y[1]

else

begin

B{1] := (y[i] -8)/(x[1] = x[1-1]);

s := y[i]

end 1;

for1 := N1 + 2 step 1 until N2 do

1f x(1] = x{1-2) then

begin C[1] := y[11x0.5; B[4] := B{i-1] end

else C[1] := (B[1] - B[1-1])/(x[1] - x[1-2]);

coment Solve the linear system with C{i+2] - C{i+l] as right-hand side;

if m > N1 then

begin

p := C[N1] := E[m] := FIN1] := F{m-1] := F[m] := 0.0;

C[N1+1] := C[N1+3] - C[N1+2]; D[N1+1l] := 1.0/D[N1+1]

end m >NI1; |

for1 :=N1+ 2 step 1 untilmdo
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begin |
q := D[1-1]xE[1i-1];

D[1] := 1.0/(D[1] - pxF[i-2] - qxE[1-1]);
E(i] := E[1] - qxF[i-1];

cli] := c[1+2] - C[i+1] - pxC[1-2] - qxCli-1]; |

p := D[i-1]xF[1i-1)

end i;

m :=N1+ 1; C[N2-1] := C[N2] := 0.0;

for4 := N2 - 2 step -1 until m do_

Ci] := (Cli) - E[1])xC(i+1] - Fli]xc[i+2]))xD[4];

comment Integrate the third derivative of S(x);

m :=N2 - 1;

q := x[N1+1] - x[N1l]; r := x[N1+2] - x[N1+1]; bl := B[N1+l];

q> := axqxq; qr :=q + Ir;

Vv :=1t := if qr = 0.0 then 0.0 else C[N1l+1l]/qr;

F[N1] := if q = 0.0 then 0.0 else v/q;

fori :=N1+ 1 step 1 untilmdo

begin

pP:=q;q :=7T;

r := if 1 = N2 - 1 then 0.0 else x[1+2] - x[4+1]; |
P> :=q95;5 QO = gxaxq; Pq :=gr; qr :=q + Ir;

8 :=t; t := if qr = 0.0 then 0.0 else (C[i+1l] - C[i])/ar;

us=v; vi=t - 8s;

if pq = 0.0 then

begin Ci] := 0.5xy[i+1]; D[4i] := E[1] := F[1] := 0.0 end :

else \
begin

F(4] := if q = 0.0 then F{i-1] else v/q;
E{1] := 5.0x5;

D[i] := 10.0x{C[i] - axs);

C(i] :=D{i]x(p - q) + (Bl[i+1l] - B[i] + (u - E[i])xP3

- (v + E[1])xa3)/ra3 |

B[1] := (px(B[1+1] - vxq3) + qx(B[i] - wp3))/m

- pxax(D[4] + E[1]x(q = P)) :

end pg <>0

end 1;
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comment End points x{N1] and x[N2];

p := x[N1+1] - x[N1]; 8 := F[N1]xpxpxp;

E[N1] := D[N1] := 0.0; |

C[Nl] := C[N1+1l] - 10.0xs;

B[N1] := bl - (C[N1] + s)xp;

q := x[N2] « x[N2-1]; t := F[N2-1]xagxaxq;

E[N2] := D[N2] := 0.0;

C[N2] := C[N2-1] + 10.0xt;

B[N2] := B[N2] + (C[N2] - t)xq

end QUINAT;
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| APPENDIX II

Algol 60 procedure QUINEQ

procedure QUINEQ(N1,N2) data:(y) result:(B,C,D,E,F);

value N1,N2; integer N1,N2; array y,B,C,D,E,F;

cament QUINEQ computes the coefficients of a quintic natural spline

S(x) interpolating the ordinates y[i] at equidistant points x[i],
i = N1 through N2. For xx in [x[1],x{i+1]) the value of the spline

function S(xx) is given by the fifth degree polynomial:

S(xx) = ((((Pli]lxt + E[1])xt + D[1])xt + Cl[i])xt + B[1])xt + yli]

with t = (x - x{1])/(x[i+1] - x[1]}).

Input:
N1,N2 subscript of first and last data point respectively, it 1s

required that N2 > N1 + 1,

y{N1:N2] the given function values (ordinates).

Output:

B,C,D,E,F[N1:N2] arrays collecting the coefficients of the quintic

natural spline S(xx) as described above. Specifically

B[i] = s'(x[1]), C4] = s"(x[1])/2, D1] = 8" (x[1])/6,

E(1] = s""(x[1])/24, F{1] = sV(x[1]+0)/120. F[N2] is neither

used nor altered. The arrays y,B,C,D must always be distinct.

If E and F are not wanted, the call QUINEQ(N1l,N2,y,B,C,D,D,D)

may be used to save storage locations; |

if N2 > N1 + 1 then

begin

integer i,n;

real p,q,Tr,s8,t,u,v; |
n:=N2 «> p:=q:=r ::=8 :=t%t := 0.03

for {4 := Nl step 1 until n do

begin

u := pxr; B[i] := 1,0/(66.0 - uxr - q);

C{i] :=r := 26.0 = wu;

Di] := y[i+3] - 3.0x(y[i+2] = y{i+1]) = y[i] - uxs - gxt;

q :=p; P :=B[i); t := 8; 8 :=D[1]

end 1;
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D[N1+1] := D[N1+2] := 0.0;

for1 :=n step -1 until N1 do

Dii} := (D[1]} - C[i)xD[i+1] - D[i+2])xBl1];

n:=N2 -1; q :=0.03r :=t :=v ¢:=D[N1];

for i := N1 + 1 step 1 until n do

begin

P:=q3 qQ :=r; rr :=D[i]; 8 := t;

F[i] t=t t= p~-q =q+ r;

E[1) :=u := 5.0x(-p + q);

D[i] := 10.0x(p + q);

Cli} := O.5x(y[i+1] + yli-1] + 5 = t) - y[i] - u;

B[1] := 0.5x(y[4+1] - y[i-1] - 5s - t) - D[i]

end 4;

F[N1] := v; E[N1] := E[N2] := D[N1] := D[N2] := 0.0;

C[Nl] := C[N1+1l] ~ 10.0xv; C(N2] := C[N2-1] + 10.0xt;

B[N1] := y[Nl+1] - y[N1] = CIN1] =~ v;

B[N2] := y[N2] - y(N2-1] + C[N2] - t

end QUINER
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APPENDIX III

Algol 60 procedure QUINDF

procedure QUINDF(N1,N2) data:(x,y,yp) result:(C,D,E,F);

value N1,N2; integer N1,N2; array x,y,yp,C,D,E,F;

comment QUINDF camputes the coefficients of a quintic natural spline

S(x) for which the ordinates y[i] and the first derivatives yp(i]

are specified at points x[1], i = N1 through N2. For xx in

[x{1],x[3+1]) the value of the spline function S(xx) is given by

the fifth degree polynomial:

S(xx) = ((((Flilxt + E[i])xt + D[i])xt + C[1])xt + yp[i])xt + yl1)

witht = xx - x[1].
Input:

N1,N2 subscript of first and last data point respectively, it is

required that N2 > Nl,

x,Y,yp[N1:N2] arrays with x[1] as abscissa, y[i] as ordinate and |

ypli) as first derivative at the i-th data point. The

elements of the array x must be strictly monotone increasing

or decreasing.

Output:

C,D,E,F[N1:N2] arrays collecting the coefficients of the quintic

natural spline S(xx) as described above. E[N2] and F[N2] are

neither used nor altered. The arrays C,D,E,F must always be

distinct;

if N2 > N1 then

begin

integer i,ml,m2;

real g,h,hh,Dp,pp,q,99,%,u,V,V;

array B[N1:N2];

ml :=N1+ 1; m2 := N2 - 1;

h := x[ml] - x[N1]; E[N1] := 4.0xh; F[N1l] := 3.0xh;

u t= 0.0; v := 0.75;

p := (ylml) - y[N1])/(hxh); q := ypiml)/h;

B[N1] := 0.0; C[N1] :=q =p - p + yp(N1]/h;

for i := ml step 1 until m2 do
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begin

hh := h; h := x{1+1] - x[1i];

Pp =p; p := (yli*d) - y[1])/(hxh);

qq := q; q := ypli+l]l/h; t := yp(1]/h;

D{i] := 6.0x(hh + h) - uyhh - vxF{i-1];

B[i] :=p = t - qq + pp - uxB[i-1] - vxC[i-1]; |
g := 3.0xh; w := g/D[i];

E[1] z= 4.0¥h - wxg; F[1] := g - wih;

C[i] :=q -p -p+ t - wxB[1];

u := h/d{i]); v := F{1]}/E[1]

end i;

B(N2] := 0.03 t :=C[m2] := C{m2]/E[m2];

fori := m2 step -1 until ml do

begin

B{1] := (B[1] - (3.0)c[4] + Bli+1])x(x[4+1) - x[1i]))/Di1};

C[i~1] := (C[i-1] - F[4i-1]xB[i])/E[1i-1]

end 1;

for i := N1 step 1 until m2 do

begin

h := x[1+1] - x[1];

Fi] := (B[i#1] - C[4] - Cc[1] + B[1])/(hxh);

E(1] := 5.0x(c{1] - B[1])/n; |

D1] := 10.0xB[1];

C1] := 0.5x(yp[i+1] - yp[i])/h - (T.5xBl[1] + 5.0xC[1] + 2.5xBli+1])xh

end i; |

D[N2] := 0.0;

c(x2] := 0.5x(yp(N2] - yp(m2])/h + 2.5x(B[m2] + t + t)xh

end QUINDF;
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