
(*MONITORS: AN<OPERATING SYSTEM
STRUCTURING CONCEPT

BY

C . A. R. Hoare

| STAN-CS-73-40I

NOVEMBER 1973

COMPUTER SCIENCE DEPARTMENT

Scnool of Humanities and Sciences

STANFORD UNIVERSITY

y S50JING

Monitors: an operating system

¢ structuring concept

C. A. R. Hoare

5 The Queen's University of Belfast

Summary

- This paper develops Brinch-Hansen's concept of a monitor [1, 2, 3]

as a method of structuring an operating system. It introduces a form

of synchronization, describes a possible method of implementation in

terms of semaphores, and gives a suitable proof rule. Illustrative

: examples includéa single resource scheduler, a bounded buffer, an alarm

clock, a buffer pool, a disc head optimizer, and a version of the

problem of readers and writers [U4].

&

5

¢

k,

This paper is based on an address delivered to IRIA, France. May 11, 1973.

The publication of this paper 1s supported by the National Science

q Foundation under grant number GJ 36473X. Reproduction in whole or in
part 1s permitted for any purpose of the United States Government.

1
b

C

1. Introduction

A primary alm of an operating system 1s to share a computer 1nstalla-

tion among many programs making unpredictable demands upon 1ts resources.

A primary task of its designer 1s therefore to construct resource

allocation (or scheduling) algorithms for resources of various kinds

t (main store, drum store, magnetic tape handlers, consoles, etc.). In
order to simplify his task, he should try to construct separate schedulers

for each class of resource. Each scheduler will consist of a certain

. amount of local administrative data, together with some procedures and
functions which are called by programs wishing to acquire and release

resources. Such a collection of assoclated data and procedures 1s known

as a monitor; and a suitable notation can be based on the class notation

C of SIMULA6T [6].

monitorname: monitor

begin. . . declarations of data local to the monitor;

procedure procname(... formal parameters . ..).

‘ begin . . . procedure body . . . end;
... declarations of other procedures local to the monitor;

... 1nitialization of local data of the monitor . . .

end;
b

Note that the procedure bodies may have local data, in the normal way.

In order to call a procedure of a monitor, it 1s necessary to give

) the name of the monitor as well as the name of the desired procedure,

b separating them by a dot:

monitorname.procname(...actual parameters...);

In an operating system it 1s sometimes desirable to declare several

monitors with identical structure and behavior, for example to schedule

L two similar resources. In such cases, the declaration shown above will

be preceded by the word class, and the separate monitors will be declared

to belong to this class:

monitor 1, monitor 2: classname;

b. Thus the structure of a class of monitors is identical to that described

for a data representation in [13], except for addition of the basic word
monitor. Brinch-Hansen uses the word shared for the same purpose [3].

b 2

The procedures of a monitor are common to all running programs, in

| the sense that any program may at any time attempt to call such a

procedure. However, it is essential that only one program at a time

actually succeed 1n entering a monitor procedure, and any subsequent

calls must be held up until the previous call has been completed.

¢ Otherwise, 1f two procedure bodies were in simultaneous execution, the

effects on the local variables of the monitor could be chaotic. The

procedures local to a monitor should not access any non-local variables

‘ other than those local to the same monitor, and these variables of the

(W monitor should be inaccessible from outside the monitor; if these

restrictions are imposed, it is possible to guarantee against certain

of the obscurer forms of time dependent coding error; and this guarantee

could be underwritten by a visual scan of the text of the program, which

6 could readily be. automated in a compiler.

Any dynamic resource allocator will sometimes need to delay a program

which wishes to acquire a resource which 1s not currently available, and

to resume that program after some other program has released the resource

(4 required. We therefore need a "wait" operation, issued from inside a

procedure of the monitor, which causes the calling program to be delayed;

and a "signal" operation, also issued from inside a procedure of the same

monitor, which causes exactly one of the waiting programs to be resumed

« immediately; if there are no waiting programs, the signal has no effect.

In order to enable other programs to release resources during a walt, a

walt operation must relinquish the exclusion which would otherwise prevent

) entry to the releasing procedure. However, a signal operation must be

| § followed immediately by resumption of a waiting program, without possibility

of an intervening procedure call from yet a third program. It is only in

this way that a waiting program has an absolute guarantee that it can

acquire the resource just released by the signalling program, without any

\ danger that a third program will interpose a monitor entry and seize the

resource 1nstead.

In many cases, there may be more than one reason for waiting, and

these need to be distinguished by both the waiting and the signalling

.“ operation. We therefore introduce a new type of variable known as a

"condition"; and the writer of a monitor should declare a variable of type

5

C

condition for each reason why a program might have to wait. Then the wait

. and signal operations should be preceded by the name of the relevant

condition variable, separated from it by a dot:

condvariable.wait;

condvariable.signal;

S Note that a condition "variable" 1s neither true nor false; indeed,

1t does not have any stored value accessible to the program. In practice,

a condition variable will be represented by an (initially empty) queue of

processes which are currently waiting on the condition; but this queue 1is

‘ invisible both to waiters and signallers. This design of the condition
variable has been deliberately kept as primitive and rudimentary as

possible, so that it may be implemented efficiently and used flexibly to

achieve a wide variety of effects. There is a great temptation to

‘ introduce a more-complex synchronization primitive, which may be easier

to use for many purposes. We shall resist this temptation for a while.

As the simplest example of a monitor, we will design a scheduling

algorithm for a single resource, which is dynamically acquired and

‘ released by an unknown number of customer processes by calls on

procedures

procedure acquire;

procedure release;

‘ A variable

busy:Boolean */
) determines whether or not the resource 1s in use. If an attempt 1s made

to acquire the resource when 1t 1s busy, the attempting program must be

‘ delayed by waiting on a variable
nonbusy:condition ,

which 1s signalled by the next subsequent release. The initial value of

busy 1s false. These design decisions lead to the following code for the

monitor:

. 5 As in PASCAL [15] a variable declaration is of the form:
(variable identifier): (type);

ly

1

single resource:monitor

‘ begin busy:Boolean;

nonbusy:condition;

procedure acquire;

begin if busy then nonbusy .wait;
\ busy :=true

end;

procedure release;

begin busy:=false;

$ nonbusy.signal

end;

busy :=false; comment initial value;

end single resource.

Notes

(1) In designing a monitor, it seems natural to design the procedure

headings, the data, the conditions, and the procedure bodies, in

‘ that order. All subsequent examples will be designed in this way.

(2) The acquire procedure does not have to retest that busy has gone

false when it resumes after its wait, since the release procedure

has guaranteed that this is so; and as mentioned before, no other

‘ program can intervene between the signal and the continuation of

exactly one waiting program.

(3) If more than one program is waiting on a condition, we postulate

that the signal operation will reactivate the longest waiting program.

This gives a simple neutral queuing discipline which ensures that

every walting program will eventually get its turn.

(4) The single resource monitor simulates a Boolean semaphore [7] with

] acquire and release used for P and V respectively. This 1s a

‘ simple proof that the monitor/condition concepts are not in principle
less powerful than semaphores, and can be used for all the same

purposes.

p

:

2. Interpretation

Having proved that semaphores can be implemented by a monitor, the

next task 1s to prove that monitors can be implemented by semaphores.

Obviously, we shall require for each monitor a Boolean semaphore

"mutex",to ensure that the bodies of the local procedures exclude each

4 other. The semaphore 1s initialized to 1 ; a P (mutex) must be executed

on entry to each local procedure, and a V(mutex) must usuallybe

executed on exit from it.

When a process signals a condition on which another process 1s waiting,

L the signalling process must walt until the resumed process permits it to

proceed. We therefore introduce for each monitor a second semaphore

"urgent" (initialized to 0), on which signalling processes suspend

themselves by the operation P (urgent) . Before releasing exclusion,

k each process must. test whether any other process 1s waiting on urgent ,

and 1f so, must release it instead by a V(urgent) instruction. We

therefore need to count the number of processes waiting on urgent , 1n

an integer "urgentcount" (initially zero). Thus each exit from a procedure

of a monitor should be coded:

if urgentcount > 0then V(urgent) else V(mutex) .

Finally, for each condition local to the monitor, we introduce a

semaphore "condsem" (initialized to 0), on which a process desiring to

L walt suspends itself by a P(condsem) operation. Since a process

signalling this condition needs to know whether anybody 1s waiting, we

also need a count of the number of waiting processes held in an integer

"variable "condcount" (initially 0). The operation "cond.wait" may now

q be implemented as follows (recall that a waiting program must release

exclusion before suspending itself):

condcount :=condcount + 1;

1f urgentcount > 0 then V(urgent) elseV (mutex);

P (condsem);

condcount :=condcount-1.

The signal operation may be coded:

urgentcount :=urgentcount+ 1;

if condcount > 0then {V(condsem); P(urgent)};

urgentcount :=urgentcount-1.

¢

In this implementation, possession of the monitor is regarded as a

“ privilege which 1s explicitly passed from one process to another. Only

when no-one further wants the privilege 1s mutex finally released.

This solution 1s not intended to correspond to recommended "style"

in the use of semaphores. The concept' of a condition-variable is

QC intended as a substitute for semaphores, and has its own style of usage,

in the same way that while-loops or co-routines are intended as a substi-

tute for jumps .

: In many cases, the generality of this solution 1s unnecessary, and

$ a significant improvement 1n efficiency 1s possible:

(1) When a procedure body 1n a monitor contains no walt or signal,

exit from the body can be coded by a simple V (mutex) , since

urgentcount cannot have changed during the execution of the body.

(2) If a cond.signal 1s the last operation of a procedure body, it
can be combined with monitor exit as follows:

1f condcount > 0 then V(consem)

‘ else if urgentcount > 0 then V(urgent)
else V(mutex).

(3) If there 1s no other wait or signal 1n the procedure body, the

second line shown above can also be omitted.

‘ (4) If every signal occurs as the last operation of its procedure
body, the variables urgentcount and urgent can be omitted, together

with all operations upon them. This is such a simplification that

O0-J. Dahl suggests that signals should always be the last operation of a

monitor procedure; in fact this restriction is a very natural one, which

has been unwittingly observed in all examples of this paper.

Significant improvements in efficiency may also be obtained by

L avoiding the use of semaphores, and implementing conditions directly in
hardware, or at the lowest and most uninterruptible level of software

(e.g. supervisor mode). In this case, the following optimizationsare

possible:

(1) wurgentcount and condcount can be abolished, since the fact

that someone 1s walting can be established by examining the representation

of the semaphore, which cannot change surreptitiously within non-interruptible

mode.

7

’

¢

(2) Many monitors are very short and contain no calls to other

$ monitors. Such monitors can be executed wholly in non-interruptible

mode, using, as 1t were, the common exclusion mechanism provided by

hardware. This will often involve less time in non-interruptible mode

than the establishment of separate exclusion for each monitor.

$ I am grateful to J. Bezivin, J. Horning, and R. M. McKeag for

assisting in the discovery of this algorithm.

$ 5. Proof Rules

The analogy between a monitor and a data representation has been

noted 1n the introduction. The mutual exclusion on the code of a monitor

ensures that procedure calls follow each other in time, just as they do

in sequential programming; and the same restrictions are placed on access

to non-local data. These are the reasons why the same proof rules can be

applied to monitors as to data representations.

As with a data representation, the programmer may associate an

& . invariant & with the local data of a monitor to describe some condition

which will be true of this data before and after every procedure call.

Jd must also be made true after initialization of the data, and before

every walt instruction; otherwise the next following procedure call will

not find the local data in a state which it expects.

With each condition variable b the programmer may associate an

assertion B which describes the condition under which a program waiting

on b wishes to be resumed. As mentioned above, a waiting program must

ensure that the invariant § for the monitor is true beforehand. This

gives the proof rule for waits:

3 {b.wait}l S&B.

Since a signal can cause 1mmediate resumption of a waiting program, the

conditions J#&B which are expected by that program must be made true

before the signal; and since B may be made false again by the resumed

program, only § may be assumed true afterwards. Thus the proof rule

for a signal 1is:

S&B {b.signally.

This exhibits a pleasing symmetry with the rule for waiting.

8

€

The introduction of condition variables makes it possible to write

$ monitors subject to the risk of deadly embrace [7].it, is the responsibility
of the programmer to avoid this risk, together with other scheduling

disasters (thrashing, indefinitely repeated overtaking, etc. [11l]). Assertion-

oriented proof methods cannot prove absence of such risks; perhaps it 1is

L better to use less formal methods for such proofs.

Finally, 1n many cases an operating system monitor constructs some

"virtual" resource which 1s used in place of actual resources by its

"customer" programs. This virtual resource is an abstraction from the

‘“ set of local variables of the monitor. The program prover should therefore
define this abstraction in terms of its concrete representation, and then

express the intended effect of each of the procedure bodies in terms of

the abstraction. This proof method is described in detail in [13].

| -.

4. Example: Bounded Buffer

A bounded buffer 1s a concrete representation of the abstract idea

‘ of a sequence of portions. The sequence is accessible to two programs
running in parallel; the first of these (the producer) updates the sequence

by appending a new portion x at the end, and the second (the consumer)

updates 1t by removing the first portion. The initial value of the

‘ sequence 1s empty. We thus require two operations:

(1) append (x:portion);

) which should be equivalent to the abstract operation

sequence := sequence 7(x);

where (x) 1s the sequence whose only item is x and “ denotes

concatenation of two sequences.

(2) remove(result x:portion);

which should be equivalent to the abstract operations

X :=first (sequence); sequence :=rest (sequence);

where first selects the first item of a sequence and rest denotes the

sequence with 1ts first item removed. Obviously, if the sequence is empty,

first 1s undefined; and in this case we want to ensure that the consumer

waits until the producer has made the sequence nonempty.

9

-B

<

We shall assume that the amount of time taken to produce a portion

I or consume 1t 1s very large 1n comparison with the time taken to append
or remove it from the sequence. We may therefore be justified in making

a design in which producer and consumer can both update the sequence, but

not simultaneously.

C The sequence 1s represented by an array
buffer : array O0..N-1 of portion;

and two variables:

(1) lastpointer:0..N-1;

. which points to the buffer position into which the next append operation
will put a new item, and

(2) count :0..N;

‘ which always holds the length of the sequence (initially 0).

We define the function

seq(b,1,c¢) =4¢ if ¢ = 0 then empty
else seq(b,el,c-1)"(b[te1])

‘ where the circled operations are taken modulo N . Note that if c #0 ,
first(seq(b,f,c)) = bl[lec]

and

rest(seq(b,f,c)) = seq(b,i,c-1) .

‘ The definition of the abstract sequence in terms of its concrete
representation may now be given:

] sequence = seq (buffer, lastpointer, count).
Less formally, this may be written

‘ sequence = (buffer|lastpointer & count],
buffer|lastpointer ® count ®11],

buffer lastpointere 1l])

C Another way of conveying this information would be by an example and a
picture, which would be even less formal.

The invariant for the monitor is:

0 < count<N & 0 < lastpointer <N-1 .

There are two reasons for waiting, which must be represented by

condition variables.

10

nonempty:condition;

‘ means that the count > 0 , and

nonfull:condition;

means that the count <N .

With this constructive approach to the design [8], it is relatively

‘ easy to code the monitor without error.

bounded buffer: monitor

begin buffer:array 0..N-1 ofportion;
lastpointer:0..N-1;

| count :0..N;
L nonempty,nonfull:condition;

procedure append(x:portion);

begin1f count =N then nonfull.wait;
note 0 <count < Nj
buffer|lastpointer] :=x;

‘ lastpointer :=lastpointer »1;
count :=count+l;

nonempty.signal

end append;

procedure remove(result x:portion);

¢ begin if count =0 then nonempty.wait;
note 0 < count <Nj
x :=buffer|lastpointer © count];
c ount :=count-1;

nonfull.signal

t end remove;
count :=0; lastpointer :=0;

end bounded buffer;

C A formal proof of the correctness of this monitor with respect to
the stated abstraction and invariant can be given 1f desired by techniques

described in[13]. However, these techniques seem not capable of dealing

with subsequent examples of this paper.

C Single-buffered input and output may be regarded as a special case
of the bounded buffer with N = 1 . In this case, the array can be

replaced by a single variable, the lastpointer is redundant, and we get:

\

11
L

4

1o0stream:monitor

h begin buffer:portion;
count:0..1;

nonempty,nonfull:condition;

procedure append(x:portion); |

| begin if count =1 then nonfull.wait;
= buffer :=x;

count :=1;

nonempty.signal
end append;

procedure remove(result x:portion);

S begin if count =0 then nonempty.wait;
X :=buffer;

count :=o0;

nonfull.signal
end remove;

count :=0; _

end iostream;

If physical output 1s carried out by a separate special purpose

channel, then the interrupt from the channel should simulate a call of

lostream.remove(x); and similarly, physical input, simulatinga call of

iostream.append(x) .

5. Scheduled Waits

] Up to this point, we have assumed that when more than one program is

waiting for the same condition, 3 signal will cause the longest waiting

program to be resumed. This is a very good simple scheduling strategy,

which precludes indefinite overtaking ofa waiting process.

However, 1n the design of an operating system, there are many cases

when such simple scheduling on the basis of first-come -first-served 1s

not adequate. In order to give a closer control over scheduling strategy,

we introduce a further feature of a conditional wait, which makes it

possible to specify as a parameter of the walt some indication of the

priority of the waiting program, e.g.:

busy.wait(p);

When the condition 1s signalled, it 1s the program that specified the

lowest value of p that 1s resumed. In using this facility, the designer

12

-

¢ |

of a monitor must take care to avoid the risk of indefinite overtaking;

.“ and often 1t 1s advisable to make priority a non-decreasing function of

the time at which the wait commences.

This introduction of a "scheduled wait" concedes to the temptation

to make the condition concept more elaborate. The main justifications are:

¢ (1) It has no effect whatsoever on the logic of a program, Or on
the formal proof rules. Any program which works without a scheduled wait

will work with it, but possibly with better timing characteristics.

(2) The automatic ordering of the queue of waiting processes 1s a

simple fast scheduling technique, except when the queue is exceptionally

long -- and when 1t 1s, central processor time is not the major bottleneck.

(3) The maximum amount of storage required 1s one word per process.

¢ Without such a built-in scheduling method, each monitor may have to
allocate storage proportionalto the number of its customers; the alternative

of dynamic storage allocation in small chunks 1s unattractive at the low

level of an operating system where monitors are found.

¢ I shall yield to one further temptation, to introduce a Boolean
function of conditions:

condname.queue

. which yields the value true if anyone is waiting on condname and false
otherwise. This can obviously be easily implemented by a couple of

instructions, and affords valuable information which could otherwise be

- obtained only at the expense of extra storage, time, and trouble.

A trivially simple example of the use of this facility 1s an alarm-

clock monitor, which enables a calling program to delay itself for a

stated number n of time-units, or "ticks". There are two entries:

procedure wakeme (n:integer);

procedure tick;

The second of these 1s invoked by hardware (e.g., an interrupt) at regular

intervals, say ten times per second. Local variables are

now: integer;

which records the curreut time (initially zero) and

wakeup:condition;

13

on which sleeping programs walt. But the alarm setting at which these

. programs will be aroused is known at the time when they start the wait;

and this can be used to determine the correct sequence of waking up.

alarmclock:monitor

. begin now:integer;

wakeup:condition;

procedure wakeme(n:integer);

& begin alarmsetting:integer;

alarmsetting :=now+ nj;

while now < alammsetting do wakeup.wait(alarmsetting);

wakeup.signal; comment 1n case the next process 1s due to

wake up at the same time;

end;

procedure tick;

begin now :=now+1;

wakeup.signal

end;

now :=0

end alarmclock.

. In the program given above, the next candidate for wakening is actually

woken at every tick of the clock. This will not matter if the frequency

of ticking 1s low enough, or the overhead of an accepted signal 1s not too

high. When these conditions are not met, the overhead can be easily

reduced to one extra signal per wakening, by introducing an extra variable

nextalarm: integer

which holds a copy of the alarmsetting of the next process due to be awoken.

When a process 1s woken up too early, it will merely reset the nextalarm

and go to sleep again:

14

C |

alarmclock:monitor

\ .
begin now, nextalarm:integer;

wakeup:condition

procedure wakeme (n:integer);)
. if n > 0 then

myalarm:integer;

myalarm :=now+n;

1f nextalarm > myalarm then nextalarm :=myalarm;

1 while now < myalarm do

begin wakeup.wait (myalarm);

nextalarm :=myalarm

end;

LS wakeup.signal; comment to allow the next process to set

nextalarm;

end wakeme;

« procedure tick;

begin now:=now+1;

if now > nextalarm then wakeup.signal

end tick;

C
now :=0

end alarmclock;

I am grateful to A. Ballard and J. Horning for posing this problem.

6. Further Examples

C In proposing a new feature for a high-level language 1t 1s very

difficult to make a convincing case that the feature will be both easy to

use efficiently and easy to implement efficiently. Quality of implemen-

tation can be proved by a single good example, but ease and efficiency

of use require a great number of realistic examples; otherwise 1t can

appear that the new feature has been specially designed to suit the

15

<

examples, or vice-versa. This section contains a number of additional

“ examples of solutions of familiar problems. Further examples may be

found in [14].

6.1 Buffer Allocation |

. The bounded buffer described in Section 3 was designed to be suitable

only for sequences with small portions, for example, message queues. If

the buffers contain high volume information, (for example, files for

pseudo-offline input and output), the bounded buffer may still be used to

& store the addresses of the buffers which are being used to hold the

information. In this way, the producer can be filling one buffer while

the consumer 1s emptying another buffer of the same sequence. But this

requires an allocator for dynamic acquisition and relinquishment of buffer

“ addresses. These may be declared as a type

type bufferaddress = 1..B;

where B 1s the number of buffers available for allocation.

The buffer allocator has two entries:

'u procedure acquire(result b:bufferaddress);

which delivers a free buffer-address b ; and

procedure release (b:bufferaddress);

which returns a buffer address when it is no longer required. In order

« to keep a record of free buffer addresses, the monitor will need:

freepool:powerset bufferaddress;

which uses the PASCAL powerset facility to define a variable whose values

) range over all sets of buffer addresses, from the empty set to the set

| containing all buffer addresses. It should be implemented as a bitmap

of B consecutive bits, where the i-th bit is 1 1f and only 1f 1 1s

-1n the set. There 1s only one condition variable needed:

nonempty:condition

. The code for the allocator is:

\

16

\

C

buffer allocator:monitor

\ begin freepool:powerset bufferaddress;

nonempty:condition;

procedure acquire (result b:buffecaddress);

« begin 1f freepool= empty then nonempty.wait;

b :=first(freepool); comment any one would do;

freepool:= freepool- {b}; comment set subtraction;

end acquire;

\ procedure release (b:bufferaddress);

begin freepool :=freepoolJ {bl};

nonempty .signal

| end release;
\

freepool :=all buffer addresses

end buffer allocator.

$ The action of a producer and consumer may be summarized:

producer: begin b:bufferaddress; . . .

while not finished do

yg bufferallocator.acquire(b);

... fill buffer b

bounded buffer.append(b)

) end:. . .

« end producer;

consumer: begin b:bufferaddress; . . .

while not finished do

C begin bounded buffer.remove(b);

... empty buffer b

buffer allocator.release(b)

end;. . .

< end consumer;

17
¢

This buffer allocator would appear to be usable to share the buffers

‘ among several streams, each with its own producer and its own consumer.

Unfortunately, when the streams operate at widely varying speeds, and

when the freepool 1s empty, the scheduling algorithm can exhibit

persistent undesirable behavior. If two producers are competing for

3 each buffer as 1t becomes free, a first-came-first-served discipline of

allocation will ensure (apparently fairly) that each gets alternate

buffers, and they will consequently begin to produce at equal speeds.

But if one consumer is a 1000 lines/min printer and the other is a 10

‘ lines/min teletype, the faster consumer will be eventually reduced to the
speed of the slower, since it cannot forever go faster than its producer.

At this stage nearly all buffers will belong to the slower stream, so the

situation could take a long time to clear.

The solution to this 1s to use a scheduled walt, to ensure that in

heavy load conditions the available buffers will be shared reasonably

fairly between the streams that are competing for them. Of course,

inactive streams need not be considered, and streams for which the consumer

‘ 1s currently faster than the producer will never ask for more than two

buffers anyway. In order to achieve fairness in allocation, 1t 1s

sufficient to allocate a newly freed buffer to that one among the

competing producers whose stream currently owns fewest buffers. Thus the

system will seek a point as far away from the undesirable extreme as

possible.

) For this reason, the entries to the allocator should indicate for
what stream the buffer is to be (or has been) used, and the allocator

must keep a count of the current allocation to each stream in an array:

count: array stream of integer;

The new version of the allocator is:

18

C

bufferallocator:monitor

L

begin freepool:powerset bufferaddress;

nonempty:condition

count: array stream of integer;

* procedure acquire(result b:bufferaddress; s:stream);
beginif freepool= empty then nonempty.wait(count[s]);

count{ s] :=count[s]+1;

b :=first (freepool);

. freepool := freepool - {b}
end acquire;

procedure release (b:bufferaddress; s:stream)

begin counts] :=count[s]-1;

\ freepool :=freepooll{b};

nonempty.signal

end;

freepool :=all buffer addresses;

‘ for s:stream do counts] :=0
end bufferallocator.

Of course, 1f a consumer stops altogether, perhaps owing to mechanical

L failure, the producer must also be halted before it has acquired too many
buffers, even 1f no-one else currently wants them. This can perhaps be

. most easily accomplished by appropriate fixing of the size of the bounded

buffer for that stream, and/or, by ensuring that at least two buffers are

‘ reserved for each stream, even when inactive. It is an interesting comment
on dynamic resource allocation that as soon as resources are heavily loaded,

the system must be designed to fall back towards a more static regime.

I am grateful to E. W. Dijkstra for pointing out this problem and

it solution [10].

6.2 Disc Head Scheduler

On a moving head disc, the time taken to move the heads increases

monotonically with the distance travelled. If several programs wish to

move the heads, the average waiting time can be reduced by selecting first

19

<

the program which wishes to move them the shortest distance. But

unfortunately this policy 1s subject to an instability, since a program

wishing to access a cylinder at one edge of the disc can be indefinitely

overtaken by programs operating at the other edge or the middle.

A solution to this 1s to minimize the frequency of change of direction

~ of movement of the heads. At any time, the heads are kept moving in a

given direction, and service the program requesting the nearest cylinder

in that direction. If there is no such request, the direction changes,

: and the heads make another sweep across the surface of the disc. This

. may be called the "elevator" algorithm, since it simulates the behavior

of a lift in a multi-story building.

There are two entries to a disc head scheduler:

(1) request (dest:cylinder) ;

where

type cylinder = O..cylmax;

which 1s entered by a program just before issuing the instruction to move

“ the heads to cylinder dest.

(2) release;

which 1s entered by a program when it has made all the transfers it needs

on the current cylinder.

he The local data of the monitor must include a record of the current
headpoisition, the current direction of sweep, and whether the disc 1s

. busy:

headpos:cylinder;

. direction: (up, down);
busy:Boolean.

We need two conditions, one for requests waiting for an upsweep and the

other for requests waiting for a downsweep:

upsweep, downsweep:condition.

|

C 20

dischead:monitor

“ begin headpos:cylinder;
direction:(up, down);

busy:Boolean;

upsweep, downsweep:condition;

« procedure request (dest:cylinder);

begin if busy then

{if headpos < dest Vv headpos = dest & direction = up

then upsweep.wait (dest)

. else downsweep.wait(cylmax - dest);
busy :=true; headpos :=dest

end request;

procedure release;

- begin busy :=false;
if direction = up then

{if upsweep.queue then upsweep.signal

" else {direction :=down;
downsweep.signal}}

else 1f downsweep.queuethen downsweep.signal

else {direction :=up;

« upsweep.signal}
end release;

headpos :=0; direction :=up; busy := false

end dischead;
©

.6.3 Readers and Writers

As a more significant example, we take a problem which arises in

Y on-line real-time applications such as airspace control. Suppose that
each aircraft 1s represented by a record; and this record 1s kept up to

date by a number of "writer" processes, and accessed by a number of

"reader" processes. Any number of "reader" processes may simultaneously

4 access the same record, but obviously any process which is updating

(writing) the individual components of the record must have exclusive

access to it, or chaos will ensue. Thus we need a class of monitors; an

\ 21

instance of this class local to each individual aircraft record will

. enforce the required discipline for that record. If there are many

aircraft, there 1s a strong motivation for minimizing local data of the

monitor; and 1f each read or write operation 1s brief, we should also

minimize the time taken by each monitor entry.
“ When many readers are interested in a single aircraft record, there

1s a danger that a writer will be indefinitely prevented from keeping

that record up to date. We therefore decide that a new reader should

not be permitted to start 1f there is a writer waiting. Similarly, to

. avoid the danger of indefinite exclusion of readers, all readers waiting

at the end of a write should have priority over the next writer. Note

that this is a very different scheduling rule from that propounded in [4],

and does not seem to require such subtlety in implementation. Nevertheless,

\ 1t may be more suited to this kind of application, where it 1s better to

read stale information that to wait indefinitely!

The monitor obviously requires four local procedures:

start read entered by reader who wishes to read.

“ end read entered by reader who has finished reading.

start write entered by writer who wishes to write.

end write entered by writer who has finished writing.

We need to keep a count of the number of users who are reading, so that

\ the last reader to finish will know this fact

readercount: integer.

J We also need a Boolean to indicate that someone 1s actually writing:

busy:Boolean;

~ We introduce separate conditions for readers and writers to wait on:
OKtoread, OKtowrite:condition;

The following annotation 1s relevant

OKtoread = — busy

by OKtowrite = — busy & readercount=0
invariant :busy = readercount=0

«

« 22

class readers and writers:monitor

begin readercount:integer;

busy :Boolean;

OKtoread, OKtowrite:condition;

procedure star-tread;
« pPIoveidtic

begin if busy V Oktowrite.gueue then OKtoread.wait;

readercount :=readercount + 1;

OKtoread.signal; comment once one reader can start, they all can;

“ end startread;

procedure endread;

begin readercount :=readercount -1;

. if readercount =0 then OKtowrite.signal
end endread;

procedure startwrite;

begin

. if readercount # 0 Vv busy then OKtowrite.wait

busy :=true

end startwrite;

. procedure endwrite;
begin busy:= false;

if OKtoread.queue then OKtoread.signal else OKtowrite.signal

end endwrite;

~ readercount :=0;

busy :=false;

end readers and writers;

~ I am grateful to Dave Gorman for assisting in the discovery of this
solution.

\

25

<

7. Conclusion

- This paper suggests that an appropriate structure for a module of

an operating system, which schedules resources for parallel user

processes, 1s very similar to that of a data representation used by a

sequential program. However, in the case of monitors, the bodies of the

~ procedures must be protected against re-entrancy by being implemented as

critical regions. The textual grouping of critical regions together with

the data which they update seems much superior to critical regions

scattered through the user program, as described in [12]. It also

~- corresponds to the traditional practice of the writers of operating

| system supervisors. It can be recommended without reservation.

However, 1t 1s much more difficult to be confident about the condition

concept as a synchronizing primitive. The synchronizing facility which is

~ easiest to use 1s probably the conditional wait [2, 12]
walt (B);

where B 1s a general Boolean expression (it causes the given process to

wait until B becomes true); but this may be too inefficient for general

~ use 1n operating systems. The condition variable gives the programmer
better control over efficiency and over scheduling; 1t was designed to be

very primitive, and to have a simple proof rule. But perhaps some other

compromise between convenience and efficiency might be better. The

~ question whether the signal should always be the last operation of a
monitor procedure 1s still open. These problems will be studied in the

. design and implementation of a pilot project operating system, currently

enjoying the support of the Science Research Council of Great Britain.
-

i. Acknowledgments

The development of the monitor concept is due to frequent discussions

~ and communications with E. W. Dijkstra and P. Brinch-Hansen. A monitor
corresponds to the "secretary" described in [9], and is also described

in [1, 2].

Acknowledgment is also due to the support of IFIP WG. 2.3, which

- provides a meeting place at which these and many other ideas have been

germinated, fostered, and-tested.

~ 2h

References

[1] Brinch-Hansen, P. "Structured Multiprogramming," C.ACM, Vol. 15,

No. 7 (July 1972).

[2] Brinch-Hansen, P.~ "A comparison of two synchronizing concepts,”

C Acta Informatica 1, 190-199, (1972).
[3] Brinch-Hansen, P. Operating System Principles. Prentice-Hall, 1973.

[Lb] Courtois, P. J., Heymans, F., Parnas, D. I. "Concurrent control

with readers and writers," C.ACM 1k, 667-668 (1971).

C [5] Courtois, P. J., Heymans, F., Parnas, D. L. "Comments on [2],"
Acta Informatica 1, 375-376 (1972).

[6] Dahl, 0. J. T'Hierarchical Program Structures" in Structured

Programming, Academic Press, 1972.

C [7] Dijkstra,, E. W. "Cooperating Sequential Processes" in Programming
Languages, (ed. F. Genuys), Academic Press, 1968.

[8] Dijkstra, E. W. "A constructive approach to the problem of program

correctness," BIT, 8, 174-186 (1968).

[9] Dijkstra, E. W. "Hierarchical Ordering of Sequential Processes,"

in Operating Systems Techniques, Academic Press, 1972.

[10] Dijkstra, E. W. "Information streams sharing a finite buffer,"

Information Processing Letters, 1, 5, 179-180, (October 1972).

q [11] Dijkstra, E. W. "Scheduling strategies admitting bounded delays

only," Proceedings of the 1972 Spring Joint Computer Conference.

[12] Hoare, C. A. R. "Towards a Theory of Parallel Programming," in

) Operating Systems Techniques, Academic Press, 1972.

he [15] Hoare, C. A. R. "Proof of correctness of data representations,"

Acta Informatica 1, 271-281, (1972).

- [14] Hoare, C. A. R. "A structured paging system," Computer Journal,

lo, 3, 209-215, (1973).

“ [15] Wirth, N. "The programming language PASCAL," Acta Informatica 1, 1

35-63, (1971) .

.

25

