(*MONITORS: AN<OPERATING SYSTEM
/STRUCTURING CONCEPT

BY

C . A.R. Hoare

STAN-CS-73-401
NOVEMBER 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

Monitors: an operating system

structuring concept

C. A. R. Hoare

The Queen's University of Belfast

Summary

This paper develops Brinch-Hansen's concept of a monitor [1, 2, 3]
as a method of structuring an operating system. It introduces a form
of synchronization, describes a possible method of implementation in
terms of semaphores, and gives a suitable proof rule. Illustrative
examples includé a single resource scheduler, a bounded buffer, an alarm
clock, a buffer pool, a disc head optimizer, and a version of the

problem of readers and writers [L].

This paper is based on an address delivered to IRIA, France. May 11, 1973.

The publication of this paper is supported by the National Science
Foundation under grant number GJ 36473X. Reproduction in whole or in

part is permitted for any purpose of the United States Government.

1. Introduction

A primary aim of an operating system is to share a computer installa-
tion among many programs making unpredictable demands upon its resources.
A primary task of its designer is therefore to construct resource
allocation (or scheduling) algorithms for resources of various kinds
(main store, drum store, magnetic tape handlers, consoles, etc.). In
order to simplify his task, he should try to construct separate schedulers
for each class of resource. Each scheduler will consist of a certain
amount of local administrative data, together with some procedures and
functions which are called by programs wishing to acquire and release
resources. Such a collection of associated data and procedures is known
as a monitor; and a suitable notation can be based on the class notation
of SIMULA6T [6].

monitorname: monitor

begin . . . declarations of data local to the monitor;
procedure procname(... formal parameters . ..).
begin . . . procedure body . . . end;

declarations of other procedures local to the monitor;
initialization of local data of the monitor

end;

Note that the procedure bodies may have local data, in the normal way.

In order to call a procedure of a monitor, it is necessary to give
the name of the monitor as well as the name of the desired procedure,
separating them by a dot:

monitorname.procname(...actual parameters...);

In an operating system it is sometimes desirable to declare several
monitors with identical structure and behavior, for example to schedule
two similar resources. In such cases, the declaration shown above will
be preceded by the word class, and the separate monitors will be declared
to belong to this class:

monitor 1, monitor 2: classname;
Thus the structure of a class of monitors is identical to that described
for a data representation ;n [13], except for addition of the basic word

monitor. Brinch-Hansen uses the word shared for the same purpose [3].

The procedures of a monitor are common to all running programs, in
the sense that any program may at any time attempt to call such a
procedure. However, it is essential that only one program at a time
actually succeed in entering a monitor procedure, and any subsequent
calls must be held up until the previous call has been completed.
Otherwise, 1f two procedure bodies were in simultaneous execution, the
effects on the local variables of the monitor could be chaotic. The
procedures local to a monitor should not access any non-local variables
other than those local to the same monitor, and these variables of the
monitor should be inaccessible from outside the monitor; if these
restrictions are imposed, it is possible to guarantee against certain
of the obscurer forms of time dependent coding error; and this guarantee
could be underwritten by a visual scan of the text of the program, which
could readily be. automated in a compiler.

Any dynamic resource allocator will sometimes need to delay a program
which wishes to acquire a resource which is not currently available, and
to resume that program after some other program has released the resource
required. We therefore need a "wait" operation, issued from inside a
procedure of the monitor, which causes the calling program to be delayed;
and a "signal" operation, also issued from inside a procedure of the same
monitor, which causes exactly one of the waiting programs to be resumed
immediately; if there are no waiting programs, the signal has no effect.
In order to enable other programs to release resources during a wait, a
wait operation must relinquish the exclusion which would otherwise prevent
entry to the releasing procedure. However, a signal operation must be
followed immediately by resumption of a waiting program, without possibility
of an intervening procedure call from yet a third program. It is only in
this way that a waiting program has an absolute guarantee that it can
acquire the resource just released by the signalling program, without any
danger that a third program will interpose a monitor entry and seize the
resource instead.

In many cases, there may be more than one reason for waiting, and
these need to be distinguished by both the waiting and the signalling
operation. We therefore introduce a new type of variable known as a

"condition"; and the writer of a monitor should declare a variable of type

condition for each reason why a program might have to wait. Then the wait
and signal operations should be preceded by the name of the relevant
condition variable, separated from it by a dot:

condvariable.wait;

condvariable.signal;

Note that a condition "variable" is neither true nor false; indeed,
it does not have any stored value accessible to the program. 1In practice,
a condition variable will be represented by an (initially empty) queue of
processes which are currently waiting on the condition; but this queue is
invisible both to waiters and signallers. This design of the condition
variable has been deliberately kept as primitive and rudimentary as
possible, so that it may be implemented efficiently and used flexibly to
achieve a wide variety of effects. There is a great temptation to
introduce a more-complex synchronization primitive, which may be easier
to use for many purposes. We shall resist this temptation for a while.

As the simplest example of a monitor, we will design a scheduling
algorithm for a single resource, which is dynamically acquired and
released by an unknown number of customer processes by calls on
procedures

procedure acquire;

procedure release;
A variable

busy:Boolean f/
determines whether or not the resource is in use. If an attempt is made
to acquire the resource when it is busy, the attempting program must be
delayed by waiting on a variable

nonbusy:condition ,
which is signalled by the next subsequent release. The initial value of
busy is false. These design decisions lead to the following code for the

monitor:

¥
¥ As in PASCAL [15] a variable declaration is of the form:
(variable identifier):(type);

single resource:monitor
begin busy:Boolean;
nonbusy:condition;
procedure acquire;
begin if busy_then nonbusy.waif}
busy :=true
end;
procedure release;
begin busy:=false;
nonbusy.signal
end;
busy :=false; comment initial wvalue;

end single resource.

Notes
(1) 1In designing a monitor, it seems natural to design the procedure

headings, the data, the conditions, and the procedure bodies, in
that order. All subsequent examples will be designed in this way.

(2) The acquire procedure does not have to retest that busy has gone
false when it resumes after its wait, since the release procedure
has guaranteed that this is so; and as mentioned before, no other
program can intervene between the signal and the continuation of
exactly one waiting program.

(3) 1If more than one program is waiting on a condition, we postulate
that the signal operation will reactivate the longest waiting program.
This gives a simple neutral queuing discipline which ensures that
every waiting program will eventually get its turn.

‘(k) The single resource monitor simulates a Boolean semaphore [7T] with
acquire and release used for P and V respectively. This is a
simple proof that the monitor/condition concepts are not in principle
less powerful than semaphores, and can be used for all the same

purposes.

2. Interpretation

Having proved that semaphores can be implemented by a monitor, the
next task is to prove that monitors can be implemented by semaphores.

Obviously, we shall require for each monitor a Boolean semaphore
"mutex", to ensure that the bodies of the local procedures exclude each
other. The semaphore is initialized to 1 ; a P (mutex) must be executed
on entry to each local procedure, and a V(mutex) must usually be
executed on exit from it.

When a process signals a condition on which another process is waiting,
the signalling process must wait until the resumed process permits it to
proceed. We therefore introduce for each monitor a second semaphore
"urgent" (initialized to 0), on which signalling processes suspend
themselves by the operation P(urgent) . Before releasing exclusion,
each process must. test whether any other process is waiting on urgent ,
and if so, must release it instead by a V(urgent) instruction. We
therefore need to count the number of processes waiting on urgent , in
an integer "urgentcount" (initially zero). Thus each exit from a procedure
of a monitor should be coded:

if urgentcount > 0 then V(urgent) else V(mutex) .

Finally, for each condition local to the monitor, we introduce a
semaphore "condsem" (initialized to 0), on which a process desiring to
wait suspends itself by a P(condsem) operation. Since a process
signalling this condition needs to know whether anybody is waiting, we
also need a count of the number of waiting processes held in an integer
variable "condcount™ (initially 0). The operation "cond.wait" may now
be implemented as follows (recall that a waiting program must release
exclusion before suspending itself):

condcount :=condcount + 1;
if urgentcount > 0 then V(urgent) else V(mutex);
P (condsem) ;
condcount :=condcount-1.
The signal operation may be coded:
urgentcount :=urgentcount + 1;
if condcount > 0 then {V(condsem); P(urgent)};

urgentcount :=urgentcount-1.

In this implementation, possession of the monitor is regarded as a
privilege which is explicitly passed from one process to another. Only
when no-one further wants the privilege is mutex finally released.

This solution is not intended to correspond to recommended "style"
in the use of semaphores. The concept' of a condition-variable is
intended as a substitute for semaphores, and has its own style of usage,
in the same way that while-loops or co-routines are intended as a substi-
tute for jumﬁs.

In many cases, the generality of this solution is unnecessary, and

a significant improvement in efficiency is possible:

(1) When a procedure body in a monitor contains no wait or signal,
exit from the body can be coded by a simple V(mutex) , since

urgentcount cannot have changed during the execution of the body.

(2) If a Ebnd.signal is the last operation of a procedure body, it
can be combined with monitor exit as follows:
if condcount > 0 then V(consem)
else if urgentcount > 0 then V(urgent)

else V(mutex).

(3) If there is no other wait or signal in the procedure body, the

second line shown above can also be omitted.

(4) If every signal occurs as the last operation of its procedure
body, the variables urgentcount and urgent can be omitted, together
with all operations upon them. This is such a simplification that
0-J. Dahl suggests that signals should always be the last operation of a
monitor procedure; in fact this restriction is a very natural one, which

has been unwittingly observed in all examples of this paper.

Significant improvements in efficiency may also be obtained by
avoiding the use of semaphores, and implementing conditions directly in
hardware, or at the lowest and most uninterruptible level of software
(e.g. supervisor mode). In this case, the following optimizations are

possible:

(1) wurgentcount and condcount can be abolished, since the fact
that someone is waiting can be established by examining the representation
of the semaphore, which cannot change surreptitiously within non-interruptible

mode.

(2) Many monitors are very short and contain no calls to other
monitors. Such monitors can be executed wholly in non-interruptible
mode, using, as it were, the common exclusion mechanism provided by
hardware. This will often involve less time in non-interruptible mode
than the establishment of separate exclusion for each monitor.

I am grateful to J. Bezivin, J. Horning, and R. M. McKeag for

assisting in the discovery of this algorithm.

3. Proof Rules

The analogy between a monitor and a data representation has been
noted in the introduction. The mutual exclusion on the code of a monitor
ensures that procedure calls follow each other in time, just as they do
in sequential programming; and the same restrictions are placed on access
to non-local data. These are the reasons why the same proof rules can be
applied to monitors as to data representations.

As with a data representation, the programmer may associate an
invariant &8 with the local data of a monitor to describe some condition
which will be true of this data before and after every procedure call.

4 must also be made true after initialization of the data, and before
every wait instruction; otherwise the next following procedure call will
not find the local data in a state which it expects.

With each condition variable b the programmer may associate an
assertion B which describes the condition under which a program waiting
on b wishes to be resumed. As mentioned above, a waiting program must
ensure that the invariant ¢ for the monitor is true beforehand. This
gives the proof rule for waits:

8 {b.wait} I&B.
Since a signal can cause immediate resumption of a waiting program, the
conditions #&B which are expected by that program must be made true
before the signal; and since B may be made false again by the resumed
program, only § may be assumed true afterwards. Thus the proof rule
for a signal is:

8&B{b.signalldy.

This exhibits a pleasing symmetry with the rule for waiting.

The introduction of condition variables makes it possible to write
monitors subject to the risk of deadly embrace [T7]. t, is the responsibility
of the programmer to avoid this risk, together with other scheduling
disasters (thrashing, indefinitely repeated overtaking, etc. [11]). Assertion-
oriented proof methods cannot prove absence of such risks; perhaps it is
better to use less formal methods for such proofs.

Finally, in many cases an operating system monitor constructs some
"virtual"™ resource which is used in place of actual resources by its
"customer" programs. This virtual resource is an abstraction from the
set of local variables of the monitor. The program prover should therefore
define this abstraction in terms of its concrete representation, and then
express the intended effect of each of the procedure bodies in terms of

the abstraction. This proof method is described in detail in [13].

4. Example: Bounded Buffer

A bounded buffer is a concrete representation of the abstract idea
of a sequence of portions. The sequence is accessible to two programs
running in parallel; the first of these (the producer) updates the sequence
by appending a new portion x at the end, and the second (the consumer)
updates it by removing the first portion. The initial value of the

sequence is empty. We thus require two operations:
(1) append (x:portion);

which should be equivalent to the abstract operation
~
sequence := sequence - (X);
where (x) is the sequence whose only item is x and ™ denotes

concatenation of two sequences.
(2) remove(result x:portion);

which should be equivalent to the abstract operations

x :=first (sequence); sequence :=rest (sequence);
where first selects the first item of a sequence and rest denotes the
sequence with its first item removed. Obviously, if the sequence is empty,
first is undefined; and in this case we want to ensure that the consumer

waits until the producer has made the segquence nonempty.

We shall assume that the amount of time taken to produce a portion
or consume it is very large in comparison with the time taken to append
or remove it from the sequence. We may therefore be justified in making
a design in which producer and consumer can both update the sequence, but
not simultaneously. '

The sequence is represented by an array

buffer : array 0..N-1 of portion;

and two variables:
(1) lastpointer:0..N-1;

which points to the buffer position into which the next append operation

will put a new item, and
(2) count:0..N;

which always holds the length of the sequence (initially 0).
We define the function
seq(b,1,c) =g¢ if ¢ = 0 then empty
else seq(b,16l,c-1)"(b[2el])
where the circled operations are taken modulo N . ©Note that if c ﬁ 0,
first(seq(b,f,c)) = b[lec]
and
rest(seq(b,£,c)) = seq(b,2,c-1) .
The definition of the abstract sequence in terms of its concrete
representation may now be given:
sequence = . seq(buffer,lastpointer,count).
Less formally, this may be written
sequence = . (buffer(lastpointer & count],
buffer|lastpointer @count ®11],

blulfé‘er[lastpointere1])
Another way of conveying this information would be by an example and a
picture, which would be even less formal.
The invariant for the monitor is:
0 < count <N & 0 < lastpointer_ <N-1
There are two reasons for waiting, which must be represented by

condition variables.

10

nonempty:conditions
means that the count > 0 , and
nonfull:condition;
means that the count <N
With this constructive approach to the design [8], it is relatively
easy to code the monitor without error.
bounded buffer: monitor
begin buffer:array 0..N-1 of portion;
lastpointer:0..N-1;

count:0..N;
nonempty,nonfull:condition;

procedure append(x:portion);

begin if count =N then nonfull.wait;
note 0 < count < N;
buffer[lastpointer] :=x;
lastpointer :=lastpointer »1;
count :=count+l;
nonempty.signal

end append;

procedure remove(result x:portion);

begin if count =0 then nonempty.wait;
note 0 < count <Nj;
:=buffer(lastpointer @ count];
c ount :=count-1;
nonfull.signal
end remove;

count :=0; lastpointer :=0;
end bounded buffer;

A formal proof of the correctness of this monitor with respect to
the stated abstraction and invariant can be given if desired by techniques
described in [13]. However, these techniques seem not capable of dealing
with subsequent examples of this paper.

Single-buffered input and output may be regarded as a special case
of the bounded buffer with N = 1 . 1In this case, the array can be

replaced by a single variable, the lastpointer is redundant, and we get:

11

iostream:monitor

begin buffer:portion;
count:0..1;
nonempty,nonfull:condition;

procedure append(x:portion);

begin if count =1 then nonfull.wait;
buffer :=x;
count :=1;
nonempty.signal

end append;

procedure remove(result x:portion);

begin if count =0 then nonempty.wait;
X :;Bhffer;
count :=0;
nonfull.signal
end remove;

count :=0;

end iostream;

If physical output is carried out by a separate special purpose

channel, then the interrupt from the channel should simulate a call of
iostream.remove(x); and similarly, physical input, simulating a call of

iostream.append(x) .

5. Scheduled Waits

Up to this point, we have assumed that when more than one program is

waiting for the same condition, ga signal will cause the longest waiting
program to be resumed. This is a very good simple scheduling strategy,
which precludes indefinite overtaking of a waiting process.

However, in the design of an operating system, there are many cases
when such simple scheduling on the basis of first-come -first-served is

not adequate. In order to give a closer control over scheduling strategy,
we introduce a further feature of a conditional wait, which makes it

possible to specify as a parameter of the wait some indication of the
priority of the waiting program, e.g.:

busy.wait(p);
When the condition is signalled, it is the program that specified the

lowest value of p that is resumed. 1In using this facility, the designer

12

of a monitor must take care to avoid the risk of indefinite overtaking;
and often it is advisable to make priority a non-decreasing function of
the time at which the wait commences.

This introduction of a "scheduled wait" concedes to the temptation

to make the condition concept more elaborate. The main justifications are:

(1) It has no effect whatsoever on the logic of a program, or on
the formal proof rules. Any program which works without a scheduled wait

will work with it, but possibly with better timing characteristics.

(2) The automatic ordering of the queue of waiting processes is a
simple fast scheduling technique, except when the queue is exceptionally

long -- and when it is, central processor time is not the major bottleneck.

(3) The maximum amount of storage required is one word per process.
Without such a built-in scheduling method, each monitor may have to
allocate storage proportionalto the number of its customers; the alternative
of dynamic storage allocation in small chunks is unattractive at the low

level of an operating system where monitors are found.

I shall yield to one further temptation, to introduce a Boolean

function of conditions:
condname.queue

which yields the value true if anyone is waiting on condname and false
otherwise. This can obviously be easily implemented by a couple of
instructions, and affords valuable information which could otherwise be
obtained only at the expense of extra storage, time, and trouble.

A trivially simple example of the use of this facility is an alarm-
clock monitor, which enables a calling program to delay itself for a
stated number n of time-units, or "ticks". There are two entries:

procedure wakeme (n:integer);
procedure tick;

The second of these is invoked by hardware (e.g., an interrupt) at reqular
intervals, say ten times per second. Local variables are

now:integer;
which records the curreut time (initially zero) and

wakeup:condition;

15

on which sleeping programs wait. But the alarm setting at which these
programs will be aroused is known at the time when they start the wait;

and this can be used to determine the correct sequence of waking up.

alarmclock:monitor
begin now:integer;

wakeup:condition;

procedure wakeme(n:integer);

begin alarmsetting:integer;
alarmsetting :=now+ n;
while now < alarmsetting do wakeup.wait(alarmsetting);
wakeup.signal; comment in case the next process is due to

wake up at the same time;
end;
procedure tick;
begin now :=now+ 1;

wakeup.signal

end;
now :=0

end alarmclock.

In the program given above, the next candidate for wakening is actually
woken at every tick of the clock. This will not matter if the frequency
of ticking is low enough, or the overhead of an accepted signal is not too
high. When these conditions are not met, the overhead can be easily
reduced to one extra signal per wakening, by introducing an extra variable

nextalarm:integer

which holds a copy of the alarmsetting of the next process due to be awoken.
When a process is woken up too early, it will merely reset the nextalarm

and go to sleep again:

1k

alarmclock:monitor

begin now, nextalarm:integer;

wakeup:condition

procedure wakeme (n:integer);
if n > 0 then
myalarm:integer;
myalarm :=nowtn;
if nextalarm > myalarm then nextalarm :=myalarm;
while now < myalarm do
begin wakeup.wait (myalarm);
nextalarm :=myalarm
end;
wakeup.signal; comment to allow the next process to set
nextalarm;

end wakeme;

procedure tick;

begin now :=now+ 1;
if now > nextalarm then wakeup.signal

end tick;
now :=0

end alarmclock;

I am grateful to A. Ballard and J. Horning for posing this problem.

6. Further Examples

In proposing a new feature for a high-level language it is very
difficult to make a convincing case that the feature will be both easy to
use efficiently and easy to implement efficiently. Quality of implemen-
tation can be proved by a single good example, but ease and efficiency
of use require a great number of realistic examples; otherwise it can

appear that the new feature has been specially designed to suit the

15

examples, or vice-versa. This section contains a number of additional
examples of solutions of familiar problems. Further examples may be
found in [1h4].

6.1 Buffer Allocation

The bounded buffer described in Section 5 was designed to be suitable
only for sequences with small portions, for example, message queues. If
the buffers contain high volume information, (for example, files for
pseudo-offline input and output), the bounded buffer may still be used to
store the addresses of the buffers which are being used to hold the
information. In this way, the producer can be filling one buffer while
the consumer is emptying another buffer of the same sequence. But this
requires an allocator for dynamic acquisition and relinquishment of buffer
addresses. These may be declared as a type

type bufferaddress = 1..B;
where B is the number of buffers available for allocation.

The buffer allocator has two entries:

procedure acquire(result b:bufferaddress);
which delivers a free buffer-address b ; and

procedure release(b:bufferaddress);
which returns a buffer address when it is no longer required. In order
to keep a record of free buffer addresses, the monitor will need:

freepool:powerset bufferaddress;
which uses the PASCAL powerset facility to define a variable whose values
range over all sets of buffer addresses, from the empty set to the set
containing all buffer addresses. It should be implemented as a bitmap
of B consecutive bits, where the i-th bit is 1 if and only if i is
-in the set. There is only one condition variable needed:

nonempty:condition

The code for the allocator is:

16

buffer allocator:monitor

begin freepool:powerset bufferaddress;

nonempty:condition;
procedure acquire (result b:buffecaddress);

begin if freepool= empty then nonempty.wait;
b :=first(freepool); comment any one would do;
freepool:= freepool- {b}; comment set subtraction;

end acquire;
procedure release(b:bufferaddress);

begin freepool :=freepool U {b};
nonempty.signal

end release;
freepool :=all buffer addresses

end buffer allocator.

The action of a producer and consumer may be summarized:

producer: begin b:bufferaddress;
while not finished do
bufferallocator.acquire(b) ;
fill buffer b
bounded buffer.append(b)

end: . . .

end producer;

consumer: begin b:bufferaddress;
while not finished do
begin bounded buffer.remove(b);
empty buffer b
buffer allocator.release(b)
end; .

end consumer;

17

This buffer allocator would appear to be usable to share the buffers
among several streams, each with its own producer and its own consumer.
Unfortunately, when the streams operate at widely varying speeds, and
when the freepool is empty, the scheduling algorithm can exhibit
persistent undesirable behavior. If two producers are competing for
each buffer as it becomes free, a first-came-first-served discipline of
allocation will ensure (apparently fairly) that each gets alternate
buffers, and they will consequently begin to produce at equal speeds.

But if one consumer is a 1000 lines/min printer and the other is a 10
lines/min teletype, the faster consumer will be eventually reduced to the
speed of the slower, since it cannot forever go faster than its producer.
At this stage nearly all buffers will belong to the slower stream, so the
situation could take a long time to clear.

The solution to this is to use a scheduled wait, to ensure that in
heavy load conditions the available buffers will be shared reasonably
fairly between the streams that are competing for them. Of course,
inactive streams need not be considered, and streams for which the consumer
is currently faster than the producer will never ask for more than two
buffers anyway. In order to achieve fairness in allocation, it is
sufficient to allocate a newly freed buffer to that one among the
competing producers whose stream currently owns fewest buffers. Thus the
system will seek a point as far away from the undesirable extreme as
possible.

For this reason, the entries to the allocator should indicate for
what stream the buffer is to be (or has been) used, and the allocator
must keep a count of the current allocation to each stream in an array:

count: array stream of integer;

The new version of the allocator is:

18

bufferallocator:monitor

begin freepool:powerset bufferaddress;
nonempty:condition
count: array stream of integer;
procedure acquire(result b:bufferaddress; s:stream);

begin if freepool =empty then nonempty.wait(count[s]);
comt{ s] :=count[s]+1;
b :=first (freepool);
freepool := freepool - {b}

end acquire;

procedure release (b:bufferaddress; s:stream)
begin count[s] :=count[s]-1;
freepool := freepooll {b};
nonempty.signal

end;

freepool :=all buffer addresses;
for s:stream do count[s] :=0
end bufferallocator.

Of course, if a consumer stops altogether, perhaps owing to mechanical
failure, the producer must also be halted before it has acquired too many
buffers, even if no-one else currently wants them. This can perhaps be
most easily accomplished by appropriate fixing of the size of the bounded
buffer for that stream, and/or, by ensuring that at least two buffers are
reserved for each stream, even when inactive. It is an interesting comment
on dynamic resource allocation that as soon as resources are heavily loaded,
the system must be designed to fall back towards a more static regime.

I am grateful to E. W. Dijkstra for pointing out this problem and
it solution [10].

6.2 Disc Head Scheduler

On a moving head disc, the time taken to move the heads increases

monotonically with the distance travelled. If several programs wish to

move the heads, the average waiting time can be reduced by selecting first

19

the program which wishes to move them the shortest distance. But
unfortunately this policy is subject to an instability, since a program
wishing to access a cylinder at one edge of the disc can be indefinitely
overtaken by programs operating at the other edge or the middle.

A solution to this is to minimize the frequency of change of direction
of movement of the heads. At any time, the heads are kept moving in a
given direction, and service the program requesting the nearest cylinder
in that direction. If there is no such request, the direction changes,
and the heads make another sweep across the surface of the disc. This
may be called the "elevator" algorithm, since it simulates the behavior
of a lift in a multi-story building.

There are two entries to a disc head scheduler:
(1) request(dest:cylinder) ;

where
type cylinder = O..cylmax;
which is entered by a program just before issuing the instruction to move

the heads to cylinder dest.
(2) release;

which is entered by a program when it has made all the transfers it needs
on the current cylinder.

The local data of the monitor must include a record of the current
headpoisition, the current direction of sweep, and whether the disc is
busy:

headpos:cylinder;
direction: (up,down);
busy:Boolean.

We need two conditions, one for requests waiting for an upsweep and the
other for requests waiting for a downsweep:

upsweep, downsweep:condition.

20

dischead:monitor
begin headpos:cylinder;
direction: (up,down);
busy:Boolean;
upsweep, downsweep:condition;
procedure request (dest:cylinder);
begin if busy then
{if headpos < dest vV headpos = dest & direction = up
then upsweep.wait (dest)
else downsweep.wait(cylmax - dest)};
busy :=true; headpos :=dest

end request;
procedure release;

begin busy :=false;

if direction = up then

{ii upsweep.queue then upsweep.signal

else {direction :=down;

downsweep.signal}}
else if downsweep.queue then downsweep.signal

else {direction :=up;
upsweep.signal}l

end release;

headpos :=0; direction :=up; busy :=rfalse

end dischead;

.6.3 Readers and Writers

As a more significant example, we take a problem which arises in

on-line real-time applications such as airspace control. Suppose that
each aircraft is represented by a record; and this record is kept up to
date by a number of "writer" processes, and accessed by a number of

"reader" processes. Any number of "reader" processes may simultaneously
access the same record, but obviously any process which is updating

(writing) the individual components of the record must have exclusive

access to it, or chaos will ensue. Thus we need a class of monitors; an

21

instance of this class local to each individual aircraft record will
enforce the required discipline for that record. If there are many
aircraft, there is a strong motivation for minimizing local data of the
monitor; and if each read or write operation is brief, we should also
minimize the time taken by each monitér entry.

When many readers are interested in a single aircraft record, there
is a danger that a writer will be indefinitely prevented from keeping
that record up to date. We therefore decide that a new reader should
not be permitted to start if there is a writer waiting. Similarly, to
avoid the danger of indefinite exclusion of readers, all readers waiting
at the end of a write should have priority over the next writer. Note
that this is a very different scheduling rule from that propounded in [4],
and does not seem to require such subtlety in implementation. Nevertheless,
it may be more suited to this kind of application, where it is better to
read stale information that to wait indefinitely!

The monitor obviously requires four local procedures:

start read entered by reader who wishes to read.
end read entered by reader who has finished reading.
start write entered by writer who wishes to write.
end write entered by writer who has finished writing.
We need to keep a count of the number of users who are reading, so that
the last reader to finish will know this fact
readercount:integer.

We also need a Boolean to indicate that someone is actually writing:

busy:Boolean;

We introduce separate conditions for readers and writers to wait on:

OKtoread,OKtowrite:condition;
The following annotation is relevant
OKtoread = — busy
OKtowrite = - busy & readercount =0

invariant :busy = readercount =0

22

class readers and writers:monitor

begin readercount:integer;
busy:Boolean;
OKtoread, OKtowrite:condition;

procedure star-tread;

begin if busy V Oktowrite.queue then OKtoread.wait;

readercount :=readercount+ 1;
OKtoread.signal; comment once one reader can start, they all can;

end startread;
procedure endread;

begin readercount :=readercount -1;
if readercount =0 then OKtowrite.signal

end endread;

procedure startwrite;

begin
if readercount # 0 Vv busy then OKtowrite.wait
busy :=true

end startwrite;
procedure endwrite;

begin busy:= false;
if OKtoread.queue then OKtoread.signal else OKtowrite.signal

end endwrite;

readercount :=0;
busy :=false;

end readers and writers;

I am grateful to Dave Gorman for assisting in the discovery of this

solution.

25

ey —

7. Conclusion

This paper suggests that an appropriate structure for a module of
an operating system, which schedules resources for parallel user
processes, 1is very similar to that of a data representation used by a
sequential program. However, in the case of monitors, the bodies of the
procedures must be protected against re-entrancy by being implemented as
critical regions. The textual grouping of critical regions together with
the data which they update seems much superior to critical regions
scattered through the user program, as described in [12]. It also
corresponds to the traditional practice of the writers of operating
system supervisors. It can be recommended without reservation.

However, it is much more difficult to be confident about the condition
concept as a synchronizing primitive. The synchronizing facility which is
easiest to use is probably the conditional wait [2, 12]

wait (B);
where B is a general Boolean expression (it causes the given process to
wait until B becomes true); but this may be too inefficient for general
use in operating systems. The condition variable gives the programmer
better control over efficiency and over scheduling; it was designed to be
very primitive, and to have a simple proof rule. But perhaps some other
compromise between convenience and efficiency might be better. The
question whether the signal should always be the last operation of a
monitor procedure is still open. These problems will be studied in the
design and implementation of a pilot project operating system, currently

enjoying the support of the Science Research Council of Great Britain.

i. Acknowledgments

The development of the monitor concept is due to frequent discussions
and communications with E. W. Dijkstra and P. Brinch-Hansen. A monitor
corresponds to the "secretary" described in [9], and is also described
in (1, 3].

Acknowledgment is also due to the support of IFIP WG. 2.3, which
provides a meeting place at which these and many other ideas have been

germinated, fostered, and-tested.

24

References

[1] Brinch-Hansen, P. "Structured Multiprogramming," C.ACM, Vol. 15,
No. 7 (July 1972).

[2] Brinch-Hansen, P.~”"A comparison of two synchronizing concepts,"
Acta Informatica 1, 190-199, (1972).

[3] Brinch-Hansen, P. Operating System Principles. Prentice-Hall, 1973.

(k4] Courtois, P. J., Heymans, F., Parnas, D. L. "Concurrent control

with readers and writers," C.ACM 14, 667-668 (1971).

[5] courtois, P. J., Heymans, F., Parnas, D. L. "Comments on [2],"
Acta Informatica 1, 375-376 (1972).
[6] Dahl, 0. J. "Hierarchical Program Structures" in Structured

Programming, Academic Press, 1972.

[7] Dijkstra,, E. W. "Cooperating Sequential Processes" in Programming

Languages, (ed. F. Genuys), Academic Press, 1968.

[8] Dijkstra, E. W. "A constructive approach to the problem of program

correctness," BIT, 8, 174-186 (1968).

(9] Dijkstra, E. W. “"Hierarchical Ordering of Sequential Processes,"

in Operating Systems Techniques, Academic Press, 1972.

[10] Dijkstra, E. W. “"Information streams sharing a finite buffer,"
Information Processing Letters, 1, 5, 179-180, (October 1972).
[11] Dijkstra, E. W. "Scheduling strategies admitting bounded delays

only," Proceedings of the 1972 Spring Joint Computer Conference.
[12] Hoare, C. A. R. "Towards a Theory of Parallel Programming," in

Operating Systems Techniques, Academic Press, 1972.

{13] Hoare, C. A. R. "Proof of correctness of data representations,"”

Acta Informatica 1, 271-281, (1972).

- [14] Hoare, C. A. R. "A structured paging system," Computer Journal,
16, 3, 209-215, (1973).
[15] wirth, N. "The programming language PASCAL," Acta Informatica 1,
35-63, (1971)

25

1

