STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-2i0

STAN-CS-73-382

AXIOMATIC APPROACH TO TOTAL
CORRECTNESS OF PROGRAMS

BY

Zohar Manna and Amir Pnueli

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

July 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1973
MEMO AIM-210

COMPUTER SCIENCE DEPARTMENT
REPORT cs- 382

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS

by

Zohar Manna and Amir Pnueli

Abstract: We present here an axiomatic approach which enables one to
prove by formal methods that his program is "totally correct"
(i.e., it terminates and is logically correct -- does what it

N is supposed to do). The approach is similar to Hoare's

approach for proving that a program is '"partially correct"
(i.e., that whenever it terminates it produces correct results).
Our extension to Hoare's method lies in the possibility of
proving correctness and termination at once, and in the en-
larged scope of properties that can be proved by it.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
DAHC 15-73-C 0435.

The views and conclusions contained in this document are those of the
[author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
[Projects Agency or the U.S. Government.
l
g

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

]
~

L.

JULY 1973

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS
by

ZOHAR MANNA and AMIR PNUELI
Applied Mathematics Department
The Weizmann Institute of Science

Rehovot, Israel.

1. Introduction

We present here an axiomatic approach which enables
one to prove by formal methods that his program is “totally
correct” (i.e., it terminates and is logically correct --
does what it is supposed to do). The approach is similar
to Hoare'sapproach [1969] for proving that a program is
“partially correct” (i .e., that whenever it terminates it
produces correct results). OQOur extension to Hoare's method
lies in the possibility of proving correctness andtermina-
tion at once, and in the enlarged scope of propertiles that

can be proved by it. .

The class of programs we treat in this paper is the

class of while programs which are written in an Algol-like

language allowing assignment statements, conditional state-
ments, compound statements and while statements. Go to

statements and procedure calls are explicitly excluded, but
this restriction does not seem essential and can be removed

by appropriate extension of the results presented here.

To review Hoare's notation, he uses assertions of

the form

- {p(x) | B | q(x)}

Fe wWhere p |, q are predicates, and B is a program segment)
to mean that for every x, if p(X) holds prior to execu-
tion of B and the execution of B terminates, then the

- resulting values after execution will satisfy q(x). His
system consists of several basic assertions -- axioms-- de-
scribing the transformation on program variables effected

by simple statements, and _inference rules by which asser-

tions for small segments can be combined into one assertion

- for a larger segment. Among those are a composition rule,
a conditional rule, and a while rule. If starting from
the axioms about the simple statements of a program P , and

employing inference rules one is able to deduce

{6(x) | P | v(¥1 ,

then one has shown in fact the partial correctness of P
with respect to ¢ and ¥ , ie., that for every X satis-
fying ¢(x) for which the execution of P terminates,

Y(x) holds for the resulting variables’ values.

The assertion we will be using in our method is of the

form

<p(x) | B | a(x,x") >

to mean that for every X , if p(X) holds prior to execu-
tion of B , then the execution of B terminates and, de-
noting the set of resulting values by X' , q(x,x'} holds.
An immediate advantage of this notation is the ability to
express relations between values of variables before and
after the execution. 1In the rest of the paper we develop
the inference rules for our system which will also ensure
that termination is hereditary from constituents to larger

program segments.

Since we restrict ourselves to while programs, the
only element endangering termination is the while statement.
We attack the termination problem of the while statement by
requiring the existence of a function from the program
variables' domain to a well-founded set, such that on sub-
sequent executions of the while body its value decreases.
This function serves as a counter that can decrease only a
finite number of times, It is this need to compare values
of the counter function before and after execution of the
while body which motivated us to extend the notation to

relations between two sets of program variables.

If using our inference rules one is able to deduce

<o(x) | P | w(x,x") >

then one has shown in fact that P is totally correct

with respect to ¢ and ¢ ,i.e. , that for every x

satisfying ¢(x) , the execution of P terminates and
p(x,x') holds between the initial values x and the
resulting values Xx' . If one is only interested in

proving termination over ¢ it is sufficient to show
<elpl T > |
where T is the identically true predicate.

We should remark in passing that although our rules
are sufficient to show total correctness, they are by no
means unique or even the best possible. Many variations

and improvements probably exist.

IT. The Inference Rules

All the inference rules will be described by a set
of antecedents (conditions under which the rule is ap-
plicable) followed by a consequent which is the assertion
deduced. Each of the antecedents is either an assertion
(which should have been previously established) or a logi-
cal claim. All the logical claims are considered to be
closed by universally quantifying each of their free

variables on the same line.

We present first the straightforward rules dealing
with assignment, conditionals and compositions and leave

the while rule, which is the most complicated, to the end.

(a) Assignment Rule .
p(X) A X'=£(X) > q(Xx,Xx")

<P X+ fx |axXx")>
This rule is essentially an axiom since it uses only logi-
cal claims to create an assertion. Since f. is con-
sidered a basic function (not a user-defined procedure),

termination is as obvious as correctness.

(b) Conditional Rules

(b,) _ If-then-else
<p@ A t@® | B, | aX%,T) >
<p(® A ~t(X | B, | q(X,5") >

< p(x) | if t(Xx) then B, else B, | q(Xx,X') >

The rule should read as follows: If under p(X) we suc-
ceeded in showing separately that whether we proceed with
t(x) true to execute B, or with t(X) false to execute
B, , a(x,x') holds in both cases, then clearly if we
cross the combined conditional statement with p(x) ini-

tially true, we come out with q(x,x').

r—-

— r— -

Since the antecedents claim that both B,

and B,
when executed under the proper conditions terminate, the

termination of the conditional statement under p(X) fol -

lows.
(b2) If - do
<p(xX) A t(x)| B |a(x,x")>
P(X) A ~t(X) > q(X,X)

<p(X | if t(X) o B | q(X,x") >

This is the one clause (empty else) conditional statement.
Note that if we do not execute B we have to verify that

q(x,x) holds.

The following four rules are composition rules. gyme
of them facilitate composition of segments while the others allow

composition of predicates.

(c) Concatenation Rule

<p,(X) I B, I q,(x,x")>

(1)

<p,(X) 1 B, T q,(X,x") > (2)
q,(X,X') 2 p,(X") (3)
q,(x,x') A q, (X',X") > q(X,X") (4)

< PI(D I BI;BZ I Q(;:f') > .

-

Condition (3) ensures that the state after executiow

of B, satisfies p, -- the needed precondition for B, .

Condition (4) characterizes q(x,x") as a transfer
relation between X before execution and X" after exe-
cution of B ;B, . It requires an intermediate X' which
temporarily appears after execution of B‘ and before

execution of 32 .

Note that by our convention (4) is universally

quanitified over X X' and X".

(d) Consequence Rules

(d1) < r(x) | B | q(x,x") >
p(X) = r(X)

<p(® | B| a(x,x") >

(d2) < p(x)| B | s(x,x') >

s (X,X') @ q(X,x")

<p(x) | B | a(x,x') >

The validity of the rules is obvious when we consider

the meaning of the assertion.

(e) Or P:ule
<p,(X)1 B 1 q(x,x')>
<p,(x) | B| a(x,x") >

<p, XD vp,(X) | Bl a(x,x") >

This rule creates the possibility for proof by case

analysis.
(£) And Rule

<p(x) T B q (X,X")>
<p(x) 1 B|aq,(x,x") >

—— PN

<p(x) | B| 4, (3?,3(-')/\q2 (x,x") >

This rule enables one to generate incremental proofs,

by proving separately two independent properties, and then

combining them by the and rule.

Note that it is sufficient to prove termination for only one

of the antecedents ' conditions of the and rule, so that in prin-
ciple we could have a stronger rule:

< p® | B |q,(X%)>

{eX | B q,(x"

Tt

<p(X | B q,(x,X') A q,(x') >

where we reserve the notation {} to ‘partialcorrectness

assertion’.

() While Rule .

<px) A t(x) | B q(x,x") A [~t(X") v u(X) » u(x')] > (1)

T a(x,x') A t(x') 2 p(X")
a(x,x') A q(x',x") > q(X,X")

F(X) A ~t(X) = q(X,X)

<p(x)| whle t(xX) do B |a(X,x') A ~t(x')>
where (w,4) is a well-founded set and u:X+ W .

The above seemingly complicated rule is devised to
overcome several difficulties caused by the need to prove

termination. Termination of a looping while statement is

essentially ensured here by Floyd’s technique [1967], namely,

producing a function u whose values keep strictly decreasing

in subsequent executions of B.

Condition (1) requires establishing a well-founded set
(W,4) with a partial order <« satisfying the descending
chain condition, i.e., there is no infinite chain of glements
from W, a, +,a,),.. . Also required is a partial .function
u mapping some elements of our data domain X into elements
of w , If we were able to prove that after each execution
of B , u(X)$%u(x') (where by writing this inequality we
also mean that wu(x) and u(x') are both defined), then
clearly B cannot repeatedly execute an infinite number of

times or we would violate the descending chain condition.

The demand for the existence of a descending counter

which is defined for all executions of the while body B ,

(2)
(3)
4)

-

can be relaxed for the case of the last execution of B

Thus if wc are positive that this is the last execution of

B , we may allow the counter function to become undefined

or stop decreasing. Accordingly, we require in (1) the al-
ternatives of either ~t(x) true , implying immediate ter-
mination, or the existence of the counter function which will

also ultimately ensure termination.

Condition (2) requires that having executed B at
least once, and having t(x') correct at this instance ,
logically establishes p(x') . p(X) is exactly the condition
we need to use (1) once more and thus propagate the validity

of q for all subsequent executions.

Condition (3) ensures that q(x,x') is transitive.
There fore, once we showed in (1) that it holds over one exe-
cution of B , it follows that it will hold over any number of

repeated executions of B . Consequently, it will hold over

the repeating while statement.

Condition (4) deals with the case of the initially
vacant while statement, where B did not execute even once.

There also we wish to establish the final outcome q(x,x').

Note that (1) establishes the termination of B itself.

In the proofs appearing in the following examples we
often make use of the consequence rule within while rule deri-
vations without explicit indi cat ion. Thus, for example, we

ifrequent 1y use the condit ion :

10.

r—

r—

< pX) A t)| B |a(x,x')afu(x)>u(x")]>
which implies condition (1) above by the consequence rule.
Similarly we use the consequent:

<p(X)| while ¢(x) do B |q(x,x')>

omitting the conjunct .¢(x*)

I1.

I11. Illustration of the Method

We present below two examples for which we can prove
total correctness by our method. Because of the amount of
detail involved we will concentrate on proving termiration,
with only general indication of the modifications required

to add correctness.

Example 1

The following while program over the integers is
supposed to compute the greatest common divisor of two
positive integers x, and xz-,-gcd(xl,xz) -- leaving

the result in x To refer to program segments we

1 -

use ordinary Algol labels.

P: START

f: _while x #x, do

e: begin
. 1 > . -
b: while x,>x, do a: x <+« x, -Xx, ;
: 1 > : « -
d: while x,>x, do c X, + X, - X,
end

HALT .
We would like to prove that the propram P is totally

correct with respect to

¢(X1,X2) = xl >0 A xz > 0

and

12.

,‘,(x, X, ,x;,x;) =X, = g_g_c_l_(xl »X,) .

We prove in detail termination only. The well-founded
set we use is the domain of no&negative integers with
the ordinary < relation. As the termination function
for all while statements we take u(x,,x,)=x, + X, .
Our proof of termination distinguishes between two

cases according to whether x, > x, or x, < x, upon
entrance to the compound statement e . In the first
case, statement a is executed at least once (x,*+Xx,
decreasing), while statement c is executed 0 or more
times. (x, + x, remaining the same or decreasing). In
the second case statement a is never executed (x,; + x,
unchanged of course), while statement ¢ is executed at
least once (x;, + x, decreasing). We will therefore
analyze in our proof these two cases separately and then

combine their results using the Or rule.

In all the predicates of the Hllowing assertions the

conjunction x, > 0 A x, >0 1s omitted.

Lemma al, (Assignment Rule)

1 "= - | - + >yxl4+y!
Since X, >X, AX]=X "X, A X,;=X, D X +X,>XI+xX]

we get

+ l+"
<xl> le a |xlx2>xlx2>

by the assignment rule,

Lemma bl (While Rule)
We use the while rule with the following Predicates:
p(x) = €(x) = x, >x, ,
q(x,x") = X X, > X1+ X
Condition (1) of the while rule is justified by Lemma al.
We obtain

<X, >Xx b | x +x, > xj+x} >

2 |
Note that condition (4) of the while rule is trivially satis-

fied because
p(xX) A ~t(x) = F
Lemma ¢l (Assignment Rule)
Since

> = LI - + Sy'+yx !
)(2)(1A)(lXlez)(z)(ID)(l)(le)(:2 ,

we get by the assignment rule

- > b []
<x,>x; | ¢ |x, + x, X'+ ox>

Lemma d]l (While Rule)
Assume the following substitution:

and

p(x)= T , t(f)sx2>xl ,

q(x,x') =x, + x, 2Xx; + X,
Condition (1) of the while- rule is justified by Lemma cl.

We obtain

< T | dlx + x,2x; + x3>

14.

Note that condition (4) is satisfied since x;, + x,2Xx, + Xx, .

Lemma el (Concatenation Rule)
Combine Lemmas bl and dl and use

+ SxV'+yx! "4y ! LA L) + ANVl
Xl X2 Xl XZ A Xl)(2>,Xl Xz :xl X2>)(l Xz

Ase

e

15.

to obtain

<xp>x, lelx, + x,>x! + x!>

1 1

We now treat the case of x <x, upon entrance to e :

Lemma a2 (Assignment Rule)
Since

F Ax'= x -x A x'=x. o F
1 1 2 2 2

we have
<F| a]| F»>
Lemma b2 (While Rule)
Take
t(x) = x, > x,, p(x)=x <x, , and

AXE) = x]<xPAlx, + X, = x] + x))

By using a consequence of Lemma a2 we obtain

< X. <X

. o I b Ixp<xya(x, + x,=x] + xi)>

Condition (1) i1s satisfied here since by the consequence
rules < F | a | F> implies
<p(x)Aat(x)| a |q(x,x') a ~t(x') >
Note that under the initial condition X, <X, (e while
statement b never executes.
Lemma c2 (Assignment Rule)
By assignment rule
<x,<x, | ¢ | x +x, > x|+ x! >
Lemma- d2 (While Rule)
Take
p(x)

X X'} = ' '
q(x,x') = x; + x,>x; + Xx; ,

t(x) = x, <x

11

2 b

Usiny Lemma ¢2 we obtain

< x <v(2|d|xl

Lc-mma ¢2 (Concatenation

+ x >x' + x'>.
2 1 2

Rule)

By combining Lemmas b2 and d2 we obtain

<x; <x, |elx,

Lo mma e (Or Rule |

+ x2>x' + X

'
1 2 >

From Lemmas el and e2 combined we get

<x, Fx, lelx + x,>x] + x;>

Lemma £ (While Rule)
Take
t(x): x, #x, ,

q(x,x') £ x >0

"

p(x)

>
A X, 0

x>0 ax,> 0 , and

Note that x, >0 A x, >0 was implicitly assumed in all

2

previous preconditions.

Wi get:

Using Lemma e in condition (1)

<X, >0 A x,>0]P[x} - x >

1

2

16.

17

We have thus shown termination with the additional

information that on exit xl' = xz’

On trying to extend this result to prove correctness
as well as termination, we run into the notion of

incremental proofs, i .e., having proved some properties of

the program including termination, how do we prove addi-

tional properties without repeating the whole proof process.

For this particular example, this can be solved by the

following argument:

Assume that instead of any q(x,X') appearing in the

assertions we used the predicate
q(x,x') A [ged(x,,x,) = ged(x!,x})] .
It is not difficult to ascertain that all the lemmas
remain valid. Consequently , we are able to prove for the

complete program:

< x 0Ax >0 | P | x: = x, A ged(x, ,x,) = ged(x!,x})>,

1.€e.,

<x, >0 Aax, >0 P|x! = ged(x,,x,) >

18..

Generalizing the above argument, we may consider any

transitive relation s(x,x') with the following properties

VX[s (X,X)] and vx,X, X" [s(X,X')A s(X',X") 2 s (X,.X)] .

It is possible then to verify the following metatheorem:

Metatheorem. Suppose that a =2<¢@| P |wv(x,x")>

had been proved. Let s(x,x') be a transitive relation
such that for any lemma of the form <p(X) 1 B | q(X,x') >

used in proving . a , where B is an assignment statement

of P , it is possible to prove <p(X)] B |q(X,x").s(X,x')>.
Then the assertion et = <o | P | ¥(X,X') A s(X,X') >

is also true for the complete program.

Thus it is sufficient to treat assignment statements in

incrementing our claims. In the previous example, the only

assignment statements one has to consider are

which obviously preserve the gcd function.

In order to prove the metatheorem, one has to inspect
all the non-assignment rules and verify that if s was
preserved in the constituents it will be preserved in the

bigger segment.

19.

Example 2: Partition (Hoare[1961])

The purpose of the program given below is to rearrange
the elements of an array A of n+1’ N 22 . real numbers
A[0],...,A[n] and to find two integers i and j, such

that

and for the rearranged array

Vavb[(0 ca<ia j< b g n) 3 Ala] € A[b]]}

In other words, we would like to rearrange the elements of A
into two non-empty partitions such that those in the lower
partition A[0],.. . A[i-1] are less than or equal to those

in the upper partition A[j+1],... ,A[n] , where 0 €j<i€n .

P: START ;
S r «Aln+2p (i,j) «(0,n);
m: while i ¢ jd o

£: begin
e: begin b: while Afi}J<rdo a: i« i+ 1 ;
d: while r <A[j1 do c: j « j -1

end ;
ki if i <j do h: begin £: A[i) o A[j];
g:(i,j)« (i+1,j-1)
end
énd ¢

HALT.

20.

We will prove in detail termination only. Our proof
follows the ideas presented in Hoare's[1971] informal proof

of termination. We int roduce the following abbreviations

Ip[i s p <« n AT < Alp]]

11

a(i)

B(j) =23q[0¢qs 4 aAlqls 1]
These invariants are used to ensure that while i is stepped

up and j is stepped down they do not exceed the bounds of

n and O respectively,

Lemma a (Assignment Rule)

<a(i) A B(j)~ Ali] <r

|a: i+i+1|

a(i') AB(GD) A" > j'v jii 2 j'-i'] 4 n-i > n-i' >

Clearly B(j) validity is invariant since j is not
modified by this statement. From a(i) correctness we infer
the existence of p which since. A[p]J=r mustbe p >i , so
that we might take the same p to establish a(i+l) =a(i') .
The statement about n -i decreasing will be used for termina-
tion of- the while statement b , while the function j -1 will
be used for proving termination of m . Roth are over the
domain of non -negativeintepgers. The alternatives presented
are that cither this fTunctionis decreasing (non-increasing)

or j' < i' which will imply that this must be the last

-

o ——

21.

execution of 2. Note that if the second holds true, then
J' - i' is not defined.
Lemma b (While Rule)
Using Lemma a with

P(X) = a(i) A B8(j)

a(X,x') = a(i')ABG")A[L'> §' v 3 - i 3 §'- 1t

u(x) = n -1,
we get

< oa(i) A B8(j)

| b: while A[i]J<r do a: i « i + 1 |

BGG'") Qi > 3" v j -1 23" -i'].A'[i']> 1 >
Note that we do not need a(i') any more, but will use instead
the conclusion of the whle's termination A'[i'] %> r which
also implies i' 6 n.
Lemma ¢ (Assignment Rule)

<A[il3 T AB() A A[] > r

| €t j <+« -1

BG3I'Y AA[L'] 21 A [i'>5" Vv 3 - i3 j'-di'taj > jrs>,
The function .ensuring termination for the inner while d is j .
Lemma d (While Rule)

From Lemma c¢ with

P(X) = Ali]l 2 r 4 B(j)

a(,x"') = B(3") AA'[E')x A [E'> ' V3 - iy - i']

u(x) = j ,
we get

< A[i] 2 r A B(j)

| d: while r < A[j] do c: j «i- I |

AT 2 e A i >t v - ix jr - i1 AAT['] s >

22.

Lemma e (Concatenation Rule)
Combining Lemmas b and d we get
<a(i)aB(j)
| e: begin b; d end |
A'[§'] s v s A'[i']A[i" >3 v j -1 24" -i")>

Lemma f (Assignment Rule)

< A[jl] sr <A[i]lA i €]

| £ A[i} <> A[j] |

A'fi']srs A* [J '"IAj--di=j"'"- i' A i' g j' >
The condition 1 £j is added since it is known to be true if
we enter statement h . Clearly, after exchanging A[i] and

A[j] the previous inequalities are reversed.

Lemma g (Assignment Rule)
<1 €] a Ali] €r < A[j]
g (i,j) « (i+1,j-1)|
i'>3t v -1 >3- itaa(it)AB(G)]>

This result i.s obtained by case analysis: Either

1 +1Cj-1, in which case we have i< i'gj' < | and
we can take p = j to establish a(i') and q =i to
establish B(j') . The other case is i + 1> j -1 or,in

other words, i' > j' .

o s

‘o

Le mma h (Cencatenation Rule)

23.
By combining Lemmas fand g we get

<i<jAa Al <r gA[i]

| h: begin f; g end |

i'> v - i> G- it aa(i') AB@GNY
Lemma k (If - do Rule)

By Lemma h we get

< Al €t 5 A[i]

| k: i fi < j doh |

i*'>§'v [-1 >3'-1i"Aa(i') AB(")] >

Note that in the case where the do clause is skipped
1 >j , so that the conclusion is still correct.

Lemma ? (Concatenation Rule)

Combining Lemmas e and k we obtain:

<afi) A B(j)
|2: begin e; k end |
it>§r v [-i>3'-itaAaa(i') AB(i")] >
Note that by the consequence rule this can be rewritten as
< a(i) A B(3)
| 2: begin _e; k end |
[(L'< j') 2 a(i') A B(GI] A [1'>35' v j -i>j'-i"]>

which is in a form more useful for the next step.

Now we are ready to prove termination of the encompassing

while-statement. We have shown, in fact, that after one execution

of & starting with a(i), B(j) both valid, we either have

i' > j' which ensures no more repetitions of & or have

a(i'), B(j') true again and a termination function j -

strictly decreasing.

Lemma m (While Rule)

From lemma e with

p(X) = a(i) A~ B(j)

q(x,x') = i' < j" 2 [a(i') A B(i"],
we get

< a@i) AB(j)| m: while i €j doo | T>.
Lemma s (Assignment + Concatenation Rules)

Establishes the initial conditions:

<n 2] s, r <+ A[m=2]; (i,j) « (0,n) | a(i') A B(j") >

Lemma P (Concatenation Rule)

Concatenation of lemmas m and s yields

<n3x2|P}|T>,

which shows termination of P

24",

References

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to
Programs", Proc. Symp. Appl. Math. 19, American
Math. Soc. (1967), pp. 19-32.

HOARE [1961]. C. A. R. Hoare, "Algorithm 65 - Find",
CACM, Vol. 4, No. 7 (July 1971), p. 321.

HOARE [1969]. C. A. R. Hoare, "An Axiomatic Basis of
Computer Programming", CACM, Vol. 12, No. 10
(October 1969), pp. 576-580, 583.

HOARE [1971]. C. A. R. Hoare, "Proof of a Program: FIND",
CACM, Vol. 14, No. 1 (January 1971), pp. 39-45.

250

