
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

MEMO A IM-2i0

STAN-CS-73-382

AXIOMATIC APPROACH TO TOTAL

CORRECTNESS OF PROGRAMS

BY

Zohar Manna and Amir Pnueli

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

July 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

B72,

a STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1973
MEMO AIM-210

Co COMPUTER SCIENCE DEPARTMENT
REPORT cs-382

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS

by

Zohar Manna and Amir Pnueli

oo Abstract: We present here an axiomatic approach which enables one to
= prove by formal methods that his program is "totally correct"

(i.e., it terminates and is logically correct -- does what it
SN is supposed to do). The approach is similar to Hoare's
: approach for proving that a program is "partially correct"
| (i.e., that whenever it terminates it produces correct results).
. Our extension to Hoare's method lies in the possibility of
oo proving correctness and termination at once, and in the en-

larged scope of properties that can be proved by it.

ge

|

| : This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
DAHC 15-73-C 0435.

The views and conclusions contained in this document are those of the

| author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research

LL Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information

Service, Springfield, Virginia 22151.

| ~

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS

| oy

| ZOHAR MANNA and AMIR PNUELI
" Applied Mathematics Department

The Weizmann Institute of Science

Rehovot, Israel.
-

I Introduction

| We present here an axiomatic approach which enables

" one to prove by formal methods that his program is “totally

| correct” (1.e., it terminates and is logically correct --
does what it 1s supposed to do). The approach is similar

L to Hoare 'sapproach [1969] for proving that a program is

“partially correct” (1 .e., that whenever it terminates it

” produces correct results). Our extension to Hoare's method

lies in the possibility of proving correctness and termina-

tion at once, and 1n the enlarged scope of properties that
can be proved by it. .

The class of programs we treat in this paper 1s the

class of while programs which are written in an Algol-like

language allowing assignment statements, conditional state-

ments, compound statements and while statements. Go to

statements and procedure calls are explicitly excluded, but

this restriction does not seem essential and can be removed

by appropriate extension of the results presented here.

~ 2.

) To review Hoare's notation, he uses assertions of

the form

(p(x) | B | q(x)}

~ where p | q are predicates, and B 1s a program segment)

to mean that for every x, if p(x) holds prior to execu-

tion of B and the execution of B terminates, then the

- resulting values after execution will satisfy q(x). His

system consists of several basic assertions -- axioms-- de-

scribing the transformation on program variables effected

* by simple statements, and inference rules by which asser-

tions for small segments can be combined into one assertion

- for a larger segment. Among those are a composition rule,

* a conditional rule, and a while rule. If starting from

the axioms about the simple statements of a program P , and

employing inference rules one is able to deduce
-

(6x) | P| v(®} ,

~ then one has shown in fact the partial correctness of P

with respect to ¢ and ¥ , i.e. that for every Xx satis-

fying ¢(x) for which the execution of P terminates,

hs P(x) holds for the resulting variables’ values.

The assertion we will be using in our method 1s of the

form

< 3.

| —- I
Se <p(X) | BI a(x,x) >

to mean that for every X , if p(X) holds prior to execu-

) tion of B , then the execution of B terminates and, de-

. noting the set of resulting values by x' , q(x,x'} holds.

: An immediate advantage of this notation 1s the ability to

express relations between values of variables before and

“~ after the execution. In the rest of the paper we develop

] the inference rules for our system which will also ensure

that termination 1s hereditary from constituents to larger

-- program segments.

Since we restrict ourselves to while programs, the

only element endangering termination 1s the while statement.
“

- We attack the termination problem of the while statement by

requiring the existence of a function from the program

) variables' domain to a well-founded set, such that on sub-
“

sequent executions of the while body its value decreases.

This function serves as a counter that can decrease only a

finite number of times, It is this need to compare values
.

of the counter function before and after execution of the

while body which motivated us to extend the notation to

relations between two sets of program variables.
“.

If using our inference rules one 1s able to deduce

. then one has shown in fact that P is totally correct

.

| with respect to ¢ and ¢,i.e. , that for every x
| satisfying ¢(x) , the execution of P terminates and

~ p(x,x') holds between the initial values Xx and the

resulting values x' . If one is only interested in

) proving termination over ¢ it is sufficient to show

co lrl T >,

where T 1s the identically true predicate.

~ We should remark in passing that although our rules

are sufficient to show total correctness, they are by no

means unique or even the best possible. Many variations

N and improvements probably exist.

IT. The Inference Rules

All the inference rules will be described by a set

of antecedents (conditions under which the rule 1s ap-

plicable) followed by a consequent which 1s the assertion

) deduced. Each of the antecedents 1s either an assertion

(which should have been previously established) or a logi-

cal claim. All the logical claims are considered to be

closed by universally quantifying each of their free

variables on the same line.

R We present first the straightforward rules dealing

with assignment, conditionals and compositions and leave

= the while rule, which 1s the most complicated, to the end.

(a) Assignment Rule .

. p(X) A X'=£f(X) > q(x,x"')

] <pX) |x + fx |a(xXx")>

This rule 1s essentially an axiom since 1t uses only logi-

\ cal claims to create an assertion. Since f. is con-

sidered a basic function (not a user-defined procedure),

termination 1S as obvious as correctness.

= (b) Conditional Rules

(b,) _ If-then-else

<p(X A t(® | B, | a(X,X") >

< p(x) a ~t(x) |B, | q(x,x') >

< p(x) | if t(x) then B, else B, | q(x,Xx') > .
XN

The rule should read as follows: If under p(X) we suc-

ceeded in showing separately that whether we proceed with

t(x) true to execute B, or with t(X) false to execute
%

B, , a(x,x') holds in both cases, then clearly if we

cross the combined conditional statement with p(x) ini-

tially true, we come out with q(x,x').
..

\

6.

3 Since the antecedents claim that both B, ,,4 B
< 2

when executed under the proper conditions terminate, the

termination of the conditional statement under p(x) fq1-

lows.
.

(b2) If - do

<p(x) At(x)| B |aq(x,x")>

C P(X) A ~t(X) > q(X,%)

. < p(X) | if t(Xx) do B | q(X,x') > .

L This 1s the one clause (empty else) conditional statement.

i Note that if we do not execute B we have to verify that
q(x,x) holds.

L The following four rules are composition rules. gym.

| of them facilitate composition of segments while the others allow
composition of predicates.

y (c) Concatenation Rule

<p, (X) I B, I q,(X,x")> (2)

q,(x,x') > p,(x") (3)

q,(x,x') Aq, (X',x") > q(xX,x") (4)

Condition (3) ensures that the state after executiow

of B, satisfies p, -- the needed precondition for B,.

x Condition (4) characterizes q(x,x") as a transfer

relation between X before execution and X" after exe-

cution of B ;B,. [It requires an intermediate x' which

w temporarily appears after execution of B and before
execution of B, .

Note that by our convention (4) is universally

- quanitified over x . X' and Xx".

| (d) Consequence Rules
(d1) < r(x) | B | q(x,x")>

p(x> r(x)

- <p(X | Bj ax,x") >

(2) <p(x)|] B | s(x,x") >

s (x,x') @ q(X,Xx')

<p(x) | B | q(x,x') >

The validity of the rules 1s obvious when we consider

the meaning of the assertion.

L 8.

I (e) Or P:le<p (X) 1 BI a(x,x')>

<p, (x) |B] ax,x") >
-

<p, (X)vp,(x) | BI a(x,x') >

This rule creates the possibility for proof by case
"

analysis.

(£) And Rule

.. <p(x) I BI q (X,X')>

<p(x) I Bfq,(x,x')>

. <p(x) | B| 4, (x,x') Aq, (X,x')>

This rule enables one to generate incremental proofs,

by proving separately two independent properties, and then
\

combining them by the and rule.

Note that it 1s sufficient to prove termination for only one

- of the antecedents ' conditions of the and rule, so that in prin-
.“ —

ciple we could have a stronger rule:

<p) | B | q,(X%)>

. {po | B | a,

. < p(X) | B| q,(Xx,X"') A q,(X') >

. where we reserve the notation {} to ‘partialcorrectness
} assertion’.

«

(g) While Rule .

<prX) a t(X) | Bl qx,Xx") A [~t(X") v u(® » u(x)] > (1)

© a(x,x') A t(x') 2 p(x") (2)

| a(x,x') a q(x',x") » q(X,x") (3)
F(X) A ~t(X) 2 q(X,X) 4)

<p(x)| while t(x) do B |q(x,x')a~t(x')>

- where (w,4) is a well-founded set and u:X-+W .

The above seemingly complicated rule is devised to

overcome several difficulties caused by the need to prove
=

termination. Termination of a looping while statement is

| essentially ensured here by Floyd’s technique [1967], namely,

producing a function u whose values keep strictly decreasing

L in subsequent executions of B.

| Condition (1) requires establishing a well-founded set
(W,4) with a partial order <« satisfying the descending

- chain condition, i.e., there is no infinite chain of elements

from W, a, +,a,),.. . Also required is a partial function

u mapping some elements of our data domain X into elements

of w , If we were able to prove that after each execution

of B , u(x)%u(x') (where by writing this inequality we

also mean that u(x) and u(x') are both defined), then

clearly B cannot repeatedly execute an infinite number of

times or we would violate the descending chain condition.

The demand for the existence of a descending counter

~ which 1s defined for all executions of the while body B ,

go 10.

3 can be relaxed for the case of the last execution of B .

a Thus if wc are positive that this 1s the last execution of

| B , we may allow the counter function to become undefined

| or stop decreasing. Accordingly, we require in (1) the al-

h ternatives of either ~t(x) true , implying immediate ter-
mination, or the existence of the counter function which will

also ultimately ensure termination.

Condition (2) requires that having executed B at

least once, and having t(x') correct at this instance |,

L logically establishes p(x') . p(x) is exactly the condition

we need to use (1) once more and thus propagate the validity

~ of q for all subsequent executions.

_ Condition (3) ensures that q(x,x') is transitive.

| There fore, once we showed in (1) that it holds over one exe-
cution of B , it follows that it will hold over any number of

| repeated executions of B . Consequently, it will hold over
the repeating while statement.

~ Condition (4) deals with the case of the initially

vacant while statement, where B did not execute even once.

) There also we wish to establish the final outcome q(x,x').

: Note that (1) establishes the termination of B itself.

In the proofs appearing in the following examples we

often make use of the consequence rule within while rule deri-

vations without explicit indi cat ion. Thus, for example, we

irequent ly use the condit ion

: < pX) a t(x)| B |a(x,x")A[u(x)>u(x")]>

Co which implies condition (1) above by the consequence rule.

Similarly we use the consequent:

| <p(x)| while ¢t(X) do B |q(x,x')>

~ omitting the conjunct .t(x') .

C

-

L

| 17
3 ITI. Illustration of the Method

We present below two examples for which we can prove

aE total correctness by our method. Because of the amount of

detail involved we will concentrate on proving termiration,

with only general indication of the modifications required

| to add correctness.

| Example 1

The following while program over the integers 1s

- supposed to compute the greatest common divisor of two

| positive integers x, and x, -ged(x ,x } -- leaving
| R the result mn x,. To refer to program segments we

h use ordinary Algol labels.
| P: START
| f: _while x # x, do

. e: begin

b: while x, >x, do a: x, «Xx -Xx, ;

d: while x,>x, do cc x, + x, -X,
end

HALT.

We would like to prove that the propram P 1s totally

correct with respect to

¢(x,,x,) = x, > 0 ax, >0

and

| _- p(X, »X, »X15X,) = x, = ged(x, ,x,) .

| We prove in detail termination only. The well-founded

| set we use 1s the domain of no&negative integers with

E the ordinary < relation. As the termination function

oo for all while statements we take u(x,,x,)=x,+ Xx,.

| Our proof of termination distinguishes between two

- cases according to whether x, > x, or x, < x, upon
| entrance to the compound statement e . In the first

case, statement a 1s executed at least once (x, +x,

« decreasing), while statement c is executed 0 or more

times. (x, + x, remaining the same or decreasing). In

| the second case statement a is never executed (x;+ Xx,
unchanged of course), while statement ¢ is executed at

least once (x, + x, decreasing). We will therefore

analyze in our proof these two cases separately and then

~ combine their results using the Or rule.

In all the predicates of the llowing assertions the

conjunction x, > 0 A x, >0 1s omitted.
N

Lemma al, (Assignment Rule)

Since x, >X, A X[=X -X, A X,=X, 2 X +X>X]+X]

~
| | we get

| <x, > X, a | X,¥X,> x +x;

, by the assignment rule,

Fe 14.

- Lemma bl (While Rule)

N We use the while rule with the following Predicates:

| p(x) = ¥(x) = x, > x, ,

oo q(x,x') =x +x > X +X; .

- Condition (1) of the while rule 1s justified by Lemma al.

| We obtain

| <x,>x,|b | x; +x, > x{+x} > .

= Note that condition (4) of the while rule 1s trivially satis-

. fied because

| p(x) A ~t(x)= F .

Lemma cl (Assignment Rule)

Since

X,>X A X, =X, A X)=X,-X OD X, +X, >X' +x}
we get by the assignment rule

<x,>x,| cx, + x,> XI +x!
Lemma dl (While Rule)

Assume the following substitution:

p(x)= T t(x) = x, > x, , and

q(x,x')= x, + Xx, 2X] + Xx) .

Condition (1) of the while- rule 1s justified by Lemma cl.

We obtain

<T | d |x + x,2x; + x3>.

Note that condition (4) 1s satisfied since x, + x, 2X, + X,.

Lemma el (Concatenation Rule)

Combine Lemmas bl and dl and use

X, +X,>X +X; A X +x) 2x (+x) > x, +x, >x +x}

TTT

“oo 15.

to obtain

~ <x; >x, |e]lx, + x,>x! + x!> .

We now treat the case of x, <x, ypon entrance to e

: Lemma a2 (Assignment Rule)

- Since

F Ax'=X -x A Xx!=x_ o> F
1 1 2 2 2

| we have

~ <F| al] F>.

. Lemma b2 (While Rule)

Take

~ t(x) = x, > X, p(x) = x, <x, , and

} q(x,x') = x; <x; A(x, + X, = x} + x}).
By using a consequence of Lemma a2 we obtain

.. <x, <x, |b I xpexyoa (x; + x, =x] + xJ)>
Condition (1) 1s satisfied here since by the consequence

. rules < F | a | F> implies
\ - — _- — —

| < p(x) A t(x)]| a [| a(x,x') a ~t(x') >

Note that under the 1nitial condition X,<X, the while

statement b never executes.

\ :
Lemma c2 (Assignment Rule)

By assignment rule

< XxX, <x,| oc | Xp +X, > X| + x} >
A. .

Lemma- d2 (While Rule)

A Take

p(x) =t(x)=x,<x, , and
.. —_

q(x,x') = x, + X, > XxX, + X, ;

|
)

16.
Nor

Hsing, Lemma ¢2 we obtain

«<x <x| d |x + x >x' + x'">,
) 2 | 2 1 2

lemmae2 (Concatenation Rule)

By combining Lemmas b2 and d2 we obtain

’ ?

<x; <x, |e lx; + x,>x! + x}>.

Lemmae (Or Rule

From Lemmas el and e2 combined we get

3 . ? '

- <x, Fx, lex + x,>x! + x3>
Lemma£ (While Rule)

Take

- t(x): x, # x, , p(x)=x > 0 ax,> 0 , and

q(x,x') =x, >0 A x, > 0 .

= Note that x, >0 A x, >0 was implicitly assumed in all

. previous preconditions. Using Lemma e in condition (1)

We: get:

<x, >0 a x >0|P|x' - x_ >.2 | 2

«

\

J We have thus shown termination with the additional

2 information that on exit x! = x’

On trying to extend this result to prove correctness

as well as termination, we run into the notion of

- incremental proofs, 1 .e., having proved some properties of

“_ the program including termination, how do we prove addi-

tional properties without repeating the whole proof process.

>
For this particular example, this can be solved by the

L following argument:

| Assume that instead of any q(x,x"') appearing in the
.

assertions we used the predicate

q(x,x') A Bed(x,,x,) = ged(x],x})] .

It 1s not difficult to ascertain that all the lemmas

remain valid. Consequently, we are able to prove for the

complete program:

< x1 > 0A x >0 | P| x: = x, A ged(x ,x,) = ged(x],x3)>,

1.€e.,

<x, >0ax,>0]|P |x! = gecd(x,,x,) > .

- - Generalizing the above argument, we may consider any

CT transitive relation s(x,x') with the following properties :

= vX[s (X,X)] and vx,X'X" [s(X,X')A s(X', Xx) 2s (X,xM].

[t 1s possible then to verify the following metatheorem:

ue Metatheorem. Suppose that a = < ¢(x) P | v(x,x') >

. had been proved. Let s(x,x') be a transitive relation

such that for any lemma of the form < p(x) 1 B | q(X,x') >

~ used in proving . a , where B is an assignment statement

of P , it is possible to prove <p(xX)}| B |q(x,x")2s(X,x')>.

Then the assertion a’ =< $(X) | P | v(X,X') A s(X,x') >

- 1s also true for the complete program.

Thus 1t 1s sufficient to treat assignment statements In

incrementing our claims. In the previous example, the only

~ assignment statements one has to consider are

x, +x, - x, and
Swe

Xp © XTX,

~ . . .

which obviously preserve the gcd function.

In order to prove the metatheorem, one has to inspect

. all the non-assignment rules and verify that ifs was
preserved 1n the constituents it will be preserved in the

R bigger segment.

-

CL 19.

| | Example 2: Partition (Hoare[1961])

- The purpose of the program given below 1s to rearrange

| the elements of an array A of n+l n 22 | rea] numbers

A[0],...,A[n] and to find two integers i and j, such
- that

0 <j<ign

and for the rearranged array
L

) vavb[(0 sa <ia j <b sg n) 3 Afa]s A[b]] -

. In other words, we would like to rearrange the elements of A

i into two non-empty partitions such that those in the lower
partition A[0],.. . ,A[i-1] are less than or equal to those

| in the upper partition Af[j+1],... ,A[n] , where 0 €j<ign .

- P: START;

str «Amp (i,j) « (0,0);

" m: while 1 ¢ jd o

L: begin

€: begin b: while Afi}J<rdo a: i «i +1 ;

d: while r <Afj1 do c: j + j -1

end;

ki if i <j do Hh: begin f£: Ali)» A[j];
g:(i,j)« (1+1,5-1)

end

end 2;

HALT.

Lo We will prove in detail termination only. Our proof

= follows the ideas presented in Hoare's[1971] informal proof

| of termination. We int roduce the following abbreviations :

- a(1) =z 3p[i «cs psn arg Aflp]l]

B(j) =3q[0cqs 3 AA[q)ls 1] .

h

These invariants are used to ensure that while 1 1s stepped

up and j is stepped down they do not exceed the bounds of

[- n and O respectively,

Lemmaa (Assignment Rule)

[8 <a(i) a B(j)a Ali] <r

a(i') AB(F")AIR" >» j'v ji 2 3'-i']a n-i > n-i'> .

| Clearly B(j) validity 1s invariant since J 1s not
~ modified by this statement. From a(i) correctness we infer

the existence of p which since. A[p]>r mustbe p >i , so

that we might take the same p to establish a(i+l) =a(i').

The statement about n -1 decreasing will be used for termina-

tion of- the while statement b , while the function j -1 will

be used for proving termination of m . Roth are over the

domain of non -negativeintegers. The alternatives presented

are that cither this Tunctionis decreasing (non-increasing)

or j' < 1' which wil) imply that this must be the last

I execution of 8. Note that if the second holds true, then

| . J' - 1' is not defined.

Lemma b (While Rule)

Using Lemma a with

I P(x) = a(i) a B(j)
Q(X,X') Sa(i)ABGALL > §' v 3 - i 3 jr. sn
u(x)= n - 1 ,

L we get

| < afi) A B8(j) :

| b: while A[i]<r do a: i «i + 1 |

8 Bi") Ai" > 3" v J - 1 23" -i'].JA'[i']2 1 > .
| Note that we do not need a(i') any more, but will use instead

| the conclusion of the whle's termination A'[i'] > r which
| also implies 1i' 6 n.

Lemma¢ (Assignment Rule)

- <A[il2T AB() A Af] > ©

ci J+ j= 1]

B(j') AA[L'] 2 1 A [i'> FY Vv 3 - 12 j'-1'TA > gr,
| The function .ensuring termination for the inner while d 1s j .

Lemmad (While Rule)

From Lemma c¢ with

p(x) = Afi] 2 r a B(j)

a(x,x')= B(3') AA'[i'T2 + A [i'>j' V 3 12 ri)
u(x) = j ,

we get

< Ali] 2 r A B(j)

| d: while r < Alj] do c: j «j- 1 |

ATT" 2 ro Afi > jv j= i 2 jr -1'] AA'[j'] ¢ 1 >

22.

Lemma e (Concatenation Rule)

Combining Lemmas b and d we get

<a(i)aB(3)

: | e: begin b; d end |

- A'[3'1s 1 SA[E'IA[i'>3" vj - di 23" -i']>.

Lemma f (Assignment Rule)

a < Aj] sr £A[i]lA1 €
| £1 A[i] «> A[j] |

A'[i'lsrs A* [J "IA jJ--di=]"'"- i" A i' <3" > .

. The condition 1 £) is added since it is known to be true if
we enter statement h . Clearly, after exchanging A[i] and

- Alj] the previous inequalities are reversed.

\ Lemma g (Assignment Rule)

) <1 € J a Ali] £r Aj]
. lg: (i,j) « (i+1,j-1)|

b i'>3t vv Jo- 1 >3"-itAaa(i')aB(G")]>

; This result i.s obtained by case analysis: Either

1+ 1Cj-1,in which case we have 1i< i'g¢j'< | and

9 we can take p = j to establish a(i') and q = 1 to
establish B8(j') . The other case is i + 1 > j -1 or,in

other words, i' > j' .

L.

oN Le mma h (Loncatenation Rule) 23.
oo By combining Lemmas f and g we get

- <ic<ja A] €r €A[i]

| h: beginf; g end|

| itty 0 - i> toda ali’) A BG] >

a Lemmak (If- do Rule)

By Lemma h we get

< A[jl sr gA[i]

| k: i fi <j doh |

i'> tv [j - 0 >t -itaali')ABGN]>

Note that in the case where the do clause is skipped

1 >] , so that the conclusion is still correct.

Lemma? (Concatenation Rule)

} Combining Lemmas e and k we obtain:

- <a(i) a 8(j)

| 2: begine; k end|

i'> 3 v bo -i>3'-itaAaa(i')AB(i")] > .

~ Note that by the consequence rule this can be rewritten as

< a(i) A B(j)

| 2: begine; k end |

. [(i'¢ §') 2 ai") a BGI] A [E'>§' v | -i>j'-1i']>

which 1s in a form more useful for the next step.

Now we are ready to prove termination of the encompassing

~ while-statement. We have shown, in fact, that after one execution

- of & starting with a(i), B(j) both valid, we either have

1' > j' which ensures no more repetitions of & or have

~ a(i'), B(j') true again and a termination function j -i

h

= 24",

} strictly decreasing.

| Lemma m (While Rule)

From lemma e with

5 p(x) = a(i) A B(j)

| q(x,x') = i' <j' = [a(i') A B(i"] ,

| we get

) < ai) AB(j)| m: while i <j dot | T >.

| Lemma s (Assignment + Concatenation Rules)

Establishes the initial conditions:

<n 22] s;, r+ An:2]; (i,j) « (0,n) | a(i') A B(j') > .

| LemmaP (Concatenation Rule)

he Concatenation of lemmas m and s yields

<nx2|P|T>,

which shows termination of P .

-

be

.

“

bn

References

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to

| Programs", Proc. Symp. Appl. Math. 19, American

3 Math. Soc. (1967), pp. 19-32.

| HOARE [1961]. C. A. R. Hoare, "Algorithm 65 - Find",

CACM, Vol. 4, No. 7 (July 1971), p. 321.

oR HOARE [1969]. C. A. R. Hoare, "An Axiomatic Basis of

| Computer Programming", CACM, Vol. 12, No. 10

Ee (October 1969), pp. 576-580, 583.

.. HOARE [1971). CC. A. R. Hoare, "Proof of a Program: FIND",

CACM, Vol. 14, No. 1 (January 1971), pp. 39-45.
.

| -

-

-

