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ABSTRACT: In connection with the problem of gererating all multigraphs
having a specified vertex-degree list, Lederberg has presented
a tree-generation algorithm vhich, exploiting a canonical-
lexical notational system, constructs the complete set of

solutions in canonically increasing order, without redundancy.

Brown, et.al., have expanded the scope of generation to cyclic
grephs. Their method relies upon the existence of a complete
and irredundant set of "vertex-graphs" and the procedure
consists of a series of graph labelling steps. Graph labelling

allows one to assign labels from a given set to the vertices
(edges) of a graph, in such a way that knowing the symmetry
group of the graph, equivalent label assignments are avoided
prospectively. Recent work has been directed towards supplying
the vertex-graphs needed by the generator. A program has been

written to generate all graphs with t trivalent and q quedri-
valent vertices, from graphs having (t + 2q) trivalent vertices.
This method, however, will generate redundant vertex-graphs and
scme issues in isomorph elimination are considered in this

presentation.
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A. INTRODUCTION

The CYCLIC STRUCTURE SENERATOR forms the heart of a large f£awiliy C2 |

programs that constitute an application of artificial intelliceace

to probless of chemical structure inference (1]. The

early development of the prograss utilized a systematic generator of |

all acyclic [topologically tree-like] chemical isomers consistent

vith a specified chemical composition [2 and 3). The

range of interesting chemical probleas that could be solved vere

limited by the acyclic character of the structure generator. decently

a gonerator for the complete space of all cyclic and acyclic molecules

has been completed [4]. The praesent

article ccncerns itself with the basis set of vertex gcaphsi
that the cyclic structure generator draws upoi. It will te Leipful

hovever to preface this work vith a brief description of tue

cyclic structure generator.

The problea posed to the cyclic SLIUCLUTE Generator can be described
in non-chemical teras as follows: Given a sequence of nusLers

(R1,A2,A3...) algorithmically construct a representative set of the
distinct isomorphism classes of connected, loop-free graphs having

Al vertices of valence (or degree) 1, A2 vertices of valence 2 and

so on. A machine ismpleseatation of a reasonably efficieat dlgozitul

~ has heen presented previously [4]. The algorithm has been
shown to generate a complete set of graphs with anticipatory avoidance

of redundancics, thereby obviating isomorphism checking.

1) see section C for definiticn.
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P. BACKGROUND OM THE CYCLIC STRUCTURE GENE&ATOR

One way of conceptualizing a generator is by descriting it as a

transformation or a mapping, T, frca a Lasis set, B, to the generated

set, G.

-
B m==z=zz==) (

Of ten the transformation is many-to-one froa B to G, giving rise to

repeated generation of several elements in G. Coasequently, cne

faces the possible problem of resoving redundancies from the generated

set. Sometimes, not every element in B leads to a valid element

in G. In that case one is faced vith an incomple‘.e generation of CG

and/or the task of processing or detecting unfruitfu. elements in E.

Often a scheme cf generation maps each elcment of B into a subset of

G. A desirable characteristic then is that each such subset te

disjoint from every other.

The cyclic generator is a composite of transformations (illustrated in

Pigure 1).

Vertex Graphs |

\¥ Loop labeller
Looped Graphs }

\S Bivalent Labeller
Looped-Civalent Graphs

Ne Preevalence Labelle:
Ciliated Graphs

NV Tree Generator Figure 1.Complete aphs
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The transformations hegin with a class of vertex graphs

vhich are loop-free and 2-edge-connected. (e.g., Pigure za)

Step '. Loon Labeller,

( ee ——— Do Figure 2a
This is a one-to-maLy transrforsation (possibly degenerate) designed

in scch a vay that each vertex graph will yield a dis joiit subset

of looped graphs.

Step 2. Bivalent lLabeller

(Te = (XA
(lo Figulie 2L| Sams As 1X

| & BIALENTS

This one-to-many transformation inserts vertices on edges cf loored

graphs in such a way that each lcoped graph results in a disjciat

subset of looped-bivilent graphs. |

Note, The first tvo steps may be perforaed repeatedly, adding lcops
on loops subject Lo certain constraints.

Step J. The freevalence labeller designates unique ways of selecting

points of attacament on the loofred-bivalent graphs. These points of

attachment vill bo used to interconnect these ciliated graphs in

tree structures.

(IX Pigure 2¢Lr | | |



Hera again this one~-to-sany transformation produces disjoint gubcsets.

Step 4. The tree generator produces iree-like connected struct'res

fros a combination of ciliated graphs. Sinyle vertices arc intrcduce:

in the trce as degenerate ciliated graphs.

Cormplalia qnapv

LX. 1. 1. \ £04 Figure 2d} ! X Complulid qeapie]
The tree generator is a many-to-many transforasation, waere again the

subsets of complete graphs produced are mutually disjoict.

Completeness § Trredundancy. In order to deaonstrate the ccetleteness

and irredundency of the generated set for any scheae of generaticn, one

needs to shov that

a) If the basis set is complete and irredundant, then the

transformation vill yield the complete, irredundant generated set.

b) The basis set is cosplete and irredundant.

Frequently, the proof of (b), however trivial, is only given

faplicitly. In such cases, the basis set is a set whose

characteristics regarding (b) are well known, e.g., the set of

positive natural numbers P(N) up to N.

"It has been shown [4] that (a) is true for all the distinct

steps in the cyclic structure generator. consequently, if the sect Ct

vertex graphs given to the cyclic structure generator is cosglete

and irredundant then the algoritha will generate a complete irredundant
list of isomers. In other words, the cyclic structure generator is

only as coaplete as tha set of vertocx-graphs provided.

Tt in hopod that this brief explanation has served to place tlhe sair

ptoblea adiressed in this paper im the proper perspectivu.

LY



C. VERTEX-GRAPH GENERATION

The vertex-yraphs serve as the basis se. for the generation ct charical |

graphs. The cyclic structure generator builds upon each yraph in tle

basis set by |

a) adding vertex self loops where appropriate |

b) inserting additional vertices of valence 2

c) constructing 1-conpected structures, as appropriate, by esheddirng

the 2-connected qraphs in rcoted trees.

This serves to define clearly the requirements on the basis set. Every

vertex=graph should

a) have vertices of valence 3 cr higher

b) be 2-connectad

€¢) have no self-loops.

Multi-graphs are implied.

Interest in organic chemistry helps to confine attention to grachs

with a saxinmus vertex valence of 4%,

« carbon the post abundant atoms in ‘organic solecules has a vaience Ud.
The cyclic structure generator can eabed atoas of any valence in
trees. That covers all cases of interest in atoms of valence higaer

than four. Ring atcas of valence higher than four are rare.

Wn shall represent graphs with t vertices of valence 3 and g vertices

of valence 4 as G(%,1)-

~ Trivalent Regular Graphs.

All graphs G(t,0) are listed by Lederberg [5], for values

of t = 2,4,... up to 18. (It is easy to see that t has to Le even,

since the sux of vertex valences has to be even). His listings incluce

polygonal (possessing Hasiltom circuit) as well as nom-polygornai

graphs, and are coaplete. He also presents a notational syster that

vill accommodate any polyhedron that has a Hamilton circuit, as well

as unions of such polyhedra.

é



| D. GPNERATIOW OP GHAPHS WITH QUADIVALENT VERTICES.

The athod of vertex pair promotion is presented herc as a bectstrag

procedure to generate G (t,q) graphs using Lederberg's listing of

G(t,0) graphs.

D1. Methol of vertex Pair Prosotion.

Lederberg {5) Pas proposed that a 4-valent vertex (a) can ce

treated suitably as the collapse of a pair of connected 3-valent

vertices (Db).

a b a Cc

><, b a Figure 3
(a) | (b)

Thus the scheme involves ideatifying pairs of 3-valent vertices that

are connected, and promoting thea to &-valent vertices by a process ci

collapsing the edges. It is clear that in one organization all

granhs G(t,q) can be constructed in a sequence of q steps starting

with graphs G(t+2q,0) and successively deriving G(te+2g9-2,1),

G(te29-4,2) ... G(t,q). The g edges that are collapsed in any

G(t*2q,0) graph should be vertex-disjoint. ‘Hence a set oi gq c¢dges can |
.be collapsed in q! sequences in the above method, yielding a gaxizuz

redundancy of q! in the list of generated graphs. The following

variation atteapts to avoid this redundancy, and derives benetit fics

knowing the sysaetry group of the G(te2q,0) graphs.

In this sethod, g edges are selected in unique vays from a G(te2q,V)

vertex graph, T, by a process of Edge-labelling. (Por a discussica ol

Bdge-labeling see Appendix A). The edge labelling assures us taat thc

edges selected are unique with due consideration to the syametry of

the graph T.

Example

To geaerate: G(2,1)

T



We consider the tvo graphs G (4,0)

a.) ><Graph UAA Graph UBB

Graph 4BB has the full symactric group on its edges. Thus, according

to edge-labelling there is only one possible choice of one edge in Uub.

Upon vertex pair prosotion this results in q1(2,1)

A
Pdge laballing on &AA yields tvo choices of a single edge aarkad x

and y. Upon prosoting the vertex pair x one gets the grah gl1{(2,1)

again. The vertex pair y however gives the folloving gragh.

| o<D qa (32,4)The resulting graph has a self-loop. Self-loops are forbidden

| on vertex graphs because the cyclic structure generator synthesizes

looped graphs from the vertex graphs.

The folloving tvo validity checks are sade on each edgelist produced

by edge labelling |
a) the edges sust be vertex disjoint

b) no vertax pair chosen can have multiple adges connecting it.

AS vas shown above, the resulting list of G(t,q) graphs can bave

~isoacrph redundancies that peed to be eliminated. Some techniques
are revieved in Section E.

¢



The flowchart for this method of gencration is given below.

GTQ <-- NIL

GT2Q <-- G(t + 2q,0)

ccoa=) solect next T G(t*29,0) =====> stop
i output GTQ
| |

| Vv
| Edge Label T vith q latels
| LL <-- list of labellings
none &
~-==« Select next labelling L LL (~==-ocecmcoscnaca=-

| |

7
Tvo tests for validity Invalid |
of rdgelist given in I ~=eecmcccccccncncccan==)

| |

| valid

4
Promote all q vertex pairs

|

Vv
Add resulting graph to list GTQ



D2. Completeness of the procedure

(2) (b) (C)

The above configurations exhaust the possibilities for a 4-valent

vertex, whore the Lklchbs represent connected parts of the gragh.

Case (b) falls outside the reals of required generation, being

one-connected.

Case (a) is coapletely covered by our generation procedure of vertex

pair promotion.

Case (c) represents a vertex vhich is also a cutanode and falls vithin

the scope of required generation.

(e) (f) :

Both (e) and (f) can lead to case (c). Our method will gencrata

case (c) fram 2-connected graphs, like (f). Thus it will rot be

necessary to consider any 1-connected grapa for the basis set. In

this manner, the scheme generates the complete rang of reguiled

graphs.

IL



E. ISOMORPH ELIMINATION TERCHNICUES | |

El. Origin of the Redundancy. :

In the vertex pair promotion method of generation of vertex grains,

a 4-valent vertex (a) could have been generated fros any onc ct taree

possible divisions of its incident edqgos (b,c,d).

a b a d | a ¢ a 4Py | b d c d d C
(a) (b) | (c) (a)

Thus there is a maximum of 3g-fold redundancy possible for any ore

G(t,q) graph. However, in practice the redundancy factor is fuch

smaller owing to the symmetry of the G(t¢2q,0) graphs.

E2. Graph Isomorph Checking.

There are several excellent algorithes that are designed for testing

isomorphism of a pair of graphs [16]. We have adopted a

slightly modified version of an algoritha designed by Bachanan

(unpublished). There is no proven assertion about the efficiency of

this algorithm but it has heuristic serit. The algoriths is oriented

tovard detact ing non-isomorghiss quickly.

A general comment on methods of isomoxphism checking i8 in crdec.

Most methods, to our knovledga, sake no utilization of the syrmetry

of the graphs under comparison. Consider, for example, testing a

pair of graphs, A against B. Let B have a high order of sysn2tly.

"The algorithm repeatedly may initiate a match for vertex a of A with

vertex b of B. When further excursions into matching reveal that a

cannot be matched with b, the algorithm may try another vertex of B,

say b1 which can be in the orbit of symmetry of vertex b. We knce

from the autoaorphisms cf graph B that if b is invalid as satch for

a, then so is any other vertex in the orbit of b. Thus the sysactry

group cas be employed fruitfully during isomorph checking. It is

vorthvhile to coapare sose characteristics of the groups of the tec

]



There are no labels associated with the vertices. Hence, the fcatutrec

(i) through (iv) are ineffective fcr grouping. The following features

acre used:

| a) a sequence representing the number of aultiple edges

b) the nuaber of 3-cycles; generalizable to a list of up to k=cycles

c) the eigenvalues (*) of the adjacency matrix of the graga,

if (a) and (b) leave large sets of graphs unresolved.

+) ses Appendix B.

I



graphs before ombarking on the search for the isomorphi:ia BALFiuge

El. drouping the list ¢f graphs.

when 1 list of graphs, IL, is to he processed for isoaorph clizinaticu,

the worst case (cach graph is unique) will engender (n*u-1)/2 t-s5ts

cf isoaorphisa. When isomorphs are present in L, this aunmvcer is

reduced considerably when care is taken to test each nev candidate

with a list of unique graphs alcne.

A technique used to expedite detection of non-isomorphisu of a pair

of graphs iavol ves comparing certain easily computed topolcgicaily

invariant features of the graphs. If the r2ir of graphs do nct

correspond in all their features, non-isomorphism can be prcuncuncec

readily . Extending this to the isomorpk elimination from a list cé

graphs, L, leads to the grouping technique. Grouping involves a

pass through L and associating with each graph its computed

features. This list L then can be organized into sublists such that

each pair of graphs in  sublist has identical features. Thouyh a

simple technique, grouping leads to considerable reductiou in the

nueher of isomorphism tests to be made.

Choice of features to use in grouping:

Usual features that are checked before isoeorph testing include tke

i) number of vertices,

ii) number of edges,

iii) the vertex-valence list,

iv) a sequence listing the labels associated with vertices, if any, aug

Vv) a sequence listing the labels on edges if any.

In our application it is quaranteed that all graphs in a list 1

to he procassed for redundancy have

a) the same nusber of vertices |

b) the saa2 number of edges

c) the same vertex-valence list.

)3



Bu. ise of Canonical Porms to Avoid Graph Matcaing.

Norgan (¢) and l:ap (*) give prccedures to represent Grannis

canorically. These procedures can lcad to sizeable expenuiture ct

computing effort, especially in the presence of symmetry in the

graphs. Lederberg (*) also has devised a caronical unotatiorn toetyl

in describing the graphs ve generate. tlowever, these metnods 4rc

not used in the present scheae.

P. Conclusion

P(N) Positive numbers up to N

Regular Trivalent Je G(t,0)
J1.Graphs G{t,q) ®

i!Lue list of graphs with
specified vertex valences

The generation (b) of complete lists of cneaical graphs ccapatitie

with specified atomic compositions (valence lists) was hindered

originally by the incompleteness of tae available iist of Quadri/tIaivalcnt

graphs. The regular trivalent grapks G(t,0) to be included in tae

tasis set for generation (b) were generated t heaselves in aa exhatstive

vay (a). The present paper has described an implementaticn ci a

suqqgastion by Lederberg for boctstrapped generation (¢) of gQuadri/icivasent

graphs froa ragular trivalent graphs. A separate report lists G(t,q)

graphs for several values of t and g. (7)

If



Appendix A. FEdge-Labelling.,

The qoneral "labelling" problem has been given a group thecretac

definition, analysis and soluticn by Brown, Masinter and ll jclrelana (9).

In the present context of selecting unique sets of k edges rem a

graph G, a reduced tormulation of the labholling problem will sufrice.

Let G be a graph with an arbitrary definition of indexing its 2dies

fron 1 through m. let L be the label set, with k labels of cre tvge

and (a=k) of ancther tyre. We shall denote the automornhiss grou;

of G represented as permutations oan the indices of its edgcs, by 4
The label set admits a group 4 Since each label is indistinguishatle

from other labels of the same type,Jf can te writtcu as the direct

sum S(k) ¢ S(m-k). The indexed labellings of the edges of G by L

can ho identified with S(m) the full permutation group. Two

labellings W,, WK, € S(m) are equivalent when M.-q¥w, L tor any

q¢ § and Le. The equivalence class detersined by

{axe | qe, te} a A
is called a double cosct*®

+ analogous to bar loc es A} a An“2ing called ina lac ALS RA [8].

The groups | and of induce a partitioning of 5S (m), by means cf taearr
double cosets. A set of double coset representatives constitutes a

cosplete sat of unique labellings of G with labels Ll.

Brown, “asinter and iHjelmeland [9] have designed and iaplemented tJ4¢

algorithas tor generatiry double coset representatives tor the

) labelling problem. The algorithm usad in the present work was an

igplemcntation given by L. Masinter.

/$



: Appendix 3. Fiqgenvalues as Invariant Peature
(by Dr. Payaond Carhart)

| A graph can he roprescnted as adjacency aattix A of order nxn, «ncte

n is the number of vertices in the graph. Pach Aij is an iutecyar |

renrescnting the numher of edges linking vertices i and je. (Aij ic

zero when vertices i and j are not connected by au edge}. Fcr al

undirected graph the aatrix A is sygmetric. #hen there arc nc

self-loops on vertices the diagonal cleaents Aii are zero.

Since simultaneous rov and column permutations on A leave the

topology of the graph unaffected, two graphs (matrices) A and B ace

topologically equivalent if they are related by a permutation

matrix P such that

T P

A = P BP Or AC~=DB ===ce=====((C1)

The eigenvalues of a syeametric matrix A can be defined as tae

diagonal elements of a diagonal matrix J\ , such that

DAeUAYV  ceeeee (en)
where VJ is any orthogonal matrix.

Substituting (c1) into (c2) ve find

= (PU)T B (PU) ====== (c])

When U is orthoyonal, (PU) is orthogonal as well. Thus the

eigenvalue sets of the adjacency matrices of topologically equivalent

graphs are the same.

A Coons 8 ===> I_(a) = L\(B).
| In gcneral it is not true that vhen the cigenvaluaes of two adjocerncy

matrices arc the same, the two corresponding graphs are topclcjyicali

equivalent. FoI example, the tsd graphs shown below are topologyicall:

different, but bave the same eigenvalue sets.

CGC Oo
The eigenvalue computation can be used as an invariant feature or

| topologically equivalent graphs to aid in tke grouping FTCCess
Ey)



treceding the isomoiph elimination process.



Table I. SUMMARY OF RESULTS

Vertex Gravhs with Number of Graphs Generated fro
Trivalents Ouadrivalents Generated Trivalent Regular Crart: oT

2 1 1 h vertices

h 1 5 6 vertices

6 1 2h 8 vertices

0 2 1 4 vertices

2 2 h 6 vertices

h 2 3h 8 vertices

0 3 1 6 veriices

2 3 12 8 vertices

0 kh 3 8 vertices

See Reference [7] for complete lists of graphs.
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