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ABSTRACT:

COMPUTER GENERATION OF VERTEX-GRAPHS

by
N. S. Sridharan

In connection with the problem of gererating all multigraphs
having a specified vertex-degree list, Lederberg has presented
a tree-generation algorithm vhich, exploiting a canonical-
lexical notational system, constructs the complete set of
solutions in canonically increasing order, without redundancy.
Brown, et.al., have expanded the scope of generation to cyclic
grephs. Their method velies upon the existence of a complete
and irredundant set of "vertex-graphs”" and the procedure
consists of a series of graph labelling steps. Graph labelling
allows one to assign labels from a given set to the vertices
(edges) of & graph, in such a way that knowing the symmetry
group of the graph, equivalent label assignments are avoided
prospectively. Recent work has been directed towards supplying
the vertex-graphs needed by the generator. A program has been
written to generate all graphs with t trivalent and q quadri-
valent vertices, from graphs having (t + 2q) trivalent vertices.
This method, however, will generate redundant vertex-graphs and
scme issues in isomorph elimination are considered in this
presentation.
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ABSTRACT

In connection with the problem of generating all multigraphs having a specified
vertex-degree list, Lederberg has presented a tree-generation algorithm which,
exploiting a canonical-lexical notational system, constructs the complete

set of solutions in canonically increasing order, without redundancy.

Brown, et al., have expanded the scope of generation to cyclic graphs.

Their method relies upon the existence of a complete ara irredundant set

of “vertex-graphs" an.i the procedure consists of a series of graph labelling
steps. Graph labelling allows one to assign labels from a given set to the
vertices (edges) of a graph, in such a way that knowing thie symmetry group

of the graph, equivalent label assignments are avoided prcspectively. Recent
work has been directed towards supplying the vertex-graphs needed by the
generator. A program has been written to generate all graphs with t trivalent
and q quadrivalent vertices, from graphs having (t + 2q) trivalent vertices.
This method, however, will generate redundant vertex-graphs and some issues

in isomorph elimination are comsidered in this presentation.
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A. INTRODUCTION

The CYCLIC STRUCTURE SESERATOR forams the heart of a largc fawiliy c:2
programs that constitute an apglication of artiticial intelliceace

to probless of chemical structure inference (1]. The

early developaent of the prograss utilized a systematic ygenerator of
all acyclic [topologically tree-like] chemical isomers consistent

vith a specified chemical composition [2 and 3). The

range of interesting chemical probleas that could be solved wvwere
limited by the acyclic character of the structure generator. decently
a gonerator for the complete space of all cyclic and acyclic solecules
has been cospletad [4]. The present

article ccncerns itself with th; basis set of vertex yraphs\t

that the cyclic structure generator daraws upon. It will te Leipful
hovever to preface this wvork with a brief description of tue

cyclic structure generator.

The problea posed to the cyclic st:ucture‘qeneratOt can be described
in non-chemical teras as follows: Given a sequence of nuskers
(A1,A2,A3...) algorithaically ccnst;uct a representative set of the
distinct isomorphisms classes of connected, loop-free graphs having

A1 vertices of valence (or degree) 1, A2 vertices of valence 2 and

so on. A machine ismplemeatation of a teasdnably efficieat algozZitnz

~ has heen presented previously [4]). The algoritha has been

shovn to generate a complete set of graphs vith anticipatory avoidance

of redundancics, thereby obviating isomorphisa checking.

{1) See saction C for definiticn.




P. PRACKGROUND O¥ THE CYCLIC STRUCTURE GENESATOR
One way of conceptualizing a generator is by descriting it as a
transformation or a lippinq, T, frcem 3 Lasis set, B, to the generated

set, G,

T

B ===z=z==) (
often the transformation is many-to-one froa B to G, giving rise to
repeathd generation of several elescnts in G. Coasequently, cne
faces the possible problem of resoving redundancies from the generated
set. Sometimes, not every element in B leads to a valid element
in G. In that case one is faced with an incomple'.e generaticn of G
and/or the task of processing or detecting unfruitful elements in E.
Often a scheae cof generation maps each elcment of B into a subset of
G. A desirable characteristic then is that each such subset Le
disjoint fros every other.
The cyclic generator is a coiposite of transformations (illustrated in

Pigure 1).

Vertex Graphs
LL Loop labeller
Looped Graphs
BL Bivalent Labeller
Looped-civalent Graphs
PVL Preevalence Labelle:
Ciliated Graphs
TG 7Tree Generator Figure 1.

Complete Graphs




The transformations hegin with a class of vertex graphs
which are loop-free and 2-edge-connected. (e.g., Pigure za)

Step '. Loon Labeller.

_—-—) m Figutﬂ 2a

This is a one-to-maLy transrforsation (possibly degeneratc) designed
in scch a vay that each vertex graph vill yield a disjoiiit subset
of looped graphs.

Step 2. Bivalent Labeller

—) Q} SAME AS w
m 1 Figute 2t
s Sams As m
& BwALENTS

This one-to-many transformation inserts vertices on edges cf loored
graphs in such a way that each lcoped graph results in a disjciat
subset of looped-bivalent graphs. »

Note, The first tvo steps may be perforaed repeatedly, adding lcops
on loops subject Lo certain constraints.

Step 3. The freevalence labeller designates unique ways of selecting
points of attacament on the loofed-bivalent graphs. These points of
attachment vill be used to interconnect these ciliated graphs in

tree structures.

—

Pigure 2c¢

—

2 PREE VALENCE
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Hera again this one-to-sany transformation producaes disjoint eubcets.
Step &, The tree generator produces iree=-like connected sStrucCtireEs
fros a combination of ciliated graphs. Singyle vertices arc intrcducea

in the trce as degenerate ciliated graphs.

— carmplatia Qrap

1 1 * Figure 24
* |* {4 —

L-'m cormpud o

The tree generator is a many-to-many transforaation, waere again the

subsets of complete graphs produced are mutually disjoirt.

Cospleteness & Irredundancy. In order to deaonstrate the ccepleteness

and irredundency of the generated set for any schene of generaticn, one

needs to shov that

a) If the basis set is complete and irredundant, tken the
transforsation vwill yield the coaplete, irredundant genecrated set.

b) The basis set is cosplete and irredundant.

Prequently, the proof of (b), however trivial, is only given

faplicitly. In such cases, the basis set is a set whose

characteristics regarding (b) are wvell knovn, e.g., the set of

positive natural numbers P(¥) up to N.

" It has been shown [4] that (a) is true for all the distinct

steps in the cyclic structure generator. Consequently, if the set cf

vertex graphs given to the cyclic structure yenerator is cosglete

and irredundant then the algoritha will generate a.conpleta irredundant

1ist of isomers. 1In other words, the cyclic structure generator is

only as coaplete as thea set of vertox-graphs provided.

It in hopod that this brief explanation has served to place tlhe sair

ptoblea adiressed in this paper im the proper perspectivu.

Ly



C. VERTEX-GIAPH GENERATION

The vertaex-yraphs serve as the basis se. for the gencration ¢t cherical
graphs. The cyclic structure generator builds uron @ach yruapk 1n tie
basis set by

a) aAdding vertex self loops vhere appropriate

b) inserting additional vertices of valence 2

c) constructing l1-connected structures, as appropriate, by esmbeddirgy

the 2-connected graphs in rcoted trees.

This serves to define clearly the reguiresents on the basis set. Every
vertex=-graph should

a) have vertices of valence 3 ¢r higher

b) be 2-connected

¢) have no self-loops.

Multi-graphs are isplied.

Interest in organic chesistry helps to confine attention to grachs

with a maximus vertex valence of 4=,

& Carbon the post abundant atom in ‘organic solecules has a vaience d.
The cyclic structure gemerator can esbed atoas of any valence in
trees. That covers all cases of interest in atoms of valence higaer
than four. Ring atcas of valence higher than four are rare.

Wn shall represent graphs with t vertices of valence 3 and g vertices
of valence 4 as G(t,1) .

" Trivalent Rcqgular Graphs.

All graphs ¢ (t,0) are listed by Lederberg [5), for values

of t = 2,4,... up to 18. (It is easy to see that t has to Le even,
since the sux of vertex valences has to be even). His listings incluce
polygonal (possessing Hasilton circuit) as well as non-polygonal
graphs, and are coaplete. He also presents a notational systex that
vill accosmodate any polyhedron that has a Hamilton circuit, 4s well

as unions of such polyhedra.

6
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D. GENERATIOW OP GHAPHS WITH QUADIVALENT VERTICES.

The mithod of vertex pair promotion is presented herc as a bLcctstrag
procedure to generate G (t,q) graphs using Lederberg's listing of
G(t,0) graphs.

D1. Methol of Vertex Pair Prosction.

Lederherg [ 5] Fas proposed that a 4-valent vertex (a) can ce

treated suitably as the collapse of a pair of connected 3-valent

vertices (b).

(a) ' (b)

Thus the schese involves ideatifying pairs of 3-valent vertices that

Figure 3

are coannected, and promoting thea to &-valent vertices by a proces;s c:i
collapsing the edges. It is clear that in one organization all

granrhs G(t,q) can be constructed in a sequence of q steps starting
with graphs G(t+2q,0) and successively deriving G(te¢2g-2,1),
G(t¢29-4,2) ... G(t,q). The g edges that are collapsed in any
G(t+2q,0) graph should be vertex-disjoint.  Hence a set oLl g <dges can
.be collapsed in q! sequences in the above method, yielding a gaxikuz
redundancy of ¢! in the list of generated graphs. The following
variation atteapts to avoid this redundancy, and derives benefit frcm
knowing the sysametry gréup of the G(te2q,0) graphs.

In this sethod, g edges are selected in unique vays from a G(te2q,V)
vertex graph, T, by a process of Fdge-labelling. (For a discussica ol
Bdge-labeling see Appendix A). The edge labelling assures us that thc
edges selected are unique with due consideration to the symaetry ot
the graph T.

Example

To geaerate: G (2,1)

7



We consider the tvo graphs G (4,0)

n

Graphk UAA . Graph 4BB
Graph 4BB has the full symactric group on its edges. Thus, accoruiny
to edge-labelling there is only one posaible choice of one edge in Uub.

Upon vertex pair prosotion this results in g1(2,1)

gi{2,\)

Pdge laballing on &AA yields two choices of a single edge marked x
and y. Upon promoting the vertex pair x one gets the gra h g1(z,1)

again. The vertex pair y however gives the folloving graph.

| o<1) @ (2,0)
The cesulting graph has a self-loop. Self-loops are forbidder

on vertex graphs because the cyclic structure generator synthesizes
looped graphs froms the vertex graphs.

The follioving tvo validity checks are made on each edgelist produced
by edge labelling ‘

a) the edges sust be vertex disjoint

b) no vertax pair chosen can have multiple adges connecting it.

AS vas shovn above, the resulting list of G(t,q) graphs can bave
isomcrph redundancies that need to be eliminated. Some technigques

are revieved in Section BE.



The flowchart for this meathod of gencration is given below.

GTQ <-- NIL
GT2Q <~-- G(t + 2q,0)

o) 501@c€*next T G(t*2q,0) =====> stop

' output GTQ
|

v
Edge Label T vwith q latels

) LL <-- list of labellings
|none

v
~-=== Select next labelling L LL (~==-=~e-cccccaca==
| i

v |
Tvo tests for validity Invalid i

of rdgelist given in L =~==ccmcecocccccocccccs=)
|
| valiad

L 4
Promote all q vertex pairs
|

Add r;!ultinq graph to list GTQ




D2. Coapleteness of the procedure

(2) (b) (¢
The above cornfigurations exhaust the possibilities for a 4-valent
vertex, whore the klchbs represent connected parts of the gragh.
Case (b) falls outside the reala of required generation, being
one-coanected.
Case (a) is coapletely covered by our generation procedure of vertex
pair promot:ion.
Case (c) represents a vertex which is also a cutnode and falls vwithia

the scope of required generation.

(e) () :
Both (e) and (f) can lead to case (c). Our method will gencérata
case (c) from 2-connected graphs, like (f). Thus it vill rot Dbe
necessary to consider auyll-connected grapa for the basis set. 1In
this manner, the scheme generates the coaplete ramg< of regui-ed

graphs.

Il




E. ISOMORPH ELIMINATION TRCHNICUES

B1. Origin of the Redundancy.

In the vertex pair promsotion method of generation of vertex gragns,

a 4-valent vertex (a) could have been generated fros aany onc ot taree
possible divisions of its incident ~dgeos (b,c.q).

=<, < < <

c
(a) (d) (c) (4)
Thus there is a maxiaum of 3q-fold redundancy possible for any ore
G(t,q) graph. However, in practice the redundancy tactor is guch
smaller oving to the sysmetry of the G(t¢2q,0) graphs.
E2. Graph Isomorph Checking.
There are several excellent algorithrs that are designed for testing
isosorphiss of a pair of graphs [16). We have adopted a
slightly modified version of an algoritha dasigned by Buchanan
{unpublished]. There is no péoven assertion about the efficieucy of
this algorithm but it has heuristic merit. The algoriths is oriented
tovard detacting non-isomorthiss quickly.
A general comment on methods of isomorphisam checking i8 in crdet.
Most methods, to our knovledga, make no utilization of the syrmetry
of the graphs under comparison. Consider, for example, testing a
pair of graphs, A against B. Llet B have a high order of sysnatIy.
" The algorithm repeatedly may initiate a match for vertex a of A with
vertex b of B. When further excursions into matching reveal that a
cannot be matched with b, the algorithm may try another vertex of B,
say b1 which can be in the orbit of symmetry of vertex b. We kncs
from the autoaorphisms cf graph B that if b is invalid as asatch foar
a, then so is any other vertex in the orhit of b. Thus the symactry
group can be employed fruitfully during isomorph checking. It is

vorthvhile to compare somse characteristics of the groups of the tec

]



There are 0o labels associated with the vertices. Hence, the teaturec
{i) through (iv) are ineffective fcr grouping. The followiny features
are usaed:

a) a sequence representing the number of sultiple edges

b) the nusber of 3-cycles; generalizable to a list of up to k-cycles
c) the eiganvalues (*) of the adjacency matrix of the graga,

if (a) and (b) leave large sets of graphs unresolved.

(*) see Appendix B.

1*



graphs befove ombarking on the search for the isomorphiza maAjFinge

El. «Grouping the list cf graphs.

when 1 list of gyraphs, L, is to he processed for isomorph clizinaticu,

the worst case (each graph is unique) will engender (n*u-1n)/2 t-sts
cf isoaorphisa. When isomorphs are present in L, this aumber is
reduced consideradly when care is taken to test each nev candidite
with a list of unigue graphs alcne.
A technique used to expedite detection of non-isomorphisu of a pair
of qfaphs iavolves comparing certain easily computed topolcgicaily
invariant features of the graphs. If the r2ir of graphs do nct
correspond in all their features, non-isomorphism can be prcuncunceas
readily . Extendirg this to the isomorphk elimination froam a list c#f
graphs, L, leads to the grouping technique. Grouping involves a
pass through L and associating with each graph its computed
features. This list L then can be organized into sublists such that
each pair of graphs in  sublist has identical features. Thouyh a
simple technique, grouping leads to considerable reductiou in the
nurher of isomorphism tests to be made.

Choice of features to use in grouping:

Usual fcatures that are checked before isororph testing include tke

i) number of vertices,

ii) number of edges,

{ii) the vertex-valence list,

iv) a sequence listing the labels associated with vertices, i1i any,

v) a sequence listing the labels on edges if any.

In our application it is guaranteed that all graphs in a list 1L

to he procassed for redundancy have
a) the saae nusber of vertices
b) the saz2 nusber of edges

c) the same vertex-valence list.

£

Ald



B4. ise of Canonical Porms to Avoid Graph Matcaing.

¥organ (*) and l2ap (*) qgive prcceduras to reprcsceat gruanhs
canorically. These procedures can lcad to sizeable expenuiture ct
computing effort, especially in the presence of syametry in the
graphs. Ledarberg (*) also has devised a carnonical notatiorn inetyl
in describing the graphs we generate. tlowever, these metnods 4arc
not used in the preseut scheae.

P. Conclusion

P (N) Positive numbers up to N

e

Regular Trivalent Graphs G(t,0)

le

Quadri/Trivalent Graghs G{t,q) 69

conlf;llete list of graphs vwith
specified vertex valences

The generation (b) of complete lists of cneaical graphs ccapatitle

vith spacified atomic coapositions (valernce lists) wvas hirdered

originally by the incompleteness of the available iist of Cuadris/tzivalcnt
gqraphs. The regular trivalent grapks G(t,0) to be included in tae

tasis set for generation (b) were generated theaselves in aa exhatstive

vay (a). The prosent paper has described an implementaticn ¢i a

suqggestion by Lederberg for boctstrapped generation (c¢) of guadrisusivalcent
graphs froa ragular trivalent graphs. A separate report lists G(t,c)

graphs for several values of t and q. (7]



Appendix A. FEdge-Labelling.
The qeneral "labelling®™ problem has been yiven a group thecretic
definition, analysis and soluticn by Brown, lasinter and 0 jclrelana (5 ].
In the present context of selecting unique sets of k edges rrem a
graph G, a reduced tormulation of the labolling problem will sufrice.
Let G be a graph with an arbitrary definition of incexinqg its z2dyes
from 1 through m. Llet L be the label set, with k labels of crne tvge
and (a-k) of ancther type. We shall denote the automornhisz grou;
of G reprascnted as permutations on the indices of its edgcs, by %.
The label set admits a group :C Since each label is indistinguishatle
from other labels of the same type, Y can te writtcu as tre direct
sum S(k) ¢ S(m-k). The indexed labellings of the edges of G by L
can ho identified vith S(m) the full permutation group. Tvo
labollingsm, “l" S(m) are equivalent when 'K,"—Q-‘t,t for any
“e‘and Le). The equivalence class detersined by

{qRe lged, ] 8 4nX
is called a double coset*

* analogous to {«&W ldlA!Q \Aﬂ I
or {wNalae¢ Al ¢ A

*~ing called single cosets. See [8].

The qtoups% andx induce a partitioning of 5 (m), by means cf taear
double cosets. A set of double coset representatives constitutes a
coxplete sat of unique labellings of G with labels L.

Brown, "“asinter and Hjelmeland [9] have designed and iaplemented tJc
algorithas tor generatirg double coset representatives tor the
labelling problem. The algorithm usad in the present work was an

ieplementation given by L. Masinter.

/S




Appendix 3. Fiqgenvalues as Invariant Peature
(by Dr. Payamond Carhart)

A graph c1n bhe roprescnted as adjacency mattix A of order nxh, «ncte
n is the nambar of vertices in the yraph. PRachk Aij is an iutcyor
renrescnting the numher of edges linking vertices i and j. (Aij ic
zero vhen vertices 1 and j are not connected by au edge). Fcr al
undircected graph the aatrix A is syrmetric. #®hen there arc nc
self-loops on vertices the diagonal clements Aii are zero.

Since sisultaneous row and column permutations on A leave the
topology of the graph unaffected, tvo graphs (matrices) A& and 8 ace
topologically equivalent if they are related by a pernmutation

matrix P such that

T P
A = P BP 0OC AC~=D>B —=~—=======((])

The eigenvalues of a symasetric satrix A can be defined as tae

diagonal elements of a diagonal matrix J\_ , such that

DsVUAY  ceeeee (e2)

vhere \J is any orthogonral matrix.

Substituting (c1) into (c2) we find

= (PU)T B (PU) ====- - {c))
When U is orthoyoral, (PU) is orthogonal as well. Thus the
eigenvalue sets of the adjacency matrices of topologically equivalent
graphs are the same,

A <-f-> 8 ===> I_(A) = L\(p).
In general it is not true that vhen the ecigenvaluaes of tuo adjocerncy
matrices arc the same, the two corresponding graphs are topcleqgicaliiy
equivalent. For example, the twd graphs shown below are topologyicai.l:
different, but have the same eigenvalue sets.

G Oo°

The eigenvalue corputation can be usad as an invariant feature or

topologically equivalent graphs to aid in the'gronping ECcCcess

1L




freceding the isomolph elimination process.

11
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Table I. SUMMARY OF RESULTS

Vertex Graphs with Bumber of Graphs Cenerated fro=
Trivalents GQuadrivalents Generated Trivalent Regular Grart: cf
2 1 h vertices
3 1 5 6 vertices
6 1 2h 8 vertices
o 2 1 k vertices
2 2 4 6 vertices
b 2 34 8 vertices
o 3 1 6 veriices
2 3 12 8 vertices
0 ] 3 8 vertices

See Reference [7] for complete lists of graphs.
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