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Abstract

Some very fast mmerical methods have been developed in recent

years for the solution of elliptic differential equations which allow

for separation of variables. In this paper a Fourier-Toeplits method

is developed as an alternative to the well-known methods of Hockney and

Buneman. It is based on the Fast Fourier transform and Toeplits factor-

jzations. The use of Toeplitz factorizations combined with the Sherman-

Morrison formula is also systematically explored for linear aystems of

algebraic equations with band matrices of Toeplits, or almost Toeplits,

form. Finally, results of numerical experiments are described.
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On Fourier-Toeplitz Methods for Separable Elliptic Problems

by

D. Fischer, G. Golub, 0. Hald, C. Leiva and 0. Widlund

1. Introduction

In recent years, some very fast and accurate methods have been

developed for the direct solution of the sparse systems of linear

algebraic equations which arise when elliptic problems are solved by

finite difference or finite element methods. Several of these algorithms

implement, in very efficient ways, the idea of separation of variables.

The best known of these are due to Hockney [15, 16] and Buneman {5, 6].

In this paper we will present an altemative to Hockney's and

Buneman's methods for the solution of elliptic problems with constant

coefficients on rectangular regions and on infinite parallel strips.

Our method, like Hockney's, is based on the use of the Fast Fourier

Transform for one of the variables, but it uses an alternative way of

solving the resulting systems of linear algebraic equations. These

systems can be represented with band matrices of Toeplitz form or as |

low-rank perturbations of such matrices. The systems are solved by a

combination of Toeplitz factorizations and applications of the Sherman-

Morrison formula or its block version, the Woodbury formula, cf.

Householder (17). By using the Toeplitz structure, we are able to take

greater advantage of the special structure of the matrices than when

Gaussian elimination is used. This leads to a considerable saving in |
storage. Ve note that the odd-even reduction method has similar

advantagesbut that it can be used only for a subset of the problems
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which we can handle. We include a discussion of the use of Toeplitz

factorizations for more general band matrices. The method requires

considerably much less storage than the Cholesky and Gauss elimination

methods and it is also found to be quite competitive, in terms of

arithmetic operations, in certain cases. For earlier work om Toeplits

methods, cf. Bakes [1], Bareiss (2], Bvans [10], Evans and Forrington [11],

Malcolm and Palmer {18], and, for a somewhat different class of problems,

Rose [22].

Separation of variables can be used only for regions which, after

a possible change of independent variables, are rectangular aad for

differential operators of a special form. Similar restrictions are

imposed on the discrete problems. For a discussion of the special

structure which is needed for the use of these methods, cf. Widlmmd [25].

However, even for problems on non-rectangular regions, or with boundary

conditions which do not allow for separstion of variables, the fast

methods can be used provided that the operstors allow for separetiom of

the variables on some appropriate region. The idea is to imbed the givea

region in a rectangle and combine a fast method with the Woodbury formmla

or a minimization algoritim. Cf. Busbee, Dorr, George amd Golwb [8],

George [14], Proskurowski and Widlund [19], and Widlusd [25]. Proper

implementations of the imbedding methods lead to a somewhat more favorable

operation count than George's powerful ordering algoritim for Cholesly

factorization [13]. That method is howaver applicable to & much wider

class of positive definite, symmetric matrices.

The Fourier-Toeplitz methods has been tried iaa series of mmerisal

experiments at the ARC Computing Center at the Courent Institute of

1.2



Mathematical Sciences and at the Institute of Technology in Stockholm.

Some of the results, vhich are reported in the last section, show that

the method produces highly accurate solutions in a time which for the

CDC 6600 is 60-80% of that of a programwhich implements Buneman's

| method.

The authors wish to thank Dr. R. Singletonof Btanford Research

Institute for making his Fast Fourier Transform programs available, and

Dr. B. Jusbea of the los Alsmos Laboratory for the use of his huneman

program.
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2. Tri-diagonal Problems

Our interest in one-dimensional problems results from our use of

the separation of variables technique which reduces multi-dimensional

to one-dimensional problems. The linear systems of equations under

study also appear in other applications such as spline interpolation.

We will discuss the solution of linear systems of algebraic equations

with real band matrices and begin by considering the special case of the

nxn tri-diagonal matrix

A -1

-1 N -1 03 . .

A= . ' . ’ A>2

1 A

The corresponding linear system could be solved by band Gauss elimination

type methods, cf. Forsythe and Moler [12] or by odd-even reduction,

cf. Hockney [15] or Widlumd [25]. The latter of these methods takes

into account not. only the band structure but also the fact that the

matrix A has Toeplits fomm, i.0., the values of its elements, JT ’
depend only on i-j . Such matrices require very littls storege and

are easy to handle even in other respects. It is therefore maturel to

tryto find a I , or IDLY , decompositionof A im terms of Toeplits

matrices. This is not possibls for fimite values of a. However, fora

perturbed matrix 3B , we find
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vhere a= N2 + (a1)? . It is easy to see that the plus sign
shouldbe chosen, becausewe then have iu > 1 and thus diagonally dominant

matrices. The mmerical stability of the process for solving Wx =f,

B = II7, follows immediately. If, on the other hand, the minussign were

chosen and A >2 them 0<p<1l and we have to expect an exponential

growth of round-off errors. This becomes apparent when we consider the
two-term recursion relationships representedby the bi-diagomal mstrices.

The change in the upper left-most element of A is compensated for

by the use of the Sherman-Morriscnformals. That is, if A=Btuv ,
with u and v colwm vectors asd ¥v denotesthe tramepose of Vv ,

then

al ap lophaevate St
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The matrix uv is of rank one and in this case we can choose

Gu = (1,0,...,0)T and v = (A-t)u = (1/n)u .
We remark that the Sheman-Morrison formula, and its block version

the Woodbury formula,

Al. -3hu(z + vel ive?!
sometimes provide a useful tool to decide whether or not a matrix A

je singular. Here A = B+UV , U and V are nxp matrices and

I, the pxp identity matrix. Given that B is non-singular, A is
singular if and only if I +V BU is singular. Assume that
(1,+V 37 0) = 0 for some non-gexo vector @ . Then since value = 4p
the vector 3 lue is different from sero. This vector is an eigenvector

to A corresponding to the eigenvalue zero because

alue = (B+uv)B tue - U(z + V 57 U)e -0 .

Conversely, if 1+v aly 1s non-singular, the Woodbury formula
provides sn explicit formula for A” .

We also remark that the matrix A , studied above, might correspond

to a standard second order accurate finite difference appréximation to

-2utcu = £, ¢ some non-negative constant, vith Dirichlet bowsdary
conditions. By an appropriate chamge of ome of the boundary oomditions

ve arrive&t & matrix B Of the form above,with A = 2+hfc . To

solve Ax =D , by our method, ve find BD end add to it & solwion

of the special form oomst.xDSu . The second tem is & corresticn
term which mashes the solution satisfy the correct boundary omméiticns.

AlSermatively, ve oon modify the data ot one end-point end wee the beunfasy

condition corresponding $0 the matrix 3B .
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This method can be implemented in several ways. We will here

suggest a procedure vhich requires very little temporary storage. We

will restrict our discussion to the case when A >2 , i.e., H>1.

We start by computing the constant

a= (Ap) (1+vT Br)" (1nd)

It is easy to see that 4 = uly - pm(3+2)y-1 . This part of the

computation, which is independent of the particular data vector, can be

carried out in a time comparable to a fixed number of arithmetic operations

provided ve use an economical algorithm for the evaluation of the

exponential function, taking advantage of the finite word length of the '

computer. If we do not wish to preserve the data, we can now execute the

entire procedure in place, using only a fixed number of temporary storage

locations. We first compute B 1b in the usual way, and let it occupy

the storage originally containing 1 . The elements of 5 1p are

thereafter modified one by one by successively subtracting the elements

of two vectors, the sum of which equals the second tem

v = Blu(l+ vty lvele

of the Sherman-Morrison formula. It is elementary to verify that

- on-2 -1
y, = (WY -u"T aE),

T™he first component should be computed recursively for increasing values

of vv, to assure mmerical stability, while the se:ond component should

be found for decreasingvalues of v . The required mmber of operations

are A+ (()/n) multiplications/divisions and &+(O(1/n) additions/subtractions

per mmimowm. If plu is computedand stored, we can save one fourth of
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thic work if the sume cyctem of equations is solved many times with

different data vectors.

We note, cf. Widlund [25], that the operation counts for Gaussian

elimination and odd-even reduction methods are somewhat more favorable

in this special case. The correct choice of method will in fact depend

on which camputer, compilers, storage, etc., are available. Also compare

the discussion at the end of Section 3.

Essentially the same method can be applied to other matrices which

differ from B by only a few elements. It is sometimes advantageous to

modify the algorithm if we want to change the elements in the lower right

hand corner of B . If we, for example, consider a matrix C which

differs from B only in the element in the lower right hand corner,

we can avoid using the Sherman-Morrison formula and instead use the
regular 1U factorization of C . We should them, of course, take

advantage of the fact that the (n-1) -st rows of L and (n-l1) -st

columns of U are known from a factorization into Toeplitz factors of

a submatrix of order n-1 . It should also be clear from this discussion

that in certain cases a UL Toeplitz factorization is preferable in order

to minimize the rank of the modification matrix which is to be handled by

the Woodbury formula. The implementation of the Woodbury formula is

discussed further in Section 3. For yet another variant of the

algorithm, compare our discussion of twisted Toeplitz factorisations in

Section &.
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3. Toeplitz Factorization of General One-dimensional Problems

We will now turn to a discussion of a general matrix which differs

by no, or only a few, elements from a symmetric band matrix of Toeplitz

form. Such matrices occur in fourth, or higher, order accurate finite

difference approximation to second order elliptic problems, when solving

the bi-harmmonic problem by a Fourier method, in higher order spline

interpolation, etc. We will first consider a corresponding doubly

infinite Toeplitz matrix,

vee 0 a, A, ‘ coe By By ee BL a, OO ...

A= cee OAL mL. 8 a a 8 0

. ee.8 8, 8 . IES

0 hy ™ so & 8 °c so a

We assume that all a, are real and that a, FO . To be able to find
a LIT factorization of A , where L is a real lower triangular

Toeplitz matrix, we make an assumption analogous to the requirement of

positive definiteness for the Cholesky algorithm. Denote by x tae

complex conjugate transpose of the vector x .

5.1



Assumption 1. For all x such that x x 2 x AX >0.

The characteristic function &a(z) of A 4s defined by

k -k

We will now prove a lemma, which, in essence, is identical to the

Fejér-Riesz lemma, cf. Riesz and Nagy [20], pp. 117-118.

Lemna 1. If Assumption 1 is satisfied, a{z) can be factored as

a(z) = £(z)-£(1/z) ,

vhere

2(z) =b. +...+Db z=0 L I J k 2

bq >0 , is a real polynomial with no roots inside the unit circle.

Correspondingly the Toeplitz matrix A can be factored as A = LL

where

. . b

L= 0 .
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Proof. We first factor a(z)+e, € >0 . We note that if

a(z,) +e =0 then a(lizy)+e = a(z,) +e = a(1/z,) +¢=0. The
function a(z) + ¢ has no roots on the unit circle. Assume by contra-

diction that a(et®) +g =0 for some real © . By Assumption 1,

x (A+ el)x > eX X . We will now reach a contradiction by choosing

x(n) = (1/2)? (0, er ey0,1, el®,18 .e .,el0(n-1) o oo IT because
x(n) (mn) =1 while X(y (A+ eI)X = 0 when n -« . The function
a(z) + ¢ can therefore be factored as 1 (z)-2 (12) in such a way that

the roots of the real polynomial t (2) lie outside the unit circle.
Since the root: of a(z)+e = 0 depend continuously on ¢ the proof is

concluded by letting et - 0 .

A different choice of factors, allowing for roots of ((2) inside

the unit circle would lead to an exponential growth of round-off error,

cf. the discussion of the special tri-diagonal case above.

One can also show easily that any function a(z) of the above

form, which has no roots of an odd multiplicity cu the unit circle,

corresponds to a Toeplitz matrix satisfying Assumption 1.

The factors 2(z) and £(1/z) of a(z) are known as the Hurwitz

factors. They can be computed numerically in different ways. If k =1

or 2, the b's can be found by a straightforward approach at the

expense of solving one and two quadratic equations respectively. In the

general case the factors can, of course, be found via the computation of

the roots of az) = 0 , but it is more satisfactory to compute (2)

directly. The algorithms to be discussed require strict positive

definiteness. As a first step we therefore consider the possibility of

removing the factors corresponding to the roots on the unit circle in
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order to reduce the problem to a positive definite ome. Frequently it

is natural, from the particular context, to make an additional assumption,

cf. Thamée [2k].

Assumption 2. The Toeplitz matrix A is elliptic, if for some integer

m and some positive constant ¢ ,

ae) > clo|™ for all O¢(-x,x] .

It is easy to see that Assumpticns 1 and 2 will allow no eros on

the unit circle except at =z = 1 . The cerrespondingfactors can easily

be factored out.

In a general case, when only Assumption 1 is lmown to hold, one can

try Euclids' algorithm to determine if a(s) has any multiple roots.

If z¥a(z) and its first derivative have no non-trivial common factor,

there are no multipleroots and thus no roots om the wmit circle. Ifa

common factor is found, the algoritimcan bs used to find common factors

of 25a (z) and its successive derivatives resulting in a factorisation

of 2%a(z) , into lower order polynomials which have only simple roots.

This procedure sometimes fails to reduce the problem to strictly positive

definite cases. To see this we can construct a polynamial with double

roots on, and several double roots outside and inside, the unit circle.

It appears that in such a case an iterstive root fading slgoritim has to

be employed for the approximate calculation of the Emxwits factors.

We will now discuss an algorithm, suggestedby Bauer [3, M] amd others.

Its convergence is a Volksats (Folk theorem) smomg people working with

Toeplitz theory, cf. also Rissenen and Barboes (21]. let A, be a rel,
semi-infinite symmetric matrix, the rows of which equal those of the
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Toeplitz matrix A from a certainrow onwards. Assume that all

principal submatrices of A are strictly positive definite and that

the charecteristic function a(z) , corresponding to A , has no roots

on the unit circle. Then the rows of the lower triangular matrix L >

normalized to have positive diagonal elements, in the factorization

A, = LL; will approach those of the Toeplits matrix L, A =IL',

vhen the disgonal elements of L are chosen to be positive.

If we apply the algorithm to a tri-diagonal case with a, = -1 and

a, >2, it can be show that the convergence is linear, cf. Bauer [3, LI]

and Malcolmand Falmer [18]. In the semi-definite case, a, =2, we

still have convergencebut the error decressesonly as 1/n .

An alternative method, also for strictly positive definite cases, is

suggested by Wilson [26]. It is based on the Newton-Raphson method, is

quadratically convergent, and is shown to be globally convergent for a

family of easily comstructable initial approximations of £(z) .

We will now assume that the Toeplitz matrix L is available. To

illustrateour method, we considerin some detall a case where we vant

to solvea linear systemof equations with n unknownswith a matrix A

equal to a principal submatrix of the doubly infinite Toeplitz matrix A .

Such linear systems arise if we approximate a one-dimensional elliptic

problem with Dirichlet boundary conditions by a finite difference

approximation of elliptic type, cf. Assumption 2, and prescribe, as

boundary conditions, the values of u and differences of u of order

ome through k-1 . This problem leads to a particular choice of the

matrices U and V in the Woodbury formula. The modificationor our

procedure to other matrices, which differ from the case under study in
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only a few rows can be worked out quite easily. We will always assume

that in our applications k ie considerably much smaller than n .

If we use the relation A = LL1 we can easily verify that

T T

Ay = InhatUh Uy

where L, and A are the nxn Toeplitz matrices

b, C

; O
by b . . N Bb,

0 b, 5

0 0 b, be 1 . , . LN
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$3 % to

“n oY . . . &, 2 8, . . . a ces
0 . . . .

0 & . . . 8 8a

The rectangular axk matrix U is given by

Ir \

vu, = U
0)

vhere

bb., - . . . b,

5 b., . . b,

U = : : : .

by
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The Woodbury formula then takes the fom

g I T 1 -1
NaF wel Ea uch i IN I I

0 0

T

where B, = LLn° To calculate the kxk matrix

1 \ I
~T -T _- =~

C = I +U L L U
0 0

we will first solvefor the nyk matrix Y definedby |

Iy

LY = ’
0

and thereofter form the kxk matrix W = YOY . The matrix C can be

expressed in terms of Y and W as

Cc = 1,+TYYU = 1 +T wd.

The elements of W can be formed quite inexpensively if we take advantage

of the Toeplitz structure of I let y = (FyseesFp) be the solution
of Ly = (1) where old) = (1,0, ...,0)T . The elements Vig of Y
are simply given by

Yie1-} 123
Yi3 - .

0 i<)

The clement vyj of W are defined by the imner product of the i-th
and j-th columns of Y . Thus
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ntl-i

and by symmetry Wig" Ye for J>1 . For J <i ve find from the
above formula that

“ij = Ye,541  edet Yay (3.1)

1t therefore suffices to compute the last row of W and thereafter find

the rest of its elements by formula (3.1) and the symmetry condition.

The computation of W will thus require only (20+1)n + O(X°) maltipli-

cative and (2k-1)n+0(kx°) additive operetions. The matrix C oan now

be found in NK’) operations and it is thereafterfactored by using the

Cholesky procedure.

We vant to point out that the elements Yi »y 3 =1,2....k, can
be found by simultaneous accumulation of k immer products while

calculatingthe vector y . B8ince L, is a band matrix ve need amly

Yr to calculate Yl The whole calculationof W can
therefore be orgmised so that it requires omly Eektl storage
locations.

We will now describe a method for solving AX =f which requires

very little storage. We writethe solutionin the form

- - - = 5S |

JE Nt RR (Cnr St KlSh a

and begin dy solving Lz = f . Becauseof the sparseness of U, the

second vector in the parenthesis dspands only an the k first camponemts

} of the vector v givea by vez. These componentscan thus be found
by back substitutionduring which only k components of v are carried

59
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Ux = eX) « The elements of Thal can be computed using the same

idea as vhen finding a 4 . In general cases the method previously

presented provides a more efficient algorithm than the alternative

Woodbury formula (3.2).

It is of interest to compare the Toeplitz method with the regular

Cholesky factorization. The Cholesky factorization into IDL form,

L, = 1 , requires essentially k(k+3)n/2 multiplications/divisions and
k(kt1l)n/2 sdditions/subtractions. To store the factors, we need (ktl)n

locations and to solve essentially (2k+tl)n multiplications/divisions

and 2k additions/subtractions. The major disadvantage of the Toeplitz

method is that it requires twice as many operations for solving the system

as the Cholesky method. However in a situation where we cannot retain

the Cholesky factors in storage but can afford to save the b's and

the triangular factors of I,_+U-(L LT)" U , we find that the Toeplitz
method will be more economicial in terms of arithmetic operations for

k>3. For k =2 the two methods will require the same number of

multiplicative operations. The major advantage of the Toeplitz method is

that we will never need more than n+ o(k°) storage locations if we do

not wish to retain the data vector. As pointed out above our method can

also be used, with equal economy for non-symmetric perturbations of the

matrix I Io . In such cases the Cholesky method is no longer applicable.
One can show that under the same assumptions as in the above comparison

of the Cholesky and Toeplitz methods, our algorithm is preferable in

tems of aritmetic operations to the regular band Gaussian elimination

procedure already for k = 2 .
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Rose [22] explored the use of a method similar to ours in a

tri-diagonal case where what corresponds to our doubly infinite

Toeplitz matrix A is the product of two Toeplitz matrices and a

diagonal non-constant matrix. It is obvious that most of our considera-

tions are valid in cases where there is a convenient doubly infinite

matrix A for which Toeplitz and diagonal factors can be found. That

is, for example, frequently possible for standard difference approxime-

tions to operators of the fom -0, 8(x)d_ .
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4. Multi-dimensional Problems

We will now discuss the use of Toeplitz methods for matrices of

block-band form which arise from finite difference approximations of

separable elliptic problems. We first consider the stendard five-point

finite difference approximation of Poisson's equation on a rectangular

region with Dirichlet boundary conditions. The matrix, which is block

tri-diagonal has the form

A oT

TA

A = ° ° .

0) IS ° -1
-I A,

vhere A, is the tri-diagonal, nxn matrix

y -1

5

° » -1

-1 4
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If we attempt to find a factcrization of A , or of some lower rank

perturbation of A , corresponding to those of Section 3 we must find

an appropriate factorization of the characteristic function

a(z,, z,) = =2Z)-2,+ 4 - zg" - 25" . When the characteristic function
depends on several variables a factorization like the one of Lemma 1 1s

possible only in exceptional cases. This fact can be expressed by saying

that the Fejér-Riesz theorem does not extend to several variables or ’
alternatively that no LLY factorization is possible of the infinite

matrix corresponding to a(z,,2,) such that IL has only a fixed number
of non-zero elements in each row. It is, for example, not difficult to

show that the above characteristic function a(z,, Z,) cannot be factored

in a useful way. We therefore turn our attention to the separation of

variables technique. The normalized eigenvectors ot) ys 0 =)1,2,...50,

of A, are given by oi) = (2/ (a+1)) 2 sin(j1x/(ntl)) , J =1,...,n .
The orthomormal matrix Q , with the eigenvectors ol! ) for columns,

satisfies AR =D, , where D, is the diagonal matrix of eigenvalues
of A, ’

N, = (Dy) 44 = 4-2 cos(tx/(n+l)) .

The change of basis which corresponds to the diesgonalization of A,

can be carried out inexpensively by using the Fast Fourier Transform (Fm),

cf. Cooley, Lewis and Welch [9], if n+l has many prime factors, ard in

particular if n+l is a power of 2 . After this change of basis, the

matrix A transforms into

L.2 |



QT a, -I Q

QT 0) -I Ay I Q 0)

0 | O | | N 0 |QT “I A, Q

D, -I .

-I D, -I

O 1
-I Dy,

A linear system of equations with this coefficient matrix can be solved

easily by the Toeplitz method developed in Section 2 because the

permutation of rows and columns which preserves symmetry and groups the

t-th equation of every block together into one block, leads to a direct

sum of Toeplitz matrices,
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ol

k 9

A

vhere

A -1

=1 . )

A, = . ° * .

0 N
-1 Ne

The algoritim is thus carried out in three steps. Firstwe apply

the FFT variant, vhich correspondsto a real sine transform, to the blocks

of the appropriately partitioned data vector. The transformed vector 1s

then permutedand the n tri-diagonal systems are solvedby the Toeplits

method. Finally an inverse Fourier trensform is applied, after a

permutation, to the blocks of the partitioned vector.

We remark that the FFT involves a certain permutation corresponding

to the inverse binary ordering, and that the inverse FIT involves the

transpose of this permutation, cf. Cooley, Lewis and Welch [9]. These

h.bh



permutations can be eliminated from the algorithm if the block matrices

A, are permuted suitably.
We next consider the same finite difference approximations but with

the Dirichlet condition replaced by a periodicity condition in both

directions. The corresponding matrix C takes the form

Co I O . 0 <I

-I Co -1 0

0 [J [ J [ J 0 ®
C = . . . »

0) 3 ® J Q
0 3 . =I

-I 0 . . 0 =I Co |

vhere Co is the nxn matrix

-1 4 21 0

Co = * ° ° . ° °

: 0 . . . 00 . . -1

For convenience we assume that n is an even number. The matrix Co

has the normalized eigenvectors (/n)2(1,1, ces ,1)7 and

(a/m¥2(, -l,...,-1) corresponding to the simple eigenvalues 2 and 6
respectively and (n-2)/2 double eigenvalues L-2 cos(2x#/n) ,

L.5



2 =1,... »(n-2)/2 , with the corresponding eigenvectors ol!) and N
(2)

ott) = (2/n)Y2 sin{j22a/n) , oll) = (2/n)}2 cos(je2x/n) .I,J II,J

The corresponding change of basis can again be executed with the aid of

the FFT. The tri-diagonal Toeplitz matrices of the Dirichlet case are

now repiaced by the matrices

?e -1 O « oo 0 =-1

1 ¥ ¢ -1 0
oO -1 . . .

Cy = - J LJ LJ [Y

. 0 lJ LJ J 00 ] » -]l

vhere 7, = 4-2 cos(2xt/n) , ¢t =0,1,...,n/2 . The matrix Fo has a
simple eigenvalue equal to zero reflecting the singularity of the

matrix C . Since Ce = 0 , vhere e = (1,1,...,1)T it follows that

Cx = £ has & solution only if ef = 0, i.e., the sum of the components

of £ 1s zero. The components of the right hand side z, of the linear

system [_X,= I, , vhich is derived in & way completely analogous to the
Dirichlet case, are the Pourier coefficients corresponding to the vector

| (1,1, Rb and the sum of these components will thus vanish if Cx = f

is solvable. If we set the last component of Xx, equal to sero end

remove the last equation, the system FoXo = 2, reduces to a
tri-diagonal, non-singular system of equations of Toeplitz form. Its
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solution, augmented with zero, can be show, by the linear depsndence

of the equations, to satisfy the original system. The remaining linear

systems of equations, with ¢ > 1 , can be solved by the Toeplitz method

modifying the (1,1) , (1,n) amd (n,1) elements of TI, . After the

inverse Fourier transform step, this algorithm will have produced a

particular solution of Cx = f . Any other solution to the problem will

differ from this particular solution by a constant.

As a third exsmple we consider the solution of the five point

difference approximation of Poisson's equation -Au =f on an infinite

parallel strip, -= < Xx < &», 0<y<1l. We impose homogeneous

Dirichlet conditions at y =0 and y=1 and assume that ff vanishes

cuiside a bounded region. The problem takes the form

-1 Ay I 0 «! -1) o(-1)
I Ay I x(©) . £(0)
O -I A, -I. ne (1)

vhere x(1) denotes the vectcr of values of the approximate solution
for x =ih and h denotes the mesh length in the x-direction. The

matrix Ay 1s defined as in cur first example. It is now natural to use
| a Fourier transform with respect to y . By using the same variant of

| LT



the FFT as for the Dirichlet problem discussed above, we reduce our

problem to the solution of :1 linear systems of equations. These

systems are of infinite order with tri-diagonal coefficient matrices

K, of Toeplitz form,

-1 A, -1 0

K, = -1 A, -1

0 -1 A, .

vhere, as before, A, = L-2 cos(tx/(n+l)) , £ =1,2,...,n . From our

assumption on the function ff we see that the components 2) of the
data vector (2) in the system xx(#) = $0) will vanish for J <N_
and J >N, if N_ and N, are chosen large enough. We can therefore

write

(1) ~(8) _ (8) _
x51! A, x, X541 0 , for J<N_ and J>NH_ .

This homogeneous difference equation has the solution comst. ud + const. uy)
where by = A f2+ (27m - 1)? > 1 . Imposing the obvious free space
boundary conditions, i.e., requiring that the solution remains bounded

for all n , we find that

N_-J)NORIO TA
LY » J 2K

x) (b.1)-N

(1) _ a(n) WN
x3 n JL » JsE_
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By using relation (b.1) for j =N +l and J =N_-1 and some elememtary

algebra, we can set up a finite linear system of equations.

~(1) “(2
hp ~1 _ on)

~(2) ~(1

hy 2 0 nn C9
~1 . . . .

. (1) (1)

O Che g KO!~(2 ~(1

Lowy Wn ty

This system can be solved very nicely by the Toeplitz method because
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By -1

-) . .

0) . Ny -1
=] by

1 Wy -1 O
-1

0 up 1 . =1

-1 1 -1
Hy ofWot

Finnlly the values of the olution on any mesh line parallel to the

y-axis can be found via an inverse Fourier transform.

A half infinite strip, 0 <x <w, 0<y <1, with the Dirichlet

boundary condition added at x = 0, O <y <1 can also be handled

easily by the Fourier-Toeplitz method without using the Woodbury formula.

Only a change of the right-most element of the last row of the coefficient

matrices and their upper triangular factors have to be made in comparison

with the case discussed above, if we order the unknows from right to left.
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For further discucuion of the solution of Poisson's equation on

infinite strips, cf. haneman [6G]. Bunoman has also swryrested Lhe

following alternative method of solving the linear system of equutionu

Just considered. We refer to it as a twisted Toeplitz factorization;

for a related idea, cf. Strang [23]. The matrix under study can, as is

easily verified, be written as a product of two, very special tri-diagonal

matrices,

by -1

=-1 N, -1 (0)-1 0) -1

=1 by

° T »

Ln : O wp Ly . 0)
a -l LJ

-1 . .

| “Vp . .
[ ] T *

9 . — 9 . be lpm
vhere the m xm matrix L is given by
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1

-l

-1

“ly i

L - . . .
m

-10 “Mg 1l
The solution of the linear system of equations corresponding to the

first matrix reduces to an inward sweep and the solution of a 22

system of the form -

-1 -1

1 “Hy Ym nt uy Ym-1

“By 1 m+ Tot1tBp Ypuo

The second matrix corresponds to a simple outward sweep. This algorithm

will not save arithmetic operations campared to the previous one, but it

has a nice symmetry, in that it treats the two endpoints in the same way.

Twisted Toeplitz factorizations can be worked out for general

Toeplitz matrices but in the general case their use must of course be

combined with the Woodbury formula for necessary modifications of certain

matrix elements. It does not seem to offer any particular computational

advantages to the methods discussed in Section 3.

The Fourier-Toeplitz method can be extended to positive definite,

symmetric matrices of the form
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bo A A

AR 0
Ay + Ho Ay

0 v Ay A Ay
CREE

where all the block matrices Ay commute and can be simultaneously

diagonalized ty a change of variables corresponding to one of the FFT

variants. Certain finite difference approximations to the bi-harmonic

equation with boundary conditions which allow for separation of variables

belong to this category as well as certain fourth order finite difference

approximations to Poisson's equation.

A possible improvement of the Fourier Toeplitz method, which has

not been tried experimentally, could be obtained by one or a few block

odd-even reduction steps before the FFT is applied, cf. Hockney [15, 16],

Buzbee, Golub, and Nielson [7] or Widlund [24]. This would result in the

application of the Fourier transfcrm to vectors with fewer components at

the expense of an increased band width of the Toeplitz matrices and the

work connected with the odd-even reduction steps. This idea has proven

quite useful in Hockney's method. Our method can also be extended to

three dimensions, if we use FFT for two of the variables.
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%. Numerical Results

The Fourier-Toeplitz methods discussed in Section h have been tried

on the CDC 6600 of the ABC Computing Center at the Courant Institute,

New York, and on the IBM 360/75 of the Institute of Technology (K.T.H.)

in Stockholm. We will describe the results of some of our tests in

New York. The programs were written in assembly language and the

execution time of one of them was compared with a machine code program

jmplementing Buneman's algorithm which Dr. B. Buzbee of Loa Alamos was

kind enough to make available to us. The FFT program used was kindly

made available to us by Dr. R. Singleton of Stanford Research Institute.

The rounding errors only affected the last few digits in all our experiments.

Case1. Poisson's equation with homogeneous Dirichlet boundary conditions.

(a) 127 x127 mesh. Total time: 1.LO sec. of which 1.12 sec. were

used for the Fourier transforms. For the Buneman algorithm:

1.81 sec.

(b) 63x63 mesh. Total time: 0.346 sec. For the Buneman algo-

rithm: 0.42 sec. Storage used (excluding the program) of + 5n

for an nX n mesh.

Case2. Homogeneous Neumann conditions.

(a) 129x129 mesh. Total time: 1.57 sec.

(b) 65x65 mesh. Total time: 0.387 sec. Btorege used: n-+7n .

Case3. Periodic boundary conditions.

(a) 128 x128 mesh. Total time: 1.1h sec. Total time for the

Buneman program: 1.90 sec.

(b) 64x64 mesh. Total time: 0.268 sec. Total time for the |

Buneman program: 0.389 sec. Storage used: n°+hn . | :



Casei. Infinite strip with Dirichlet boundary condition.

127 x 127 mesh, 127 mesh points in the x-direction were involved

in the solution of the tri-diagonal linear systems of equations and in

the inverse Fourier transform steps. Total time: 1.42 sec. Storage

used: n°+Ln .
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