
AD-764 275 |

A MACHINE-INDEPENDENT ALGOL PROCEDURE
FOR ACCURATE FLOATING-POINT SUMMATION

Michael A. Malcolm :

Stanford University | ;

I #8

Prepared for: |

Office of Naval Research | :
National Science Foundation 3

June 1973

DISTRIBUTED BY: |
National Technical information Service

U. S. DEPARTMENT OF COMMERCE |
5285 Port Royal Road, Springfield Va. 22151 ;

:



Ve A MACH INE- INDEPENDENT ALGOL PROCEDURE
De FOR ACCURATE FLOAT ING-POINT SUMMATION
mY, |

De

— Michael A. Malcolm

Ae gp iSTAN-CS-73-374 ER Le |

June 1973 oT3% Uw

: NATIONAL TECHNICAL

COMPUTER SCIENCE DEPARTMENT

: School of Humanities and Sciences JERS
: STANFORD UNIVERSITY
: Ts Reppin Ute



| EEEse oe... re a a ln ee A AlA cts irr A ttSMe. srs om tir Arete te i
A MACHINE-INDEPENDENT ALGOL PROCEDURE

FOR ACCURATE FIOATING-POINT SUMMATION

Michael A. Malcolm

June 1973

This work was supported by the Office of Naval Research s Contract
NOOO14-67-A-0112-0029, and NSF Contract GJ29988X. |

%. 3

br %. upbeat hboa Shan? BoasaDih iin Coast SL baal akiSle ikaw doa Ske ahildiyantadiadinidu



procedure sum (x, n, m, result, fail);

value n, mj integer n, mj real result;
array Xx; label fail;

begin _—— This Algol 60 procedure is an implementation of the
floating-point summation technique described in Malcolm (1971). This

implementation is machine-independent in the sense that it will work on

any computer having a floating-point number system F characterized as

follows: Each number x€EF has a radix-f t-digit fraction where t > 1,
The radix § can be any positive integer greater than 1 . The exponent

e 1s assumed to lie in the range

oC b<e<B,
| : where b <0 end B>t . Each nonzero x€F has the representation

x = + .d,d, oleito d, 8° ,

where dy tells d, are integers satisfying

0<d; <B-1, (i=l, ...,t).

The number O is contained in F , but no assumption is made about its

representation, All floating-point operations (e.g., addition and multi

plication) are assumed to result in either 0 or a normalized floating-

point number contained in F , The machine may do either proper rounding

or chopping (truncation). (Note that this definition of F excludes

machines using extra-length accumulators for intermediate arithmetic.

However, this algorithm is seldom needed on such machines.)

The parameters g and t of F are automatically computed at

execution time by a technique described in Malcolm (1972). Since the

range of the floating-point exponent cannot be determined automatically,
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the input parareter mm is used for allocating the set of accumulators

| used by the algorithm.

Provided no overflow or underflow occurs, and none of the x[i]

are larger than 10™ , Or smaller than 10°" y in magnitude, and

n < gttl/16 , where £4 = |t/2] , then
n

result ~ §£ x[i]
1=1

is returned with nearly full-precision accuracy. The bound on the

relative error is given by Theorem 2 in Malcolm (1971) as

[(t+1)/ 1408416) ptt. |
If any of the x[i] are larger than 10" or smaller than 10" , then

| the error exit fail is taken. ;

: Boolean rnd; integer beta, t, t2, nu, L, Uj

procedure ENVRON (beta, t, rnd);

Boolean rnd; integer beta, t;

begin comment This procedure is an Algol 60 translation of the (first)

Fortran subroutine ENVRON given in Malcolm (1972).

real a, b, ej

for e :=2,2xe while (a+l)-a=l do a :=e; |

for e :=2, 2xXe while atb=a do b :=e;

beta := (a+b)-a; rnd := a+(beta-1l) > a; t := 0;

for a :=1, betaxa while (a+l)-a=1 do t := t+l :

end ENVRON; |

: ENVRON (beta, t, rnd); t2 := t+2; nu := 4n(16)/fn(beta);

U := entier (mxfn(10)/(4n(beta)xnmu)) + 1;

| L := entier((-mxfn(10)/4n(beta) - t2)/nu);
| 2



comment In the notation of Malcolm (1971), £ = t2 1s the padding that

each of the numbers added to the accumulators will have. Each of the x[i]

will be split into two helves (i.e. q=2) having the last t2 digits equal

| zero, The variable nu above is used for v defined in Equation (2) of

Malcolm (1971). The value for nu computed above is rather arbitrary

and was chosen to make nu sufficiently smaller than t2 . The variables

| U and LL are the upper and lower bounds on the indices of the accumulators

which are declared in the following block. They are chosen to allow the

x[1] to range from 107" to 10" in magnitude. In slightly different

notation, they are

| U = m/(vxtog,8)1 ,

L = {(-m/2og,,8 ~ Lt/2])/v] ;

begin array accumlators[L:U]; integer ex;

real xL, xH;

integer procedure e(x);

| begin comment This procedure computes the exponent e of the

floating-point number x . 3

real y, q; integer ex;

x := abs(x); ex := 0; for y :=1,q

while xy do begin ex := ex+l; q := betaxy; end;

for y := gq, y/ beta while x<y do ex := ex-1;
e := ex

end e;
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| comment initialize the array of accumlators; |
for 4:=L step 1 until U do accumlators[i] := 0;

comment accumlate the nonzero x[ils; |

for i:=l step 1 until n do if x[1]40 then

begin ex := e(x[1i]);

! if entier(ex/mu)>U Vv ex-t2<Ixmu then go to fail;

| comment, Now the x[i] is split into a high- and low-order |
part, xH and xL. The method used here is to add the proper |

| power of PB to x[i] to force it to preshift t2 digits |

to the right and then either truncate or round the last t2 |
significant digits. Then the same power of f$ 1s subtracted

to cause & post normalization which brings in t2 trailing

: zero digits. The resulting high-order part of x[i] is then :

subtracted from x[i] to produce the low-order part such |

that the sum of the high- and low- order parts is exactly

equal to x{i]. This method of splitting a floating-point

number into two halves is similar to that given by Dekker |

(1971). ;

xH := betat(ex-1+t2); xH := (xH+x[i]) - xH;

xL := x[i]) - xH;

comment xH and xI can now be added to the appropriate

accumulators. >

accumulators[entier(ex/nu)] := xH; |

accumulators[entier((ex-t2)/mu)] := xL ]

end; comment Now sum the accumulators in decreasing order. ; |
result := 0; §
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result := result + accumulators(i) ]

end |

end sum :

{
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