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ABSTRACT

A mathematical characterization of nonlinear interpolating spline
curves is developed through a variational calculus approach, based on
the Buler-Bernoulli large-deflection theory for the bending of thin
beams or elastica. Algorithms previously used for computing discrete
approximations of nonlinear interpolating splines are discussed and

compared. The discrete naturel cubic interpolating spline is discussed,

An algorithm for computing discrete natural cubic splines is given and
analyzed for discretization error and computational difficulty. Finally,

& new algorithm together with its Fortran implementation is given for

computing discrete nonlinear spline functions.
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1. Iutroduction

For the past 25 year-~ and particularly the past decade, the subject
of spline functions has been an area of great mathematical interest. The
name spline comes from a very old technique in drafting in which a long
thin strip of wood, called a draftsman's spline, is used to pass & smooth

curve through a set of points in the euclidean plane. The points of

interpolation are called knots and the spline is secured at the knots
by means of lead weights called ducks. The wooden (and now plastic)

splines and lead ducks are still menufactured; however, less expensive

modern drafting tools are generally used today.

The mathematical model of g spline is a special case of the elastic
line, or elastica, the first problem of any importance treated by the
theory of elasticity. 1Its treatment began with James Bernoulli in 1705,
Daniel Bernoulli (1742), Fuler (1744), Kirchhoff, and many others. The
history and theory are summarized by A.E.H. Love (1927); however, research
papers on the elastica have been published more recently.

Perhaps the simplest way to characterize a spline mathematically
is with the fact that a spline assumes a shape which minimizes its
elastic strain energy. Daniel Bernoulli (1742) first suggested that the
strain energy is proportional to the integral of the square of the curva-
ture taken along the curve. He suggested in a letter to Euler that the
differential equation of the elastica could be found by making the integral
a minimum. FEuler (174k4), acting on this suggestion, was able to find

the differential equation using techniques now known as Calculus of Var-

iation: and Lagrange multipliers. (It is interesting that Euler did this

work when Lagrange was a small child.)




Since a modern development of Bernoulli's discovery could not
r be found in the literature, one is presented here. The reader is
referred to Y. C. Fung (1965) for discussions of the basic concepts
of solid mechanics used in the following discussion.

Assume that the spline is made from a linearly elastic material
with coefficient of elasticity E . Let the spline be initially straight
and assume that every cross section of the spline which is initially
perpendicular to the major axis remains plane and perpendicular to the
principal axis at all times. Let ds be the differential arc length
along the neutral axis. When the beam is bent into a curve of radius
R , the length of a filament, initially of length ds and parallel to
the neutral axis, is changed by a factor of 1 +T]/R , where T is the

distance from the neutral axis to the filament measured in a direction

away from the center of curvature, as shown in Figure 1.1.

Figure 1.1. A spline element

Thus, the strain is T/R, or T , where x is the curvature. ;
If dA represents the cross-se::ional area of the filament, EMuda

is the force (tension) acting on the filament. The resultant moment




of forces acting on the spline at the cross section is

M =’[T]’E'ﬂudA = EnA 'ﬂsz g

By definition, the moment of area of the cross section is

I=/n2dA.
A

Therefore,

M =EIx .
The angle through which the cross section rotates is wuds . Hence, the
work required to bend a segment ds of the spline to a curvature x is
given by

W = (EI/2)n2ds . (1.1)

There is a longitudinal force acting on the ends of the element. However,

the strain energy resulting from this force is negligible. Hence, inte-

grating throughout the spline, we have the strain energy

)
U =§/E1n2ds :
0

If the material is homogeneous, and the spline is of uniform cross

section, then )

v = /ueds . (1.2)

0

Now let ¥ denote the potential energy of the system. In the

r =./rﬁdv -“/Pf.u.dV'-“/ft.u das
~i~i ~i~]i
v \'s S .

general case

e
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where W 1is the strain energy function, gi are the body forces per

unii, volume, Ei are the surface traction forces per unit ares, and

u, are the displacements. The repeated subscript is the usual tensor
notation for summation over all possible values of the subscript. We
are assuming that the fi = 0 . Now, for this case, the Ei correspond

to the forces acting upon the spline at the nodes. But the spline is

constrained at each node, so that either g = Q0 , or u, 1is orthogonsal

i
to Li . Thus, since the nodes cannot apply torques to the splire, they

./P t.u.dS
~i~i

S

¥ =.}f Wdv
A"

can do no werk on it, or

1]
o

Hence,

it
(=

The principle of virtual work states that when a body is in equilibfium,

v =0 .
Therefore,
86U =0, (1,5)
or P
fu.eds = a local minimum . (1.4)

0f all the continuous curves which pass in turn through a given set
of ordered points in the euclidean plane, having continuously turning
tangent:, and piecewise continuous curvature with discontinuities in
curvature permitted on only a finite set of points, those satisfying

(1.4) are referred to as nonlinear interpolating spline functions, or




simply, nonlinear splines. Birkhoff and de Boor (1965) gave an example

which denies the existence of nonlinear splines in general. (See Section
3.2 tor a discussion of this example.) It is an open question whether
uniqueness holds for & given set of interpolation points. This question
is complicated by the fact that the value of (1.4) can be made as small
as desired by introducing large loops between supports, which moditfy the
topology of the spline, The only known existence results for nonlinear
splines are given in Section 3.2,

For deflections of the elastica which result in small slopes,
w =y” and ds = dx . With this well kinown linearizing approximation,

Equation (1.4) leads to the linear fourth-order ordinary differential

equation known as the beam equation. The corresponding problems of

interpolation have unique solutions called natural cubic spline functions.

These solutions satisfy the natural boundary conditions of zero second
derivatives at the ends. Existence and uniqueness for "linear" cubic
splines follow from basic theorems of linear elasticity.

As one would intuitively expect, nonlinear splines are invariant

under rigid rotations ot the x-y coordinate system. However, the
linear cubic splines are not invariant under rotations of the x-y coor-
ainate system, and hence they are not well suited to fitting geometrical
data in a euclidean plane, or other data where rigid rotations of the
coordinate system make sense, On the other hand, nonlinear splines are
not invariant with respect to changes in the y coordinate only, while
linear splines are (see Podolsky and Denman (1964)).

As pointed out by Lee and Forsythe (1973), the term nonlinear
spline hes been used variously in the literature. However, in this case,

the term indicates that the spline satisfies nonlinear Euler equations




which will be derived in the next section.

k Little of the classical work on the elastica is dirently applicable
to nonlinear spline thecry. The earliest known paper on nonlinear splines
is that of Birkhoff and de Boor (1965). Early reports were written by
Fowler and Wilson (1963) and Birkhoff, Burchard and Thomas (1965).

] Methods for computing nonlinear splines have been published by Glass (1%6),
Larkin (1966), and Woodfora (1969). Mehlum (1969), in his Ph.D. dissert-
ation, discusses nonlinear splines and presents an algorithm for approx-
imating a nonlinear spline by a succession of circular arcs, Hosaka (1967)
1 descrihes how to solve (1.4) and generate nonlinear spline functions on

a differential analyzer, Some of these algorithms will be discussed in

Section 3.

Methods for conputing nonlinear splines nave applications in the
design of aireraft, ships and automobiles, A piece of sheet ir‘tal which
is bent into an axially-symmetric configuration has & crosis secilion which

behaves lile a nonlinear spline.




2. A Varjational Formulation of the Large-Deflection, Small-Strain
Problem of Interpolating Elastica

1 B

interpolating elastica as the function P(s), a function of arc-length

Given a fixed sequence of points P 3 ooy Pn’ we define the

s, which satisfies the equilibrium conditions for a thin beam, of con-
stant cross section and constant linearly elastic properties, passing in turn
through the n points Pi and acted on only by workless constraints

at the points P As we shall see, the natural boundary conditions

;
resulting from the variational formulation will indicate exactly what

kinds ot boundary conditions are admissible and what combinations of them
result in well-posed problems. We will also see that the forces gi acting
on the elastica through the points P& must satisfy certain restrictions
which are entirely consistent with the assumptions of Section 1.

It is natural to specify each P, by a pair of Cartesian coor-

i
dinates (xi,yi); however a more efficient coordinate system for the
development of the problem is (8,s), where s is the arc length and

6 = 6(s) is the angle made at s by the curve P(s) with some refer-

ence line., The curvature of the elastica at any point s is given by

x(s) = d6/ds .
In Section 1 it was shown that stable configurations of the elas-

tica correspond to local minima of the functional

L

/‘ x2as (2.1)

0

where £ 1is the length of the elastica and the integral is teken along

the deformed configuration. Note that £ 1is allowed to vary in minimizing




(2.1). It is equivalent to say

8 [ n“ds =0. (2.2)

0

For the trivial case of collinear Pi and all si

(2.1) for the equilibrium state is O . To find the function 6(s) which

= 0 , the value of

satisfies (2.2) for a nontrivial set of P, , the additional 2n-2 side

i
i conditions
zi+l
COSQ ds = xi+1 - xi ) i=l, eo 0y n'l )
: £y
t (2.3)
£iv1
/ sinA ds = yi“‘l = yi ) i=l) o0y n-1l )
4y

must be added to (2.2), where zi denotes the value of & at Pi s
Using Lagrange multipliers, the constraints (2.3) can be added to (2.2)

yielding

n-1 ii+1
8 { E [/ (112 + Aicos e + u.isin 8)ds

i=1 2

ki - %) ey, - yi)] } =

Now since certain kinds of constraints at the Pi allow the elastica to

slide, the lengths £, are allowed to vary as well as the function 8 .

i




Taking continuous variations, intcgrating by parts and rearranging Lerms

gives
n-l 4y &
E f [-2 ks )‘i sin @ + by cos e] $6ds
i=1 44

- +
+ 2un69n = 2u1691

n-1
}: - +
noo-
+ 2 ( ; ni)bei
i=2

. - .
+ [(% )" +A jcos 8 +p .sin B ]88 (2.4)

- [(uI)2 + xlco: 9; +

n-1
e Y0 - P
i=2

. 8. + p,
+A1_lcos i H'1-

. At
L5in 61] Ml

ls1n Si

+ . Nt -
- A c08 B, - b, sin ei] Mi =0,
5 + q - q
where the notation g, denotes 1im &(£.+e¢), and £, denotes 1lim E(£.-¢) .
i i i 54
=0 €0
By the fundamental lemma of the Calculus of Variations, the integral

term in (2.4) yields

5 dn . - N
-aﬁ-xisme+picose—o,£ <s<4 (2.5)

i 5 5
for i =1,...,n-1 . Using (2.3), Equation (2.5) can be integrated for

each open interval yielding

Ay Wy .
(y-yi) + = (x-xi) s i=1,...,n-1 . (2.6)

+
w(s) =k, -

Equation (2.6) also results from the static equilibrium moment relation for

a segment of spline to the right of the i-th knot (see Figure 2.1).




B e —

»¥)
(x,¥ ) x(s)

A

> 2EI

5
i
Figure 2.1. A segment of spline to the right of the i-th knot

Hence, the Lagrange multipliers are scaled force components acting on the

R +
spline at zi ]

The Euler equation can be deduced by differentiating (2.5) which gives

2 "
dn . L cosp - —=sing)n > (2.7)
d82 e

So, if w £ 0,

d 1 d2u
ds x ds2

]}

Ay
2
A T
i . i _ dn
5 sin 6 - cos 6) o= -n a5

) i'

or !
a 5 1 du

()0 |

. ds |

{

lence, for u # 0,

2
1.d g = -i-ue + ¢
N dS

i ) zi < 8 <£i+l ) i = l,...,n-l s (2.8)

for constants s depending, in general, upon the interval 1 .

The remaining terms of (2.4) yield the natural boundary conditions.
Since each of the 88, and ali are arbitrary (for i=l,...,n), the knots
of the spline can be modeled by frictionlessly rotating sliders, as shown in

Figure 2.2.

10
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Figure 2.2. Frictionlessly rotating slider

The terms

171
in (2.4) give the natural end condition3 of zero curvature. The terms

- +
2"’nsen - 2n_65A

n-1l
2 £ (n,
i=p i

- nT)éQ.
At

demand that the curvature be continuous across each interior knot. If

the angle © is taken with reference to the x-axis, we have from (2.7)

2
dx (2.9)

T(S) = 2 ’
d52

x|

where T(s) denotes the (scaled) force transmitted along the spline.
(Tension is positive.) Thus, the terms
[(x)2 + A .cos 8 +u_ .sin 87182
" n-1 n n-1 n n

+

2 + +
-[(ul) + Alcos Gl + u.lsin 91]611
in (2.4) give the additional natural end conditions T(lI) = T(z;l) =) ,

That is, the ends of the spline have no longitudinal forces applied to

them. Similarly, the terms

n~l
-\2 +,2
i§2 [(ni) = (Ki)

+ Xi_lcos 61 + ui_lsin Gi

+ +
- Ajcos B, - p,sin Gi]GQi




require that the forces T(/z;) = T(LI) (i=,...,n-1) , that is, the longitud-

inal torce transmitted by the spline is continuous across each interior knot.
The constants of integration c, (i=1,...,n-1) in (2.8) can now be

determined for the natural open spline, Since T(LI) = n{ =0, (2.8)

evaluated at LI gives ¢, = 0 . Both the curvature and the longitudinal

force are continuous across cach of the interior knots, hence we have

o= O ftor i=2,...,n-1 . Thus we obtain the Euler equations

den 1 5
—stEn’ =0, b, <s<Ly, (2.10)

ds
for i=l,...,n-1 , which, in view of (2.7), must be satisfied by the spline
at ever, point within each open interval, Equations (2.10) were first
published by Birkhoff and deBoor (1965).

The above analysis shows that the nonlinear spline having friction-

.essly rotating slider constraints corresponds to the least-constrajut
interpolating elastica. Any turther constraints on the elastica must be
consistent with (2.4) and will produce a larger value of (2.1) unless they
are also concistent with the nonlinear spline., For example, Hermite con-
streints are consistent with (2.4) since they imply 86, =0, (B=lly . =25n)
However, for this case, curvature is not necessarily continuous acrosc the
interior knots and, hence, (2.10) no longer holds. Numerous combinations
of more restrictive boundary conditions are admissable according to (2.4).
Thes: include sucihi things as fixed ends and pinned joints. We will only
be concerned with the least-ronstraint, natural boundary conditions of the
nonlinear interpolating splines,

Closed nonlinear splines have been studied by Lec and Forsythe (1975).

In thic case, X) =% ani Yy =¥, - However, to avoid heving to pres-

cribe the totul length of the spline, the variations 611, and 6£n are taken

12




as unequal. Since elements of the curved arc are inserted into or deleted

trom the spline at Pl = Pn , the variations at zl and zn mist satisfy
+ -
60, + nlézl = 66n + unézn ’

The corresponding natural boundary conditions are

+ -
ny = wy
and
2 | ot =2 -
(nl) +27) = (nn) +2T =0.

It follows that (2.10) also holds for the case of closed nonlinear splines.




3. Methods for Computing Open Nonlinear Spline Functions

A number of methods for computing nonlinear interpoleting splines

have been published during the past six years. In this section these

results are briefly reviewed in chronological order. Also, two interesting
results due to Larkin, which concern the existence of finite equilibrium

solutions, are treated in Section 3.2.

3.1 Glass' method

The first published method for computing discrete approximations
to the nonlinear interpolating spline is that of Glass (1966).
Class uses Cartesian coordinates (x-y) and considers the Euler

equation analogous to (2.10):
" N, n 3

MELN 5(y")> + 20y y'y

— (3.1)
2[1 + (v))%) 211 + (y 1218

The knots are represented by their coordinates (xi,yi), i=1,2,...,n .

Since the curvature i

n = Y
[+ (yH2P/2
and ds = 1+ (y')2 dx , the energy given by (2.1) becomes
n-1l xi+l
E(y) = E G (3.2)
[+ (yH21°/2
i=1l xi

Glass first considers the problem on one panel [ XXy +l] , with the
end points ¥y and Yiq prescribed. He assumes the end slopes yi'

and yi' 4 ore also prescribed and proceeds to develop a method to solve

1k




the ordinary differential equatior (3.1), subject to these four boundary
conditions. Using a Taylor's series expansion of (2.l) about an approxi-

(0)

wate solution y » he arrives at & linear differential equation in the
correction to y(o) to obtain the better approximate solution y(l) .

Using central difference operators over a mesh of N points in the inter-
val (with constant mesh size H), he obtains a system of linear difference

equations in the correction terms at each mesh point. This 5-band system

of linear algebraic equations is solved at each iteration until convergence.

The solition of the fourth-order boundary value problem is carried

out in each ponel for a given set of slopes at the knots; yi s i=1,2,...,n ,

’

written y’. The functional (3.2) is approximated using this discrete r

solution and is now considered to be E(y‘) . Glass then proceeds to a

solution with an outer iteration which minimizes E(y’) using a gradient

method. He uses differencing to obtain partial derivatives and then rounds
them to 1, 0, or -1, He uses an unusual heuristic method for choosing b
tie step parameter A for moving in the direction -grad[E(y’)] .
Gluss doesn't prescnt the actual program; however, he claims that his
method requires only about five gradient searches for satisfactory answers,
He presents an example with nine panels (n=10), but does not mention the

value of N or how the initial y’ was obtained. For this example,

Glass' method took approximately 10 minutes on the IBM 7094,
In addition to the "enormous computation time," Glass mentioned that
v instabilities occur in problems where the spline turns too rapidly.
He suggests a technique for overcoming the instabilities at the
expense of a substantial increase in computation time. The computational

) difficulties increase drastically for larger numbers of data points,

15
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5.2 larkin's method

Tarkin (1966) presented perhaps the most interesting study of non-
linear spline functions in a rather obscure unpublished report. His results
and suggested computational method are summarized here.

Larkin first shows that (3.1) may be reduced to

de
= ge =hy Veos(B-e) » £y S8 <4y, (5.5)

where the A, eni ¢, are constants of integration. Equation (3.3)

is precisely thc cnergy integral of the equations of motion of

Kirchhoff's kinetic analogue of a pendulum given in Love (1927), p. 401,
which may also be written as
2
) (3.4)

=Aicose+B sin 8 , zi_<_s_<_zi+

i i &

where the A, and B, are the constants of integration. Equation (3.4)

i

is easily shown to satisfy (2.10) if there are no points of inflection,
Larkin integrates (3.3) to give x(s) and y(8) in terms or elliptic

integrals, To obtain equations which can be used for computation, he needs

a scparate treatment for the case where the spline has a point of inflection.

A point of inflection occurs when the curvature vanishes, i.e, where
6= + wie (3.5)

Larkin's complete algorithm is quite complicated and goes roughly as
follows:
Step 1: Estimate values of © at the knots (i.e., 6, » i=1,2,...,n).

Step 2: Determine the parameters Ai and 'i s for each panel, This

requires the evaluation of three complicated functions, each involving
elliptic integrals, as well as several trigonometric functions. Based

upon the values of these functions, it can be determined whether or not a

16
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point of inflection occurs in the interval, and if so, which one of two
cases it corresponds to. The value of .i is then determined by finding
the zero of the appropriate complicated transcendental equation. The
value of ki is then obtained by the direct evaluation of a similar
equation,
Step 3: Scan through the knots to find the one at which the largest dis-
continuity in curvature occurs, Replace the value of 9i there by a value
which mekes the curvature continuous. This requires solving for the zero
of' another transcendental equation, and the valuec of 'i and Ai must
be recomputed in each of the neighboring panels, Step 3 is repeated until
the largest discontinuity in curvature becomes smaller than a specified
tolerance.

The above algorithm was implemented on a KDF9 computer and graphs of
a few solutions are included in Larkin's report. No mention is made of
running times, or computational experience. However, it appears that
the method is probably quite slow dve to the large number of transcendental
functions which must be evaluated.

The most interesting results in lLarkin's report are contained in
the following two theorems:

Theorem 3.1 (Iarkin): A necessary condition for the existence of a finite

equilibrium solution is

|ei+l-ei| <m, i=1,2,...,n-1, (3.6)
Proof: From Kirchhoff's analogy (3.3),

W = A% cos (6 - ci) > 0 .

Thus, cos (& - ‘i) > 0 . Therefore, at 4, and £i+ we have

l b

17




|ei - ‘i' <n/2 + 2pn ,
and

|6 -‘i‘iﬂ/2+2q"’

i+l
where p and q are integers. The only cases of interest are those

where p =0, and ¢ is evaluated so that p = g = 0 . So we have
[Byyy - 05) = Oy =€ )] < {05, - eg] +16; - ¢4] > l
or |85, -6y <.

Unfortunately, this theorem doesn't provide a way to determine &

priori whether a given set of knots has a finite equilibrium solution.

However, this result is useful in an algorithm for determining when a
solution is diverging. The cases where (3.6) is not satisfied correspond
physically to a spline which continues to slide through the supports while
reaching lower and lower energy values. An examplie of this is given in
Birkhoff, Burchard and Thomas (1965). The knots in this example have the
Cartesian coordinates (1,0), (2,0), (0,2), (0,1), with the spline
threaded through tuem in that order. The spline never reaches an equil-
ibrium state, and continues expanding tc infinity. A lucid explanation
of this example is given in Lee and Forsythe (1973).

Theorem 3.2 (Larkin): A necessary condition for the existence of a finite

equilibrium which possesses no point of inflection is that there exists an

integer m such that

min (8,,8,,,) < ¥; + m< max (ei,ei+l) ; (3.7)

where wi is the inclination of the straight line connecting the i-th

and the (i+l)-th knots.




Proof: Roughly, this theorem follows from the fact that 6 is a contin-
uous function which must vary monotonically from 9i to °1+1 in the
case that there is no point of inflection. And (3.7) is untrue only if

8 1is not monotonic. For a detailed proof, see Larkin (1966), Appendix A.

3.3 Woodford's method

The only published program for computing nonlinear splines is an
Algol procedure given by Woodford (1969). His method appears to be con-
siderably simpler and faster than those of Glass and Larkin.

Woodford uses cartesian coordinates and applies the calculus of

variations to obtain (3.1). He notes that (3.1) can be reduced to
I/ 2 ’ Y 2 2
(V)2 = (agy’ + 3 + (v)2) (5.8)

which is merely another form of Kirchhoff's kinetic analogue given by

(5.3) and (3.4). He uses (3.8) to obtain an expression for the energy

n-1l
E = Z 'Ai(yi'l'l e yi) + Bi(xi+l = xi)l ’ (3-9)
i=1
which is easily derived using (3.4) and (2.1).
Woodford discretizes the intervals with a uniform mesh and

starts with an initial solution y(o) provided by solving

SV o

b

which gives the usual natural cubic interpolating spline. He uses the
method of quasi-linearization and proceeds with an iteration based on the
same Taylor series expansion about the current solution that Glass used.
To solve this linear multi-boundary value problem, Woodford uses & deriv-
[ N
ative replacement scheme based on expressing Yies1? Yies1? y§+l, and Vel

with Taylor series expansions about the point yk , 1mmediately to the
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left, and retaining all terms up through those in y( 1v) « This results

in a 9-band linear algebraic system of equations to solve at each iteration.
The iterations are terminated when the energy given by (3.9) on two succes-
sive iterations is nearly the same.

Woodford gives an example using seven data points: (0,0), (1,1.9),
(2,2.7), (3,2.6), (4,1.6), (5,0.8), (6,1.2), and & mesh size of 0.025
(40 points per panel). Convergence occurred after four iterations. His
example will be discussed again in Section 5. A listing of a Fortran trans-

lation of Woodford's Algol procedure follows.
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SUBROUTINE MEC{N, ORD, H, K, A, B, C, D, EPS, *)

THIS SUBROUTINE COMPUTES POINTS ON THE MINIMUM-ENERGY CURVE
(SOMETIMIS CALLED A NONLINEAR SPI. = WHICH PASSES THROUGH

THE N DA'’A POINTS WITH ORDINATES ORD(L), I=1,,..,N, AND
EQUIDTSTANT ABSCISSAE., THE SOLUTION IS PRODUCED BY A STEP-BY-
STEP METHOD BASED ON TAYLOR SERIES. THE NUMBER OF STEPS BETWEEN
CONSECUTIVE PAIRS OF DATA POINTS IS K, AND H IS THE LENGTH OF
EACH STEP. USUALLY THE NUMBER OF STEPS K SHOULD BE AT LEAST 10
PER UNIT INTERVAL. THE PARAMETER EPS CONTROLS THE CONVERGENCE,
USUALLY EPS SHOULD BE OF THE ORDER 1.E-5. THE SOLUTION Y AND ITS
DERIVATIVES ARE STORED IN THE ARRAYS A, B, C, AND D. A(I)

IS THE VALUE OF Y AT THE I-TH POINT, I=1,.,.,K*(N-1)+1, SIMILARLY
B(I) IS THE VALUE OF THE FIRST DERIVATIVE, C(I) THE SECOND
DERIVATIVE AND D(I) THE THIRD DERIVATIVE, SINCE WE ALLOW FOR
DISCONTINUITIES IN THE THIRD DERIVATIVE AT EACH INTERNAL DATA
POINT, D(I) FOR I = K+1, 2K+1, ..., (N=1)K+1 IS THE THIRD
DERIVATIVE TO THE IMMEDIATE RIGHT OF THE DATA POINT.
D((N-1)*K+1) IS LEFT UNDEFINED. THE SUBROUTINES BANDET AND
BANDSL MUST BE SUPPLIED FOR SOLVING A 5-BAND LINEAR SYSTEM

AT EACH ITERATION. THE SUBROUTINE EXITS WITH A RETURN 1 IF

THE PROCEUDRE BANDET FINDS A ZERO PIVOT OR IF THE ALGORITHM
HAS NOT CONVERGED AFTER 10 ITERATIONS.

THIS SUBROUTINE IS A TRANSLATION OF AN ALGOL PROCEDURE GIVEN
BY C.H. WOODFORD IN "SMOOTH CURVE INTERPOLATION", BIT 9 (1969),
69-77.

MICHAEL A. MALCOLM
COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

AUGUST 16, 1971

RFAL*4 H, EPS, ORD(1), A(1), B(1), C(1), D(1), AL(1000,9),
* R(1000), EN(20), DEN(20), AA, BL, CL, DL, X, W, 2Z, XX, XX1,
*  XX2, WW, WWW, D1, H1, H2, H3, H4, MBAND(1000, 4), NORM
INTEGER Q, P, INT(1000)

LOGICAL L, Z

D1 = 1.E10

ITO = 0

N1 = N-1

H1 = H*K

H2 = ,S5*H*H

H3 = H2*H/3.

H4 = H3*H*,25

Q = N1 * (4%K-1)
M1 = N1*K + 1
M= M1-1

2l

i
1
1
’




10

20

30

40

42

44

46

DO 10 I=1,M1
A(I) = 0.
B(I) = O.
c(I) = 0.
D(I) = 0.
CONTINUE
EN(1) = 0.
EN(N) = 0.
DO 30 I=1,Q
DO 30 J=1,9
AL(1,J) = 0.
CONTINUE
I=5
J=3
DO 80 P=2,M
L = (P/K)*K.EQ.P
Z = ((P-1)/K)*K.EQ. (P-1)

AA = A(P)
BL = B(P)
CL = C(P)
DL = D(P)
I1 = I+1
12 = 142
13 = 143
I4 = 5-1
IS = 4-I
16 = 3-I
17 = 2-1

IF (Z) GO TO 40
AL(I,J+I4) = 1.

J = J+1

AL(I,J+I4) = H + CL*H4
AL(I1,J+I5) = 1. + CL*H3
AL(I2,J+I6) = CL*H2

IF (L) GO TO 42

AL(I3, J+I7) = CL*H

J = J+1

AL(I,J+I4) = H2 + BL*H4
AL(I1,J+I5) = H + BL*H3
AL(I2,J4I6) = 1. + BL*H2
1F (L) GO TO 44
AL(13,J+17) = H*BL

J = J+1

AL(I,J+I4) = H3 + AA®H4
AL(I1,J+I5) = H2 + AA*H3
AL(I2,J+16) = H + AAXH2
IF (L) GO TO 46
AL(I3,J+17) = 1. + AA*H
J = J+1

IF (L) GO TO 48




48

50

60

80

AL(I,J+14) = -1,

J = J+1

AL(I1,J+15) = -1,

J = J+1

IF (P.NE.M) AL(I2,J+I6) = -1,

J = J+1

IF (L) GO TO 50

AL(13,J+17) = -1,

BL = DL*H4

R(I1) = DL*H3

R(I2) = DL*H2

IF (.NOT.L) GO TO 60

IPORD = P/K + 1

R(I) = BL + ORD(IPORD)

I =13

J = J-2

GO TO 80

IPGRD = (P-1)/K + 1

R(I) = BL

IF (Z) R(I) = R(I) - ORD(IPORD)

R(I3) = DL*H

I=T+4

J = J-3
CONTINUE
AA = A(1)
CL = C(1)
DL = D(1)
AL(1,5)
AL(1,6)
AL(1,7)
AL(2,4)
AL(2,5)
AL(2,7)
AL(3,3)
AL(3,4)
AL(3,7)
AL(4,3)
AL(4,2)
AL(4,7) -1.
R(1) = H4*DL - ORD(1)
R(2) = H3*DL
R(3) = H2*DL
R(4) = H*DL
CALL BANDET(MBAND, 1000, INT, AL, Q, 4, 9, &150)
CALL BANDSL(MBAND, 1000, INT, R, AL, Q, 4, 9)

H + CL*H4

H3 + AA*H4
"1.

1. + CL*H3
H2 + AA*H3
-10

CL*H2

H + AA*H2

"10

1. + AA*H

CL*H

(U | N RN R D O VI B (]

C STORING CURRENT SOLUTION

o b A 1 KA L Rl

I =4
J =2

DEN(1) = R(1)
DEN(N) = R(Q)




DO 100 P=2 M

X = R(I)

W = R(I+1)

ZZ = R(I+2)

I = 143

IF ((P/K)*K.NE.P) I = I+1
’ XX = X*X

XX1 = 1./(1.+XX)

XX2 = XX1 * XX1

WW = Wiy

WWW = WWiy

IF (((P-1)/K)*K..E.(P~1)) GO TO 90
! EN(J) = WWh(XX1%%2,5)

DEN(J) = X

J = J+1
‘ 90 AA = 10, *X*W*XX1

BL = (7.5*WW + 10.*X*ZZ)*XX1 - 52,5%XX*WWAXX2

CL = 10.*WAZZAXX1 ~ XAWWWAXX2%* (40. ~ 70.*XX*XX1)

* ~ 20.*XX*WkZZ*XX2
D(P) = —(2.5*WWW + 10.*X*W*ZZ) * XX1 + 17, 5*XX*WWWAXX2
* +AA*ZZ + BL*W + CL*X
B(P) = BL
C(P) = CL
100 CONTINUE
C TEST FOR CONVERGENCE
X=0.
DO 110 I=1,N1
AA = (EN(I+1) - EN(I))/(DEN(I+1) - DEN(I))
BL = EN(I) - AA*DEN(I) i

X = X+ABS(AA*(ORD(I+1) - ORD(I)) + BL*H1)

110 CONTINUE

ITO = ITOH+1

NORM = ABS(D1-X)

PRINT 115, ITO, NORM
115 FORMAT(' ITER. NO. ', I4, ' NORM =', G10.3)

IF (ABS(D1-X).LT.EPS) GO TO 120

I¢ (ITO.EQ.10) RETURN 1

D1 = X

X = R(1)

B(1) = 10.*X*R(2)/(1. + X*X) {

GO TO 20 )
120 A(1) = ORD(1)

B(1) = R(1)

D(1) = R(2)

I=3

J =K

I1 = 2

I2 = 2




130

140
150

DO 130 P = 12,J
A(P) = R(I)
B(P) = R(I+1)
c(P) R(I+2)
D(P) R(I+43)
I = I+4
CONTINUE
J = J+1
A(J) = ORD(I1)
I1 = 114!
B(J) = R(I1)
IF (I.EQ.Q) GO TO 140
C(J) = R(I+1)
D(J) = R(I+2)
I = 143
J = J4+K-1 !
I2 = J+2-K ’
GO TO 125
RETURN
RETURN 1

]

END




! SUBROUTINF BANDET (M, IDIM, INT ,A,N,M1 M3 %)
DIMENSION M(TDIM ,M1),INT(IDIM) ,A(1DIM M3)

Meceee AN NXM1 MATRIX FOR STORING LOWER TRTANGITAR
MATRIX NF LU DECOMPOSITION OF A
INT---AN NX1 VECTOR FOR RECORDING ROW INTERCHANGFS
DURING DECOMPOSITION
A-momm AN NX(M14#M2+1) MATRIX WHOSE COLUMNS ARE THE DIAGONALS
OF C, THE BAND MATRIX BEING DECOMPOSED
A(*,1) - A(*,M1) ARE SUBDIAGONALS OF C

A(* M1+1) IS DIAGONAL OF C
A(* M1+2) - A(*,M14M2+1) ARE SUPEXDIAGONALS OF C
N-—mee NUMBER OF ROWS IN A

M1----NUMBER OF SUBDIAGONALS IN C
M3--~~-TOTAL NUMBER OF DIAGONALS IN C , I.E. WIDTH OF BAND
M3 = M1 (# SUBDIAGS) + M2 (# SUPERDIAGS) +1

BANDFT AND BANDSL ARF TWO SUBROUTIMNES WHICH SOLVE C*X = B
WHEN C IS AN UNSYMMETRIC BAND MATRIX ( THEY WILL WORK WITH
SYMMETRIC BAND MATRICES BUT TAKE NO ADVANTAGE OF THEIR
STRUCTURE).

C RAS M1 SUBDIAGONALS AND M2 SUPERDTAGONALS.

THE MATRIX C IS TRANSFORMFD TO A BY MAKING FACH DIAGOMNAL OF
C A COLUMN OF A. THUS A IS NX(M14M2+1) WHEN C IS NXN.

A TYPICAL A IS PICTURED BELOW. C HERE IS 4X4, WITH

2 SUBNIAGONALS AND 1 SUPERDIAGONAL

0 0 c(1,1) c(1,2)

0 c(2.1) 6(2,2) c(2,3)
€(3,1) €(3,2) €(3,3) €(3,4)
€(4,2) €(4,3) C(4,4) 0

THIS TRANSFORMATION IS THE FOLLOWING, ASSUMING THAT C(I,J)
TS A BAND FLEMINT IN C:

C(T,0) —-> A(I,M1+1+(J-1))

ALL OTHFR FLEMENTS OF A ARE 0

BANDET FINDS THE LU DECOMPOSITION OF A, STORING

THE LOWER TRIANGULAR MATRIX IN M AND NXM1 MATRIX,
AND OVERWRITING THE UPPER TRIANGULAR MATRIX INTO A.
BANDSL USES THIS DFCOMPOSITION TO SOLVE A*X = B WHERE
THE RIGHTHAND SIDE IS INPUT IN THE VECTOR B, AND X IS
OUTPUT IN THE VFCTOR B.

THESF. ROUTINES WERE TRANSLATED FROM THOSE PRESENTED BY
J. WILKINSON IN NUMFRISCHE MATHEMATIK VOL 9, P279
TRANSLATOR: BARBARA RYDER
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REAL M
25  Le=M1
DO 40 I=1,M1
K2=M142-1
DO 50 J=K2,M3
50 A(1,J-L)=A(I,J)
L=L-1
K2=M3-L
DO 60 J=K2,M3
60 A(1,J)=0.0
40  CONTINUE
45  LeM1
DO 70 K=1,N
X=A(K, 1)
I=K
K2mK+1
IF (L.LT.N) LmL#1
72 IF (L.LT.K2) GO TO 81
79 PO 80 J=K2 ,L
IF (ARS(A(J,1))-ABS(X)) 80,80,82
82 X=A(J, 1)
I=J
80 CONTINUE

81 INT(K)=I
IF (X) 73,75,73
73 IF (1-K) 77,78,77

77 DO 90 J=1,M3
X=A(K,J)
A(K,J)=A(1,J)
90 A(1,J)=X
78 IF (L.LT.K2) GO TO 70
83 DO 100 J=K2 ,L
M(K,J-K)=A(J,1)/A(K,1)
X=M(K,J-K)
DO 110 JJ=2,M3
110 A(J,JI-1)=A(J,JT)-A(K,JT)*X
100 A(J,M3)=0.0
70  CONTINUF. |
RETURN
75  RETURN 1

FND




SUBROUTINE BANDSL (M,IDIM,INT,B,A,N,M1,M3)
DIMENSION INT(IDIM),A(IDIM,M3),M(IDIM,M1),B(IDIM)

ALL PARAMETFRS SAME AS IN BANDFT EXCEPT FOR:
Bee=om RIGHTHAND SIDE OF LINEAR SYSTFM C#X = B
SOLUTION IS RETURNED IN B

OO0 0N

RFAL M
INTEGER W
L=M1
DO 10 K=1,N
I=INT(K)
IF (I-K) 11,12, 11
11 X=B(K)
B(K)=B (1)
B(1)=X
12 K2=K+1
IF (L.LT.N) LsL#1
14 TIF (L.LT.K2) GO TO 10
15 DO 20 I=K2,L
X=M(K, I-K)
20 B(I)=B(I)-X*B(K)
10  CONTINUF
L=1 {
DO 30 II=1,N ;
I=N+1-II j
X=B(I)
WeI-1
IF (L-1) 32,33,32
32 NO 40 K=2,L
40 X=X-A (I,K)*B(K+W)
33 B(I)=X/A(I,1)
IF (L-M3) 31,30,30

31 L=L#1
30 CONTINUE
RETURN

FND




3.4 Mehlum's method

' Even Mehlum (1969), in his Ph.D. dissertation, presented an algorithm
for computing an approximation to nonlinear interpolating splines which
he has implemented in a computer program called KURGIA (from Norwegian

' "KURveGLAtting" -- curve fitting). KURGIA is the basic subroutine in the
ship fairing program included in the AUTOKON software which has been dev-
eloped at the Central Institute for Industrial Research in 0slo, Norway.

' The AUTOKON computer software is used for numerical control of drawing
machines and flame cutters in ship-building. The ship fairing program

has been in use since 1965 and by 19¢9 had been used for fairing about

s

150 hulls.

Mehlum starts with a long derivation of the equation
2

(%:—) =psin (g - o) +Y (3.10)

which is yet another form of Kirchhoff's kinetic analogue (3.4). He also -
proves the following:

|

H

Theorem (3.3): Between neighboring knots of a nonlinear spline, there is

always a direction along which the curvature varies linearly. ]

Proof: This follows from the fact that curvature is proportional
to the bending moment which can be expressed as a linear function }
of x and y . (See Equation (2.6)). '

Mehlum makes the assumption that m = 0 , so that the direction
along which the curvature varies linearly coincides with the x-axis. The

curvature is then represented as a piecewise-linear continuous function |

"

which changes slope only at the knots. Mehlum further simplifies the
problem by representing the linear curvature between each knot by a series

of steps giving a piecewise constant function (noncontinuous, of course)

29




for the curvature, In other words, he approximates —he solution to a
somewhal different problem than (-.10) by a series of ares of circles
whicn form a continuous function with a continuous first derivative, bul
vith discontinuous second derivatives, Combining this representation
with (%.10) and integrating yiclds two constants of integration to be
determined within each panel for a given set of curvatures specified at
each knot. His algorithm thus breaks into an inner and an outer iteration.
The outer iteration first guesses a set of knot curvatures and then tries
Lo improve them based upon how close the resulting curves fit the data
and specified ena slopes. (He is not trying to produce natural
splines,) The inner iteration then uses the current values for the knot
curvatures and determines the constants of integration for each panel
through some simple recurrence formulas so that the function interpolates
the end knots. Thne output of Mehlum's subroutine is in the form of center
coordinates and radii for the circles thus obtained.

Mehlum cleims that many numerical control machines can use output of

this form directly.




4., The Discrete Natural Cubic Interpolating Spline

The data points X; , Y, = Y(Xi) ,1=1, ... , n (where

X, <. < xn) , may be interpolated as follows: Let

Hi=Xi+l-Xi,i=l, .--,n-l,

Assume that each ot the Hi is an integral multiple of the mesh size para-

meter h . The interval [Xl -h, X, + h] is divided into a partition

Ky 9 %) 5 wee 5 Ry X

Drenote by X the set ot abocissa data Xi y1i=1, ... , 0, and

let
L =0,
i-1
Li= I{j,i=2,.--,n.
Jel

The discrete natural cubic :pline interpolating the points (Xi - Yi) R
i=1, ...,n ir defined to be tne set of points (xi 5 yi) .
i=0, .. ,m+ 1, which minimize the value of S where

m 2
V. =8y, * ¥._
g . 5 : i+l ,l i-1 h
i=1

h2

B e

i




' subjJect to the constraints of interpolation,
yy = ¥y 1f i=LJ/h+l.

Let &8 denote the central difference operator. The mesh ordinates

yi s, i-2, ... , m-1 , are computed by solving the linear system of

equations

I
6yi

0 if x¢X and 0O<ig<m, (4.1)

2 2.
] yl ) ym =0,

]

which arise by setting BS/ayi =0, 1i=0,2,...,m*l (excluding every

qie= Lj/h , for Jj=1,...,n), subject to the conditions

¥y =1fJ if 1= Lj/h g ah =L venyT 6

The values of ¥q and are not explicitly computed, but are

Ym+l }
introduced into the formulation to accommodate the conditions on the %
|
1
1

second differences #t the end nodes and the first and last of equations
(4.1). Notice the similarity between this formulation and that of the
continuous natural cubic spline.

A useful representation of the above linear system is given by

Ay:E)

~

T
where y = (yl 5 b b ym) , the matrix A has the structure




1 0 O
-L.)I)-ul
1 =4 64 1
1 -4 64 1
1 -4 64 1
0O 0O 1 0 O
1 -4 6 <4 1
L4 64 1
0O 01 0 O
1-b 64 1
1 -4 64 1
=i P8
= OO}_]

and b = (Y O nura B O

T
s Oy veov 30, ¥ v oun 04 Y ). The

3 ""2 b 5
rows; of A with onrs on the main diagonal corr.cpond to the uonzaro

clemente in the vector b . The second row of A combines the two

~-quations

and




The (m-1)th row of A is formed similarly.
The following analysis provides a way of solving Ay = E by solving
a symmetric band system of smaller order than A . A bound on the con-

dition number of this symmetric matrix is determined and found to be

independent of the order of the matrix (total number of mesh points and
knots) but highly dependent upon the number of mesh points between knots. g
A symmetric matrix closely related to the matrix A can be deter-
mined as follows. Let the matrix B have the same structure as A
except that the columns of B having ones on the main diagonal have 7 J

all of the other components set to zero. Thus, the vector y can be

computed by solving the system i

By = b’

|
i |
1

where the vector b  is an appropriate modification of the vector b . j

Now since B is a symmetric matrix, its condition number is the maximum
ratio of the magnitudes of its eigenvalues. By expanding the determinant
of B -AI along any row or column of B having a one on the main
diagonal, it is obvious that A =1 is a multiple eigenvalue of B .
These eigenvalues may be eliminated from B by dropping the rows and

columns with 1 on the main diagonal, leaving the matrix




where each eigervalue of B* 1is an eigenvalue of B .

1-h 6-4 1
14 64
145

Anmm

In practice, the

unknown components of the vector y are computed by solving a linear

system having B¥* as the coefficient matrix. Now

B¥ = C + D , where

b
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r ! I I '.."' . "m: —
t
0
.
0
11
11
0
D= ’
11
11
0
0
L —
1 and each Ci is a square matrix of order Hi/h-l of the form
- ]
5 -4 1
46 b1
1 b 6 4 1
'
C. =
i
'
1 4 6 -4 1
b 1 -4 6 -4
1 -4 5
\ The matrix D has eigenvalues O and 2 . If the eigenvalues
xi(B*) and Ai(C) ,i=1, ... ,m-n, are arranged in a non-
36




increasing order, then by a corollary ot the Courant-kFisher theorem

(see Wilkinson (1965), p. 101),

ki(B*)ZAi(c), i=1,...,m=n,

The eigenvalues of C are simply those of the Ci s A = A 5 Gee s M .

Now the Ci can be written as D12 s where
| !
' - ]
2 1
1 -2 1
j 1 -2
F
Di =
1 -2 1
1 -2
b, ]

The characteristic polynomials of the upper-left hand minors of Di

satisfy the same three-term recurrence relation as the Chebyshev poly-

i nomials, namely
T_l(k) =0 b
¥
v TO(R) =1 > I
Tk+l(x) = (-2-A)Tk(k) 5 Tk_l(x) , k =0,1,...

It follows that

'2(1‘005'11) s J=1l, o0 sV,

AJ(Di) v+l
where

v = H;/h-1 . Thus,
m;n AJ(Ci) =4(1 - cos

and *therefore,




',

min IAJ(B)| > min b4(1 - cos %E )2 .
3 i i
By Gerschgorin's theorem,
max |\ (B)] <16 .
I
This proves
Theorem 4.1: cond (B) < 4 <
—_— - hn 2
min (1 - cos T
i i
g L
16 i
min ( = i
’ H,
i il

Thus, for many problems, the linear system resulting from the finite
difference formulation is reasonably well-conditioned. More importantly,
the bound on the condition number of B is indeperndent of n , the
number of data points.

The purpose of the following discussion is to analyze the difference
between y and the restriction of the continuous natural cubic spline
function interpolating the points (Xi s Yi)’ i=1, ... ,n, to
the abscissae X5 s i=J, ... ,m . We call this difference the dis=~
cretization error of y and will now bound & certain norm of it.

~

Consider the neighborhood of Xi s

0
. : 2 -1 | 1 2 g c
| i | |
Iﬁ ' «hﬁl l
X




% Lo T ———— ol el

For convenience, the mesh nodes are now numbered ... , -2 , -1 , 0, 1,

' 2, «oso 5, 8uch that x0=Xi.
Since 6hyi =0 for 1i=..,., -2, -1, it follows that the

points ¥y o for i=... , -2, -1,0, 1 lie on a cubic polynomial.
Similarly, the points Yy o for 1i=-1,0,1,2, ... , l1ie on a
(generally different) cubic polynomial. These two cubics coincide at

'(/i=a.i+b1!+ciz2+d.1!3 , Where ¢=x-xi,

| denote such a cubic for xe [Xi -h, Xig * h] . The coefficients 8y
: ' b, ,c; and 4, 1=1, ..., n -1, can actually be computed by
!

observing the following: %" is linear. Let Yx) = Y,(x) 1if

xt[xi,xi+l] 9 i=1 )y ese p, N1 = l. ThuB,
x-X
” E ] i v
2‘1 (x) - Yi + Hi (Yi+l Yi) ) (h'z)

where Hi was previously defined as Hi = Xi+1 - Xi , =1 , ... , n-1.
Note that %”(x) is continuous at each knot X, since
2

6 y.O ”
2~ =¥ (%)

h
for each cubic ('yi_l and 'Ui) in the interval [Xi -h, X, ¥ h] .

Integrating (4.2) gives

2

I( ) _ +Y/ + Y //( X ) e (YII Y”) (x = Xi) (’4 )

Yilx) = ¥+ ¥ x - Xy 141 " Y 2H, ’ 3

where +Yi, is a constant of integration, and
2

%.(x) =¥, + v/ X))+ Yy’ Ty (4.4)

Yi{x) =1y RS i 7 8

¥W._ =7
+ i+]l i (x -X )3 ]
GHi i
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2

1 gives

+ di-l (

H

(4.5)

(4.6)

3
i ¥ h)

Here +Y:{ denotes 'yi’(xi") . Since %’ 1is not necessarily continuous
at the knots, 'Y:{ will be used to denote 'y'(xi') . Evaluating (4.4)
at Xi+l gives
b Jhm N, M,
i Hi i 3 i+1 6
Replacing i by i -1 in (4.3) and evaluating it at X
' H
! L +., [ " i-1
Yg= ¥ (L + YY)
Now, for 'yi s
8y Y, =V
0 1 "Y1 2
Tho - Zn - Pt
_ * 2
= Yi + dih s
and for 'yi-l s
- on [ai-l +by (B +h)ve, ) (H ) +h)
—a, . -b, . (H . -h) -c (H . -h)® -d(H . -h)
i-1 i-1 “i-l iYVi-1 ivii-1
2
= b,y v2ey Wy 434 M +a
- 2
B /
=y, 44, B,

Lo




t
Thus,
' -y ¢ _ ty 0 2
Y, 0=y en(e -4, ) (4.7)
Combining (4.7) with (4.5) and (4.6) gives
2
" 4 4
Yy By vOY (Hy g +H) + Y75 Hy +600(d - dy ) (.8)
=6(Ai+l-Ai)’ i=2,vu-’n-l,
where
by = (Y =Y, ()H ;5 171, o0y,
[
The conditions 62yi = 0 at the ends require that Y”l = Y”n =0 »
Equations (4.4) and (4.5) give
-, H, H,
_ i+l i ” i " i
by = Y -Yg— (4.10) :
H, b] 6
i
]
J ey = Y”i/2 , and (4.11)
Y”. - Y”
4, = —t i 5=1,...,n-1. (4.12)
6H
i
’
Substituting (4.12) into (4.8) gives a linear system of equations in the
unknowns Y”i ,i=2, ... ,n-1, the solution of which can be used
) to compute the coefficients & bi 5 C4 s and di s A =L see 5= 1y
using (4.9) - (4.12) .
’
b1
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A practical method for computing the cociflclents of the continuous
cubic spline interpolating (Xi , Yi) ,1=0, ... , n, can be formulated

by following the above steps and replacing (4.6) with the continuity

conditions

= +

Y;":Y{’ i=1,oo-,n-lo
This leads to a system of equations for Y{ which is identical to (4.8)
without the 6h2(di - di-l) term. Thus we have the same system of equations
for Y/ in the discrete case as in the continuous case, except for an O(ha)

i

perturbation of the coefficient matrix.

Let s” denote the vector of second derivatives (Y" for the

continuous case and let y” denote the vector of second derivatives for

the discrete case. Also, let

and




8A

So,

and substituting

@ = -A"

ﬁzh‘

1

S:h‘

in the identity

= A'l(A - B) gt 3

SA(A + aA)'l A

Taking spectral norms gives

-27ha(s" @)




lall < &Y 184) 1s” + @)l

8A
el 2 entla) 18 Al

' = Al

Now, by Gershgorin's theorem,

min (Hi + Hi+l) < AMA) < 3 mex (Hi + Hi+l)
f 1 1
and 2 !
A(6A) < max 2n2 f{]; + Hl < max ,;{l- . )
i i i+l i i f
b Thus, cond(A) < 3 m:x (1, + Hi_'_l)/min (B, + Hi+l) , and
el . uh‘e
= "(min H,) min(d, + H, . ’

Since the uniform norm of a vector is at most equal to the spectral norm,

2 "
LnT iyl

la.] < -
j § = Hpin miaHi i

) s 9 oo . .
ll

The coefficients a; - bi 5 C5 s and di are linear functions of the

b Y, , hence the difference between the continuous and discrete splines

is 0(h2) . More precisely, denoting the continuous spline by s(x) ,

equations (4.9) - (4.12) yield i

Theorem 4,2: 2

(1 )y e
max | s(x) - Y(x)] 51_6 ax) 1Y x€ [X,X ] .
X

s 3
5 Hpp mim(Hi +Hi o)




Theorem 4,2 tells us that the discrete natural cubic interpolating
spline coincides with the continuous natural cubic spline in the limit

as the mesh size h 1is decreased to zero, As the mesh size is decreased,

{ the error in approximating the continuous spline decreases at least as
fast as the square of the mesh size, However, Theorem 4.1 tells us that
the condition number of the coefficient matrix of the linear sysiem may

; increase as fast as hh . On a given machine, it should thus be possible
to calculate a reasonable discrete spline approximation; however, problems
with fine meshs could be difficult, if not impossible, to solve,

The work required to compute discrete cubic splines is consider~
ably more than that required to compute continuous cubic splines. The
primary reason for studying them here is to gain insight into the algo-
rithm for computing discrete approximations to nonlinear splines, dis-
cussed in the following section. In view of the difficulty in analyzing
linear discrete splines, it comes as no surprise that the nonlinear
case has not been enalyzed. The proofs of this section rely upon special
properties of both the discrete and continuous cubic spiines. Hence,

i few, if any, of the arguments would carry over to the nonlinear case.
Discrete cubic splines and generalized discrete splines have been

characterized by Mangasarian and Schumaker (1971). They prove existence

and uniqueness. Some weak convergence results for discrete splines have

been published by Daniel (1971). Theorem 4.2 appears to be the only

rate-of-convergence result for discrete splines.

kit o




b A Finite-Difference Method for Computing Open Nonlinear
Spline Functions

In this section, an iterative method is presented for computing
a discrete approximation to the nonlinear spline interpolating the data
points (xi’Yi) 2 1=050 s mah -

As in the previous section, we assume that Xl < X2 < ... < Xn 5
and the interval [Xl -h, xn + h] is partitioned into a uniform mesh

X
Xy 0 X > X412 where

x; =X+ (i-1)h , i=0,1,...,m+l ,

i
and

m=(Xn-Xl)/h+1,

for some mesh size parameter h . For simplicity, assume that the
Xy (i=1,...,n) are equally spaced with k mesh intervales between con-
secutive data points, i.e.,

k = (xi+l - Xi)/h 5 d=lg. g2 30F1 .

T
We compute a discrete approximation y = [yl,...,ym] to the func-
tion y which minimizes the functional

)

= X . 2
R B il

The functional (5.1) is approximated by substituting a summation for
the integral,

2.2 )
and

. ’
(yi+l - yi-l)/2h~ Y (xi) r




This gives the function

(Yipy - 29, * ¥, )°/m"
B, (y) Z = h, (5.2)

= Dr Gy - i) I/

to be minimized subject to the interpolation constraints
yi - YJ I if xi - X'j ) i=l)--o,m .

Again, the fictitious ordinates Yo and ym+l are introduced to accom-

modate the first and last terms of (5.2).

A necessary condition for Eh(y) to achieve a minimum is

BTiEh(X)=O’ for all i #1 (mod k) .
This yields the nonlinear system of equations

8%, = 0,

5% =0,

!i_l(yi = 2yi-l ¥ yi_2) =2 Ei(Yi+l = 2Yi ¥ yi_l) (5’3)

* a0 -2y )

ICERIIRRAPURE AR AR
where

qi = [1 + (Yi+l B yi_

. 5 2 2 )p.24-7/2
£i =1 (yi+l T 2yi + yi-l) [l + (Yi+l = yi_l) /hh ] 2
(for i=2,.,..,m1, except i =1 (mod k)) .

The System (5.3) can be solved in many ways. A simple, though

probably not the fastest way is a Picard-type iteration described as




(1) (2)

tollows, We will compute a sequence of iterates y s Yy A iReR

Let

!§J) S ;i(z(J)) , and
xgj) = si(g(J)) o di= 158, e 6

For the first iteration set

€

3 i =2,...,m-l F)

£§o) =0 ,i=1,...,m .

At the Jj-th iteration, the five-band linear system

2

8%y, = 0
62y =0
6 - 2]+ 52D - 26 -2 4 o)
0L - o)
£§j'l)(y§j) - yﬁg) 5 :(.ill)(y(j) (J)) -0,

(i =2,...,m=1, except i=1 (mod X)) ,

is solved for Z(j)’ Notice that Z(l) is the discrete natural spline
discussed in Section 4.

This algorithm is implemented in the Fortran subroutine SPLINE
found at the end of this section,

A Cholesky methrd is used for the solution of (5.4). This choice
is based on computational experience., The coefficient matrix of (5.4) is
usually positive definite, Cases in which the coefficient matrix is in-
definite appear to correspond to those in which either no single-valued

solution exists or the outer iteration becomes unstable due to large

slopes in the solution.

L8




Various experiments have been carried out using both SPLINE and
MEC given in Section 3.3. The first of these used the Woodiord data
given in Section 3.3, For this case, n =7 ., Figure 5.1 shows times
required to compute splines of similar accuracy on an IBM 360/67 for
various values of k . These runs used EPS values of 10'5 . Figure
5.1 indicates that both SPLINE and MEC reouire time proportional to k ,
though spline appears to be about an order of maegnitude faster for this
problem. For values of k greater than 40, MEC failed - though this
could be partly due to the fact that MEC is programmed in single precision.
SPLINE worked for values of k as largc as 140, Values of (5.2) are
given in Table 5.1 tor soclutions given by MEC, SPLINE and the natural
continuous cubic spline, for Woodford's data and various values of k .
The values of Eh(g) for the discrete cubic spline agreed with those
for the continuous cubic spline to three significant digits. The last
column of Tab'e 5.1 indicates that the results of SPLINE and MEC cone
verge unifcrmly to one another as k increases, The nonlinear spline
interpolating Woodford's data is shown in Figure 5.2 as plotted by a
Versatec electrostatic plotter,

An experiment to determine the dependency of computation time
upon n , the number of data points, was constructed as follows. The
number of mesh intervals between adjacent data points was kept constant
at k = 10 . The mesh size was h = .1 giving Xigg = % = kh =1,
i=1,...,n-1. The ordinates were chosen as

Y. = (i mod 2)/5 AL BN PR
to insure a solution having relatively small slopes and curvatures.

The parameters EPS were set to lO-3 . Measured CPU times are shown

in Figure 5.3 for both SPLINE and MEC. The two values of n shown for

k9




MEC in Figure 5.5 are n =5 and n = 10 . From these two times, MEC
does not appear to r quire time proportional to n . For values of n
greater than 10 , MEC failed to converge. SPLINE, on the other hand,
required relatively small amounts of time which are proportional to n .
SPLINE performed well for values of n as large as 100, The only res-

trictions on n for SPLINE appear to be available core storage and 1

computation time.




ns="7T
, 20
1
2 MEC
Time
(sec) 1
IBM 560/67 8
' 2 SPLINE
h
10 . 20 30 Lo
k
Figure 5.1, Timing comparisons of MEC and SPLINE
for Woodford's data
Discrete Energy
k MEC SPLINE Cubic Spline |IMEC - SPLINEHw
10 29oh 852 2.69 .020
20 2.55 2" 2.69 .011
50 2.55 2.53 2.70 .0070 {
40 2 oad 295 2.70 L0051
Table 5.1. Values of Eh(x) for Woodford's data for
MEC, SPLINE, and the cubic spline, and a uniform-norm comparison
of MEC with SPLINE.
51
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Figure 5.3. Dependence of SPLINE and MEC
upon the number of data points n .
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SUBROUTINE SPLINE (N, ORD, K, H, Y, EPS, %)
INTEGER N, K
DOUBLE PRECISION ORD(N), H, Y(1), EPS

c
C THIS SUBROUTINE COMPUTES THE NONLINEAR INTERPOLATING SPLINE WHICH
C PASSES THROUGH THE N DATA POINTS WITH ORDINATES ORD(I),
: C (I=1,...,N), AND EQUIDISTANT ABSCISSAE X(I), (I=1,...,N), SATISFYING
C X(1).LT.X(2).LT. ... .LT.X(N), AND X(I+1)-X(I) = K*H, (I=1,...,N-1).
C THE DISCRETE APPROXIMATION Y(I), (I=1,...,(N-1)*K+1) IS RETURNED
C WITH ORDINATES CORRESPONDING TO THE MESH ABSCISSA X(1)+(I-1)*H, WHERE
C H IS THE SPECIFIED MESH SIZE PARAMETER. K IS THE NUMBER OF MESH
C INTERVALS BETWEEN SUCCESSIVE DATA POINTS. THE INPUT PARAMETER EPS
, C IS USED TO DETERMINE WHEN TO STOP THE ITERATIONS. ROUGHLY, IF P
C SIGNIFICANT DIGITS ARE DESIRED IN A PROBLEM WHOSE SOLUTION IS 0(1),
C THEN EPS SHOULD BE ABOUT 1.D-P.
C THE ERROR RETURN IS TAKEN IN THE EVENT THAT A RESULTING LINEAR
C SYSTEM IS TOO ILL-CONDITIONED TO SOLVE.
c K MUST BE AT LEAST 5.
c
' c
DOUBLE PRECISION KZ(1000), C(1000,3), B(1000), NORM, H2, DIF
DOUBLE PRECISION F8H2, LzZ(1000), Y1
DOUBLE PRECISION DABS '
INTEGER M, M1, MM, K2, N1, I, J, L, J2
c
' H2 = H+H
F8H2 = 5./(8.*H**2)
M = K*(N-1)+1
M1 = M-1
K2 = k-2
N1 = N-1
c
C INITIALIZE Y
I C
DO 5 I=1,M
Y(I) = 0.
5 CONTINUE
c
C SET DATA ORDINATES IN Y
c
J =1
DO 10 I=1,M,K
Y(I) = ORD(J)
J = J+1
10 CONTINUE
c
C INITIALIZE KZ TO ONES FOR THE FIRST ITERATION
c
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DO 20 I=2,M1
KZ(I) = 1.
LZ(I) = O.

20 CONTINUE

Kz(1),KZ(M),LZ(1), AND LZ(M) ARE SET TO O. TO SIMPLIFY BOOKKEEPING

KZ(1) = 0.
KZ(M) = 0.
LZ(1) = 0.
LZ(M) = 0,

GO DO FIRST ITERATION
GO TO 50

BEGINNING OF MAIN LOOP,
RECOMPUTE NEW KZ AND LZ VECTORS

30 DO 40 I=2 M1

Y1 = 1, + ((Y(I+1)=Y(I-1))/H2)**2

KZ(1) = Y1%%(-2,5)

LZ(I) = F8H2*(Y(I+1)-2.%Y(I)+Y(I-1))**24KZ(I)/Y1
40 CONTINUE

SET UP COEFFICIENT MATRIX AND RIGHT-HAND SIDE

50L =0
DO 80 I=1,N1
L=1L+1
MM = (I-1)%*K
c(L,1) = 0.
C(L,2) = KZ(MM+1) + LZ(MMHH1)
C(L,3) = KZ(MMH1) + 4.*KZ(MMF2) + KZ(MM3) - LZ(MMH1)-LZ (MM+3)
B(L) = 2.%(KZ(MMF2)+KZ (MM+1) ) *Y (MMH1)
L = L+1
c(L,1) = 0.
C(L,2) = -2.%(KZ(MM+2) + KZ(MM¥+3))
C(L,3) = KZ(MM+2) + 4.*KZ(MM+3) + KZ(MM+4) - LZ(MM#2)-LZ(MMH)
B(L) = —(KZ(MM+2)+LZ (MM+2) )*Y (MMH1)
L = L+1
IF (K2.LT.4) GO TO 70
DO 60 J = 4,K2
MM = (I-1)*K + J
C(L,1) = KZ(MM-1) + LZ(MM-1)
C(L,2) = -2.*(KZ(MM-1) + KZ(MM))
C(L,3) = KZ(MM-1) + 4.*KZ(MM) + KZ(MMH1) - LZ(MM-1)-LZ(MMH1)
B(L) = O.
L = L+1
60  CONTINUE

25




70 MM = 1%K
' C(L,1) = KZ(MM-2) + LZ(MM-2) ,
C(L,2) = -2,%(KZ(MM-1) + KZ(MM-2))
C(L,3) = KZ(MM-2) + 4.%KZ(MM-1) + KZ(MM) - LZ(MM-2)-LZ(MM)
B(L) = =(KZ(MM)+LZ(MM)) * Y(MM+1)
L = L+
C(L,1) = KZ(MM-1) + LZ(MM-1)
C(L,2) = =2, %*(KZ(MM-1) + KZ(MM))
C(L,3) = KZ(MM-1) + 4.*KZ(MM) + KZ(MM#+1) - LZ(MM-1)-LZ(MM+1)
B(L) = 2.%(KZ(MM)+KZ (MH+1))*Y (MM+1)
80 CONTINUE

C SOLVE 5-BAND LINEAR SYSTEM

CALL CCOMP(L, 3, 1000, C, C, &100)
CALL COLVE(L, 3, 1000, C, B, B)

C UPDATE SOLL_ iON VECTOR Y AND CHECK FOR CONVERGENCE

L=1
NORM = 0.
DO 90 I=1,N1
DO 90 J=2,K
J2 = (I-1)%K+J
DIF = DABS(Y(J2) - B(L))
Y(J2) = B(L)
IF (DIF.GT.NORM) NORM = DIF
L = L+1
90 CONTINUE
IF (NORM.GT.EPS) GO TO 30
RETURN
100 RETURN 1
END




SUBROUTINE CCOMP(N, M, IDIM, C, L, *)
INTEGER N, M, IDIM
DOUBLE PRECISION C(IDIM, M), L(IDIM, M)

THIS SUBROUTINE FINDS THE CHOLESKY DECOMPOSITION OF THE (2M-1)-BAND
MATRIX A OF ORDER N WHERE THE MAIN AND M-1 SUB DIAGONALS OF A
ARE STORED IN C AS SHOWN (M=3 IS USED FOR THIS EXAMPLE)

X X A(1,1)
X A(2,1)  A(2,2)
A(3,1)  A(3,2)  A(3,3)
A(4,2)  A(4,3) A4,

THE LOWER TRIANGULAR PART OF THE CHOLESKY DECOMPOSITION A = LU,
WHERE U IS L TRANSPOSE, IS RETURNED IN L. THE RETURN 1 1S TAKEN
IN THE EVENT THAT THE MATRIX A IS FOUND TO BE SINGULAR, Ok
NON POSITIVE DEFINITE, C AND L MAY BE THE SAME ARRAYS,
IF DESIRED.

THIS SUBROUTINE IS A PARTIAL TRANSLATION OF THE ALGOL 60
PROCEDURE CHOBANDDET BY R.S. MARTIN AND J.H. WILKINSON, FOUND
IN THE HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II (LINEAR
ALGEBRA), 1971, J.H. WILKINSON AND C. REINSCH (EDITORS).

OO0 0OO00O0000O000000000000n0n

INTEGER I, P, R, S, Q
DOUBLE PRECISION Y
DOUBLE PRECISION DSQRT

DO 50 I=1,N
P = MAXO(1,M-I+1)
R = I-MP
DO 40 J=P M
S = J-1
. Q = M-J+P
Y = C(1,J)
IF (P.GT.S) GO TO 20
DO 10 K=P,S
Y =Y - L(I,K)*L(R,Q)
Q = N+
10 CONTINUE
20 IF (J.NE.M) GO TO 30
IF (Y.LE.O.) RETURN 1
1.(I,J) = 1./DSQRT(Y)
GO TO 40
30 L(I,J) = Y*L(R,M)
X R = R+1
40  CONTINUE
50 CONTINUE
RETURN
END




SUBROUTINE COLVE (N, M, IDIM, L, B, X)
INTEGER N, M, IDIM
DOUBLE PRECISION L(IDIM, M), B(1), X(1)

THIS SUBROUTINE SOLVES THE (2M-1)-BAND LINEAR SYSTEM OF
EQUATIONS

AX = B

USING THE LOWER PART OF THE CHOLESKY FACTORIZATION L OF A,
WHICH HAS BEEN COMPUTED BY CCOMP.
B AND X MAY BE THE SAME ARRAYS, IF DESIRED.

THIS SUBROUTINE IS A PARTIAL TRANSLATION OF THE ALGOL 60
PROCEDURE CHOBANDSOL BY R.S. MARTIN AND J.H. WILKINSON, FOUND
IN THE HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II (LINEAR
ALGEBRA), 1971, J.H. WILKINSON AND C. REINSCH (EDITORS).

OO0 00O000000

INTEGER S, J, P, Q, NP1, K1, I1
DOUBLE PRECISION Y

SOLUTION OF LY = B ‘

OO0

DO 20 I=1,N
P = MINO(I-1,M-1)
Q=1
Y = B(I)
IF (P.LT.1) GO TO 15
DO 10 Ki=1,P
K = M-K1
Q = Q-1
Y = Y - L(I,K)*X(Q)
10  CONTINUE
15 X(I) = YAL(I,M)
20 CONTINUE

c
C SOLUTION OF UX = Y
C 1
NP1 = N+1 1
DO 40 I1=1,N
I = NP1-11 j
P = MINO(I1-1,M-1) i
Y = X(I)
@ =i T
IF (P.LT.1) GO TO 35
DO 30 Ki=1,P
K = M-K1
Q= Q+1
Y = ¥ - L(Q,K)*X(Q)
30  CONTINUE
35  X(I) = Y*L(I,M)
40 CONTINUE
RETURN
END
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