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ABSTRACT

A mathematical characterization of nonlinear interpolating spline

curves is developed through a variational calculus approach, based on

the Buler-Bernoulli large-deflection theory for the bending of thin

beams or elastica. Algorithms previously used for computing discrete

| approximations of nonlinear interpolating splines are discussed and

compared. The discrete naturel cubic interpolating spline is discussed.

An algorithm for computing discrete natural cubic splines is given and

| analyzed for discretization error and computational difficulty. Finally,

a new algorithm together with its Fortran implementation is given for

computing discrete nonlinear spline functions.
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1. Iutroduction

y -
For the past 25 year-~ and particularly the past decade, the subject

of spline functions has been an area of great mathematical interest. The

" name spline comes from a very old technique in drafting in which a long
| thin strip of wood, called a draftsman's spline, is used to pass & smooth

curve through a set of points in the euclidean plane. The points of

- interpolation are called knots and the spline is secured at the knots
| by means of lead weights called ducks. The wooden (and now plastic) |

splines and lead ducks are still manufactured; however, less expensive

; modern drafting tools are generally used today.
The mathematical model of a spline is a special case of the elastic

line, or elastica, the first problem of any importance treated by the

; theory of elasticity. Its treatment began with James Bernoulli in 1705,
Daniel Bernoulli (1742), Fuler (1744), Kirchhoff, and many others. The

| history and theory are summarized by A.E.H. Love (1927); however, research

| papers on the elastica have been published more recently. i

Perhaps the simplest way to characterize a spline mathematically |

is with the fact that a spline assumes a shape which minimizes its

' elastic strain energy. Daniel Bernoulli (1742) first suggested that the i
strain energy 1s proportional to the integral of the square of the curva- |
ture taken along the curve. He suggested in a letter to Euler that the

j ) differential equation of the elastica could be found by making the integral
| a minimum. Euler (1744), acting on this suggestion, was able to find

: the differential equation using techniques now known as Calculus of Var-

! iations and Lagrange multipliers. (It is interesting that Euler did this i
work when Lagrange was a small child.)

| 1
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Since a modern development of Bernoulli's discovery could not

4 be found in the literature, one is presented here. The reader is

referred to Y. C. Fung (1965) for discussions of the basic concepts

of solid mechanics used in the following discussion.

Assume that the spline is made from a linearly elastic material

with coefficient of elasticity E . Let the spline be initially straight

and assume that every cross section of the spline which is initially

perpendicular to the major axis remains plane and perpendicular to the

principal axis at all times. Let ds be the differential arc length

along the neutral axis. When the beam is bent into a curve of radius

} R , the length of a filament, initially of length ds and parallel to

the neutral axis, is changed by a factor of 1 +7 /R , where 7 is the

| distance from the neutral axis to the filament measured in a direction

] away from the center of curvature, as shown in Figure 1.1.

{

)

| ]
]
;

3
Figure 1.1. A spline element [

Thus, the strain is 7/R, or Nx , where x is the curvature. :

| If dA represents the cross-se:.ional area of the filament, ETdA

is the force (tension) acting on the filament. The resultant moment :

y |
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of forces acting on the spline at the cross section is

$ 2
M= JTNENxdA= Ex fT) dA. |

| A A

By definition, the moment of area of the cross section is i

2 i

|

A :
Therefore,

M = EIx .

The angle through which the cross section rotates is mds . Hence, the

| work required to bend a segment ds of the spline to a curvature x is

| given by

Ww, = (EI/2)x°ds . (1.1)

There is a longitudinal force acting on the ends of the element. However,

the strain energy resulting from this force is negligible. Hence, inte-

grating throughout the spline, we have the strain energy

)

2

U = b [ ds .
0 |

If the material is homogeneous, and the spline is of uniform cross |
'

section, then P |
ve ELfs (1.2) |

0
)

Now let ¥ denote the potential energy of the system. In the

general case

r - [ar f spe -f a2 ds~j~i ~1~}i

| v V S |
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where W is the strain energy function, Ls are the body forces per

| ) unit, volume, ts are the surface traction forces per unit area, and
| u, are the displacements. The repeated subscript is the usual tensor

| notation for summation over all possible values of the subscript. We

’ are assuming that the fs = 0 . Now, for this case, the Lt. correspond :
| to the forces acting upon the spline at the nodes. But the spline is

| constrained at each node, so that either 4, = Q , or u, is orthogonal

- to Ls . Thus, since the nodes cannot apply torques to the splire, they
| can do no werk on it, or
I

| [ tps =o.
S

| Hence,

| v= [wave |
| ; i

' £

| The principle of virtual work states that when a body is in equilibrium,

| rv = 0 . j

Therefore, |

6U = 0 , (1.3)

or P

| J xas = a local minimum . (1.4)
0

| Of all the continuous curves which pass in turn through a given set ;

of ordered points in the euclidean plane, having continuously turning |
tangents, and piecewise continuous curvature with discontinuities in $

; curvature permitted on only a finite set of points, those satisfying ;
(1.4) are referred to as nonlinear interpolating spline functions, or i

L
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| simply, nonlinear splines. Birkhoff and de Boor (1965) gave an example
which denies the existence of nonlinear splines in general. (See Section

] 3,2 tor a discussion of this example.) It is an open question whether

uniqueness holds for a given set of interpolation points. This question

is complicated by the fact that the value of (1.4) can be made as small

: as desired by introducing large loops between supports, which modity the

topology of the spline, The only known existence results for nonlinear

splines are given in Section 3.2.

For deflections of the elastica which result in small slopes,

» =y’ and ds = dx . With this well known linearizing approximation,

Equation (1.4) leads to the linear fourth-order ordinary differential

equation known as the beam equation. The corresponding problems of

interpolation have unique solutions called natural cubic spline functions.

1 These solutions satisfy the natural boundary conditions of zero second

| derivatives at the ends. Existence and uniqueness for "linear" cubic |

| splines follow from basic theorems of linear elasticity.

As one would intuitively expect, nonlinear splines are invariant :

under rigid rotations ot the x-y coordinate system. However, the

| linear cubic splines are not invariant under rotations of the x-y coor-
ginate system, and hence they are not well suited to fitting geometrical |
data in a euclidean plane, or other data where rigid rotations of the

: coordinate system make sense. On the other hand, nonlinear splines are

; not invariant with respect to changes in the y coordinate only, while |
linear splines are (see Podolsky and Denman (1964)). |

¢ As pointed out by Lee and Forsythe (1973), the term nonlinear i

| spline hes been used variously in the literature. However, in this case,

the term indicates that the spline satisfies nonlinear Euler equations |

p
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which will be derived in the next section,

Little of the rlassical work on the elastica is dire~ntly applicable |

| to nonlinear spline theory. The earliest known paper on nonlinear splines

| is that of Birkhoff and de Boor (1965). Early reports were written by |
| Fowler and Wilson (1963) and Birkhoff, Burchard and Thomas (1965). i

Methods for computing nonlinear splines have been published by Glass {(1%6), ;
|

Larkin (1966), and Woodford (1969). Mehlum (1969), in his Ph.D, dissert- I

ation, discusses nonlinear splines and presents an algorithm for approx-

| imating a nonlinear spline by a succession of circular arcs, Hosaka (1967)

| describes how to solve (1.4) and generate nonlinear spline functions on |
a differential analyzer. Some of these algorithms will be uiscussed in k

: Section 3. ]
Methods for coinputing nonlinear splines nave applications in the }

design of aircraft, ships and automobiles. A piece of sheet ital which

is bent into an axially-symmetric configuration has a cross secuvion which

behaves litle a nonlinear spline,

|

$
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2. AVarjaetional Formulation of the Large-Deflection, Small-Strain
Problem of Interpolating Elastica

Given a fixed sequence of points Ps 12% cov Ps we define the

interpolating elastica as the function P(s), a function of arc-length

Ss, which satisfies the equilibrium conditions for a thin beam, of con-

stant cross section and constant linearly elastic properties, passing in turn

| through the n points P. and acted on only by workless constraints
at the points Ps . As we shall see, the natural boundary conditions

| resulting from the variational formulation will indicate exactly what

kinds of boundary conditions are admissible and what combinations of them

| result in well-posed problems. We will also see that the forces £. acting

on the elastica through the points P must satisfy certain restrictions

which are entirely consistent with the assumptions of Section 1.

| It is natural to specify each Ps by a pair of Cartesian coor-
dinates (x;5¥4); however a more efficient coordinate system for the

development of the problem is (6,s), where s is the arc length and

6 = 6(s) is the angle made at s by the curve P(s) with some refer-

ence line, The curvature of the elastica at any point s is given by

x(s) = d6/ds .

In Section 1 it was shown that stable configurations of the elas-

tica correspond to local minima of the functional

R’

/ «2ds , (2.1) |
0

where £ is the length of the elastica and the integral is teken along 1
the deformed configuration, Note that £ is allowed to vary in minimizing

T
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(2.1). It is equivalent to say

fe = 0. (2.2)
0

For the trivial case of collinear Py and all fy = 0 , the value of

| (2.1) for the equilibrium state is O . To find the function 6(s) which
|

satisfies (2.2) for a nontrivial set of P, , the additional 2n-2 side
conditions

Lit

3 Ls

| (2.3)

| Livy

[ sinA ds = Yi+1 = Ys y 1=1, +,..; n-1,
Ls

must be added to (2.2), where £. denotes the value of & at P, .
Using Lagrange multipliers, the constraints (2.3) can be added to (2.2)

3 yielding

; n-1 bis

; 8 ) | iE + A, cos A + bw, sin 8)ds

A(x mx) mH 1) SS |
: 1

Now since certain kinds of constraints at the Ps allow the elastica to |

slide, the lengths Ly are allowed to vary as well as the function 6 . |

8
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| Taking continuous variations, integrating by parts and rearranging terms
gives

(

| ) / - rile A sin 8 + bs cos J 86ds
| i=1 by

+ 2u"8g - 2n'60
nn 11

n-1

+ 2 (vn, - », )66
i i’ 1 1

j=2 |
ul -

n |

| + [( 0) + A _qc08 8 tA ho _,Sin 6] 88 (2.4)

- [(xF)? + A.cot OB) + psin 67184 :
1 1 1 1 1 1 |

n-1

) -\2 +2

| + A; _ CoS 6, +p, sin 6, |
+ , At =

REE 8, - pb, sin 6, ] 82, = 0,

where the notation E. denotes lim €(¢.+¢), and £, denotes lim &(L.-¢) .
i i i i

-0 €-+0

By the fundamental lemma of the Calculus of Variations, the integral

term in (2.4) yields |

Bok ay.TD % 2058 = 0 L, <s <4 (2.5) |ds i i Ais. i+] °

for i =1,...,n-1 . Using (2.3), Equation (2.5) can be integrated for

each open interval yielding

| A Mos |+ :| i |
\ n(s) = ny, - = (y=y;) + (x-x,) s i=1,...,n=1 (2.6) {

Equation (2.6) also results from the static equilibrium moment relation for

| a segment of spline to the right of the i-th knot (see Figure 2.1). :

S
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2B1 (x,y)
J wig)

| j
§

| AL]
\ rs 2EI

Figure 2.1. A segment of spline to the right of the i-th knot

Hence, the Lagrange multipliers are scaled force components acting on the

+ i

spline at Ls : |
The Euler equation can be deduced by differentiating (2.5) which gives y

: 2 A Mn
2 2 2

ds

2 A. 5,
’ d 1 du _ i : _ i _ _, aurr (+ 4) = (= sin 6 NCE COS ) i) n 3s’ |ds

or

d 2 1 an |
wm \ re 2)

| b "as |

Hence, for x # 0, |

1 dx 2

ds
b

for constants Cs depending, in general, upon the interval 1 .

The remaining terms of (2.4) yield the natural boundary conditions.

Since each of the 88; and 68, are arbitrary (for i=l,...,n), the knots

of the spline can be modeled by frictionlessly rotating sliders, as shown in

Figure 2.2. |

10
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Figure 2.2. Frictionlessly rotating slider

The terms

S +

| in (2.4) give the natural end conditions of zero curvature. The terms
3

: n-1 _ %
2 I (ny - n,)88;

i=2 |

demand that the curvature be continuous across each interior knot. If

the angle © is taken with reference to the x-axis, we have from (2.7)

2

ns) = =F, (2.9)
ds

where T(s) denotes the (scaled) force transmitted along the spline.

(Tension is positive.) Thus, the terms

| [( y2 + A cos 8 +u_ .8in 8]8¢L
: "n n-1 n n-1 n n

+.2 + +

| -[(xy) A, cos N > hy8in 6,184, |
+ — ;

in (2.4) give the additional natural end conditions T(2,) = T(2,) = 4 , |
That is, the ends of the spline have no longitudinal forces applied to |

them. Similarly, the terms

n-1
-\2 +,2

i=

+ Aj _qc08 04 + by_15in 6;
Re +

- Ajcos A; - pu,sin 6,186,

11 |
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| require that the forces T(£,) = T(4}) (i=,...,n-1) , that is, the longitud-
inal force transmitted by the spline is continuous across each interior knot, |

The constants of integration c, (i=1,...,n-1) in (2.8) can now be

determined for the natural open spline, Since (47) = 0 =0, (2.8)
evaluated at 8) gives c, = O . Both the curvature and the longitudinal
force are continuous across cach of the interior knots, hence we have

vy 0 for i=,...,n=-1 . Thus we obtain the Euler equations

dx 1.5 ’
pie =0, £4, <s<4f,., (2.10)

for i=l,...,n-1 , which, in view of (2.7), must be satisfied by the spline

at ever, point within each open interval. Equations (2.10) were first

published by Birkhoff &nd deBoor (1965).

: The above analysis shows that the nonlinear spline having friction-

.essly rotating slider constraints corresponds to the least-constraijiit

interpolating elastica. Any turther constraints on the elastica must be

consistent with (2.4) and will produce a larger value of (2.1) unless they

arc also consistent with the nonlinear spline, For example, Hermite con-

straints are consistent with (2.4) since they imply 66, = 0 5 (3=1s..550)

However, for this case, curvature is not necessarily continuous acrosc the

interior knots and, hence, (2.10) no longer holds. Numerous combinations |
of more restrictive boundary conditions are admissable according to (2.4).

These include sucn things as fixed ends and pinned joints. We will only

be oncerned with the least-rconstraint, natural boundary conditions of the |
nonlinear interpolating splines, |

Closed nonlinear splines have been studied by Lec and Forsythe (1975). |

In thic case, X) =X and yy =V, However, to avoid having to pres-

cribe the total length of the spline, the variations 84, and oL are taken

12
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as unequal. Since elements of the curved arc are inserted into or deleted

from the spline at Py = P , the variations at Ly and L mist satisfy |

80, +nlbL = 80 +x 80
1 171 n nn

The corresponding natural boundary conditions are 4

+ _ — x
hy =n,

and

$2 | tg =\2 -
(x) + eT, = (») + eT =O |

| It follows that (2.10) also holds for the case of closed nonlinear splines. !

13 |



Be Methods for Computing Open Nonlinear Spline Functions

A number of methods for computing nonlinear interpolating splines
i]

have been published during the past six years. In this section these

results are briefly reviewed in chronological order. Also, two interesting

results due to Larkin, which concern the existence of finite equilibrium

solutions, are treated in Section 3.2.

Bel Glass' method

| The first published method for computing discrete approximations
to the nonlinear interpolating spline is that of Glass (1966).

Class uses Cartesian coordinates (x-y) and considers the Euler

equation analogous to (2.10):

(1v) 5 ")3 + 20v " 35 di ”)?
| 2[1 + (vy) 2[1+ (y')~]

The knots are represented by their coordinates (%45¥:)) i=1,2,...,n .
Since the curvature

"=ee :[1+ (yHeP/e

and ds = v 1+ (y")° dx , the energy given by (2.1) becomes
n-1l X

i ) [ u\2Ey) = —Ah ax. (3.2)2| [1+ (y")2)°/2
i=1 x,

Glass first considers the problem on one panel [ XX,1] , with the

end points y, and y,,, prescribed. He assumes the end slopes yy;

and yy,) ore also prescribed and proceeds to develop a method to solve
)

| 14



| the ordinary differential equatior (3.1), subject to these four boundary

conditions. Using a Taylor's series expansion of (7.1) about an approxi-

| mate solution #9, he arrives at a linear differential equation in the

correction to y (0) to obtain the better approximate solution yt .

Using central difference operators over a mesh of N points in the inter-

val (with constant mesh size H), he obtains a systemof linear difference

] equations in the correction terms at each mesh point. This 5-band system

of linear algebraic equations is solved at each iteration until convergence.

| The solition of the fourth-order boundary value problem is carried |

| out in each ponel for a given set of slopes at the knots: Ys ys i=0,2,...,n ,

written y‘. The functional (3.2) is approximated using this discrete

| solution and is now considered to be E(y') . Glass then proceeds to a |

solution with an outer iteration which minimizes E(y’) using a gradient |
method. He uses differencing to obtain partial derivatives and then rounds |
them to 1, 0, or -1. He uses an unusual heuristic method for choosing §

the step parameter A for moving in the direction -grad[E(y‘)] .

Gluss doesn't present the actual program; however, he claims that his

method requires only about five gradient searches for satisfactory answers.

| He presents an example with nine panels (n=10), but does not mention the

value of N or how the initial y’ was obtained. For this example,

| Glass' method took approximately 10 minutes on the IBM T7094, |
In addition to the "enormous computation time," Glass mentioned that

| ’ instabilities occur in problems where the spline turns too rapidly.

| He suggests a technique for overcoming the instabilities at the ;
expense of a substantial increase in computation time. The computational

' difficulties increase drastically for larger numbers of data points, |

15
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5.2 larkin's method

Jarkin (1966) presented perhaps the most interesting study of non-

linear spline functions in a rather obscure unpublished report. His results

| and suggested computational method are summarized here,

Larkin tirst shows that (3.1) may be reduced to

40

x === =x, Vcos(e-¢,) , £, <8< 4, » (5.3)

where the A, eri € are constants of integration. Equation (3.3)

is precisely the cnergy integral of the equations of motion of

| Kirchhoff's kinetic analogue of a pendulum given in Love (1927), p. 401,
which may also be written as

: ”

| n= Aj cos 8 + B, sin®, 4; SSSA... (5.4)

| where the As and By are the constants of integration. Equation (3.4)

| is easily shown to satisfy (2.10) if there are no points of inflection.

Larkin integrates (3.3) to give x(s) and y(s) in terms or elliptic

integrals. To obtain equations which can be used for computation, he needs

| a scparate treatment for the case where the spline has a point of inflection.
A point of inflection occurs when the curvature vanishes, i.e. where

6 =e +72. (3.5)

Larkin's complete algorithm is quite complicated and goes roughly as

follows:

| Step1: Estimate values of 8 at the knots (i.e., 0, , i=1,2,...,0).

| Step2: Determine the parameters Ay and ¢. , for each panel. This

requires the evaluation of three complicated functions, each involving

elliptic integrals, as well as several trigonometric functions. Based |
| upon the values of these functions, it can be determined whether or not a ,

16 |
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| point of inflection occurs in the interval, and if so, which one of two

| ) cases it corresponds to. The value of ¢ is then determined by finding |
| the zero of the appropriate complicated transcendental equation, The

| value of Ay is then obtained by the direct evaluation of a similar
equation,

| Step3: Scan through the knots to find the one at which the largest dis-

continuity in curvature occurs. Replace the value of 0, there by a value

which makes the curvature continuous. This requires solving for the zero

| of another transcendental equation, and the valuec of $s and Ay must
be recomputed in each of the neighboring panels. Step 3 is repeated until

' the largest discontinuity in curvature becomes smaller than a specified

tolerance,

The above algorithm was implemented on a KDF9 computer and graphs of

| a few solutions are included in Larkin's report. No mention is made of

running times, or computational experience. However, it appears that

the method is probably quite slow dve to the large number of transcendental

4 functions which must be evaluated.

The most interesting results in larkin's report are contained in |

the following two theorems: :

} Theorem 3.1 (larkin): A necessary condition for the existence of a finite |
equilibrium solution is

185, = 6; £m, i=1,2,...,n-1. (3.6)

Proof: From Kirchhoff's analogy (3.3),

WC = CoS (6-6)20,

Thus, cos (0 - e,) > 0 . Therefore, at tL; and 4, . , we have i

| 17 |



r

164 - ¢, | <n/2 + 2pm ,

and !

16547 = 63] <T/2 + 2am,

where p and q are integers. The only cases of interest are those

where p =0 , and ¢; is evaluated so that p = q = 0 . So we have

[Opn = 03) = G5 ed] {05 - es] + {8; - 4]

or [354 - 8] ST i
|

| Unfortunately, this theorem doesn't provide a way to determine a
priori whether a given set of knots has a finite equilibrium solution.

| However, this result is useful in an algorithm for determining when a |

| solution is diverging. The cases where (3.6) is not satisfied correspond

physically to a spline which continues to slide through the supports while

reaching lower and lower energy values. An examp.ie of this is given in

Birkhoff, Burchard and Thomas (1965). The knots in this example have the

Cartesian coordinates (1,0), (2,0), (0,2), (0,1), with the spline

threaded through tuem in that order. The spline never reaches an equil-

ibrium state, and continues expanding tc infinity. A lucid explanation

of this example is given in Lee and Forsythe (1973).

Theorem 3.2 (Larkin): A necessary condition for the existence of a finite

| equilibrium which possesses no point of inflection is that there exists an

integer m such that |
) :

min (6,50;,1) < ¥; + mn< max (6,58; ,,) ; (3.7)

where v. is the inclination of the straight line connecting the i-th

A and the (i+l)~th knots.
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Proof: Roughly, this theorem follows from the fact that © is a contin- {

uous function which must vary monotonically from 6; to 0.1 in the

case that there is no point of inflection. And (3.7) is untrue only if

| 8 is not monotonic. For a detailed proof, see Larkin (1966), Appendix A.

3.3 Woodford's method |

The only published program for computing nonlinear splines is an

Algol procedure given by Woodford (1969). His method appears to be con-

siderably simpler and faster than those of Glass and Larkin.

Woodford uses cartesian coordinates and applies the calculus of

| variations to obtain (3.1). He notes that (3.1) can be reduced to

2 nero /2 |
(v)? = ay’ +8) + (v0?) (5.8)

which is merely another form of Kirchhoff's kinetic analogue given by

| (5.3) and (3.4). He uses (3.8) to obtain an expression for the energy J
n-1

E = y 1830¥540 = 93) + B(x = Xp] (5.9)
| 1=1

which is easily derived using (3.4) and (2.1). |

| Woodford discretizes the intervals with a uniform mesh and |

starts with an initial solution 40) provided by solving

J)

- which gives the usual natural cubic interpolating spline. He uses the

method of quasi-linearization and proceeds with an iteration based on the

same Taylor series expansion about the current solution that Glass used. |

’ To solve this linear multi-boundaryvalue problem, Woodford uses & deriv- :
’ mM :

ative replacement scheme based on expressing Yiee1? Yies1? Yi+1? and Viesl

with Taylor series expansions about the point Vy immediately to the

19
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} left, and retaining all terms up through those in y iv) . This results .
in a 9-band linear algebraic system of equations to solve at each iteration.

The iterations are terminated when the energy given by (3.9) on two succes-

sive iterations is nearly the same. |

? Woodford gives an example using seven data points: (0,0), (1,1.9),

(40 points per panel). Convergence occurred after four iterations. His

| ¢ example will be discussed again in Section >. A listing of a Fortran trans-

| lation of Woodford's Algol procedure follows.

|

20
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’ SUBROUTINE MEC(N, ORD, H, K, A, B, C, D, EPS, *%) |
¢ |

| C THIS SUBROUTINE COMPUTES POINTS ON THE MINIMUM-ENERGY CURVE
C (SOMETIMIS CALLED A NONLINEAR SPL. = WHICH PASSES THROUGH

C THE N DA''A POINTS WITH ORDINATES ORD(L), I=1,...,N, AND
| C EQUIDISTANT ABSCISSAE. THE SOLUTION IS PRODUCED BY A STEP-BY-
i C STEP METHOD BASED ON TAYLOR SERIES, THE NUMBER OF STEPS BETWEEN
| C CONSECUTIVE PAIRS OF DATA POINTS IS K, AND H IS THE LENGTH OF

C EACH STEP. USUALLY THE NUMBER OF STEPS K SHOULD BE AT LEAST 10

C PER UNIT INTERVAL. THE PARAMETER EPS CONTROLS THE CONVERGENCE,
C USUALLY EPS SHOULD BE OF THE ORDER 1.E-5., THE SOLUTION Y AND ITS

: C DERIVATIVES ARE STORED IN THE ARRAYS A, B, C, AND D. A(I)
C 1S THE VALUE OF Y AT THE I-TH POINT, I=1,...,K*(N-1)4+1, SIMILARLY

| C B(I) IS THE VALUE OF THE FIRST DERIVATIVE, C(I) THE SECOND
C DERIVATIVE AND D(I) THE THIRD DERIVATIVE. SINCE WE ALLOW FOR
C DISCONTINUITIES IN THE THIRD DERIVATIVE AT EACH INTERNAL DATA

C POINT, D(I) FOR I = K+1, 2K+1, ..., (N=-1)K+1 IS THE THIRD
C DERIVATIVE TO THE IMMEDIATE RIGHT OF THE DATA POINT.

C D((N-1)*K+1) IS LEFT UNDEFINED. THE SUBROUTINES BANDET AND :

| C BANDSL MUST BE SUPPLIED FOR SOLVING A 5-BAND LINEAR SYSTEM
C AT EACH ITERATION. THE SUBROUTINE EXITS WITH A RETURN 1 IF

C THE PROCEUDRE BANDET FINDS A ZERO PIVOT OR IF THE ALGORITHM

C HAS NOT CONVERGED AFTER 10 ITERATIONS.

C

C THIS SUBROUTINE IS A TRANSLATION OF AN ALGOL PROCEDURE GIVEN

C BY C.H. WOODFORD IN "SMOOTH CURVE INTERPOLATION", BIT 9 (1969),
C 69-77. |

C MICHAEL A. MALCOLM
C COMPUTER SCIENCE DEPARTMENT

C STANFORD UNIVERSITY

C AUGUST 16, 1971
C

REAL*4 H, EPS, ORD(1), A(1), B(1), C(1), D(1), AL(1000,9),
* R(1000), EN(20), DEN(20), AA, BL, CL, DL, X, W, 2Z, XX, XX1, |
*  XX2, WW, WWW, D1, H1, H2, H3, H4, MBAND(1000, 4), NORM
INTEGER Q, P, INT(1000) |
LOGICAL L, Z

C |
D1 = 1,E10

ITO = 0

| N1 = N-1

SE H1 = H*K

H2 = ,5*%H*H |
H3 = H2*H/3. ]

H4 = H3%H*,25 |
| Q = N1 * (4*%K-1)

M1 = N1*K + 1

J M = M1-1 |
4

3 21 |
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) DO 10 I=1,M1
A(I) = 0,
B(I) = 0,

C(I) = 0.

10 CONTINUE

4 EN(1) = 0,
EN(N) = 0,

20 DO 30 I=1,Q
DO 30 J=1,9

| AL(1,J) = 0,
30 CONTINUE

I=35

J =3

DO 80 P=2,M

i L = (P/K)*K.EQ.P |
Zz = ((P-1)/K)*K.EQ.(P-1)
AA = A(P)

BL = B(P)

CL = C(P) |

DL = D(P)
I1 = I+1

12 = I+42 |

13 = I+3

| I4 = 5-1

IS = 4-1

| 16 = 3-1

I7 = 2-1

IF (Z) GO TO 40

: AL(I,J414) = 1. ;
J = J+1

| 40 AL(I,J+I4) = H + CL*H4 |

AL(I1,J+I5) = 1.+ CL*H3

AL(12,J416) = CL*H2
IF (L) GO TO 42

AL(I3, J+17) = CL*H
42 J = J+1 i

: AL(I,J+I4) = H2 + BL*H4

AL(I1,J+I5) = H + BL*H3 |
AL(12,J+16) = 1. + BL*H2 |
IF (L) GO TO 44
AL(13,J+17) = H*BL

44 J = J+1

AL(I,J41I4) = H3 + AA*H4 :
AL(I1,J+I5) = H2 +AA*H3
AL(12,J+16) = H + AA*H2 i
IF (L) GO TO 46

AL(I3,J+17) = 1. + AA*H

| } 46 J = J+1
IF (L) GO TO 48 i
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AL(I,J+14) = -1,
J = J+1

48 AL(I1,J+15) = -1.
J = J+1

IF (P.NE.M) AL(I2,J+16) = -1,
J = J41

IF (L) GO TO 50

| AL(13,J417) = -1.
50 BL = DL*H4

R(I1) = DL*H3

R(I2) = DL*H2 i

IF (.NOT.L) GO TO 60

IPORD = P/K + 1

R(I) = BL + ORD(IPORD)
I = 13

J & J=0

GO TO 80
60 IPGRD = (P-1)/K + 1

R(I) = BL

IF (Z) R(I) = R(I) - ORD(IPORD)
R(I3) = DL*H
I = I+4

J = J-3

80 CONTINUE

AA = A(1)

CL = C(1)

| DL = D(1)

AL(1,5) = H + CL*H4

AL(1,6) = H3 + AA*H4

AL(1,7) = ~1.

AL(2,4) = 1. + CL*H3

AL(2,5) = H2 + AA*H3

AL(2,7) = -1,
AL(3,5) = CL*H2

AL(3,4) = H + AA*H2
AL(3,7) = -1,

AL(4,3) = 1. + AA*H
AL(4,2) = CL*H

R(1) = H4*DL - ORD(1) i
R(2) = H3*DL

| R(3) = H2*DL
R(4) = H*DL |

CALL BANDET(MBAND, 1000, INT, AL, Q, 4, 9, &150)
CALL BANDSL(MBAND, 1000, INT, R, AL, Q, 4, 9)

C STORING CURRENT SOLUTION

I = 4

J = 2 i

DEN(1) = R(1) §
DEN(N) = R(Q)

25



DO 100 P=2M

| X = R(I)

W = R(I+1)

ZZ = R(I1+42)
I = I+3

IF ((P/K)*K.NE.P) I = I+1
» XX = X*X

XX1 = 1,/(1.4XX)
XX2 = XX1 * XX1

WW = WY

WWW = WWkY

IF (((P-1)/K)*K..E.(P-1)) GO TO 90
§ EN(J) = WW(XX1%%2,5)

DEN(J) = X
J = J+1

1 90 AA = 10, *X*W*XX1

BL = (7.5%WW + 10.*X*ZZ)*XX1 ~ 52,5%XX*WW*XX2

CL = 10, *%W*ZZAXX1 — XAWWWAXX2%*(40, ~ 70.*XX*XX1)
* ~ 20. *XX*WAZZ*XX2

D(P) = -(2.5%*WWW + 10,.%X*W%ZZ) * XX1 + 17.5*XX*WWWkXX2
* +AA*ZZ + BL*W + CL*X |

A(P) = AA
B(P) = BL

C(P) = CL
100 CONTINUE

C TEST FOR CONVERGENCE

X = 0,

| DO 110 I=1,N1 |
AA = (EN(I+1) - EN(I))/(DEN(I+1) ~- DEN(I)) !

| BL = EN(I) - AA*DEN(I) !
X = X+ABS(AA*(ORD(I+1) - ORD(I)) + BL*H1)

110 CONTINUE

ITO = ITO+1

NORM = ABS(D1-X)
PRINT 115, ITO, NORM |

115 FORMAT(' ITER. NO. ', I4, ' NORM =', G10.3)
{ IF (ABS(D1-X).LT.EPS) GO TO 120

If (ITO.EQ.10) RETURN 1 |

D1 = X |
X = R(1) !
B(1) = 10.*X*R(2)/(1. + X*X) ;

| GO TO 20 |

' 120 A(1) = ORD(1)
B(1) = R(1)
D(1) = R(2)
I =3

J =K

I1 = 2

} I2 = 2

: 24
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) 125 DO 130 P = 12,J
A(P) = R(I)

B(P) = R(I+1)

C(P) = R(I1+42)

D(P) = R(I+3)
I = I+4

? 130 CONTINUE |
J = J+1

A(J) = ORD(I1) |
I1 = 11+!

B(J) = R(I) |
IF (I.EQ.Q) GO TO 140

? C(J) = R(I+1)

D(J) = R(I+2) |

I = 143 |
J = J+K-1

I2 = J+2-K |

GO TO 125

' 140 RETURN |

150 RETURN 1

END

|

'

|
i

’
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3 SUBROUTINE BANDET (M,IDIM,INT ,A,N M1 M3 *%)
DIMENSION M(TDIM, M1) ,INT(IDIM),A(IDIM M3)

C

C M--~~-AN NXM1 MATRIX FOR STORING LOWER TRTANGIUTAR

C MATRIX OF LU DECOMPOSITION OF A

C INT---AN NX1 VECTOR FOR RECORDING ROW INTFRCHANGFS

C DURING DECOMPOSITION |
C A---—~AN NX(M14M2+1) MATRIX WHOSE COLUMNS ARF THE DIAGONALS

C OF C, THE BAND MATRIX BEING DECOMPOSED

C A(*,1) - A(*,M1) ARF SUBDTAGONALS OF C |
C A(* M141) IS DIAGONAL OF C

C A(*,M142) - A(*,M14M2+1) ARE SUPEKDIAGONALS OF C
C N--~~<~NUMBER OF ROWS IN A

C M1---~NUMBER OF SUBDIAGONALS IN C

C M3-~-~TOTAL NUMBER OF DIAGONALS IN C , I.E. WIDTH OF BAND

C M3 = M1 (# SUBDIAGS) + M2 (# SUPERDIAGS) +1
C

| C BANDFT AND BANDSL ARF. TWO SUBROUTINES WHICH SOLVE C*X = B |
C WHEN C IS AN UNSYMMETRIC BAND MATRIX ( THEY WILL WORK WITH

| C  SYMMFTRIC BAND MATRICES BUT TAKE NO ADVANTAGE OF THEIR

| C STRUCTURE) .C

C C HAS M1 SUBNDIAGONALS AND M2 SIPERDTIAGONALS.

C THE. MATRIX C IS TRANSFORMFD TO A BY MAKING EACH DIAGONAL OF

e C A COLUMN OF A. THUS A IS NYX(M14M2+1) WHEN C IS NXN.

C A TYPICAL A IS PICTURED BELOW. C HERE IS 4X4, WITH
g 2 SUBNIAGONALS AND 1 SUPERDIAGONAL

C

C 0 0 C(1,1) €(1,2)

| C 0 C(2.1) €(2,2) €{2,3)

£ £43,1) G{3,2) €(3,3) C(3,4) |
| C €(4,2) C(4,3) C(4,4) 0

C i

C THIS TRANSFORMATION IS THE FOLLOWING, ASSUMING THAT C(I,J) |
C TS A BAND FLEMINT IN C:

C C(T,T) --> A(I,MI+1+(J-1))

¢ ALL OTHER FLEMENTS OF A ARE 0 :
C ;

| C BANDET FINDS THE LU DECOMPOSITION OF A, STORING

C THE LOWFR TRIANGULAR MATRIX IN M AND NXM1 MATRIX,
| C AND OVFRWRITING THE UPPER TRIANGULAR MATRIX INTO A.

C BANDSL USES THIS DFCOMPOSITION TO SOLVE A*X = B WHERE {

| C THE RIGHTHAND SIDE IS INPUT IN THE VECTOR B, AND X IS
| C OUTPUT IN THE VFCTOR B.

C

C THESF. ROUTINES WERE TRANSLATED FROM THOSE PRESENTED BY ]
C J. WILKINSON IN NUMFRISCHE MATHEMATIK VOL 9, P279

C TRANSLATOR: BARBARA RYDER
C

20
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RFAL M

25 L=M1

NO 40 I=1 M1
K2=M 142-1

| DO 50 J=K2 M3 :
50 A(1,J-L)=A(I,J)

L=L-1

| K2=}M3-L
DO 60 J=K2 ,M3

60 A(1,J)=0.0
40 CONTINUE

45  L=M1

DO 70 K=1,N
X=A(K,1)
I=K

K2=K+1

| IF (L.LT.N) L=L+1
72 IF (L.LT.K2) GO TO 81

79 DO 80 J=K2 ,L
| IF (ABS(A(J,1))-ABS(X)) 80,80,82 i

82 X=A(J,1)
I=J J

80 CONTINUE

81 INT(K)=I

IF (X) 73,75,73
73 IF (I-K) 77,78,77
77 DO 90 J=1,M3

X=A(K,J)
A(K,J)=A(I,J)

| 90 A(I,J)=X
78 IF (L.LT.K2) GO TO 70

83 DO 100 J=K2 ,L !
M(K,J-K)=A(J,1)/A(K,1)
X=M (K ,J-K)
DO 110 JJ=2,M3

| 110 A(J,JI-1)=A(J,JT)-A(K,JT)*X

' 100 A(J,M3)=0.0
70  CONTINUF.

RETURN
75 RETURN 1 ]

FND

| |

i

i]
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SUBROUTINE BANDSL (M,IDIM,INT,B,A,N,M1,M3)
DIMENSION INT (IDIM),A(IDIM,M3) M(IDIM,M1),B(IDIM)

| C
C ALL PARAMETERS SAME AS IN BANDFT EXCEPT FOR:

C B----~RIGHTHAND SIDE OF LINEAR SYSTFM C*X = B

C SOLUTION IS RETURNED IN B |

C

RFAL M
INTEGER W

I=M1

DO 10 K=1,N

I=INT (K)
IF (I-K) 11,12,11

11 X=B(K)

B(K)=B(I)

B(1)=X
12 K2=K+1 |

IF (L.LT.N) L=L#1 |14 TIF (L.LT.K2) GO TO 10 |

| 15 NO 20 I=K2,1,

X=M(K, I-K)
20 B(I)=B(I)-X*B(K)

| 10 CONTINUE |
L=1 1
PO 30 II=1,N |]
I=N+1-11 x

X=B(I)

WI 1
: IF (L-1) 32,33,32

32 NO 40 K=2,L |

40 X=X-A (I,K)*B(K+W)
33 B(I)=X/A(I,1)

IF (L-M3) 31,30,30 ]
y 31 L=L+1 ;

30 CONTINUE

RFTURN

FND
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3.4 Mehlum's method

’ Even Mehlum (1969), in his Ph.D. dissertation, presented an algorithm

| for computing an approximation to nonlinear interpolating splines which

| he has implemented in a computer program called KURGLA (from Norwegian

' "KURveGLAtting" -- curve fitting). KURGLA is the basic subroutine in the |

| ship fairing program included in the AUTOKON software which has been dev-

| eloped at the Central Institute for Industrial Research in Oslo, Norway.

| : The AUTOKON computer software is used for numerical control of drawing
machines and flame cutters in ship-building. The ship fairing program

| has been in use since 1965 and by 1969 had been used for fairing about |

| 150 hulls. |
| Mehlum starts with a long derivation of the equation |

2

(£) =p sin (g - ©) + Y (3.10) |
which is yet another form of Kirchhoff's kinetic analogue (3.4). He also |

proves the following:

Theorem (3.3): Between neighboring knots of a nonlinear spline, there is |

| always a direction along which the curvature varies linearly. |
Proof: This follows from the fact that curvature is proportional |

to the bending moment which can be expressed as a linear function |of x and y . (See Equation (2.6)). 1
| Mehlum makes the assumption that o = 0 , so that the direction |

| / along which the curvature varies linearly coincides with the x-axis. The

curvature is then represented as a piecewise-linear continuous function |
i

which changes slope only at the knots. Mehlum further simplifies the |
b problem by representing the linear curvature between each knot by a series |

of steps giving a piecewise constant function (noncontinuous, of course) |

29
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for the curvature, In other words, he approximates he solution to a

somewhal different problem than (-.10) by a series of ares of circles

whicn form a continuous function with a continuous first derivative, but

with discontinuous second derivatives, Combining this representation

with (7.10) and integrating yields two constants of integration to be

| determined within each panel tor a given set of curvatures specified at

each knot. His algorithm thus breaks into an inner and an outer iteration,

1 The outer iteration first guesses a set of knot curvatures and then tries

to improve them based upon how close the resulting curves fit the data

| and specified ena slopes. (He is not trying to produce natural /

| splines,) The inner iteration then uses the current values for the knot |
| curvatures and determines the constants of integration for each panel

| through some simple recurrence formulas so that the function interpolates

the end knots. The output of Mehlum's subroutine is in the form of center

| coordinates and radii for the circles thus obtained.

Mchlum claims that many numerical control machines can use output of

tnis form directly.

¢

)
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’ 4. The Diccrete Natural Cubic Interpolating Spline

The data points X; , Y, = Y(X,) ,1=1, ... , n (where

' X; <n < X) , may be interpolated as follows: Let

Hy = Xy.9 = %5 [] i=1, LL y N=l .

: Assume that each ot the Hy is an integral multiple of the mesh size para-

meter hh . The interval [X, - h , x + h] 1s divided into a partition

Xo 9 yp o's y Rp 0 Xo 0 where

| ¥, =X, +(i-1)h ,i=0,... ,m+1, and

m= (X_ -X)/h +1.

Denote by X the set of ab.ocissa data Xs sy i=1, «... yn, and

let

L, = 0 ,
1-1

J=1

; The discrete natural cubic spline interpolating the points (X4 , Y,) , |

i=1, ... ,n ir det'ined to be the set of points (x4 ’ Yi) °

: i=0, ... ,m+1l, which minimize the value of S where :

J
m 2

y Yigg = CY; * a)2 |
i=1 |

]
'

1
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' subject to the constraints of interpolation,

yy = Yy, Af i=1L/n+1.

Let 8 denote the central difference operator. The mesh ordinates

Yi i-2, ... , m=-1 , are computedby solving the linear system of

| equations

ty, = 0 if x, fX and 0<i<m, (4.1)
and

2 -

which arise by setting 35/dy,4 =0, i=0,2,...,m+1l (excluding every

| i= L/h , for Jj=1,...,n), subject to the conditions

The values of y, and y_,, are not explicitly computed, but are |
| , introduced into the formulation to accommodate the conditions on the j
| second differences #t the end nodes and the first and last of equations

(4.1). Notice the similarity between this formulation and that of the i

] ; continuous natural cubic spline. |

| A useful representation of the above linear system is given by

D

' where y = (vq 3 Fee B Yy,) , the matrix A has the structure :

)
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;

4
- Ho]

| 1 4 6-4 1
| 1 -4 6 4 1
| J » * » LJ i

| J J 1} | J LJ
4 1

* . * . »

© 01 0 0

1-4 6-4 1

| 1-4 6-4 1

OC 01 0 O I
1h 6h 1

b 1

1. =k 6k 1

1 -4 5 <2 |
| !

O 0 1 |

3

ard p={Y, , 0,4. 30, %,:0,..,0,%,....9,%). Tu |
|

row; 0f A with onrs on the main diagonal corr.spond to the uonzero |
| clementc in the vector b . The second row of A combines the two

.-quations |
|

4 i
hi fm i

and ;

¢ |
2 :

= 0 . :5 Yq
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u| The (m-1)th row of A 1s formed similarly.

The following analysis provides a way of solving AY = b by solving |

a symmetric band system of smaller order than A . A bound on the con-

dition number of this symmetric matrix is determined and found to be ]
independent of the order of the matrix (total number of mesh points and i

| knots) but highly dependent upon the number of mesh points between knots. i

A symmetric matrix closely related to the matrix A can be deter- x
| mined as follows. Let the matrix B have the same structure as A i

| except that the columns of B having ones on the main diagonal have |
| all of the other components set to zero. Thus, the vector y can be |
i computed by solving the system

{

By } > 1

where the vector b is an appropriate modification of the vector b : ;
Now since B is a symmetric matrix, its condition number is the maximum

i ratio of the magnitudes of its eigenvalues. By expanding the determinant |

of B -AI along any row or column of B having a one on the main

diagonal, it is obvious that A =1 is a multiple eigenvalue of B ,

| These eigenvalues may be eliminated from B by dropping the rows and

| columns with 1 on the main diagonal, leaving the matrix

3h
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Hh oh 1 |

| ho6 hl

1-4 6-4 1

1-4 6-4 1

t J J L J LJ [4
1-4 6-4 1

; , 1h 6b
- 1-4 6 1

| 1 6-4 1
“4 6-4 1

) 1-4 6-4 12 |
| 1-4 6-4 1

1-4 6-4

| 1-4 5

where each eigenvalue of B* is an eigenvalue of B . In practice, the

: unknown components of the vector y are computed by solving a linear

system having B¥* as the coefficient matrix. Now

B¥ = C + D , where

Cl

' ff = . ) !

m

| |
32
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0

' |]
0

11

11

0

D = |

0 |
11

11
0 |

0 |

and each C, is a square matrix of order H,/ h-1 of the form

5 -4 1 |

| 46 bl |

| 1 4 6 4 1

; [ - [J [] a |

1 4 6 <4 1

| 1-4 6k

1 =4 5 |

\ The matrix D has eigenvalues O and 2 . If the eigenvalues

A; (B¥) and A;(C) ,i=1, ... ,m-n, are arranged in a non-

| 36 :



increasing order, then by a corollary of the Courant-}isher theorem

(see Wilkinson (1965), p. 101),

| The eigenvalues of C are simply those of the Cy s X Ad 5 eee BM .

Now the C § cen be written as D,° s Where

2 1

l 2 1

|
l 2 1

;

| D, = :

) 1 2 1
1 <2

The characteristic polynomials of the upper-left hand minors of Dy

satisfy the same three-term recurrence relation as the Chebyshev poly-

nomials, namely

Ty (A) = (-2-2)T, (A) - 1(3) y Ll Bplysni

It follows that

} "

| where |
v = H/h-1 . Thus, ;

y = 4(1 - cos =5= )
mio As(cy) 4(1 - cos To

and ‘therefore,

37 i
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min | 24(B)] > min 4(1 - cos = 2 : |
J i i

By Gerschgorin's theorem, |

max |A,(B)] < 16 .
gt Es

’

This proves

Theorem 4.1: cond (B) <reer <
} min (1 - CO8 I )

i i

" 4 :
a = < 2 max - . |

| i i

| j

| Thus, for many problems, the linear system resulting from the finite
} difference formulation is reasonably well-conditioned. More importantly,

| the bound on the condition number of B is independent of n , the |

number of data points. |

| } The purpose of the following discussion is to analyze the difference

between y and the restriction of the continuous natural cubic spline

function interpolating the points (x; , Y.), i=l, ...,n, to |

; the abscissae Xs i=), ... ,m. We call this difference the dis-

cretization error of y and will now bound a certain norm of it.

| Consider the neighborhood of Xs -
| '

0

F) F] . -2 «1 1 2 » . L]

«h- |
X, |
* |
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For convenience, the mesh nodes are now numbered ... , -2 , -1 , 0, 1,

' 2 5 «oo 5 such that xy =X,
Since ty, =0 for i=... , <2, 1, it follows that the

points Yi for i~... , 2, 1,0, 1 lie on a cubic polynomial.
’ ]

Similarly, the points Yy for 1 =-1,0,1,2, ... , 1ie on a |

(generally different) cubic polynomial. These two cubies coincide at

the points -1, 0, and 1 . Let

Y =a +b rc +40, where E=x-X

| denote such a cubic for xe [X; -h, Xie1 * h} . The coefficients 8;

' b,c; and 4, 1=1, ...,n-1,can actually be computedby

observing the following: % is linear. Let Y(x) =, (x) if

| - X
’ " r /" # i u" 4

| where Hy was previously defined as Hy = Xs+1” Xs y i=l , +44 , n-1.

Note that %”(x) is continuous at each knot Xy since
2

6 Yo "2
| he 0)

| for each cubic (% 1 and Y) in the interval [X; no, X; + h] .

Integrating (4.2) gives 5

: ‘( ) - ty! + Y “( X ) + (Y, Y)) Nn (4 )
Yelm,= =X, ivl fi 2H, =

b

where i is a constant of integration, and

%(x) =Y, + TY yep 0 8E (4.14)| glx) = 4 + nlx =X) +1 5
| y' «YX

6H i
i
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| Here i 7 denotes THER . Since YY’ is not necessarily continuous

4 at the knots, Ry will be used to denote YE) . Evaluating (4.4)
b

at Xi 41 gives |

Wo oan Tho BB (4.5)
i H, i 3 i+l1 “6 °° ’

Replacing i by i -1 in (4.3) and evaluating it at X, gives
| ‘

’ H
- = wn,’ / ” 1-1

Y,= Yt (Y ME i) == (4.6) |

Now, for Y, ,

oy ¥, ~ ¥
0 171 2

2h -zn Pi th

+, 2
= Y. + d;h ;

, and for Yi y

0 1 2 :

h _ 2h oso tb (Hy) +h) +e) (Hy +h) +d, (H , +h)
I a, ,-b, , (H --h) -c(H .-h)°-d(H .-h)i-1 i-1 “i-l iVi-1 iVi-1

2
_ |= by) ree Hy 3a Han |

- 2
J /

= Ys + d, 4 h

40
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Thus,

! - ¢ _ ty 0 2
Y,'="Y, +(e - 4). (4.7)

Combining (4.7) with (4.5) and (4.6) gives

2
/4 " "

Hy | + 2y", (H, * H,) +Y Ht 6h (a, - d; ,) (4.8)

where

The conditions 5°y, = 0 at the ends require that Y, = Yo =0 .

| Equations (4.4) and (4.5) give

Ls -Y, H, H

= itl 1 He iris " 1| by, = - Y, = ; (4.10)H, 3 6
i

| ec, = Y’,/2 , and (4.11)
Y”. - Y”

6H
3

: ’

Substituting (4.12) into (4.8) gives a linear system of equations in the

unknowns Y* ,i=2,...,n-1, the solution of which can be used

} to compute the coefficients 8s b, > Cs and d, s Amd pp see 3 =~ Lp

using (4.9) - (4.12) .



| ;

A practical method for computing the coclficients of the continuous

d cubic spline interpolating (X; , Y,) , 1=0, ... , n, can be formulated
by following the above steps and replacing (4.6) with the continuity

conditions

- Ap

| ' Y,="Y/, § =] J see yg A=.
| This leads to a system of equations for Y, which is identical to (4.8)

without the 6n° ( d, - di) term. Thus we have the same system of equations
for Y, in the discrete case as in the continuous case, except for an 0(h%)
perturbation of the coefficient matrix.

Let 8” denote the vector of second derivatives (Y,) for the

| continuous case and let y" denote the vector of second derivatives for

the discrete case. Also, let

.3 a = vy” _ s”

2(H, +H,) H,

| Hy elif) I
Hy 2(Hy +H), ) Hy,

3 A = [ . . )

‘ : Ho»

Hp 20H p¥H,)

and |

|

1
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| |
| i

1,1 1{ :) Hy |
1 qr.r 1

' Hy Hy Hy ty

8A = h° 1 z+ = :
Hy Hy Hy b

! : : "

j Hoo |

; n-2 n-2 n-1

|
| Let B, = 6(4; 4 - As) . Then from (4.8), |

: i

| (A +88) (8" +a) =8 . |
i) |

So, |
| )

a = [(A + sa)L - al) g .

Setting B = A + §A in the identity

| ie at an Hawg gt,

and substituting gives

o = -A"l6A(A + 8A)N B= 27NA(s"+ a)

Taking spectral norms gives

{



}

-1 H
Nall < [IA 711 JI8A]l 118" + «ll »

| J or j

Il gll || 8 A]
~—— < cond(A) ——
Hy“Il |All

' Now, by Gershgorin's theorem,

min (H; + Hyp) < AMA) < 3 max (Hy » H, .,)
1 1 |

and D i
A(6A) < max 2° -3 + _ lm < max oe .

. i i i+l i i

' Thus, cond(A) < 3 Gi (H, + fy 41 )/ min (H, + Hq) , and

= (min H,) min(H, + H, ,.) °°
Hy“ll i 10d i+l

| Since the uniform norm of a vector is at most equal to the spectral norm,

2

o hh ly” || a, < mind, +H.) sy J=1, «00 ,n=1,| 3 = Fpgn MF Hig

| The coefficients a, .b, , c, , and d, are linear functions of the |

} Y”; , hence the difference between the continuous and discrete splines 4

is o(r°) . More precisely, denoting the continuous spline by s(x) , |
equations (4.9) - (4.12) yield |

| Theorem 4.2: :
|

2 Y; 2 I
Ho) Iyn16 ( MBX

x 5 Hin ni H, +H, 0°" n :

hh

re, TO or OT TT WPL Tr BRET TAPE CP FTV TOTP F VET THRU RCRA RTO grrr = : in RE



| |

Theorem 4,2 tells us that the discrete natural cubic interpolating ]

spline coincides with the continuous natural cubic spline in the limit |

| as the mesh size h 1s decreased to zero, As the mesh size is decreased, |
the error in approximating the continuous spline decreases at least as

| fast as the square of the mesh size, However, Theorem 4,1 tells us that

the condition number of the coefficient matrix of the linear system may

| increase as fast as n't . On a given machine, it should thus be possible

to calculate a reasonable discrete spline approximation; however, problems

| with fine meshs could be difficult, if not impossible, to solve,The work required to compute discrete cubic splines is consider |

ably more than that required to compute continuous cubic splines. The |

| primary reason for studying them here is to gain insight into the algo-

rithm for computing discrete approximations to nonlinear splines, dis-

cussed in the following section. In view of the difficulty in analyzing

linear discrete splines, it comes as no surprise that the nonlinear

case has not been analyzed. The proofs of this section rely upon special

| properties of both the discrete and continuous cubic spiines. Hence, |

few, if any, of the arguments would carry over to the nonlinear case.

Discrete cubic splines and generalized discrete splines have been

characterized by Mangasarian and Schumeker (1971). They prove existence

and uniqueness. Some weak convergence results for discrete splines have

| been published by Daniel (1971). Theorem 4.2 appears to be the only |
| rate-of-convergence result for discrete splines.

i
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SE

t 5 A Finite-Difference Method for Computing Open Nonlinear |
Spline Functions

In this section, an iterative method is presented for computing

a discrete approximation to the nonlinear spline interpolating the data

| points (X,Y)  d=lyc.u,0 &

As in the previous section, we assume that Xy < X, <...< x >

| and the interval [X, - h , x + h] is partitioned into a uniform mesh

Xy xy 9 oe a X +1 , Where |

x; =X, + (i-1)h , i=0,1,...,m+l ,
and

m= (X =-X)/h+1,

for some mesh size parameter h . For simplicity, assume that the ;

Xs (i=1,...,n) are equally spaced with k mesh intervals between con-

secutive data points, i.e., |

k= (X,,, -X)/h, i=l,...,n-1 .
-

We compute a discrete approximation y = [yy sy] to the func-
tion y which minimizes the functional :

. X 2
[1+ (y')"]

Xy 1

The functional (5.1) is approximated by substituting a summation for

the integral, |

2 2 y

and

; t - ~~ /



x

¥ |

This gives the function {
| 2,4 |' (Yip = 2y, +y, ,)/h

i+] RES :Ry) =) 2 25/2 (5.2)
i=1 ;

to be minimized subject to the interpolation constraints

Yi = i ) if *y < X, ) i=1,...,m .

| Again, the fictitious ordinates yy and Yp+1 8Te introduced to accom-
modate the first and last terms of (5.2).

A necessary condition for E (¥) to achieve a minimum is

/ 1 E (y) =0, for all i #1 (mod k) .

This yields the nonlinear system of equations

0

2

8 Vp = 0

Pap yy ty)

| “Lal Yi) Ea my) = 0,

where |
_ 21. 2,=5/2

. 5 _ 2 } 2 .21-7/2 |
£1707 Waa = 8 yy)" 10+ (ogy = wy 5/5172 |

(for i=2,...,m-1, except 1 =1 (mod k)) . |

The System (5.3) can be solved in many ways. A simple, though

: probably not the fastest way is a Picard-type iteration described ag
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4 :

follows, We will compute a sequence of iterates y(21) - k23 0p - :

| Let :
| i819) = ¢,19), and

£9) = tg, (v9) s J = 152,... |
For the first iteration set

0

el -1,1-2,.. m1,

£9 -0,1-1,...m.
At the j-th iteration, the five-band linear system

2

k "Yq = 0
| 2

6 =

| <1 . ial . /

| (3-1) (3) _ 5.03) , (3)
| +8 ie Avg ry)

(3-1),,(J) (J) (3-1), (J) (3) _

| (i =2,...,m-1 , except i=1 (mod k)) , |
|

is solved for y (3), Notice that y(1) js the discrete natural spline

| discussed in Section 4. |
|

This algorithm is implemented in the Fortran subroutine SPLINE

found at the end of this section.

A Cholesky methrd is used for the solution of (5.4). This choice |
i

is based on computational experience, The coefficient matrix of (5.4) is

usually positive definite, Cases in which the coefficient matrix is in-

definite appear to correspond to those in which either no single-valued

solution exists or the outer iteration becomes unstable due to large

slopes in the solution.

L8



| Various experiments have been carried out using both SPLINE and |

, MEC given in Section 3.3. The first of these used the Woodford data

given in Section 3.5. For this case, n =7 . Figure 5.1 shows times

required to compute splines of similar accuracy on an IBM 460/67 for

' various values of k . These runs used EPS values of 10 . Figure |

| 5.1 indicates that both SPLINE and MEC require time proportional to k ,
though spline appears to be about an order of magnitude faster for this

problem. For values of k greater than 40, MEC failed - though this

could be partly due to the fact that MEC is programmed in single precision.

SPLINE worked for values of k as largc as 140. Values of (5.2) are

given in Table 5,1 tor solutions given by MEC, SPLINE and the natural

continuous cubic spline, for Woodford's data and various values of k .

The values of E (¥) for the discrete cubic spline agreed with those J

for the continuous cubic spline to three significant digits. The last

column of Tab'e 5.1 indicates that the results of SPLINE and MEC cone

verge unifcrmly to one another as k increases. The nonlinear spline

interpolating Woodford's data is shown in Figure 5.2 as plottedby a

Versatec electrostatic plotter,

An experiment to determine the dependency of computation time

upon n , the number of data points, was constructed as follows, The |

| number of mesh intervals between adjacent data points was kept constant

| at k = 10 . The mesh size was h = ,1 giving Xip1 ~ X35 = kh =1,

i=1,...,n-1 . The ordinates were chosen as

PL (i mod 2)/5 s 1 = Lpes oath

to insure a solution having relatively small slopes and curvatures.

The parameters EPS were set to 107 . Measured CPU times are shown

| in Figure 5.35 for both SPLINE and MEC. The two values of n shown for



MEC in Figure 5.5 are n =5 and n = 10 , From these two times, MEC

| does not appear to r quire time proportional to n . For values of n

greater than 10 , MEC failed to converge. SPLINE, on the other hand,

) required relatively small amounts of time which are proportional to n .

| , SPLINE performed well for values of n as large as 100. The only res-

1 trictions on n for SPLINE appear to be available core storage and

1 computation time.

R 3

: '

| )
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n="7

20

1
5 MEC

| Time

(sec) 1| 0

IBM 560/67

” SPLINE

)

10 20 30 40

k

| Figure 5.1. Timing comparisons of MEC and SPLINE
} for Woodford's data

| Discrete Energy

k MEC SPLINE Cubic Spline IMEC - SPLINE||_
} J

10 2.55 2.52 2.69 .020

20 2.53 2.5% 2.69 011

30 2.55% 2.53 2.70 .0070 |

| 40 2.53 2.55 2.70 ,0051

Table 5.1. Values of E (y) for Woodford's data for
; MFC, SPLINE, and the cubic spline, and a uniform-norm comparison |£
| of MEC with SPLINE.
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’

| |

8 |
:

Time MEC |
(sec) 6

IBM 360/67

+

5 0 SPLINE

\ 10 20 30 Lo 50

! n

Figure 5.3. Dependence of SPLINE and MEC
upon the number of data points n .
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SUBROUTINE SPLINE (N, ORD, K, H, Y, EPS, *)
| INTEGER N, K

DOUBLE PRECISION ORD(N), H, Y(1), EPS
C

C THIS SUBROUTINE COMPUTES THE NONLINEAR INTERPOLATING SPLINE WHICH

C PASSES THROUGH THE N DATA POINTS WITH ORDINATES ORD(I),

: Cc (I=t1,...,N), AND EQUIDISTANT ABSCISSAE X(I), (I=1,...,N), SATISFYING
C X(1).LT.X(2).LT. ... .LT.X(N), AND X(I+1)-X(I) = K*H, (I=1,...,N-1).
C THE DISCRETE APPROXIMATION Y(I), (I=1,...,(N-1)*K+1) IS RETURNED
C WITH ORDINATES CORRESPONDING TO THE MESH ABSCISSA X(1)+(I-1)*H, WHERE
C H IS THE SPECIFIED MESH SIZE PARAMETER. K IS THE NUMBER OF MESH

C INTERVALS BETWEEN SUCCESSIVE DATA POINTS. THE INPUT PARAMETER EPS

C IS USED TO DETERMINE WHEN TO STOP THE ITERATIONS. ROUGHLY, IF P
C SIGNIFICANT DIGITS ARE DESIRED IN A PROBLEM WHOSE SOLUTION IS 0(1),
C THEN EPS SHOULD BE ABOUT 1.D-P.

C THE ERROR RETURN IS TAKEN IN THE EVENT THAT A RESULTING LINEAR |

C SYSTEM IS TOO ILL~CONDITIONED TO SOLVE.

C K MUST BE AT LEAST 5.

C

C

DOUBLE PRECISION KZ (1000), C(1000,3), B(1000), NORM, H2, DIF
DOUBLE PRECISION F8H2, LZ(1000), Y1
DOUBLE PRECISION DABS

INTEGER M, M1, MM, K2, Nt, I, J, L, J2 |
C

H2 = H+H |
F8H2 = 5./(8.%H**2)

M = K*x(N-1)+1
M1 = M-1

K2 = k-2

N1 = N-1

C

C INITIALIZE Y

C

DO 5 I=1,M
Y(I) = 0.

5 CONTINUE

C

C SET DATA ORDINATES IN Y

C

| J = 1

DO 10 I=1,M,K
Y(I) = ORD(J)
J = J+1

10 CONTINUE

C !

C INITIALIZE KZ TO ONES FOR THE FIRST ITERATION

C

1]
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: DO 20 I=2, M1
KZ(I) = 1.

LZ(I) = 0.

| 20 CONTINUE
C

| C Kz(1),KZz(M),LZ(1), AND LZ(M) ARE SET TO O. TO SIMPLIFY BOOKKEEPING
C

J KZ(1) = 0.
] KZ(M) = 0.

LZ(1) = 0.

LZ(M) = O,
C

C GO DO FIRST ITERATION

C

GO TO 50

| C

C BEGINNING OF MAIN LOOP,
| C RECOMPUTE NEW KZ AND LZ VECTORS

C

| 30 DO 40 I=2,M1
Y1 = 1, + ((Y(I+1)=-Y(I-1))/H2)**2
KZ(I) = Y1**(=2.5)

LZ(I) = F8H2*(Y(I+1)-2.%Y(I)+Y(I-1))**2%KZ(I)/Y1
40 CONTINUE

C

: C SET UP COEFFICIENT MATRIX AND RIGHT-HAND SIDE
C

SOL =20

DO 80 I=1,N1 {
L=1L+ 1 |

MM = (I-1)*K {
c(L,1) = 0.
C(L,2) = KZ(MM+1) + LZ(MM+1)

C(L,3) = KZ(MMH1) + 4.*KZ(MM+2) + KZ(MM+3) - LZ(MM+1)-LZ (MM+3)
B(L) = 2.,*(KZ(MM+2)+KZ(MM+1) )*Y (MM+1)
L = L+1

c(L,1) = 0.
C(L,2) = -2.%(KZ(MM+2) + KZ(MM+3))
C(L,3) = KZ(MM+2) +4.*KZ(MM+3) + KZ (MMHG) - LZ (MM42)-LZ (MM+4)
B(L) = —(KZ(MM+2)4LZ(MM+2))*Y (MM+1)
L = L+1

| IF (K2.LT.4) GO TO 70

DO 60 J = 4,K2
MM = (I-1)*K + J

C(L,1) = KZ(MM-1) + LZ(MM-1)
C(L,2) = =2.%(KZ(MM-1) + KZ(MM))

C(L,3) = KZ(MM-1) + 4.*KZ(MM) + KZ(MM+1) - LZ(MM-1)-LZ(MM+1)
B(L) = O.

he L = L+1
60 CONTINUE

55 |
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70 MM = I%K

j C(L,1) = Ki(MM-2) + LZ(MM-2) i
C(L,2) = -2,%(KZ(MM-1) + KZ(MM-2))
C(L,3) = KZ(MM-2) + 4.*KZ(MM-1) + KZ(MM) - LZ(MM-2)-LZ(MM)
B(L) = -(KZ(MM)+LZ(MM)) * Y(MM+1)
L = L+1

| C(L,1) = KZ(MM-1) + LZ(MM~1)
C(L,2) = =2.%*(KZ(MM-1) + KZ(MM))

C(L,3) = KZ(MM-1) + 4.*KZ(MM) + KZ(MM+1) - LZ(MM-1)-LZ(MM+1)
B(L) = 2.%(KZ(MM)+KZ(MM+1))*Y(MM+1)

80 CONTINUE

C

C SOLVE 5-BAND LINEAR SYSTEM

C

CALL CCOMP(L, 3, 1000, C, C, &100)
CALL COLVE(L, 3, 1000, C, B, B)

C

C UPDATE SOLL.1ON VECTOR Y AND CHECK FOR CONVERGENCE

C

L=1

NORM = 0.

DO 90 I=1,N1

DO 90 J=2,K
J2 = (I-1)%K+J

DIF = DABS(Y(J2) - B(L))

Y(J2) = B(L)

IF (DIF.GT.NORM) NORM = DIF
L = L+1

90 CONTINUE

IF (NORM.GT.EPS) GO TO 30
RETURN

100 RETURN 1

END |

|
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SUBROUTINE CCOMP(N, M, IDIM, C, L, *)
INTEGER N, M, IDIM

DOUBLE PRECISION C(IDIM, M), L(IDIM, M)
] C

C THIS SUBROUTINE FINDS THE CHOLESKY DECOMPOSITION OF THE (2M~1)-BAND
C MATRIX A OF ORDER N WHERE THE MAIN AND M-1 SUB DIAGONALS OF A

, C ARE STORED IN C AS SHOWN (M=3 IS USED FOR THIS FXAMPLE) |
C

| C X X A(1,1)
C X A(2,1) A(2,2) |
C A(3,1) A(3,2) A(3,3) |
C A(4,2) A(4,3) A(4,4)
C . . :

C . : :

C . . .

|

C THE LOWER TRIANGULAR PART OF THE CHOLESKY DECOMPOSITION A = LU,

C WHERE U IS L TRANSPOSE, IS RETURNED IN L. THE RETURN 1 1S TAKEN
. C IN THE EVENT THAT THE MATRIX A IS FOUND 10 BE SINGULAR, OR

| C NON POSITIVE DEFINITE. C AND L MAY BE THE SAME ARRAYS,
C IF DESIRED.

C THIS SUBROUTINE IS A PARTIAL TRANSLATION OF THE ALGOL 60

C PROCEDURE CHOBANDDET BY R.S. MARTIN AND J.H. WILKINSON, FOUND

C IN THE HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II (LINEAR

, C ALGEBRA), 1971, J.H. WILKINSON AND C. REINSCH (EDITORS). |
C

C

INTEGER I, P, R, S, Q |
DOUBLE PRECISION Y

DOUBLE PRECISION DSQRT
C

DO 50 I=1,N

| P = MAXO(1,M=I+1)
R = I-M+P

DO 40 J=PM
S = J-1

: , Q = M-J4P

; Y = C(1,J)
| IF (P.GT.S) GO TO 20

DO 10 K=P,S

Y=Y ~- L(I,K)*L(R,Q)
Q = N+1

10 CONTINUE

20 IF (J.NE.M) GO TO 30

IF (Y.LE.O.) RETURN 1 |

I.(1,J) = 1./DSORT(Y)
GO TO 40 |

30 L(I,J) = Y*L(R,M)
R = R+1

40 CONTINUE

50 CONTINUE

RETURN ;
| END



SUBROUTINE COLVE (N, M, IDIM, L, B, X)
INTEGER N, M, IDIM
DOUBLE PRECISION L(IDIM,M), B(1), X(1)

| C

C THIS SUBROUTINE SOLVES THE (2M-1)-BAND LINEAR SYSTEM OF

C EQUATIONS
C

1 AX = B

| c
C USING THE LOWER PART OF THE CHOLESKY FACTORIZATION L OF A,
C WHICH HAS BEEN COMPUTED BY CCOMP.

C B AND X MAY BE THE SAME ARRAYS, IF DESIRED.
C THIS SUBROUTINE IS A PARTIAL TRANSLATION OF THE ALGOL 60

C PROCEDURE CHOBANDSOL BY R.S. MARTIN AND J.H. WILKINSON, FOUND

| C IN THE HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II (LINEAR
C ALGEBRA), 1971, J.H. WILKINSON AND C. REINSCH (EDITORS).
C

; C

INTEGER S, J, P, Q, NP1, Ki, If |
| DOUBLE PRECISION Y |
| C

C SOLUTION OF LY = B

p

DO 20 I=1,N

P = MINO(I-1,M-1)
Q=1

; Y = B(I)
| IF (P.LT.1) GO TO 15

DO 10 K1=1,P
K = M-K1

Q = 1 |
Y=Y - L(I,K)*X(Q) |: 10 CONTINUE

15 X(1) = Y*L(I,M) |
20 CONTINUE

C !

C SOLUTION OF UX = Y |
C [|

NP1 = N+1 |

DO 40 I11=1,N

I = NP1-11 j
P = MINO(I1-1,M-1) :
Y = X(I)

Q=1

"ur IF (P.LT.1) GO TO 35
: DO 30 K1=1,P

1 K = M-K1
 ; Q = Q+1

| Y= Y - L(QK)*X(Q)30 CONTINUE

35 X(I) = YXL(I,M)
40 CONTINUE

| RETURN

END
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