
ORDERED HASH TABLES

by

OLE AMBLE

DONALD E. KNUTH

po c
AANA

STAN-CS-73-361/ | -

June 1973 dL 30 5B |
NATIONAL TECHNICAL B_

INFORMALN SERYice

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Unclassified |

Seccurity Classification

DOCUMENT CONTROL DATA. R&D
Security iassclication of titie, Sod) Of ABsrract and indexin annotation must be entered when the overall repo! Is claasilied) ,

YOU CNATING AC Tivi TY (Corporate1 Mor) 30. ATPONY SECUMITY CLASSII ATION |
vtanford Universit vt
wu Lad oo S y asglitieu
pl. of Computer Science TTT Eh |

Slantord, Calitornia 9Oh309
Ee ———. ere =.A ———————— eC SR rteal Ar = ~~. ns. + mp =
INRECT IE NI AA

Ordercd (lash Tables

meements eee Sr

4 Ni SCHIPYIVE A i (Type of report and inclusive Jaren)t:chnical report
May 1973 eee

" ALTHONIS) (Fest nome, middie intial, lea! nome)

Ole Amble ani Donald E. hnuth |

}

6 REPORT DATE 78. TOTAL NO. OF PAGES 7D. NO OF REFS

May 1973 approx, a= JC i
"na CONTRACT OR CRANTY NO 0a. ORIGINATON'S REPORT NUMAE NS) |A at - a 1 i

LAR OAL 4-6T-A~0112-005T NR OhL-LQ2 STAN-CS 135-367
bh PROIFCYT ND

BlR—N-0054 |« 9. JTHER REPOAT NOS) (Any other numbers that my be assigned
this report) ‘

d

1D DISTRIBUTION STATEMENT

lkeleasable without limitation: on dissemination |

13 APSTHNACT |
Some .ariants ot the traditicaal hash method, making use of the numerical

or alphabetical order of the keys, lead to faster searching at the cxpense |
of a little extra work when items are inserted, This paper presents the |
new algorithms nut analyzes thelr average running time. |

i

|

{

teint 3 PAGE 1!)

Ordered Hach Tables

by Ole Amble and Donald E. Knuth

University of Oslo and Stanford University

Abstract: Some variants of the traditional hash method, making use

of the numerical or alphabetical order of the keys, lead to

faster searching at the expense of a little extra work when items

are inserted. This paper presents the new algorithms and analyzes

their average running time. :

Keywords and phrases: Searching, hash tables, analysis of algorithms,

address calculation

CR categories: 2.7h, 5.3

J

;
The preparation of this paper was supported in part by Norges

Almenvitenskapelige Forskningsrad, and in part by the U. S. Office of
Naval Research under grant number ONR 000Ll!-67-A-0112-0057 NR Obk-Lo2.

Reproduction in whole or in part is permitted for any purpose of the

United States Government.

1

Ordered Hush Tables

Traditional methcds of search are usually based either on the numerical

or alphabetical ordering of keys (e.g. binary search), or >n the keys'

arithmetical properties (e.g. hashing). By combining these two approaches

it is possible to obsain methods which are often superior to the traditional

algorithms.

In this paper we shall discuss a new class of search procedures which

use both the idea of ordering and the idea of "open" hash addressing.

A mathematical analysis of the expected running time is also given.

Definitions

Given a file or table of data containing N distinct keys

Ky» Kos . <r Ky ; the search problem consists of taking a given argument K

and determining whether or not K = K, for some i . In practice

the key Ky is part of a larger record of information, Ry , Which is

being retrieved via its key; but for the purposes of our discussion we

may concentrate solely on the keys themselves, since they are the only

things which significantly enter into the search algorithms. If the

~ search argument K 1s not in the table, we sometimes want to put it inj

therefore we are generally interested in two algorithms, one for

!searching and one for insertion. The recent book by Knuth (1975) contairs
an extensive account of the algorithms which are commonly used for

searching and insertion.

One of the important families of search algorithms is the so-called

method of "open addressing with double hashing”, which works as follows.

The table is stored in a larger array of M positions, numbered O

2

throuh M-t . Lf U is the universe of all possible keys that might

ever he sousht (e.ir., 1 might be all n-bit numbers or all n-character

identifiers, for some n), we define two functions for each X in U,

namely

h(K) = the "hash address" of KX,

i(K) = the "hash increment" of K .

These functions are constrained so that O <h(K) <M and 1 < i(K) <M

and i(K) is relatively prime to M , for sll K . Thus if M =2" ,

i(K) 4s allowed to be any odd positive number less than M ; alternatively

if M 4s prime, 1i(K) is allowed to be any positive number less then M .

For best results these functions are usually chosen to be efficient.ly

computable, yet with the proverty that distinct keys will tend to have

different hash addresses.

Some of the M positions of the hash table are unoccupied, while

N of the positions contain keys. For convenience we shall assume that

all keys have a strictly positive numeric value. The entries of the

hash table will te denoted by Ty: Tyo ceesTyy y» where Ty = 0 if that

position is empty and T, > 0 1if T is the key stored in position Jj .

Algorithms

Using these definitions, it is possible to describe the conventional

algorithm for open addressing with double hashing as follows.

Algorithm A. Let K be the search argument.

Step Al. 3et J ~ h(K) .

Step A2. If T, = K , the algorithm terminates 'successfully’.

3

Step A>. If Ty = 0, the algorithm teminates 'unsuccessfully’.
Step Ak. Set j =~ j-i(K) . Ifnow j <O, set J «~ jtM .

Return to step A2. U

The search is said to be 'successful' or 'unsuccessful' according

as K has been found or not. After a successful search, it is possible

to fetcn the entire record having the given key.

A new record may be inserted into such a table by first searching

for its key K ; when the algorithm terminates unsuccessfully in step A,

| the new record may be placed into the j-th position of the table.

Subsequent searches for this key will follow the same path to poeition J .

The fact that 1(K) is relatively prime tc M ensures that no

part of the table is euxamin-Ad twice, until all M locations have been

probed. Since we assume that there is at least one empty position, the

search mus terminate if KX is not present.

The above algorithm includes several noteworthy special cases. If

i(K) is identically 1 for all K , it is the well-known method of

linear probing. If i(K) =1 and n(K) = M-1 for all K , it reduces

to the straightforward method of sequential sceaning. If 1i(K) = £(h(K))

where f is a more-or-less random function,the algorithm is called

double hashing with secondary clustering. Om the other hand, if the

probability that h(K) = h(K') and i(k) = i(K') , for distinct keys KX

and K' in U, is 1/Mp(M) , i.e., if each of the possible values of

the pair (h(KX),1(X)) is equally likely, the method is called

independent double hashing.

Algorithm A makes decisions only by testing for equality vs. inequality.

By using the numerical order of keys we obtain a new algorithm which is

almost identicalto the other:

IN

Algorithm B. (Searching in an ordered hash table.)

Step BL. Set j ~ h(K) .

Step BZ. Ie T, - K , the algorithm terminates 'succeassfully'.

Step BJ. If T, < K , the algoritim terminates 'unsuccecsfully'.
Step Bh. Set i «~ j-i(K) . If now j<O, set Jj «~ j+M .

Return to step B2. J

Only step B3 has changed, and in a trivial way. Unsuccessful searches

will now be taster.

Of course we cannot use Algorithm B unless the positions of the hash

table have been filled in a suitable way. If the keys have been inserted

in decreasing order by the ordinary method (i.e., if we start with an

empty table, then insert the largest key, then the sccond-largest, etc.), |

it is easy to see that Algorithm B will work properly. This proves that |

there is always an arrangement of keys such that Algorithm B is valid. |
Of course in practice we need to be able to insert keys in arbitrary |

order, as ther arrive "on line". The following method can be used:

Algorithm C. (Insertion into an ordered hash table.) |

Assume that K £1, for 0<Jj<M, and that N <M-2. |
Step C1. Set J « h(K) . |

Step C2. If T, = 0, set T, ~ K and terminate.

Step C3. If my < K , interchange the values of T, ~ K .
Step Ck. Set J ~ J-i(K) . If now J <O, set J « J+M.

Return to step C2. J

During this algorithm, the variable K takes on a decreasing sequence of

values, and the increments in step C4 will vary (in general). This is a

p

rather peculiar state of affairs, in spite of the innocuous appearance

| of Algorithm C, so it is helpful to look at an example.

Suppose that M = 11 and that there are N =8 keys

1ks, 293, 397, 4s8, §53, 626, 841, 931,

where the middle digit is the h-value and the rightmost digit is the

i-value; thus, h(293) =9 and 1(295) = 35 . Then the keys may be

distributed in the T table as follows:

Tw T, T, TT, Tn, Ty Tg I; Tg Tg Tyo

0 0 626 931 84 553 295 0 L5B 397 145

The reader may verify that Algorithm B will indeed retrieve each of these

keys properly. Now if we wish to insert the new key 759 , Algorithm C

first replaces Te by 759 and sets K « 553 ; after examining

T, = 626 , it sets Tyo ~ 653 , K + 145 ; and eventually To 145 .
The table “or all nine keys is therefore

Ts 4 T, T, T), Tg Te To Tg Tq Tyo

ibs oO 626 931 841 759 293 0 WS8 397 552

To verily that Algorithm C is correct, consider the path correcponding

to key K , namely the sequence of table position numbers

h(K), h(K)-1(X), h{K)-21(K), ..., h(K)=-(M-1)i(K)

mod M . Since i(K) 1s relatively prime “o M , this sequence consists

of the numbers O,l,...,M-1 in some order. Algorithm B works properly

if and only if, for every key K = I, in the table, we do not have K > Tye
for some Jj' which appears earlier than J in the path corresponding

to K . (This is the essential "invariant" which is relevant to formal

proofs of Algorithm B.) Since Algorithm C never decreases the value of

any table position, it preserves this condition.

6

Analyses

Now let us attempt. to determine how much facter (if at all) the new

alirorithms will go. The following uniqueness theorem is very helpful in

this regard.

Theorem. A set of N keys Kyser Kg can be arranged in a table

Tye Tyo .. Thy of M >N positions in one and only one way such that
Algorithm B is valid.

Proof. We have observed that at least one arrangement is possible.

Suppose that there are at least two, and let K, be the largest key
which appears in different positions in two different arrangements. ‘Thus,

all keys larger than K; occupy fixed positions in all possible arrange-

ments. If we look at the path corresponding to Xi! as defined above,

the positions of keys larger than Ks are predetermined; and all keys

smaller than K, must occur later than Ky . Therefore KXj must occupy
the first vacant place in its path, after the larger keys, contradicting

the assumption that K, can appear in different places. [I

in order to know the behavior of these search algorithms, we want to |

mov the correcponding average number of iterations or probes in the

table, i.e., the average number of times steps A2, B2, or (2 are performed

respectively. (Only the average number is generally considered in

discussions of hashing, since the worst case is too horrible to contemplate.)

The classical Algorithm A has been extensively investigated (see Knuth

(1973) for a review of the literature), and the results can be summarized

as follows. Let a = N/M be the 'load factor®' of the hash table. Let

A be the average number of times step A2 is performed in a random

7

successful search, and let Aq be the corresponding number in a random
unsuccessful search. By ‘random' and 'average' we mean that the hash

addresses of the keys are assumed to be independent and uniformly

distributed in the range O through M-1l , and that each of the N

keye of the table is equally likely in a successful search. Then the

following approximate formulas have been derived, as M and N approach

infinity:

Increment method Ae Aq

linear probing (1+ (1x) -1 #(1+ (1) ~2)

recondary clustering l-1n(1-x) -gQ (1x)L In(l-q) -a

independent double hashing -a © In(1-x) (1a) "t

Since the number of probes needed to retrieve an item with Algorithm A

is the same as the number needed to insert it, the average number of probes

needed to find the k-th item inserted is AL 1 . It follows that

Ay = (AQ+AJ+...+AL |) /N . (1)

Now let us ccnsider the performance of Algorithm B. We shall assume

that there is no significant correlation between the hash addresses and

the numerical ordering of the keys. Since the position of any fixed set

of keys in the table is unique, we may as well assume tha’. they have been

inserted in decreasing order. Then the insertion algorithm is identical

to that used with Algorithm A, and the average number of probes needed

to find the k-th largest item is Ar 1 . It follows that

By = (AJ+A}+...+AL 1) /N = A (2)

8

In other words, Algorithm B is equivalent to Algorithm A with respect to

| successful searching, on the average.

In an unsuccessful search with Algorithm B, the number of probes

is the same as would be required in a successful search if the keys were

{Ky 5 Ky ++ +sKsK} instead of L972 SVRRRPS 8 . Therefore

BY = Boy = An, (3)

The above forrnulas for Ay and Aq show that this is indeed an

improvement. For example, when « = .90 (i.e., when the table is 90 percent

full), the quantities for unsuccessful search are

increment method AN By

linear probing 50.5 5.500

secondary clustering 11.4 2.853

independent double hashing 10.0 2.558

As «a — 1, the ratio BY/ AY approaches O . |

Finally let us investigate the new cost of insertion with Algoritim C.

Let Cx be the average number of times step C2 is performed when

inserting the N-th item. Each time we execute step C2, we increase by

one the total number of probes needed to find one of the keys. Thus,

if we sum over N insertions, we must have

This equation together with (1) implies that

Cy = Avy (b)

In other words, the average number of probes needed to insert a new |

iter. 1s exactly the same as it was with Algorithm A. |

9

It is worth noting that the probability distribution of . is not

in general the same as that of AN » although the average value is the

same. In fact, a single insertion with Algorithm C might take up to

order N° iterations (although such an event is extremely rare).

Consider again the case of three-digit keys whose middle digit is tne

h-value and whose rightmost digit is the i-value; and let M = 10 . Then

the insertion of 941 into the table

Tq T, T, Ts T), Tg Te Ts Tg Ty

101 311 S21 731 849 659 L699 279 © 0

is amazingly slow, as the reader may verify. In general, the table

might contain n keys in "organ-pipe order",

0 = T) <To<Ty <Ty <r <T\ny

and we might have

(2 , for 0<j<inf2l ,i(r.) =

J M-1, for [n/2l <j <n ;

then the insertion of a new largest key whose hash address is |n/2] will

take maximum tire, namely (n+l)n/2+1 iterations of step C2. ,

We have now analyzed the average number of iterations in both :
Algorithme B ard C. The analysis isn't camplete, however, because we

have not determined the average number of interchanges performed in

step C3. This is an impcrtant consideration, since it is the number of

times we need to compute an increment i(K) ; with Algorithm A, the

increment needs to be computed only once. Therefore let Dy be the

average nunber of times the operation Tyj K is performed in step C3
while inserting the N-th item.

10

Untortunately the analysis of Dy is complicated, and we muct

defer the calculaticne to Appendix 1. It turns out that Py is
approximately (1-1) “Ly at In(l<x) for linear probing, and

approximatel: equai to Ag-1 for independent double hashing.

Further Development

The above algorithms can be extended in various ways, to gain

further improvements. For example, it is easy to see that the ideas

can immediately be generalized to the case of external searching, where

each of the M table positions is a "bucket" containing b or less

keys for some given b .

Another type of extension will make unsuccessful searching still

faster, at the expense of M morc bits of memory. Let B,:B,» +oosBy 4

be a vector of bits with all B, initially O . Suppose that we set

B, ~ 1 in step C3 of the insertion algorithm, so that B, =1 if and
only if some successful search "passes through" position Jj . Then if

the search algorithm ever gets to step B3 and finds Bj= O , the search
must be unsuccessful.

This cxtra-bit approach applies, of course, to unordered hash tables

as well as ordered ones, but it is especially attractive in the ordered

case because the extra testing can be done with almost nc cost. We can

combine the bit test with the ordinary test if we assume thet .uch bit B3
appears at the left of T, as a new significant bit. Then Algorithm B
can be rewritten as follows. |

11

Step Bl. Set J ~h(K) .

Step B2. If (BysTy) < (1,K) , then the algorithm terminates successfully
or unsuccessfully according as I, = K or not.

Step B3. If (By»Ty) = (1,K) , then the algorithm terminates successfully.
Step Bb. Set Jj «~ j-i(X) . If now Jj <0, set J « j*M . Return

to step B2. oJ

Only steps B2 and B3 have changed, and the change is such thet the computer

time per iteration is the same as before; there is Just a little more

calculation at the end of a successful search, plus the cost of attaching

a 1 at the left of the input argument K when the search begins.

The average number of probes per unsuccessful search with this

modified algorithm appears to be difficult to analyze, but the empirical

data in Table 1 at the end of this paper shows that the idea can be

worthwhile. Of course the number of probes per successful search is

unaffected by the extra bits.

So far none of the ideas mentioned have been of any use in the case

of successful search. One possibility which suggests itself is to start

searching one place ahead (i.e., to start at position n(K)-i(K)), because

this will save one probe if K is not at its hash address, and because

we will be able to test whether K is in position nh(K) if the first

gearch 1g unsuccessful. Since we have greatly improved the ability to

detect unsuccessful searches, we can perhaps use some of this capability

in connection with successful searches.

Unfortunately, a more careful analysis shows that such an idee is

unsound; it actually increases the average number of probes for both

successful and unsuccessful rearching. (See Appendix 2.) There is,

CO

however, a case in which it does work, namely if we force h(K) to be

correlated with the magnitude of the table entry for K . Suppose we

have a hash function such that

K<K' implies h(K) <h(K') ,

and suppose further that we are using linear probing (i.e., that i(K) ic

identically 1). Then it is not hard to see that the correlation causes

the number of probes for successful search in an ordered hash table to have

a much smaller variance; there will be fewer keys requiring very small or very

large numbers of probes, although the average number will remain unchanged.

Appendix 2 shows that this "start one ahead" approach will lead to less

probes per successful search when the table is more than about 6L.38

percent full. (The limiting value « = 0.643797758 , where the one-ahead

method begins to excel, is the rcot of 2(1=) (e¥-1) =Q .)

An obvious problem arises, however, if we want the hash function to

correlate with the keys in this way. Our options for the choice of hash

functicn will be so drastically reduced that it will probably be impossible

to find an efficiently computable h(K) that works well with typical

sets of keys. A solution to this dilemma is achieved if we store

transformed keys in the T table, instead of the keys themselves. Thus,

let t(K) be any function which scrambles keys without loss of information:

t(K) = t(K') implies that K = K' .

Then we can store t(K),t(K,), ++. in the table, and search for t(K)
Instead of K . We can now achieve the desired correlation betveen

h(K) and t(K) by letting h(K) be the leading bits of +(X) . |

For example, if M is a prime number and if h(K) = K mod M , we

can let t(K) be a packed binary number whose leftmost bits are h(K)

1%

and whose rightmost bits represent the quotient | K/M] . This

transformed key t(K) is one bit larger than the original key. Alter-

natively if M = 2 1s a power of 2 , we may let t(X) = (aK) mod o¥ y

where w is the key length and a 4s any odd number; then n(K) may be

chosen as the leading m bits of t(K) .

The reader may justifiably feel at this point that the method is

getting "baroque". The last few paragraphs have discussed detailed

refinements which are mildly interesting, but they can obviously never

save more than one probe per search. Therefore the reader may wonder why

we are going on and on, "heating a dead horse". The answer is that it

was precisely the above train of thought, together with hand simulations

on random numbers, which led us to consider another algorithm which does

offer a substantial improvement. We shall now discuss this improved

algorithm, which uses the correlation between hash addresses and table |

entries in a somewhat different fashion.

Bidirectional Linear Probing |

Let t(K) be any one-to-one transformation of keys:

t(K) = t(X') implies K =K' .

Furthermore let h(K) be a hash function such that

t(K) < t(K') implies h(X) < h(K')

We have already discussed practical ways of finding such functions; and

it is natural to assume that a hash method using such transformations

would keep the nonempty positions of the hash table in sorted order:

I, FO and Ty #0 and i<j) implies Ty <T; .

Consider now the following straightforward search procedure:

1h |

Algorithm X. (Bidirectional linear probing.)

tep AL. Set | = h(K) , and set K ~ t(K) .

Step X2. If T, = K , the alyorithm terminates 'successfully'. If

T, >K , go to step X5 (downward search). If I, = 0, the
algorithm terminates 'unsuccessfully'. Otherwise go to

step X3 (upward search).

Step X3. (At this point, © <T, <K.) Set J~Jj+t1 .

Step Xk. If T, = K , the algorithm terminates 'successfully'. If

T, = 0 or T, > kh , the algorithm terminates ‘unsuccessfully’.
Otherwise return to step X35.

Step X5. (At this point, T, >K.) Set Jj ~ 3-1.

Step X€. If Ty = K , the algorithm terminates 'cuccessfully'. If

T3 < K , the algorithm terminates ‘'unsuccessfully'. Otherwise
return to step X5.

This algorithm searches either up or down depending on the result of

the first comparison. Its validity depends on having a table T, whose

nonempty entries are orcered as stated above, having the additional

property that no empty space occurc between the location of any

transformed key and its hash address. Furthermore there must be empty

positions at the ends of the table; we can take care of this by extending

the boundaries so that T 4 = Ty = 0 . |

In this case there are, in general, many configurations of the T's

which will guarantee correct retrieval. For example, suppose that M = 10

end consider the transformed keys 61k, 621, 637, Chl, 647, 698, 8Ll ,

where h(K) is the leading digit. (It is not typlcal to have =o many

keys with the same hash address, but our intent is to give a small example

15

which exhibits same of the more interesting things that can happen.)

If we use the ordinary method of linear probing (Algorithm B), the table

is filled thus:

j = 0 1 2 3 L 5 6 7 8 9

Ty = 0 614 621 637 641 647 698 0 841 ©
probes 6 5 L 3 2 1 1

The bottom line shows how many table entries are examined when searching

for I, ; 1.e., it takes U4 probes to find ' 637' , since we start at Te .

Algorithm X allows us to rearrange the T4's so that many of the keys
will be found sooner:

j= 0 1 2 3 4 5 6 7 8 9

T,= 0 0 0 61h 621 637 641 6h7 698 8h
probes L 3 2 1 2 3 2

The search for ' 84l' goes upwards now, but we save two probes when

searching for ' 614 '. The average number of probes per successfil search

is reduced fram (6+5+L+342+4141)/7 =22/7 to

(b+ 5+2+ 142+ 5+2)/7 = 17/7 .

Appendix 5 shows how to characterize the optimum arrangements of

the Ty's y for any given set of keys, i.e., those arrangements which
minimize the average number of probes per successful search by

Algorithm X. As a consequence of the theory developed there, we may use

the following algorithm to insert into a bidirectional hash table, main-

taining optimum arrangements at all times.

16

Algorithm Y. (Optimum insertion for bidirectional linear probing.)

In this elgorithm, let h'(T,) be h(t") thus 1F 7, = (K,)
then h! (Ty) = h(k,) :
Step YI. Set Jj ~-h(K) , K =~ t(K) .

Step Y2. If I, = 0 , set I, ~ K and terminate the algorithm.
Step ¥Y>. Set p to the largest index < J such that Tp =0 . Set

q to the smallest index > J such that Ty =0 .

Step Yt. Set J +~q . Then if Ty > K , repeatedly set I, - Til

and J - j-1, until T, , <K. Finally set T, -K.
(Thus, K has been sorted into the proper place with respect

to the other transformed keys.)

Step Y5. Set d ~- 0 . Then for J = p*l,pt2,...,q4 (in this order),

repeatedly set

d -a+l if ht(T,) >3

d ~d-1 if ht (T,) <3
1f at any time during this process d becomes negative, go

immediately to step Y6 without finishing the loop. But if 4d

remains > 0 throughout the entire loop, terminate tho algorithm.

Step ¥6. Set I, = Tis for p< j <q , and set Tq -0 .

Algoritim Y finds the smallest block of consecutive nonempty locations

containing position h(K) , and inserts t(K) into this block by shifting

the transformed keys which are larger. Then step Y5 is used to decide

whether or not it would have been better to shift the transformed keys

which are smaller; if so, step Y6 moves the whole block down. (Empirical

tests show that step Y6 is required only about 1/4 as often as step YS.)

17

In order to use this algorithm, a dozen or so extra table positions

T, should be included for J <0 and for j >M, to avoid end effects.
(There are ceveral ways to make the algorithm cyclically symmetric

modulo M , but these are more complicated and time-consuming than simply

to provide extra "breathing space" at both ends. The optimum arrangement

rarely spills over very far; in our experiments with M = L096 and tables

95 percent full, no more than five locations were needed at either end.)

The theory of linear probing shows that this insertion method isn't

extremely slow; the average size q-p of the block of keys considered

when the (N+1) -st key is being inserted will be oAg-2 ms (1-x) “2a
when N/M =a . (Cf. Knuth (1973), exercise 6.4-47.) When this size is

averaged over N insertions, it reduces to 2A.-2 ~~ f(l-) . Thus, |
insertion by Algoritim Y is only four or five times slower than insertion

by the classical linear probing algorithms. On the other hand, empirical

results (see Table 1) show that retrieval by Algorithm X is significantly

better than classical linear probing.

Conclusions

Traditional hash methods are comparatively slow with respect to

unsuccessful cearch. By extending them to make use of the inherent

ordering of keys, we have shown that the time for unsuccessful search can

be significantly reduced.

Two main algorithms have been presented in this paper. First we

discussed Algorithm B, and the corresponding Algorithm C for insertion.

This method reduced the time for unsuccessful search to the time for

successful search, without significantly increasing the cost per insertion.

Therefore it is attractive for applications in which unsuccecsful searches

18

are coomon. A refinement, odding "pass bits", makes unsuccessful search

cven faster. However, the method ic never useful in typical compiler or

assombler applications, where un.ucceusful searches are almcot always

followed by insertions.

The cecond method we have discussed 1s Algorithm X, together with the

corresponding Algorithm Y for insertion. Here both successful and

unsuccessful search times are reduced, at the expense of greater insertion

time and slightly more complex programs. (The method may be compared with

a scheme recently published by Brent (1973); his method requires less

probes than ours on successful searches, but it dces not reduce the

unsuccessful search time.)

Table 1 presents the behavioral characteristics of the algorithms

discussed here, assuming random hash functions. Some of tie results have

been derived by theoretical analyses; these are shown to Lhre:2 decimal

places. The other results, for which only one decimal place of accuracy

appears in the table, have not yet been verified theoretically. Every

entry in Table 1 is the number of probes per search, i.e., the number of

T, entries examined. This information can be used to predict the
behavior of each algorithm; but it should be emphasized that the time

per probe and the setup time will vary from one method to another. For

example, linear probing and Algorithm X will have faster inner loops

than independent double hashing, while the latter (especially with "pass

bits") involves fewer probes. Thus the number of probes is not an

absolute measure of goodness, the entire algorithm must be considered

when making comparisons.

19

Method Successful search Unsuccessful search

10-0 3 {percent ull) ELS) 75 5¢ As 20 95 33 50 75 80 35 90 95

Alg. A, linear probing 1.167 1.500 2.50C 3.000 3.853 65.500 10.500 ~.309 2.500 8.500 13.000 22.722 50.500 LkOO.S%00

| Alg. A, secondary clustering 1.163 1.883 2.011 2.209 2.472 2.85% 3.52 1.371 2.19% L.63¢ 5.810 7.715 11.02 22.0MhS

; Alg. A, indep. daudle hashing 1451 1.33¢ 1.88 2.012 2.232 2.558 3.153 1.333 2.500 b.OCO S.00C 2.667 10.900 20.000
Alg- B, linear probing 1 167 1.520 ~.50C 3.000 3.8%3 5.500 10.50 1.167 1.90C 2.500 *.000 3.923 5.500 17.50C

» Alg. B, secondary clustering 1.143 1.hL2 2.011 2.200 2.h72 2.853 R.s521 1.163 1.h43 2.011 2.209 2.472 2.89%) 5.521)
Aig- B, indep. double hashing 1.151 1.386 1.348 2.012 2.232 2.58 7.15% 1.151 1.3686 1.88 2.012 2.232 2.598 5.153

Alg. B, linear, with pass bits 1.167 1.500 2.90 2.000 3.833 5.500 13.900 1.0 1.2 2.0 2.k 3.6 5.h 10.3

Alg. B, indep.. vith pass bits 1.151 1.38¢ 1.848 2.012 2.232 2.588 3.15 1.0 11 1.3 1.k 1.6 1.7 2.2

Alg. B, linear, correlated, one ahead 1.871 1.797 2.25 2.613 3.306 4.825 9.667 2.0 2.2 2.9 3.3 L.0 5.8 1.0

Alg. *, bidirectional linear i.1 1.3 a7 2.0 2.3 2.9 L.2 1.3 1.5 c.1 2.3 2.€ 2.1 b.b

Table i. Aerage number of prover required by the algoritims, az a function of the load factor J = nu.

Appendix 1. Analysis of step CJ.

In order to annlyze the quantity Dy defined in ihe text, let us

assume ihat the keys are K; <K, <... < Ky Let Dy oe the average

number of times, during N random insertions, that the variable K ic

set to the smallest key Ky at some time during the insertion process.

In other words, Dy is the average number of times XK, is "moved".

Then DY-1 is the average number of times K,, is moved, since the

behavior of the algorithm on (Kyp oo es Kh is essentially independent

of Ky . Similarly, Dye1-1 is the average number of times Ky is
moved. Therefore

Dy+ «ce *Dy = (D}-1) +...% (D}=1)

for all N , and we have

Dy = Dg-1 ‘
Consider now the case of independent double hashing. Experience

shows (but it has not been rigorously proved) that this case is |

satisfactorily approximated by uniform hashing, where each key's path is a

random permutation of {0,1,...,M=1} , independent of all other keys. |
Under this assumption, which has been tacitly made in the text, the |

analysis of hashing algorithms usually becomes quite easy. However, the

"organ pipe" example of the text indicates some of the complexities of

Algorithm C, and a rather indirect approach to the analysis of Dy

(or Dy) seems to be necessary.

Let DY be the probability that the smallest key Ky is moved
during the insertion of the N-th key. It follows that

Deo D} + 2Dp+ ... + NDy
N N

21

since the probability that Ky is moved on the j-th insertion is Dj

times J/N , tbe probability that K, appears among the first j keys

inserted.

Consider the entire sequence of actions which occur when the keys

{K;» +e KL] are inserted into the table in decreasing order. This

sequence of actions states for example that, when x, was inserted,
a certain sequence of larger keys were encountered before an empty place

was found. We shall call the elements of the latter sequence the

dominators of XK5 Knowing all the sequences of dominators, in the
decreasing-order case, we can deduce what actions will occur when the

keys are inserted in any other specified order. Define the function Pp

on the indices {2,...,N} such that, if K, is the last of | SPRETYS

to be inserted, then Kb(3) will be the last of {Ky . +s Ky} to be
moved. Now the very last insertion moves XK if and only if either

(1) Kk; was the last element inserted, or (ii) K, was the last

element inserted, for some J >2 , and Ko(3) is one of the dominators

of Ky .

For example, suppose N = 3 , so that Xs >K, >K If Ky is a

dominator of K, , we have p(3) =p(2) =2, and K, 1s moved on the
third insertion if and only if it is the last to be inserted or it is

dominated by K, . On the other hand if K, does not dominate K, » then
p(3) =3 and p(2) =2 ; hence K, is moved on the third insertion if

and only if it is either the last to be inserted, or it is dominated by

the last to be inserted.

For any fixed choice of dominator sequences on {Ks .. NN , and for

fixed Jj > 2 , the probability that Koo 3) ‘dominates K is a function only

22

of M and N , independent of Jj and the given actions, because of the

assimptions of uniform hashing. This probability may be expressed as

S—— r-1) P ’
N-1 r>1 T

where P_ is the probability that Ky has r-1 dominators, since
N-2 N-1

exactly eo 1) = (r-1) / (N-1) of the possible choices

of r-1 dominators include the given key Ko(3) Since P. is also
the probability that r probes are needed to insert the N-th item by

Algorithm A, we have

——= r-l)P. = =— (A! .,-1) .N-1 r>1 r N-1l A-1

The probability that K, is inserted last is 1/N ; suming for
2 <J <N, and adding 1/N for the case that K, comes last, gives

NE N-1 (i ' -) 1 — 1]fp =F (Fra P)*'F- ha

The above formulas now yleld the desired answer,

Dn = Ay-1 .

Such a simple result deserves a simpler proof; however, it is surprisingly

easy to derive tris formula by plausible but fallacious arguments, and

the above approach is the only reliable one for this analysis that is

known to the authors.

We come finally to the case of linear probing. This is much more

complicated, and the derivation will only be sketched here. Consider

the M" ‘hash sequences’ a, ...a to be equally likely, where the k-th

key inserted has h(K) = a, . Then the probability that the (n+l) -st

key inserted moves K and is not itself K is

25

= Z ka (M,n, k, 1M" ’ (*)
1<k<n

1<i<n

where a(M,n,k,i) denotes the number of hash sequences ay roe BY which

cause T, through TT, 1 to be occupied, Ty to be empty, and To = K;

if the smallest key K, 1s the i-th to be insertec. Let g(M,n,k) be

the number of hash sequences which cause To through Teo1 to be

occupied and T, , = T, = 0, and let f(M,n) be the number of hash

sequences which cause Tol = 0 . Then the formulas

n-1 n

f(myn) = (m-n)m , g(myn,k) = (3) £(k+1, k) £(m=k-1,n-k)

can be derived by simple arguments (see Knuth (1973), p- 529). Also

let b_ be the number of hash sequences «, ...8& which cause To ‘o TREY

to be occupied, and for which the "pass bit" Bj ig set to 1 for

0 <j <n-1. Fram the relation

f(n+l,n) = = (2)f(k+1,k)b
o<k<n © n-k

and Abel's binomial formula, we deduce that b = (n-1)?"1 . Now the
value of (*) may be expressed as

1 \ -n

2 (vy, To (gemstones DH (%%)
1<j<n 2>0

because we obtain each sequence enumerated by a(M,n,k,i) by plecing

together, in (7) ways, & sequence enumerated by Db3 and a sequence
enumerated by g(M-j+l,n-j,1) , where 1 <i <3 and k = jt? . The

sum (**) can be eveluated as described in Knuth (1973), page 691, exercise 27;

the result is

2h

1 Dn, ,nn-l) ;nn-l n-2) , ,
NL M Mo

essentially an incomplete gamma function. Summing for O <n<N, and

adding 1 for when Ky is inserted, yields the desired result

TE 1 N-1_,62 (N-1) (N-2) + b, (N-1) (N-2) (N-3)
Dy 2 M3 \E in »

25

Appendix 2. Starting one place ahead.

Consider the case of linear probing in an ordered hash table, when

h(K) is uncorrelated with the magnitude of K . Let P be the

probability that exactly r probes are needed to find the (ntl) -st

largest key, for some fixed value of n . Then P is the probability

that the positions occupied by the n largest keys include

h-1l,h-2,...,h-r¢1 , but not position h-r , given any h ; and Pl

is the probability that h,h-l,...,h-rtl (but not h-r) are included.

Hence P.-Prl i8 the probability that h-1,...,h-r+l are occupied,
but neither h nor h-r , for any given h . It follows that the

expected number of probes needed to locate the (n+l) -st largest key K,

1f we begin searching at location h(K)-1 instead of h(K) , is

22 (r=) P, + 2 (r+1)(P-P,,) = Py + +31 rp.

This always exceeds 2 Tr P, , which is the corresponding average if we

begin searching at h(K) .

Essentially the same argument applies to uniform hashing. So we may

conclude that it is not a good idea to start probing at location h(K)-1i(K).

However, the situation is considerably different when h(K) is

correlated with K , so that h(K) < h(K') whenever K <K' , since

then Th-1 is almost always less than I, . In order to analyze this
situation, let us look first at the case that J never goes from O

to M-1 during a successful search. (In other words, the "pass dit”

B, is 0 .) Then the nonzero T,'s are sorted; hence if we start a
search at h(K)-1 , we will lose only one probe when K is In its

"home position” h(K) while we save one probe whenever K is not. It

26

follows that the one-ahead method is favorable, for successful searching,

whenever the number of keys in home position is less than = N .

An assumption which greatly simplifies the analysis when Bj £0

is to restore cyclic symmetry, by assuming that keys which passed from

position 0 to position M-1 behave subsequently as if they are larger

than keys which haven't. Under this assumption we shall prove below

that the average number of keys in home position is exactly

For N/M =a as M — =, this number is approximately

(1x) el N
curiously as N -M it drops to approximately e .

without the above symmetry assumption, the number of keys in home

position might be drastically different. For example, when M = 10 and

N = 8, the hash sequence 987 6 5111 leaves only one element

in home position under cyclic symmetry, but there will be six keys in

home position in the true ordered hash table. However, the average

effect of this correction is bounded by the length of search Ag for

the smallest element, and for N/M = @ <1 the correction is asymptotically

negligible. Similarly we may ignore the fact that the search for a key in

home position T, might be adversely affected by the presence of larger

keys in Ty-1 ’ Tyg-2 , ete.

To prove the formula for keys in home position under cyclic symmetry,

we can observe that the number of hash sequences 8g on which leeve

an element in home position M-1 1s exactly

£(M+1,N) - £(M,N) ,

27

in the notation of Appendix 1. For if we add the (M,N) hash sequences

which leave Ty.1 ©€mpty, we obtain all the f(M+1,N) hash sequences

which would leave Ty empty in a linearly-probed hash table of size M+1 .

Therefore the average total number of elements in home position, under

cyclic symmetry, 1s

M(f(M+1,N) - £(M,N)) / Mo.

The formula for f , given in Appendix 1, completes the proof.

It is interesting to study the cyclically symmetric algorithm

further, to find the average number of elements displaced exactly 4d

locations from their home position when h(K) correlates with K .

Let h(M,n,k) be the number of hash sequences a, ...a for which <k

elements pass fram position 0 to M-1l when ii.ey are inserted. Then,

by considering the number of such sequences containing exactly Jj zeroes,

we obtain the recurrence

h(m,n,k) = Z h(m-1,n~-j,k+1-J)
J

for all myn,k > 0 . Furthermore we have the initial conditions

h(m,n,0) = f(ml;n) = (m+l-n)(m1)®t ,

from which it 1c possible to derive the general formula

h(m,n,k) = (m+l+k-n) Z (2) (mir 1-r) ET (rok-1)
C<r<k

for all m,n,k > 0 . (Abel's binomial identity shows that this sum

equals m" whenever k >n .)

The hash sequence 8 ee By produces a key with home address O

and displacement 4 if and only if it is a sequence with > d keys

passing from O to M-1 but <d passing from 1 to O . The number

28 | |

of such hash sequences, when d ~ 0, is

n{M,N,d) - h(M,N,a-1) ,

because h(M,N,d) is the number of hash sequences with < d keys

passing from L to O , while h(M,N,d-1) is the number with < d

passing from 0 to M-1 and (consequently) <d fram 1 to O . It

follows that the average total number of keys with displacement 4d > 0 |

is

M(h(M,N,d) - h(M,N,d-1)) / M' .

It would be interesting to obtain asymptotic data about this

Trobability distribution. When M = N , the same formulas arise in

connection with the classical Kolmogorov-Smirnov tests for random numbers:

the quantity h(n,n,k-1)/n" is the probability that the so-called

statistic Ky is < %//n . hiccording to a theorem of N. V. imirnov in
150, we have

lim h(n,n,57/n) 1. ;
n -+eo n

ct. ¥nuth (1969), p. :=1.

29

Apvendix 5. Optimum bidirectional linear probing.

Civen HN Keys Ky < vee < Ky and corresponding hash addresses

0 h(K;) < ... < h(Ky) <M , we wish to place them into table positions

so that K, appears in T5035) for 1<Jj<N, where p(l) <...< p/N) .
Writing hy = h(K;) , we wish to find a placement which is optimum, In
the sense that the sum

Len Ih, -p(3)|
is minimized. We shall call this sum the "cost" of the placement. For

convenience in exposition, we shall allow the positions p(jJ) to be

negative or greater than M , although the proofs could easily be extended

to characterize the optimum arrangements subject to p(l) >x and

p(N) <y , for any desired bounds x <0 and y > M-1l . Algoritim X

requires a placement such that all positions between h3 and pj) sare
occupied, for each J ; however, we may ignore this condition, because

all optimum placements automatically satisfy it.

Given any placement p(l) < ... < p(R) , we shall say that a block

[a,b] is a set of consecutive positions which are occupied by XK,

through K_ (1.e., p(3+l) =p(d)+l for a <J <b). An up-block is
a block followed by sn empty positic., which would lead to less cost if

it were shifted one place higher; in other words, it is a block [a,b]

such that the shifted plecement p' has less cost, where

(, if a<J<b ;p'(d) =
(3) , Otherwise.

By the definition of cost, we find that (a,b] 4s an up-block if and

only if

30 |

(0) wither b I or plbil) > p(b)+1 3

dad

(b) the number of j in the range a <j <b, for which

hy > p(J) >

exceeds the number for which h; < p(J)

Thus it is easy io test a given placement for the presence of up-blocks.

A down-block is defined similarly.

An optimum placement will, ol course, contein neither up-blocks nor

down-blocks. Convercely, this condition of local optimality is sufficient

tor ;lobal optimality:

Theor. iven No hush aldresses hy To... Shy, aplacannt

p(1) <7 «.. 7 p(N) is optimum ir and only if it containt no vp=blocks |
and no down-blocis.

Proof. Let © be an arbitrary placement; we want to prove that p
either contains an up-block, or a down-block, or is optimwn. Tet p'

ve an optimum placement. If p(Jj) = pt(j) for all J , we are dane.

Otherwise suppose that p(J,) £ p' (J) ; by symmetry we may assume thai

p(3,) ~p()
It would be nice if we could prove that p(J) is part of an

up-block, under there hypotheses. fowever, the [following example show

thai, the ar;nment cannoli be quite 2a trivial:

k = 1 2 4 hs 7 9

hoo bob bh L670
p(k) 0 1 2 oh 6 7 3 Oo

pik) = 2 Ah 5 C7 309
Sr

51

If J, = 6 , we have p(3,) < p' (Jp) , but r(dg) is actually part of
a down-block.

We can circumvent such difficulties by arguing as follows. Let a’

be minimal sc that [a')J,)] is a block in placement p' . Then let b

be maximal so that [a',b] is a block in placement Pp . Then let a

be minimal so that [a,b] is a block in placement p' . (In the above

example, when Jo = 6 » we will have a' =1 and b=5 and a =1.)
In general we will alweys have p(a') <p'(a') , p(b) <p'(b) , and

[a,b] will always be a block in both placements; thus, p'(3) -p(3)

has a constant value t >1 for a <j <b . Furthermore, position

p(b)+1 1s empty in placement p , while p'(a)-1 is empty in

placement p' .

Let d_ be the number of displacements h, -p(j) in block [a,b]
that are positive for placement p ; also let d_ be the number of

negative displacements in the block, and let dy be the number of

displacements which equal k . Define df , d' , and dy similarly

for placement p' . It follows that d, = dl + for all k .

Now [a,b] is an up-block for p if end only if 4d, > 4, +d_ R

and it is a down-block for p' if and only if 4' > 43 +d} . Our
proof would be complete if (a,b) were an up-block for p , hence we

may assume that

a, cd +a_ .

The optimalily of p' implies that

a! < d} +d; .

Now the latter inequality is equivalent to

d_+ d+ d, +... + d,_, < a, - (a; +... +d, 4) R

2

hence we have

d, < d,+d_ < da, - 2(d, + ‘es +d, 4) .

This can be true only if d_ = d,+ d and 4! = dy + d} . If we shift

block [a,b] one position down from where it was in p' , we obtain a

new placement p" of cost equal to p' , hence Pp" 1s optimum.

Furthermore pp" is closer to the given placement, in an obvious sense,

so the proof will eventually terminate.

Tt ic interesting to note that the above proof does not use the

hypothesis hy < eo < hy : it characterizes the optimum placements for

arbitrary (even non-integral) hy . It N=2, with hy = 100 and

h, = 1, there are actually one hundred optimum placements, namely

p(J) =ktj for -1<k<99. The additional hypothesis h, < ... < hy
leads to & slightly stronger theorem, showing that the optimum placements

are more constrained: When hy Shia ; we have nh. -p(J) < Bip -PW) =

hyp - PCI) +1, for J and j+1 in the seme block. The above proof
can now be strengthened to show that d, >0 (end hence t = 1) whenever

p has no up-blocks. Thus, two optimum plecements p and p' must

nave {p(i)-p'(j)| < 1 for ell . , whenever the h, form a nondecreasing

sequence. |

23

Referconcer

Brent, Richard P. (1973). "Reducing the retrieval time of ucaticr

storage techniques," Communications of the ACM, Vol. 16, No. 2,

February 1975.

Knuth, Donald E. (1969). Seminumerical Algorithms; The Art of

Computer Programming, Vol. 2, Addison-Wesley Publishing Company.

Knuth, Donald E. (1973). Sorting and Searching; The Art of Computer

Programming, Vol. 3, Addison-Wesley Publishing Company.

3h

