
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY |
MEMO AIM-200

ST/AN-CS-73-365

AUTOMATIC PROGRAM VERIFICATION 1 :

A LOGICAL BASIS AND ITS IMPLEMENTATION

BY

SHIGERU IGARASHI

RALPH L. LONDON

AND

DAVID C. LUCKHAM

SUPPORTED BY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NS 05-020-500
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO.457

: MAY 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

EN

re

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY MAY 1973

MEMO AIM-200

COMPUTER SCIENCE DEPARTMENT

REPORT STAN-CS-73-365

USC INFORMATION SCIENCES INSTITUTE

REPORT ISI/RR-73-11

AUTOMATIC PROGRAM VERIFICATION I:

A LOGICAL BASIS ANO ITS IMPLEMENTATION

by

Shigeru lgarashi

Ralph L. London
and

DavidUC.Luckham

ABSTRACT: Defining the semantics of programming languages by axioms
and rules of inference yields a deduction system within which proofs

may be given that programs satisfy specifications, The deduction
system herein is shown to be consistent and also deduct ion complete

with respect to Hoare’'s system. A subgoaler for the deduction system
is described whose input is a significant subset of Pascal programs
plus inductive assertions. The output is a set of verification
conditions or lemmas to be proved, Several non-trivial arithmetic
and sorting programs have been shown to satisfy specifications by

using an interactive theorem prover to automatically generate proofs

of the verification condit ions, Additional components for a more

powerful verification system are under construction.

Authors’ addresses: lgarashi, Research Institute for Mathematical
Sciences, Kyoto University, Kyoto 606, Japan; London, USC Information

Sciences Institute, 4676 Admiralty Way, Marina Del Rey, California
90291; Luckham, Computer Science Department, Stanford University,
Stanford, California 394385.

This research is supported by the Advanced Research Projects Agency

under Contracts SD-183 and DAHC 15-72-C-0308, and by the National

Aeronautics and Space Administration under Contract NSR 05-020-500.

The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of ARPA, NASA, or the
U.S. Government.

Reproduced in the USA, Available from the National Technical
Information Service, Springfield, Virginia 22151.

| p—

AUTOMATIC PROGRAM VERIFICATION I:

A LOGICAL BASIS AND ITS IMPLEMENTATION

by

Shigeru lgarashi, Ralph L. London, and David C.Luckham

1. INTRODUCTION

Verifying that a computer program is correct has been discussed in

many recent publ ications, for example [Hoare 1969, King 1969,
McCarthy and Painter 13671]. .T he “correctness prob | em” or
“verification prob | em” has become popular essentially because it
represents a significant first step towards writing programs that can

be guaranteed to do what their authors intended. There are several

different interpretations of exactly what it means, Here, we adopt

the point of view that a program has been "verified"when itis
proved within a system of logic to be consistent with documentation,

i.e. a statement of what it is supposed to do. Our discussion is

restricted to programs that can be written in a very precise modern

programming langage, Pascal [Hirth 19711. Of course, we do not deal
with all Pascal programs, but with a subset that is rich enough to
include published algorithms such as FIND [Hoarel371b),TREESORT3
[Floyd 19643, and a simple compiler [McCarthy and Painter 19671.
Since Pascal is an Algol-like language we expect that what is done

here can be repeated without much effort for Algol or other such
| anguages. We adopt a DOCUMENTATION LANGUAGE that is roughly
speaking the language of quantified Algol Boolean expressions, (i.e.
first-order number theory with definitional extension and some

notational conveniences). It does not «contain any constructs for

representing such not ions as tense (time dependency), possibi I i ty

(can do), etc. that may well prove useful in describing programs. So
the documentation language is a slight extension of what programmers

normally use to state those conditions on computations that control

their programs, Statements of the documentation language are called

ASSERTIONS. A documented program is, for us, a Pascal program in
which assertions have been placed between its statements at certain

points. We refer to such programs with documentation as ASSERTED
-PROGRAMS.

The general idea of how to go about verifying an asserted program IS
to reduce this problem to questions about whether certain associated

logical conditions (henceforth called VERIFICATION CONDITIONS)are
trueo f (i.e. theorems in) various standard first-order theories.
The usual method of reduction [Floyd 19671 involves enumerating al |
possible paths between assertions in the program and then computing a
verification condition for each path in terms of operations and

assertions on that path: these verification conditions must then be

proved. See London [1372] for a bibliography of exist ing programs
for generating verification conditions,

However, in the case of Pascal, a rigorous definition of the

semantics has been given in terms of axioms and rules of inference

that must be valid for each syntactic constructor: this is contained

in the recent work ofHoareandUWirth(1372]. This approach to
defining the semantics of a programming language yields a deduction

system in which proofs that programs satisfy specifications may be
given (see Hoarell363,1371al).Such proofs, of course, depend on the
truth of first-order conditions, or to put it another way, standard

first-order theories are sub-systems of the deduction system for

Pascal. For the sake of illustration, Example 1 shows a proof in
Hoare's system that the program in step 13 computes the quotient gq
and rema i nder r of the inputs x and y. The rules of inference used

here are the rules in Table 1 (Section 3.1)and the iteration rule
be | ou, The logical conditions assumed by this proof are labeled
"lemma".

| terat ion: PAQ{A}lP, PA-0>R

P{uhileQd o AIR

1. true 3 Xx = xX + y %x B Lemma1

2. X = X + yy 0 drext x=1r1r + vy %x 0 Cl

3. X =r1r + y % 0 {geB) x =r + y %qg Cl

4. true {rex x =1 + y % 0 c 5(1,2)

5. true {re x; ge¢ 01 x =r + y %q c 7 (4,3)

6. X =r + y XgAy sr=>x= (ry) + y x{(l+q) Lemma2

7. x = (ry) + y x(l+g)lrer-yl x =r + y x (1l+q) Cl

8. x =r + y *(l+g)lagel+g)lx =r + y % q Cl

9. x = (r-y) + vy x(l+g)ire ry: gq 1 + ql
X =r + y % g c7(7,8)

10. x =r + y XgAy rire ry; q « l+qgl
X =r + y % q Cc 5 (6,9)

11. XxX =r + yx gqaAa-y sr > =ys=snrAxs=r=+4+1yxiqq Lemma3

12.-x =r + vy xqgiuhiley <r dolre ryq ee1 + ql}
~-ys<sraAax=r+yxg Ilteration(18,11)

13. true{({re x; qeB); while y <r do (re ry; gel+g)l!}
“yy SrAXx =r + 4yxq c7 (5,12)

EXAMPLE 1: FORMAL VERIFICATION OF QUOTIENT-REMAINDER PROGRAM

2

It is possible to generate the verification conditions for an

asserted program merely by using a subgoaler for the deduction
system. EXAMPLE 2 shows how such a subgoaler works on the
Quotient-Remainder program of Example 1; it simply searches for a
rule of inference which has the current goal as its conclusion and

then generates the premisses of the rule as subgoals.

Goal. true {re x;gq «¢ 0; asset x =r+ y % q;
while y <r do begin re rv;

q ¢ l+gend} =(ysr) A (x=r + y %q)

Subgoal 1. truefre x; gq «8} x =r + vy x q C7 (Goal)

Subgoal 2. X =r + y % q {whiley sr do begin re ry;
q «l+4gendl =(y sr) ao (x = r+yxq)

C7 (Goal)

Lemma 3. (x =r + y xg) a ~(ysr)as-(ygsr)a (x =r+yxq)
I teratio n (Subgoal2)

Subgoal3. (x = r+yxg) a (ysrd fr er - y ; ge 14g} x = r+yxq
- iteration (Subgoal2)

Subgoal 4. (x = r+yxqg) » (ysr) {r e r-yl! x = r+yx(l+q)
C7 (Subgoal3),
then Cl (Subgoal3)

Lemma 2. (x=r+yxq)alysr)s x= (r-y)+yx(l+q)} CI (Subgoal 41,
then C5 (Subgoal4)

Subgoal 5. truefr« x} x = r+yx@ C7 (Subgoallj,
then Cl (Subgoall)

Lemma 1. true + Xx =xty %x 0 Cl (Subgoal 5),
then CS (Subgoal 5)

-EXAMPLE 2: GENERATION OF THE VERIFICATION CONDITIONS FOR THE

QUOTIENT-REMAINDER PROGRAM

Note that, for example, subgoal 4 is obtained from subgoal 3 by using

C7 .(composit i onrulelto split the compound statement at the
semi -colon; Q is set to x = r+yx{l+g} by applying Cl (assignment
axiom) so that the other subgoal is x = r+yx(l+q) {gq « 1+gq} x = r+yxq
which is an instance of the assignment axiom and hence is satisfied.
Ifthe first-order “lemmas” produced by the subgoaler are true of the
relevant theories (in this case, number theory} then we know that
there will be a proof verifying the Quotient-Remainder program in
Hoare’s system. These verification conditions are sufficient
conditions.

3

This is the approach to generating verification conditions presented

here. We use a simple subgoaling program for Hoare’'sdeduct ion
sys tem, A | though this program will accept a significant subset of

Pasca| programs, it is itself very simple since it does not analyze
the object program explicitly but merely repeatedly applies a list of

rules of inference, It iS easily shown to be sound (see below),
easily extended to accept additional syntax (FOR statements, new type

declarations, etc.), and easily changed to take account of . new

definitions of the semantics. We refer to this subgoaler as VCG

(Verification Condition Generator); details of its implementation are

given in Section 4 and sample outputs in Section 5.

However, there are problems. At any step more than one deduction

rule may be applicable to generate further subgoals. To deal with
this ambigui ty, we have chosen a set of deduction rules (some of them
derived rules i n Hoare’'s system) for subgoal generation which is
unatnbi guous. We shall show that this set is deduction complete. This

means that if a particular verification can be proved in Hoare's
system, then VCG will producea sufficient set of verification
conditions from which such a proof may then be constructed. However,

these conditions may not be provable unless the user supplies certain

crucial assertions at intermediate points in his program (e.g. an

invariant for each loop). Finally we also need to know that the
deduction system is consistent.

Section3 deals with these logical problems. We give a small set of
axioms and deduction rules, cal led the CORE, from which all of

‘Hoare's rules can be derived; some sample derivations are included. A

straight-forward set theoretic model of the core is constructed; this

gives us a semantic proof of consistency of the <core. The set of

rules used by VCG is given and is shown to be consistent with the

core and powerful e'nough to derive the core (hence deduct i on

completeness). Preliminary comments, definitions and examples
concerning Pascal programs, the assertion | anguage and asserted
programs are given in Section 2.

VCG is already a useful tool, Numerous example programs have been
verified by manual ly proving the verification condi t ions. More

-interestingly, and of more promise, VCG is intended to be the initial
part of an automatic verification and debugging system, The overall

plan is shown in Figure 1. Asserted programs are input to VCG. The .
output verification conditions are simplified relative to data files
containing relevant properties of the operators and functions in the

condi t ions. lt will become evident from the examples in Section 5

that a great deal of elementary simplification of verification
conditions is both necessary and easy to do. The truth of many of

the conditions wi | | be established at the simplification stage.
Next, the condition Analyzer is intended to reduce problems given to

the theorem prover and to find bugs. I t attempts to classify

verification conditions according to probable method of proof and to

generate simpler subproblems, and also attempts to find the “closest”

sinii lar condition that is provable when a proof of a given condition

4

is not found. This latter kind of analysis is one method of catching

bugs--finding missing assumptions in verification conditions.
Currently a development of the theorem-prover of Allen and Luckham
[1978] is being used successfully by J. Morales to prove conditions
output by VCG for various sorting programs (see Section 5.41. This

proposed system thus appears to have a good chance of being developed

into something useful.

What has become evident is that VCG is not a trivial element in this

type of verification system. In order to make such a system
practical, the amount of documentation the user is required to supply

with his program should be restricted to what would be considered

natural for human understanding of what the program and its

sub-programs do. At the moment VCG places rather more weight on
documentation than we would like. However it is already easy to see

how to extend VCG by adding some additional rules that wi | | permit it
to deduce intermediate documentation for itself in some cases.

| DATA FILES| | DATA FILES]
Ee EVJ

AN AN

Input | Vv | V

| VCC | | SIMPLIFIER | | ANALYZER |-->| THEOREM |a | <--> | | ---> | c--| PROVER |

| |
| |
| |
V V

| OUTPUT | | OUTPUT|

FIGURE 1: PLANNED AUTOMATIC VERIFICATION AND DEBUGGING SYSTEM

J

ET

2. PROGRAMS WITH ASSERTIONS

2.1 PASCAL,

A comprehensive definition of Pascal is published by Wirth
[1971,138721a n dHoareandWirthll372). Our choice ofPascal as the

pr ogr ammi ng | anguage is motivated by the development of Hoare's
deduct ion system and its use to define the semantics of Pascal.

Pascal is an Algol-like language so a reader familiar with Algol will

have no trouble understanding the examples of programs and condition

generation in this paper. Thus instead of including a definition of
Pascal here, we shall point out some of the main differences of

concern to us between Pascal and Algol. The following example shows

a program containing a procedure definition, variable declarations, a

recursive function definition and a program body which calls the

procedure and function; it is written first in Algol and then in
PascaI.

ALGOL PROGRAM:

BEGIN

INTEGER ALPHA, BETA, QUOT, REM, 4, R, X,Y, I;

PROCEDURE QUOTREM(R,Q,X,Y): VALUE X YY; INTEGER R, Q, X VY;
BEGIN R := X; Q := 8;

FOR I = 1 WHILE Y £ R DO

BEGIN R := R=-Y; Q :=11t QEND

END;

INTEGER PROCEDURE FACT(N); INTEGER N;
BEGIN IF N = 0 THEN FACT :=1 ELSE FACT :=N xFACT(N-1) END:

BETA := 3; X = 6; Y = 4;

ALPHA := FACT (BETA);

QUOTREM (QUOT, REM, X+Y, X-Y) i
Q := QUOT; R:= REM
END

PASCAL PROGRAM:

VAR ALPHA, BETA, QUOT, REM, Q, R, X, Y : INTEGER;

PROCEDURE QUOTREM(VAR R, Q : INTEGER; X, Y : INTEGER);
BEGIN R := X; Q:= 0;

WHILE Y < R DO

BEGIN R :=R-Y;Q:=1t0Q END
END:

FUNCTION FACT tN: INTEGER) : INTEGER:
BEGIN IF N = 0 THEN FACT :=1 ELSE FACT :« N xFACT(N-1) END;

6

BEGIN BETA = 3; X :1=6;Y 1= 4;

ALPHA := FACT (BETA);

QUOTREM (QUOT, REM, X+Y,X-Y);
Q := QUOT; R:= REM

END.

EXAMPLE 3: A PROGRAM IN ALGOL ANO PASCAL

The di f ferences in declaring variables are unimportant for our

purposes. The type of the function is indicated after the right
parenthesis in Pascal rather than before the word “PROCEDURE” in

Algol. The open i ng “BEGIN” in Algol appears just before the main
program ‘in Pasca I. In the formal parameter part of procedure and
function definitions, Pascal includes the specification of the formal

parameters inside the parentheses: in Algol this specification iS

made after the list of parameters to be called by value.

The remaining difference may be skipped until procedures are
discussed in detai | later. The word "VAR" in the Pascal forma |

parameter part means R andl are variable parameters. The
corresponding actual parameters must be variables (and not more
general expressions); assignment to Ror Q in the body of the
procedure affects the corresponding actual parameters. The absence
of "VAR" before X and Y means X and Y are value parameters in the
Algol 60 sense (representing a change in the revised Pascal from the
‘original definition). The corresponding actual parameters must

be expressions (ofwhicha variable is a simplecase)l.A value
parameter represents a variable local to the procedure to which the
value of the corresponding actual parameter is initially assigned

upon activation of the procedure. Assignments to value parameters
from within the procedure are permitted, but do not affect the

corresponding actual parameters. (For further details of Pascal see
Wirth [1371, 1972]).

At the moment VCG will accept a subset of legal Pascal programs built

up from: assignment, while, conditional, and go to statements;
.recursive procedure and function definitions and cal Is;

one-dimensional arrays are al lowed on either side of assignment
statements.

2.2- ASSERTIONS

Assertions are conditions on the state of the computation of a

program. Thus, if assertion P is placed at some point in program A,
the intention is that when A is run, every time P is encountered P

must be true of the current computation state of A.

7

Essential ly, our assertion language allows assertions to contain any
well-formed formula of a standard first-order theory and in addition,

non-standard relations may be introduced by definitions. In practice

we have adopted a slightly more usable and readable formal | anguage
for the assertions of VCG.

(i) A term in the assertion language is a Pascal expression,

(ii) Atomic assertions are either predicates (i.e. identifiers) with
terms as arguments or terms,

(iii) Assertions are well-formed logical formulas constructed from

atomic assertions using logical connectives and quantifiers

according to the usual well-known rules.

Here are some examples:

(1) X = Y+Z

(2) =-(Y<R) aA (X = R+YxQ)

(3) ZxPOUER(W,1} = POWER(X,Y)

(4) VK((1<sK} aA (KsN-1) oo AIK] < AlK+1])&

PERMUTATION(A, AB).

The first three assertions are expressions in Pascal (and in fact

Boolean expressions in Algol) and use a precedence among operators to
simpl i fy notation (below). Assertion (4)is not a Boolean expression
in Algol (because it contains a quantifier) nor an expression in
Pascal (because of the quantifier and implication),

The assertion language contains different connective symbols for both

IMPLICATION and AND to improve readability of verification
conditions. The precedence order of connectives and arithmetical

operators, predicates, and quantifiers is:

1. &fand); 2 . 5 (implies),> (implies); 3. =, », <, >, S$, 23 4. v,. +,
-3 5. A (and), *,/, DIV, ROD; 6. =, v, 3.

This agrees with the precedence in Pascal expressions.

NOTATION: Assertions and Boolean expressions will usually be denoted

byP,Q4,R,S.

2.3 ASSERTED PROGRAMS

Assertions are added to programs as additional statements beginning
with the special symbol ASSERT, namely

8

<assert statement> t= ASSERT <assertion>

Thus an asserted program is a legal Pascal program if we imagine that
the syntax of the Pascal statement is extended by adding the extra

clause below to the syntax diagram of “statement” (see appendix to
Wirth (138721):

——-====> (ASSERT I|---------> | ASSERTION [---->

The assert ions at the entry and exit of a procedure definition,
function definition, or main program have the word “ASSERT” rep | aced

by “ENTRY” and “EXIT” respect i ve ly. Both entry and exit statements
appear at the beginning of the unit.

There are some further restrictions. The basic rule about placing

assertions in a source program is that every loop must contain at

| east one asset-t i on. This requirement is met if there iS an

assertion at every iteration statement (i.e., immediately before the
statement) and an assertion at every label (i.e., just after the
label). Although these requirements are not a necessary condition,
they are a simple and convenient sufficient condition to guarantee an

assertion in every loop. An assertion is required, for the exit of a

program. With no loss of generality we assume a single exit,
‘Assert ions may optionally be placed anywhere else. If an assertion
is missing from the entrance, VCG will assume the entry assertion

“UNRESTRICTED”, a synonym for “TRUE”. A source program with

assertions placed to meet these requirements is called an ASSERTED
PROGRAM. Examples of asserted programs are given in Section 5.

NOTATION: Asserted programs will be denoted by A,B,C,D.

2.4 LOGIC OF ASSERTED PROGRAMS

MWereview briefly here the elements of Hoare’s inference system for
proving proper t i es of programs.

STATEMENTS of the logic are of three kinds.

(i) assertions,

(ii) statements of the form P{AlQ where P,0 are assertions and A

is a program or asserted program.

P {Ald means “if P is true of the input’ state and A halts (or halts
normally in the case that A contains a GO TO to a label not in A)
thenQis true of the output state”.

3

EE———

a

(iii) procedure declarations (definitions) of the form p PROC K where
P is a procedure name and K is a program or asserted program
(the procedure body).

There is an infinite set of variables pPygyrys+e. that range over

procedures. Thus undeclared procedure names occurring in statements

are free variables ranging over procedures.

A RULE OF INFERENCE is a transformation rule from a set of statements

(premises, say H ,...,H)toa statement (conclusion, sayK) that
n

is always of kind (ii). Such rules are denoted by

H Lees H

1 n

R1 . ee
K

The concept of PROOF in Hoare's system is defined in the usual way as
a sequence of statements that are either axioms or obtained from

previous members of the sequence by a rule, A sequence is a proof of
its end statement.

We use H ||- K to denote that K can be proved by assuming H. H |- K

denotes the same thing for first order logic.

Some rules have the existence of a subproofas a premiss; they are of
the form

H wee. H = | | | - J
1 n

K

Such rules permit deductions of assertions on recursive procedure
cal Is.

We extend the definition of proof to include the notion of assumption

or dependency. An arbitrary well-formed formula can appear in a

proof sequence, But in such a case that formula is said to have a
formula identical with itself as its (unique) assumption formula.

Each formula in the sequence has an associated set of assumption

formulas, which can be empty, and which must be empty if | 1 | S the
end- formula in the sequence. Each rule of inference preserves the

assumptions unless specified otherwise, Thus the conclusion of a

rule of the formRlis dependent on the set of assumptions that is
the set-theoretic union of the sets of assumptions of the premi sses.

| n other words, assumptions are inherited from premisses to
conclusions.

10

GGG

Assumptions can be discharged only if the rule is of the form R2. In

this case the assumption formula designated byl can be discharged
from the set of assumptions associated with the conclusion designated

by K, while other assumptions are inherited.

Intuitively I ||-J meansI implies J, and a free variable, say r,
reads “for anyr",

The rules of inference discussed in the following sections all have,

with one exception, at most two premisses. Proofs may be represented

in the usual way by binary trees.

SUBSTITUTION of an expression t for a variable x in an expression E

iS denoted by X
E|

t.

We note that the termination of a program A is not expressable in

Hoare’s system by statements of the form P{A}Q. On the other hand,
non- term i na ti on can be expressed by statements such as TRUE {A}FALSE.
There may be some indirect ways of constructing formulas that mean ‘A

term i nates for all inputs satisfying P", and if so, it would be nice
to know for what class of programs this can be done.

REMARKS:

We presuppose a standard first-order theory, which shall be denoted

by T, representing the properties of the primitive functions and
predicates used in Pascal. However, our construction is uniform in

that choosing different first-order theories characterizing possibly

different functions and predicates does not affect the framework. A

standard model of the theory T is fixed and denoted by M.

In our formal system there are three kinds of procedure names we have

to distinguish:

1) Procedure names for primit ive procedures. For instance a library
procedure whose body is inherently written in a | anguage Of | ower

| eve | belongs to this category. (Itis even possible for us to
-regard the assignment statement as such a procedure.)

2) Procedure names for declared procedures. MWeregard procedure
declarations as the “defining axioms” of such procedure names, which

constitute nonlogical axioms in our system and shall be denoted by J.

We assume J does not assign more than one procedure to a name.

3) Procedure names used in derivations. Inthe formal system we will
use procedure names which should intuitively be regarded as “free

var i ab | es’, which represent arbi trary procedures. In proving
metatheorems we will use a name for each declared procedure.

Besides the above, each procedure name is assuhied to have "ari ty”, so
that it can represent or vary over declared procedures with, say, Mm

variable parameters and n value parameters. Such a procedure will be

: cal led (m,n}-ary and the m (variable) parameters and the n (value)

11

ay

parameters willb e called the left and the right parameters,
respectively.

If a primitive procedure name, say q, Occurs in a program about which
we are to prove a certain theorem, we have to either give a set of
(nonlogicall axioms of the form Plg{(x;u)}R or a defining axiom for q.
In most cases, we shall assume that the procedure can be written in

Pascal and that there is a defining axiom for it.

12

3. THE BASIS INFERENCE SYSTEM FOR VCG.

In this sect ion we study the properties of the set V of axioms and
rules of inference used by VCG. One of our main concerns is that the

rul es of inference inV should be unambiguous in the sense that only
one rule is applicable to generate subgoals from any given goal. This

Will certainly be the case if no two rules have conclusions which

have common substitution instances, a property which is true of V.

The rules of V, which appear as Table 2 in section 3.3, are simple

combinations of Hoare’s original set of rules H given i n Hoare
[1371a, p.1161. Having chosen V, we must establish that it is both
sound and deduction complete. We shall show first that a set C of

simple rul es (the CORE) is sound and that any rule in H can be
derived from C. We then show that V and C are inter-derivable. We

shal | begin by studying the relative derivability when none of the

sets of rules contains go to's or array variables. The rules H are

equivalent to the following set of rules.

3.1 THE CORE RULES

The set of axioms and rules of the core is given in Table 1 . Rul es

D3 (iteration), D 7 (adaptation) of H have been omitted;D&
(alternation) has been replaced by C8 (conditional). We have added

the frame axiom (CZ) for procedure calls and the and-or rule (CB);
Hoare’'s substitution rule (DB) corresponds to our left and right
substitution rules,

NOTATION:x, y,z-1lists of variables: p,g,r=-procedure names;s,t

- lists of expressions; K-procedure body; pi{x3;y)l - denotes CALL
pix;y) where x and y are the left and right parameters of p. VARI(P)
denotes the free variables of P:; p{xjy) PROC K denotes a declaration
of the form “PROCEDURE p(x;y); BEGIN K END",

AXIOMS

Xx

Ll. assignment axioms: P| {xet}P
t

c2. frame axioms: Plg(x;t)}Pprovided-{(xeVYAR(P))

C3. procedure declarations: pi{x;y) PROC K.

c4. logical theorems: P for a | P s.t.|- P.

RULES

13

|

c5. consequence: P>Q, Q{A}R : P{A}1Q, QoR
em me mm mmm m= = ----W--B---

P{A}IR P{A}IR

C6. and/or: P{A}Q, R{AlS P {AlQ,R{A} S

PAR {A}1QAS PvR{A} QvS

c7. composition: P{A}Q, Q{BIR

P{A;BIR

C8. conditional: PAR {A}Q,PA-RI(B}(

P{IF R THEN A ELSE BlQ

c9. substitution: (L) Pix;y) {gix;y)tQix;y)

Plz;y) {g(z;y)iQ(z;y)

(R) Pix;y) {glx;y)}Qix;y)

P (x;s){g(x;s)}0(x;s)

SUBJECT TO THE RESTRICTIONS:(i) s does not contain members of x; (ii)
members of z must be distinct and y and z are disjoint.

Cl8. procedure cal | : pix;y) PROC K(p), Pir(x;y)iQ]|-P{K(r)}Q

Pip(xsyl)lQ

where p does not occur in the proof of the right hand premiss,

andr does not occur in any other assumption in that proof.

TABLE 1 C:THE CORE RULES.

In order to demonstrate that C is as “powerful” as H we show that any

proof in H of P{A}Q can be transformed into a proof in C of P{A’'}Q
where A’ is a program equivalent to A. An application of a rule R

(that is not a rule in C) in the given proof is to be replaced by a
derivation in C of the conclusion ofR assuming the premisses of R.

The transformed proof will use only rules of C and will prove
essentiallythe same formal statement. It is clear that applications
of Hoare’s substitution rule (DB)can be replaced by successive
applications of the left and right rules (C3). MWetherefore need
only consider the following three rules.

14

(D4) Alternation: Pl{A}lQ, P2{B}Q

ifRthenPlelseP2{ifR then A else B}Q

(07) Adaptation: Pl(aje) {p(ase)}R (ase)

Pla;e)aVa(R(a;e)>S(a:e)) {p(asel}S(a;e)

(D3) Iteration: P{A}S, S|- if Q@ then P else R

S{whileQ do AIR

(a) 04 is derivable in C. Let P in the conditionalrule(C8)b e :

if R then Pl else PZ2.

1. Pl {A}Q, P2{B}Q assumptions (premisseso f D4)

2. PARSP1, PaA-RoP2

3. PaR {A}1Q,PaA-R({B} CI consequence (C5)1,2

4 , if Rthen-PlelseP2{ifRthenA elseB}Q

conditional (C8) 3,

(b) D7 is derivable in C.

1. Pflaje) {p(asel)lR (ase) assumption (premissD7)

2. VYa(R(ase)>S(a;e)) {p(ase)ltVa(R(as;e)>S(ase))
frame axiom (C2),

3. PlajelnVa(R(as;e)>S(ase)) {plasellR(aseln
Va (R{a;e)>S(asel)

and rule (CB) 1,2.

4. PlajelanVa(R(a:e)oS{ase)) {(pl(a;e)}S{a;e) CS, 3.

Corresponding to any whi le statement “whi le dl do A” we can define a
recurs i ve procedure:

procedure whi ledef (x3v)

if then begin A; cal | whi ledef {(x;v);end
else end

where x is the list of variables in A that are subject to change in

the body A, and v is the list of all other variables inQor A.

We consider a modified form of the iteration rule:

15

(D3) P{A}S, S > if Q then P else R

S{call whiledef(x;v)}R

(c). 03 is derivable in C.

1. PI{A}S Assumption (premiss B33’).

2. Sal>P Assumption (premiss D3’)

3. Sa-0oR Assumption (premiss D3")

| 4. Sical | r{x;v}}R Assumption

5. P{A;cal|l rix;v)iR c7,1,4

5. SaAQf{AjcalIl r{x:v}IR C5, 2,5

7. S{ifQthen begin A; callr{x;v)send
else end}R C8, 6,3

8. Sicall whiledef({x;v)l}R clo, 4,7

| f we are given a proof in H of P{AIQ we may replace applications of
D4 and D7 by the proofs (a) and (b); an application ofD3 is replaced
by a proof (¢) o fD3'. W ewill then have a proof in C of P{A’}0
whereA’ is the result of replacing each while statement in A by a
cal | to the corresponding whiledef procedure. This is easily proved
by induction on the length of the proof. Clearly A’ is equivalent to
A. This completes the proof that C is as powerful as H.

In the other direction, all of the core rules except the frame axiom

and the and-or rule appear in H with minor differences and are easily

shown to be derivable in H. Thus, to show that proofs in C can be

carried out in H, we need only be concerned with eliminating C2 and
C6.

‘Recall | that a Pascal program must contain definitions of all called
procedures except library procedures and there are a finite number of

those. This places a finite bound on the number of different

procedures that can ever be called in any computation of a program.

d. - Lemma

||- TRUE {A} TRUE for any program A.

PROOF

16

L

We can construct a proof of TRUE{A} TRUE by using the rules (B1-D5) to
generate subgoals starting from the goal TRUE{A} TRUE. Assume a | ist
of variables r , r , r . . . distinct from the list of procedure names

1 2 3

that may be called in a computation of A. Subgoals are generated by

applying the rules recursively as follows(D3 andD&4 are equivalent
t o 03% and D4x):

(D2) Subgoals TRUE {A} TRUE, TRUE {B} TRUE

TRUE {A;B} TRUE

(D1) Subgoal TRUE{8} TRUE

(D3) x TRUEAP{B} TRUE, (TRUEA-P)}>TRUE

Goal TRUE {uhile P do B} TRUE

(D1) Subgoals TRUE {B} TRUE TRUE{C} TRUE

TRUEAP{B} TRUE, TRUEA-PI{C!} TRUE

(04) x Goal TRUE {if P then B else C} TRUE

. (D5) Subgoal TRUE {K(r)} TRUE
rT PN

Goal TRUE {p(x;v)}TRUE

where K is the body of p and ris a unique variable to be

P

substituted for the procedure name p in every subsequent subgoalof

the goal. The procedure terminates since the subgoals in each of the
rules02 - D4 are shorter than the goals, and D5 canbe applied only
finitely many times since the list of procedure names that can occur
is finite and one of these names is eliminated from al | further

subgoals of a goal touhichDb applies. The length of any subgoal
‘branchis bounded by 2nl where n is the number of procedures that can
be called by A and | is the number of statements in A. The terminal

subgoals are of two kinds: TRUE {x«t} TRUE (ax i oms) or
TRUE {r(x;v)} TRUE. The second kind is the assumption for a n

P

applicationofD5to derive a goal below it(i.e.a goalof which it

I'S a subgoal). Thus the final subgoal tree is a proof of
TRUE {A} TRUE.

(e) Pi{g(x;v)IP is provable if ~(xeYAR(P)).

This follows from lemma d by applying the adaptation rule (07):

17

1. TRUE {gqf{x;v}} TRUE lemma d.

2. TRUE a(Vx)(TRUEDP){q(x;v)}P 07,1.

3. Plg(x;v)iP Dl,2 since x does not
occur in TRUE or in

P{by assumption).

This establishes that C2 can always be replaced in a CORE proof by a
derivation in Hoare's system. To eliminate C6 from a CORE proof we
argue as fol lows. Suppose a given proof contains an application of

AND-OR, without loss of generality, let us say it is the final
deduct ion. We show that this occurrence of AND-OR can be either

el iminated al together or “moved up” the proof tree in the sense that
| t is replaced by an AND-OR application to the premisses of the
premisses of the original application, This gives us a new proof

containing only expressions that are in the old proof. We show
further that in the second case where the rule is “moved up”, if the

moving up procedure is repeated the rule will never again need to be

applied in any new proof to the same pair of premisses it was applied

to originally. Since the given proof contains a finite number of

expressions this establishes that our moving up procedure terminates

with a proof in which all applications of AND-OR have disappeared.

(f) LEMMA

There is a constructive procedure for eliminating applications of the

AND-OR rule from CORE proofs.

PROOF.

Suppose a given CORE proof contains one deduction by AND-OR of, the
form

Hl, HZ H3, H&4 (rule R)

D. J (AND-OR)

K

where Ris not AND-OR.

W e give a procedure whereby either

(a) Dcan be replaced by a deduction of K from axioms by the rule
0 f consequence,

or

(b) OD can be replaced by

18

H1',H3' H2',H4' (AND-OR)

11 J1 (ruleR)

K

In case (b), for each i, t h e subproofH i’ in0O 1 contains only

statements occurring in the subproofHi inD. Repeated application
of the procedure cannot result in (AND-OR) being applied to the pair

| ,J of premisses again.

We note that since the same program part must appear in both

preniisses of an application of AND-OR, the immediately preceding
rules deducing those premisses must either be the same rule Ror one
of them must be the rule of consequence.

Let us consider the AND-case of this rule first. We give the

replacement procedure for different cases of rule R:

(i) AXIOMS. no

An application of AND-ORto axioms
X X

P| {xeel}lP R| {xeelR
e e

X X

P| AR| {xeelPaR
e e

is eliminated entirely and replaced by the axiom

x

(PAR)| {xee} PaR
e

Applications of AND-rule to frame axioms are eliminated similarly.

"(ii) CONSEQUENCE.

An occurrence of AND-OR of the form

P{A1Q1,Ql>0

P{A}Q , RI{A}S

PaR {A1QAS

is replaced by

19

Er

P {A}1Ql,R{A}S

© PARIAIOIAS |, O1AS50nS

The other cases (omitted) are similar.

(iii) WHILE

PAU{A} P, (PA-U)>0Q RAU{A}R, (RA=U}>S

Piunile U do AD RiuniteU do AIS

is replaced by

PAU{A} P, RAU{A}R

(PAR)AU TAL (PAR), (PAR)A=U> (0AS)

(iv) CONDITIONAL

PAU {A} Q, Pa=U {B} Q RAU{A} S, RA=U{B} S

PLIfU then A else BIQ,R{ifU then A else B}S

PAR{if U then A else B}QAS

is replaced by

PAU {A}Q,RAU{A} S Pa-U {B}Q,RA-U{B} S

(PARVAUIAIGAS , (PARIA-U (BIOAS

Clauses for Composition and Substitution are similar to (iii) and
(iv)and are omitted.

(v) PROCEDURE CALL

Procedure p has body Kp).

P{rtQ | |- P{K(r)}Q Rir}S| |- RIK(r)1$S

20

La |~J—

PAR {p1QAaS

is replaced by

P{rtQ||-Pi{K{r)iQ R{r}S||-R{K(r)ls

P{r2}Q Rir2}S

[subproof] [subproof]

P{K(r2)10Q | R{K(r2)}S

PaR {r2}1QaS||- PAR {K (r2)}QAS

PAR {p1QAS

This last transformation rule requires a word of explanation. In the

replacement, the AND-OR rule has been “pushed up” and appliedto
assertions o nK(p) instead of assertions on call p. The procedure
call rule is now applied t oPaARIKI(r2)}1QASs o that the relevant
assumption is PaR{rZlQnaS. Subproofs for P{K(r2}1QandRi{K(r2)}S

have to be appended: the given procedure rule applications ensure the

existence of these subproofs, For example, we know there is a

subproofof PIK(r)}Q from the assumption P{r}Q;an application of the
CALL rule al lows us to deduce P ({r2}0, where r2is a new name for

procedurep. The assumption P{r}Qis discharged at this point. We
then repeat the subproof again withr2 replacing r everywhere.
However, no assumption is necessary in this repetition since Pi{r2}lQ
‘is proved. Thus, the complete subproof trees for the premisses of the
new AND-OR application contain copies of the given auxilliary
subproofs at “assumption nodes”. The statements in each new tree

are exactly those of the old tree except possibly for r2in place of
r. IT "tne mplacement procedure is applied to this new subproofof

PAR{K (r2)}0QAS, the AND-OR rule need not be applied to the same pair
of hypotheses (withr2forp)again since PAR{r2lQAnS is now assumed
true.

This completes the description of ‘the replacement procedure for AND;

the OR case contains almost identical clauses except that the

replacements in cases (iii) and (iv) contain intermediate
-applications of consequence: (PvR}aAU>(PAU) v(RAU).

We note that Lemma f shows also that the AND-OR rule can also be

omitted from t h e CORE. In the presence of the other core rules,
ADAPTATION may be rep | aced by the FRAME ax i oms. The previous

discussion may be summarized by the following theorem:

g. THEOREM

lf] |-P{A}QthenP{A’}Qis provable from the CORE where A’ is
equivalent to A. Conversely if P{A}Q is provable from the CORE then

, | -P{A}Q.

21

3.2 A MODEL FOR THE CORE

We assume given a standard model M for the theory T of the true

Boolean expressions of Pascal and a set J of procedure definitions.

Essentially M is the standard model for arithmetic possibly augmented

by standard models for data types other than the integers. The
details of M itself do not concern us. We show how to extend M to a

modelMx for the CORE.

To simplify the notation we assume a fixed ordering of the variables

X 9X 3X 400 This allows us to represent computation state vectors
1 2 3

over the domain 0D of M by infinite sequences of elements ofD, a=
<a ,a ,a . ++>. Dx shalI denote the set of all such sequences.

12 3

Intuitively, state a assigns the value or interpretation a to X 3
|

this is denoted by (x} The interpretation
i

or value t of Boolean expressions t is defined in the usual way from

standard interpretation of the primitives +,%,etc. The value of t
I

applied to state a will be denoted by t(al. A Boolean expression

of n variables, sayP({x ,...,x), is interpreted in Masa subset
Nn n

'P of OD. Thus Plx,...,x) is true for the state vector a if
M n

<a ,...,a>eP .
n M

This allows us to extend the interpretation of P{x,...x)to Dx:
1 n

P(x ,...,x) = f{al<a,...,a>ePl.
1 n | n M

Moreover, the interpretation of substitution instances by definition

_satistfies:
Xi

ac(P{x ,...,x J] } «<=><a,,..,a ,e (a),a Cee>€Px Lux).
n e | i-| | + | 1 n |

The- interpretation of an (m,n) -ary procedure is a partial function
m g

f of the type N X D - (Dx » Dx) having the following properties:

l) Frame property:

(fF(i(l),...,i{msec,...,c)(a)) =a :

n j j

j is different from i(k} for any Kk such

22

that 1 < k £ m.

2) Substitution property:

(fi (1),.e,itm)se ,vu0u,c) (al)
n i (k)

n j (kK),
I <£ k £m.

The definition of f proceeds as follows.

We define by cases the computation sequence F(A,a) of program A
relative to M given input a as follows.

Ifa is an infinite state vector, then:

(i) F(x «e,a)l = <a ,...,a , e (a), a yo oe >
| i-| i + |

(ii) F(A:B,a) = F(A,a) e F(B,U(A,a))

(iii) |F(A,a)i f<a,.. . a>eP
F(if P(x ,...x) then A else B,a)=-] 1 n

Nn |F{B,a) otherwise.

(iv) F(qlz; t),a) = aeF(K(z; t},a) where J contains a defining axiom
for q of the form "gq{x;v} PROC
K{xsv)"andK{(z;t)is obtained

by sutstituting the actual
parameters z,t for the formal.

parameters Xx, Vv.

Here asb is the sequence obtained by appending b onto the end of a,

lend state of F(A,a)lifF(A,a)is finite

U(A, a) = - |

undefined otherwise.

The interpretation of program A is now defined:

A = {<a,b>|U(A,a) = bl

and M is extended to Mx by adding the function A for each Pascal CORE
program A. I

We can now say when a statement of the form P{A}Q is true in Mx
(denoted by Mx|=P{A}Q):

23

Mx |= P {AlQ<=> A (P) c Q .
I 1

Finally, a statement S{r,...,r)with assumptions Aflr,..e,r}),...,
m I 1 m

A (r ,...,r)where r _...,r are free procedure variables, is true
n 1 m m

inMxif and only if the following condition holds:

tf A p,...,P),... Alp ,...,p)are true for any dec | ared
1 1 m n 1 m

procedure names p,...,p from J, each p having the
I m

same ar i ty as r (lsi<sm)l,thenSlp ,...,p) is true
| | m

Here are some simple properties of this model:

(i) If the range of A is empty then for any P and Q,Mx|=P {A}Q
|

(ii) If Mx |= P{K(g)lQthenMx|=P{gqlQ where K is the body of
procedure g.

(iii) I f p PROC K{r) and q PROC K(s) and r ¢ s then p cq .
i

(iv) A Boolean assertion is true in Mxif and only if its universal
closure is true in M.

To show that Mx is a model for the CORE we will show that the axioms

are true inMx and that each of the rules of inference preserves’
truth (i.e. if the premisses of the rules are true in Mkthen so also
are the conclusions). For simplicity we consider examples of the
axioms and rules in which the statements have one free variable

(three variables for the substitution rule) and in which the
premisses do not have governing assumptions except in the case of the

recursion rule: the argument for the general case is identical.

.Consider first a typical assignment axiom P(e) {x « elP(x).
1 1

We note that (x «e) = {<a,b>tb=<ela),a, a,...>}, and that
1 I 2 3

acP(e) <=> <efa),a ,...>cP(x } Thus (x«e) (P(e) } ¢ Pix)
2 11 [[[|

so ‘that the assignment axiom is true in Mx,

The frame axioms are clearly true in Mx:if P does not contain x , say,
1

and a,b differ only at the first position, then aeP <=>beP . |f
[

q(x ,v) changes only the value of x then q (P)cP .
1 1 I 1

24

)
!
43 »

4
i

i Logical theorems are true in Mx since they are true in M.
; Procedure&declaration axioms are assumed to be in J.
lL We cons i der next the rules of inference. The fact that Consequence,
') Composition and Conditional all preserve truth inMkx canbeshownby
a elementary set theoretic arguments on the interpretations of Boolean
fH expressions and programs. Simply note that ifP>@istruein Mxthen
; | P cel, that (PAR)= PNR, and that -R =0x-R .
i! [1 I 1 1 I

The arguments are as follows:

CONSEQUENCE: If P c¢Q@ and A (Q@) ¢ R then A (P)cR .
I 1 I 1 I. 11 I

COMPOSITION: [If A (P) <Q and'B (AQ) cR then B (A (P)) cR .

| 11 I II I I 1 1 I
1 CONDITIONAL: I fA (Pn R)IcQand B(Pn~R)JcQt hen (if R then A
" 1) I II I I

; el seB)(P)cQ
f 11 I
j

i SUBSTITUTION

i Consi der the case when the procedure gi{x,x;x) has two left
ul I 2 3
{ parameters and one right parameter sincethis is sufficiently
; general. Let gq have body K. Assume that x and x are the only
1 2
) variables whose values can be changed byK , and that x is the only
; 3

4 value that its computation depends on. We requirea simple lemma
which may be proved by induction on the composition of K.

h. LEMMA.

For any a if Kix,xy;x}(al=b and K(x x ;x){(a}l= ¢ then b = ¢ and
- 1 2 31 ij 3 1 1 [

b = Cc provided i=j=3.
2

Letf,g be partial functions mapping Oxinto0 such that Kix, xix)1 2 I

(a) = <fl(a),glal),a ...> and hence aso Ki(x,xj3;x) (al=<a ,a ,a ,
3 3 3 4 5 31 1 2 3

f(a) g(a }),...>. If the premisses of the substitution rule are true,
3 3

then:

aeP(xx x) implies <f(a),g(al),a ,..e>el{xx x)
1 23 3 3 3 1 231

\
£

1 25
{

i
4
n
il
i
]

i
Wf

