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L - ABSTRACT: Signature table training method consists of cumulative
: evaluation of a function (such as a probability density) .

| at pre-assigned co-ordinate values of input parameters to || the table. The training is conditional: based on a binary
valued "learning" input to a table which is compared to the
label attached to each training sample. Interpretation of

| | an unknoun sample vector is then equivalent of a table look-
up, i.e. extraction of the function value stored at the

proper co-ordinates. Such a technique is very useful when
4 | a large number of samples must be interpreted as in the case
_ of samples must be interpreted as in the case of speech

recognition and the time required for the training as wel!
as for the recognition is at a premium,

However this method is limited by prohibitibe storage
~ requirements, even for a moderate number of parameters, uhen

their relative independence cannot be assumed. This report
" investigates the conditions under uhich the higher dimensional
] probability density function can be decomposed so that the

density estimate is obtained by a hierarchy of signature tables :
: - With consequent reduction in the storage requirement.

oo Practical utility of the theoretical results obtained in the
report is demonstrated by a vowel recognition experiment.
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| 1. Introduction |

| Signature table training has been described by Samuel[1] where it is used

. in a program which plays the game of checkers. The input to the tables are
parameters which evaluate specific aspectes of a board situation. The output

| from the table hierarchy is a number which represents in a sense, "figure of
C ) merit" for the board. This board evaluation is then used in the search for the

best possible move.

| The signature table scheme has been extended and modified to adapt it for

C ‘use in speech recognition{2]. The tables are used to compute the postiriori |

| probability of a specific sound feature such as voicing, a front vowel etc. or a
. sound class such as a phonemic category, being present. These probabilities are

used for classification of the sound in Bayesian sense (the actual

- - implementation makes a compound decision using local context). However this
| | scheme makes several implicit, simplifying assumptions with regards to mutual

- oo independence between sets of input parameters. This report describes a method of

| probability density estimation using signature tables Which does not require
| independent set of parameters and still requires storage of the same order. |

| The concept of signature tables is best illustrated by a simplified table |
arrangement (Fig. 1) similar to the one used in the speech recognition program(2].

i The two-level arrangement has six inputs. the Fi's represent the frequencies of
amplitude maximal(formants) in the vowel spectrum and the Ai’s are their

~ | corresponding amplitudes. The parameters are divided into two sets as inputs to

| the tuo first level tables. The outputs from the first level tables are used as

| 1
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inputs to the second level table. The input marked "V" is a 1-bit learning

input and indicates whether the vowel "V" is the tag attached to the current

sample vector or it is not.

~ The inputs are quantized into adequate range of values, 8 in this case. A

signature table has an entry for every possible combination of inputs. Thus the |

size of first level tables is 512. Each entry (one computer word) is divided

© | into three fields. The field [pl] is incremented by 1 if "V" is indicated

otherwise field [gl is incremented. The output of each entry is computed as:

P("V"| FL,F2,F3) = p/(p+q) [1.1]

\ which directly gives the postiriori probability of the class "V" for the

specific entry shown in Fig.l. This value is also quantized to a prespecified

| accuracy, say 3-bits, and is stored in the output field (rl. The second evel
N table processes its input in a like manner. Thus the output of the second level

| table is the probability

| P("V"| P(F1,F2,F3),P(Al,A2,A3)) [1.2] |

h whereas the probability we require is

oo P("V"| F1,F2.F3,A1,A2,A3) [1.3]

Thus while any one table generates the required form of probability

~ densityleq. 1.1), the tuo level arrangement generates 1.2, which is equivalent

to 1.3 only  f the parameters in the sets (F1,F2,F3) and (Al,A2,A3) are mutually

independent.

“ | The main objective of this report is to investigate the conditions under

which the decomposition of a multidimensional function into two or more factors

iS | ~
<
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N ts valid so that a hierarchy of tables as shown in the above example still
generate a true higher dimensional probability density as in the equation 1.3

| while mostly retaining all the advantages of the signature table method.

C The three advantages that emerge from this method of training as it has

| | been used in the past are as fol lous:

1)Essentially arbitrary inter-relationships between the inputs are taken

Co into account by any one table. The only loss of accuracy is in the quantization.

| 2) The training is a simple process of accumulating counts.The training

samples are introduced sequentially, and hence simul taneous storage of all the

“. samples is not required. |

3)The process linearizes the storage requirements. The example shoun

| (3x6) |
requires 2Zx512+64, 1888 entries instead of 2 , 256 K entries, were the

> entire space to be represented. |

| Before investigating the conditions under which the decomposition of a

| multidimensional space is valid it will simplify the explanation if we first

\ | consider a specific example in qualitative terms only.

Consider the simple table arrangement as shoun in Fig.2 where we wish to

take account of 5 input parameters, each requiring say, 3 bits for its

C 15
specification. Were ue to do all _this in one table it would require 2 or

32,768 entries, instead of the 1824 entries required for the two level

arrangement shown, when the output from Table 1 is also quantized to 3 bits.

- What we require as the output from the first level table is some function which

} represents the contribution made by the inputs to the first table so that the

C 3
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| output from the second table truely represents the conditional probability that
a CLASS has been represented by the specific values of the inputs. Thus, in order |

i to utilize the Bayesian decision rule we want to determine

~ P(CLASS|A,B,C,D,E)

| where A BC DU and E represent the input parameters.It is easier to determine

the inverse probability during the training phase in accordance with the rule

. P(CLASS|A,B,C,0,E) = P(A,B,C,D,E|CLASS) x P{CLASS) / P(A,B,C,D,E).
. The divisor on the right hand side appears as a common factor in the conditional

| | probabilities for all the classes and hence need not be taken into account.

- P(CLASS), the apriori of a class may either be knoun for the recognition problem

| | under consideration, or it can be estimated from the sample set used during the
training. The remaining factor P(A,B,C,D,E|CLASS) is to be determined using the

{ ~ signature table arrangement shown in Fig.2. |
: Consider the expansion |

~ | P{A,8,C,0,E|CLASS) = P(D,E|A,B,C,CLASS) . P(A,B,C|CLASS) |

the second factor on r.h.s., the marginal probability is independent of the

other inputs and hence given directly by the counts accumulated in first table

(field [pl Fig.2) with appropriate normalization by the the total counts in the

table. MWe nou focus our attention on the first factor, the conditional

probability P(D,E|A,B,C,CLASS) computed by the second table. We observe that the

input marked f(A,B,C) partitions this table into sections. In the expanded case

| where Table 2 has one such section for every entry in Table 1, there would have

been enough of such sections to allow for every combination of values assignable

to A,B and C. However we are not finally interested in which particular points

| . |
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;
a. in (A,B,C,0,E) space are associated with each region (in the situation where the

variables are continuous, each region would be an equiprobable surface), but |

oo only the value of the probability. Therefore we need only allow enough space to

) represent these values to the desired accuracy(3 bits in this example). Thus the
| outputs stored in the first level table (field [r]) correspond to those entries |

| which must be grouped together and have identical value. In effect what we are

“ | doing is to reduce the dimensionality of the space represented by the second

. table by 2 li.e. from {A,8,C,0,E} to {0,E,f(A,B,C)}) by grouping together those

points in (A,B,C) space which give the same overall probability in (A,B,C,D,E)

C space. |

| There is apparent circularity in this argument, that is We must know the a
B | overall probability - which we are ultimately trying to find - in order to

: accomplish the grouping in the lower dimensional space. However we shall prove
in later section that there exists a apni ng f(A,B,C|CLASS) of the function

i | P{A,B,C,D,E|CLASS) uhich achieves the desired grouping.
| | In a manner similarto the one used to obtain marginal probabilities, the

L | function f(A,B,C|CLASS) is accumulated iteratively in field [q] in each table
| entry. The values in the fields [q] are then quantized to a desired accuracy and
= stored in the output field Ir] of each entry.
| So far we have dealt exclusively with the process of training, how the

| data is entered into the tables. Interpretation of an unknown sample or

_ evaluation of it's class conditional probability may be explained with reference |

: to Fig.2. Suppose that the unknown input is (A’,B",C7,D",E’). The marginal
: density is given by

g | |
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a P{A',B',C"JCLASS) = [p J] / SIGMA [p )
| 1 1 |

and the conditional probability is given by the second table as

_ P{D',E"|r J,CLASS) = [p] / SIGMA [p 1}.
1 2 2

| The required probability is then obtained as the product of these tuo factors,

The above highly simplified example also indicates an important property

¢ of the signature table method. During both the training and interpretive phases
. a table derives al! the necessary information from the outputs of it’s immediate

: predecessors, This fact can greatly simplify the programs required for the

- | construction and the execution of complicated signature table networks. For more

| | details of the programs and for more general speech specific aspects of the
signature table usage, the reader is refered to Samuel [3].

1 In the next section we obtain the conditions under which the decomposition
| of a higher dimensional probability density function into a product of two lower

. | dimensional functions is valid. In the following section we outline a method of
estimation of marginal and conditional probability densities which occur in the

. decomposition. The signature table is shown to be an approximation of this

" method of density estimation. The last section describes results of experiments

| performed using a rather smal | set of training samples. The objective is to
| demonstrate the feasibility of this ne thod, rather than obtain statistically

valid error bounds, uere this technique used for probability density estimation

per se, rather than for a classification or a recognition task.

6 |
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2.8 Decomposition of Probability Density Functions

Lo The simplified example given in the previous section made an implicit

A assumption that the random variables were discrete, each with 8 distinct states
| representable by 3 bits. It is more illuminating however to obtain the

| conditions for decomposition in the continuous domain. The discrete situation

~ may then be treated as a special case.

| Let x ,x ,.. ,x be N continuous, non-independent random variables. Let
1 2 n

C Pix 1X ee IC) define a class conditional probability density function whichn

~ is continuous everywhere in R space. The objective is to factorize this

| function such that each factor represents a function whose dimensionality is

\ less than N. Write

CPx yx yeux yeux JC) = pix ,oex | x ux ,00x ,C)upix ,..x ,C) [2.1]
3 1 2 [ n i+1 n 1 2 [ 1 [ |

| also let = pl aeex [fix x),00plx yxC0) [2.2]i +1 n 1 i | 1 i

| Consider the factorization in equation 2.1. The second factor, the
| marginal density has a dimensionality I which is less than N. But the first

| factor, although a conditional, has implicit dimensionality of N. In equation
2.2 we have grouped together the conditioning variables Ox ree ) by as yet
undefined functional f, to give a mapping of | dimensions to 1. So the

. | dimensionality of this factor is essentially (N-I+1).
- Now define

: 7
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i Fhe ox vou d= px ox (vox ox =, .x =) 0)
1 2 i 1 2 Pil n

or for notational convenience,

N = dix ,x ,..x |C) [2.3]
1 2 [

| called the degenerate probability density function with the variables x |
i+1

. through x set to zero, or any other convenient, arbitrary set of constants.
in

| With this definition of the function f we-shall shou that equations 2.1 and 2.2

are equivalent.

(. N

Consider a partition in the R space generated by setting |

pix ,x ,...x | C) =K where B<K<«l [2.4]
= 1 2 n

g and denote the set of all solution vectors which satisfy 2.4 by S (X ) where X
L | - N N N

| is a N-vector. Also let
] 1 2 [

L and denote the solution set of this equation by S (XJ). Clearly from the
I 1

definition of the degenerate function 2.3,

for any (X ¢ SS) > (IX =X1¢8) [2.5]
| ] I I N N

With the proviso that only the first [ terms in the vectors X and X need
- 1 N

match.

| Now consider within this partition (defined by 2.4), the factor which

determines conditional density in equation 2.2, namely,

8 |
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- bp {x Jeax dix ,..x ),C0) = px Loox |] (X €S),0)
i +1 n 1 +1 n I ] |

= pix ,..x |] (XS),C from d.5
= i+1 n N N

“

=plx ,eex | x ,x ox ,C)
_ | i+1 n 1 2 i

| Since other terms in the equations 2.1 and 2.2 are identical and the

“

condition 2.5 holds true for the complete range of values K (in 2.4) may take,

- | the required equivalence holds in general.

: To summarize the result obtained in this section, Wwe have shown that it is

-- possible to factorize a N dimensional probability density function into a I

| dimensional marginal and a (N-I+l) dimensional conditional probability density

| function. The explicit dimensionality of the product{eq. 2.2) is either I or (N-

“ 1+1), which ever is greater. The savings in the storage requirement can

therefore be quite significant.

~- 3.8 Estimation of Probability Density |

. |

| In the previous section we have obtained the conditions for the

decomposition which requires the estimation of three different functions:

| 1) the marginal density p(x ,x ,...x ), |
“- 1 2 [ | .

2) the degenerate density dix ,x ,..,x }, |

i | g |
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oo and 3) the conditional density pix ,..x | dix ,x ,..x )).
+1 n 1 2 i

Further we require that the training algorithm to be used for the

“ estimation be iterative so as to admit one sample at a time. The non-parametric

method of density estimation which uses superposed potential functions appears |

to be the best candidate which satisfies all these conditions. In its most

general form, the density is estimated by the summation

M

| p (X}) = 1/M x SIGMA psi (X,X ) - [3.1]
M m=1 m

L. where X is a random vector variable, X is the m sample, M the total number of
m | |

| samples available and psi is any one of the admissible potential or kernel

functions. Parzenl4] has obtained the conditions on psi under which 3.1 becomes

L - a valid probability density in one dimension. Murthyl(S] has generalized theseg

| conditions for N dimensions. A concise description of various admissible forms
| of psi and the related conditions may be found in Andreus[B], Sec. 4.3.

We shall use the Gaussian kernel |
_ |

2 -=N/2 t 2
: psi (X,X) = Zn a ) x expl(-[X-X 1 %[X-X 1 / 2a)

m m nm

i = "K x exp(.) |

| |
which was first proposed by Sebestyen(7] and also used later by Specht[8] to |

obtain trainable polynomial discriminant functions. The attractive property of .

this kernel is that the constant o may be chosen so as to produce required |

smoothness in the generated density. Small values of « cause each sample to

18



| | stand out in the summation 3.1, whereas larger values of « give a smoother

sur face. The iterative form of the summation using the Gaussian kernel is

simply,

\

| p(X) = (M-1}/1 x p (X) + K/M x exp(.)
M M-1

The marginal densities can use this form directly. The degenerate

‘ densities become |

3 d {x ,x ,..x) =p (x ,x_,.ex ,x =8,...,x =8)
Mm 1 2 | Mm 1 2 boi+] n

C The estimation of the density which is conditional to the degenerate is
clearly a second level process, in the sense that it presumes a stabilized,

5 consistent degenerate estimate. [t also implies that we need to estimate a

K density of the form p{x ,..x ) for every possible value the degenerate may
L ; |

take. It appears therefore that evaluation of the conditional factor in the
f

| _ continuous domain is infeasible. Thus we must quantize the range of values of

the degenerate generated by the training process at the first level and then |

L | obtain the conditional densities for each of these values at the second level.

3.1 Pragmatic Considerations

l The preceding discussion may give an impression that the fact that ue have

] achieved a decomposition which leads to a simpler estimation problem (as a

|
| 11



reduction in dimensionality) is largly illusiory., Reason being that the

estimation of the conditionals hides an inherently higher dimensional problem.

The argument is certainly valid in continuous domain. However every practical

9 problem involves a discretization at some stage. At best it would be based on
the signal to noise ratioin the measurement and at the worst a more crude

quantization dictated by available resources. Now, our claim is that the method

_ outlined first simplifies the problem by decomposition and then gives you a
control over the error which will be propogated to the higher level: merely by

quantization of the degenerate to a required accuracy. In the next section where

the signature table method of estimating the density is described, we outline

" possible modes that can be used to quantize the degenerate. These modes of

quantization appear reasonable for the problem at hand, namely multicategory

pattern recognition.

. | |

4,0 Estimation Using Signature Tables

. A signature table assumes explicit quantization (not necessarily uni form)
of the inputs. There is a unique entry or a signature-type in a table for all

the possible combinations generated by quantized inputs. Therefore any function

which is to be evaluated by a table is knoun only at those points.

First consider the estimationof a marginal probability density for say, 3

variables. Using the terative formulation 3.4, |

p (x ,x , x) = (M-1)/M xp (x ,x , x) + K/M x
“ M 1 2 3 M-1 1 2 3 |

m 2 m 2 m2 2

i expi-[{x =x ) +(x =x) +(x -x ) 1/2 }
1 1 2 2 3 3

= | 12

. |



: 2 -3/2 mom om th

Co where K=(2na ) for N=3 and (x ,x ,x) is them training sample. Nou
| 1 2 3

ijk |

consider an arbitrary table entry (x ,x ,x). The factor (M-1/M) which
1 2 3

“ normalizes the accumulated density with M-1 samples can be neglected even for

| - th |
moderate values of [1. Thus the new density after M sample is obtained by

C adding the increment |
| m2] m2 k m2 Z |

K/M x expl-[({x -x } +{x -x ) +(x -x } 1/2« } 4.1] |
| 1 1 2 2 3 3

| to the count stored for this entry. Apparently the above increment must be
-

L - computed and added for each entry in the table. However since the Gaussian

i kernel decays exponentially the number of table entries for which the increment
is significant can be small. The entry for which the increment is maximum is

| | given by
| oom jm K m .

minx -x |,min]x -x |,min|x -x |}
| 1 1 2 2 3 3

where i,j and k are varied over the respective range of quantization. Other

- entries for which the increment might be significant are the neighboring

- entries. Thus the search for the entries which must be modified is

- straightforward.

: Estimation of the degenerate density is done in analogous manner. The

| 13
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| degenerate variables are set to Zero or other more convenient constant and Jo

| not figure in location of an entry. Thus if x were a degenerate in the previous
~

»

N I
example then the increment for entry (x ,x ) would be

| | | 1 2

ms 2 i m2 j m2 2
K/M x expli-({x) 72a} x expi{-l{x -x ) +(x -x } 1/2a } [4.2]

3 1 1 2 2

and the degenerate contribution factor would be same for all the entries.

In the foregoing analysis we have assumed that all the variables are

« continuous. However if some variables are inherently discrete or can be
reasonably assumed to be so, then the computational requirements may be reduced

| considerably. The difference terms in the exponential factor become zero for the |

discrete variables. [If all the variable are discrete then the maximum increment

L

. becomes K/M, and the increments for the immediate neighbors may be obtained by

efficient table look up procedures.

| The third type of density to be estimated, the conditional has a general

C
form (dropping the indices used in the decomposition) -

pix ,x .. | dly,y.. JN}.
1 2 1 2

C Assume that previous training gives consistent estimates of dy ,y ..) and ue1 2

| have "suitably" quantized the range of d into 0 intervals. Thus the value of Q

is also stable and consistent. Now the required conditional density is obtained

{ by a set of Q second level tables. Each table in effect estimates a separate

marginal density function, or

L
| 14
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1 | oo

p (x ,x ,x ,.0.}j) oo ij=1to Q,

| m1 2 3

| | where the j merely acts as a switch to choose one of the U0 second level tables. |

: 4,1 Quantization of the Degenerate Density

Appropriate guantization of the degenerate density turns out to be the

focal issue in this approach. The degree of quantization determines the trade-

- off between savings in storageland computation) against the required accuracy. |

At the risk of being repetitious we may say that if the degenerate is not |
: quantized at all then the storage required is same as for a large, single, one

] oo level table. Whereas fewer the intervals into which the degenerate is quantized,| more is thereduction in the storage. |

| | There are tuo possible approaches to the quantization problem. We may |

3 treat the estimation of a class conditional probability independently of other |
| classes or We may cross reference hetween classes at lower levels in the

| signature table hierarchy. First consider quantization of a degenerate

| | independently of other classes. Also assume that we are resource bound and the
ro

| number of intervals into which it must be divided (Q) is prespecified.

| Division of the degenerate range in 0 equal intervals may be ruled out.
This would mean that intervals reflecting lower density would have very feu

samples at the next level. Q intervals spaced equally over logarithm of the

degenerate will give more equitable distribution of samples at the next level.

. |
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= Though this would not be optimal if the underlying multivariate density does not
a have some exponential form, or if it is multimodal.

The quantization may be made dependent upon the data accumulated in the

| table itself. Each interval is chosen such that the integral of the associated

~ marginal density over that interval is 1/0. Computationally this involves 1) |

| ordering the accumulated degenerate values and 2) summing up the corresponding |
marginal values until the sum equals 1/0 of the total and placing the interval

C boundary at this point. The process is time consuming as it requires sorting

~ thedegenerate values in a table. However this quantization need only be done

after sufficiently large number of samples have been processedso as to give

L stable quantization boundaries. This method of degenerate quantization was used

| for the recognition experiment repor ted in the next section.
L The quantization may be made error bound if Q is not prespecified. It

3 would also involve a sort of the degenerate values. The interval boundaries may

- then be located such that every degenerate value is within the specified error |
| from the nearest boundary. | |
| The quantization methods discussed so far attempt to get the best possible

L multivariate density estimate for a single class. With simul taneous quantization

| of the appropriate degenerates of all the class categories to be recognized, it
~ may be possible to minimize the misclassification rate and also minimize the

storage requirement. | | |

i ~~ First consider a simple case with only two classes. The quantization |

| boundaries should be placed at a value where the two degenerate functions are

equal. The approximate boundry location may be found by comparing the ordered
|

| 16



sets of degenerate values. Clearly, the misclassification rate is given by the

| sum of all the marginal densities for which the the degenerates are below this
value. The exact boundry value may then be chosen so as to minimize these sums.

| The implication of following such a procedure in a tuo class situation is that

N we have located the optimum discriminant boundry, and 1 bit quantization (Q=2)

of the degenerate is sufficient. |

| | In a multi-category situation a similar procedure involves simul taneous

C location of the discriminant boundaries between all the possible pairs of class

| categories so as to minimize the overall misclassification rate. A sub-optimal

] | approach is possible which avoides the minimization problem. For a given class

9 locate all the cross-over points where the degenerates of all other classes are
| nearly equal the degenerate of this class and provide a quantization with |

| maximum resolution in the cross-over range.
r This approach to quantization with cross reference between the classes to

L "be recognized, would certainly produce near optimal results. However it would
tend to be highly sensitive to the stationarity of the underlying probability

i distributions. One bad category whose probability distribution changes with time

could drastically alter the overall performance of the system. However if each

| | class conditional probability density is obtained independently of the other

classes, then a drifting category would affect only the nearby categories and

could easily be identified. |

5. Experiments |

| Experiments in vowel recognition illustrate the application of the |

| signature table method of probability density estimation discussed above. The

17
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data used for the experiments is derived from 51 words spoken by one speaker.

Vowel data extracted from 26 words is used for training the tables. Data derived

¢ from the remaining 25 wordsis used for recognition.
| The speech is digitized with a sampling rate of 28 kHz and 12-bit

quantization. Frequency domain representation of the speech is obtained by
- taking £56 sample FFT(12.8 msec.) uith 128 sample overlap between successive |

FFTs. A set of 18 parameters, such as three major peaks in specified frequency

ranges and their corresponding amplitudes, energies average) in certain

LC frequency regions etc., are obtained by measurements on each FFT. However, in

the following limited experiments we have used only the three vouel formants and

- their amplitudes, since these six parameters are known to be significant for

4 vowel perception.
| Each parameter measurement is scaled and quantized to a B-bit value in the
| | first instance. For more details of the parameterization, the reader is refered
: to [2]. Every parameter vector, one every 6.4 msec. of speech, is given an

L appropriate tag according to the vowel category to which it belongs. This
labeling is done by visual inspection of the speech waveform. The mnemonics that

- have been used to identify the12 vowel categories are given in Table 1.

Three types of analysis are performed to give a comparative evaluation of |

the signature table method. |

| 1} A nearest-neighbor analysis [3] is done using the full B-bit range of
the six parameters. The results of this analysis serve as a guide for the

18



5 interpretation of other results and also give a feel for the inherent overlap in

3 the data. |

2) The six parameters are assumed to be independent of each other. The

| quantization is reduced from b-bits to 3-bits and a single input signature table

2 is used to find the class conditional probability for a parameter for each
| category. Thus, this me thod requires /2 tables each having 8 entries, a total

storage of 576 words. The six dimensional joint probability for a category is

obtained as the product of the six individual probabilities. |

| | 3) The probability density estimation method outlined in this report gives |
the third set of results. The imp ementat ion details and the approximations used

-. | therein, are given in the next section.

| G.1 Implementation Details

| | The block schematic of the five level signature table arrangement ‘used to

« | generate the required 6 variable density is shown in Fig.3. All the inputs are

: | quantized to 3 bits. The size of each table is thus b4 wor ds, The total storage |
: required is therefore 5%B4%12, or 3348 words.

. Since all the inputs are discrete, the exponential factor in the |
| y evaluation of a marginal density (eq. 4.1) becomes 1. The multiplicative factor

| K/M ensures convergence of the estimate for large values of M. But it also has

| the effect of weighing down the the samples which come later in the training

i gsequence.Since the maximum number of training samples for a category in the |

| 13



| present experiment was only 86, all the samples were given equal weight.
| Therefore the increment used to to generate the marginal density is 1.

The evaluation of a degenerate increment involves an exponential

| factor (eq. 4.2). For example, the first table in Fig.3 has four degenerate
a inputs. Therefore this factor would be

| 2 2 2 2 2
exp(- (Al +A2 +F1 +F2 )/2%a )

C The quantization methods discussed in Sec. 4.1 show that the absolute

value of the degenerate is unimportant so long as the relative ordering of the

] entries within a table is maintained. The exponential may therefore be

C approximated by using only the first term in the expansion for each input, i.e. |
2 2 2 2

| (1.-{AL/7) )x{1.-(A2/7) }x(1.-(F1/7) Yx(1.-(F2/7) ).
| Also the contribution of a training sample to its neighbors is assumed to

1 be negligible as the quantization itself is rather gross. The factor «, Which
| determines the smoothness of the distribution is also neglected.

] | Now consider how the six term conditional probability is obtained using
. the various marginal densities computed by the lower level tables in Fig.3. In

. the factorization | |

p(F1,FZ,F3,A1,A2,A3) = plF2| d(F1,F3,Al,A2,A3}xp (F1,F3,Al,A2,A3)

the first factor on the r.h.s. is given by the marginal output of Table 5. The

| second factor is the five term marginal output of the Table 4, which in turn has

been obtained using a similar factorization. The configuration given in Fig.3 is

repeated for all the 12 categories.

| As the total number of training samples, 738, is rather small and each

20
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2 level in the table hierarchy must be some what stable before meaningful training

of the next higher level can be done, the same data is used in five passes over

| the set of tables. After each pass the next higher level tables are enabled, so

that accumulation of counts in appropriate entries can be started. |

| 5.2 Results |

Exactiy the same data as used for the training is used for the

‘. classification experiment. The objective is to determine the error introduced by

| | the gross quantization and the hierarchic organization of the signature tables.
) | Clearly, the nearest-neighbor procedure would give 188% correct classification.

C Therefore, scatter matrix shown in Table 2 is produced by finding the sample

| vector which is closest without giving an exact match. The overall correct |
. figure of 65.3% indicates that on the average 34% of the training samples have a _

L | neighbor of a different kind. The classification result using the the present
L | method (74.3%, Table 3) shows that even with 3-bit quantization, the probability

| estimate does improve the classification. As expected, the results obtained when
. independence is assumed are poorer (58.1%, Table 4). The vouels which are weakly |

B | articulated (AS,I,A,U) have more variability in the data and tend to get swamped |
by the stronger vouels. |

| The recognition results obtained with unknown samples which have been
, extracted from 25 words, are given in Tables 5,6 and 7. The reader is probably

1 |



\ appalled by the low overall recognition rates. This "bad" example has been
chosen with a purpose. None of the vowels used in the training set occur in

exactly the same phonemic context as in the recognition set. Because of the high

] context sensitivity of some of the vowels, in particular AS,I,A,AR and U, most |

- of the unknown samples tend to fall in the empty space between the "learned"
categories. The result of the nearest-neighbor analysis is 34.6% (Table 5)

compared With the signature table method result of 32.94 (Table 8). The |

~ signature tables thus have a comparable performance , even with 3-bit

oo quantization. The apparently superior oer formance obtained when independence |
between the inputs is assumed (36.1%), is at the expense of the weaker

.-. categories as seen in Table 7,

However, to get back to the main purpose of choosing this particular |

example, the signature table method allows us to defer making a decision until a

\ Wider context has been analyzed. A compound decision can then be made using this

contextual information. [If one is allowed to consider the second choices in the

above example, even when no context is taken into account, the recognition score

q increases to 48.8%, a rise of 16% as shown in Table 8. |

: It is also obvious that the context sensitivity in this data set is some

what contrived, 1) by rather arbitrary division of the list of 51 words into two

C sets, and 2) by using only 738 samples for training against the 465 used in
recognition. Clearly, in actual usage the training set would have an order of

| magni tude more samples and also those would be derived from a more

C representative context.

22
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 - 6. Conclusions |

| | We have shoun that it is possible to decompose a higher dimensional
5 probability density function into two factors whose dimensional ity is less than

| | | the original function. The decomposition is iterative and hence the

dimensionality of the functions which are actually evaluated can reduced to any

C desired order. However the errors are propogated in each iteration and savings

| instorage accrued must be balanced against the desired accuracy. |

R The signature table method of training is shoun to be effective for the

C estimation of the various probability density functions uhich arise as the

| result of the decomposition. The signature table method 1) does not require

assumptions regarding the underlying probability distribution, 2) allows

| sequential introduction of the training samples, and 3) is very efficient: the

L | "~ estimation process reduces to simple counting when the input variables are

| discrete. | |
B The disadvantages of the method are1) the errors tend to propagate from
| one level to the next in the table hierarchy and, 2) the number of training

samples required grows in proportion to the number of levels, so as to ensure

i overall convergence of the final estimate, | |
. The first set of classification experiments show that even with possibly

. the worst decomposition, where a six dimensional density is decomposed into 5

' levels with 2 inputs each, and with a reduced 3-bit quantization, the signature

- table method has a better performance than the corresponding nearest-neighbor

| and independence-assumption experiments.
]

23
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| The second set of recognition experiments is some what artificially

| contrived to highlight the application of this method to speech recognition and

other similar applications where high degree of context sensitivity makes it

imperative to have some confidence estimate of the purely local decision. A

compound decision can then be made using these local estimates. Ofcourse, the

| basic assumption here is that the combinetorics of the problem rule out a

compound decision which is based on the basic feature measurements over all of

~ the desired context. |

-

|

. |

\ | | | |
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| | |
|

| Table 1 |
F1---] 512

\ | entries |
|| P("V"| F1,F2,F3) = p/ (p+q) --1r] |

. F2--s{ pl gq | r |-—---
[ET | av |

| | |
F3--n| | IE.

C |
| |] | Table 3 | |

| | 64 |
q ----+| entries |

| |

| | A |
~ I mms] | | |

| | | | |

| | Table 2 | | | |Al--5| 512 fb
| entries |

' |
L A2--5] | ===

)
|

| A3--=] | | |
. | | |

| |

| Fig.l A Simplified Example of a Two-level Signature Table
Arrangement Used in the Speech Recognition Program [2].
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x CLASS

Co |

| | |
V

| |
| Table 2 | |

| MEETS
. CLASS lp la |r |

| | | 2121 2]
| | ==mmmmmee
Vv E' ===] |

| Table 1 | | |
C ANEEESY |= mmm |---» P(A*,B’,C’,D’,E’CLASS) =

| | | £{(A,B,C)= |
| |_| [lg l-alr] || {lp 1/SUMIp 11xP (A’,B’,C" |CLASS)
y B'--->ip fa |r | 1 1 2 2

| 1 1] | |
C’—eus] |---- P{A’,B’,C’ |[CLASS)=[p 1/S5UMIp ]C

1 1 |

bo | |
|

L

h | Fig.2. A Simplified Tuo-level Signature Table Arrangement |
Specific values of of the inputs say, A’,B’ and C’, when concatenated form

| an address which points to the entry shown. During training if CLASS is

1 indicated for this input then the column [p } is incremented by 1 and column1

lg ] is incremented by the function f. The table outputs in column [r } are

~ | obtained by quantization of the values in [g 1. The probability calculation
X | 1

. per formed during the recognition phase is as shown in the figure.
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“Oo "0" | "Oo" "Oo" "on

| | | | | |
| Vb RE Ra _V_ 2

| | a. | ||
. I EdI EdBE EEEt] EERE EEEY I

C | | || | | |
F3--2] | | | | |
| || | | |

A3---| | | | EEE | |
| | | | || |

Al==>| | Al--s] | | | BE an
- | | | | || |

| | | 10 |
Fl==>| | Fl==>| | Fle=>| | Fl--s| | |

~ | I || | |
F2==>]| | F2==>]| | F2==>] | F2==>] | F2---| | |

; | || |__| || |_|

Fig.3 A Six-input, Five-level Signature Table Arrangement

| Used in the Experiments. A ==> Indicates a Degenerate Input.
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| EE : beet AE : bat E : bait I : bit |
AS : a.but AA : bar AR : bird A : but“

AW : bought 00 : boot 0 : boat U : book |
Table 1. Vowel Mnemonics Used in the Experiments

C

he .

| 28 |



Given |

X EEAEE 1 ASAAAR ADDU O
| F EE 68 2 1 5 1 18 5 3

o AE 362 6 4 1
u E 3 552 7 2 1 1 2
n | 5 2 231 2 5 6
d AS 2 2 321 11 3 4 4 5 |

AA 4 121 4 6 |
~ AR 3 4 B 1 8508 5 4 §S | |

A 1 1 1 543 4 3 3
00 1 3 1 25 2 2 |
U 2 1 8 2 3 3 6 228 6
0 2 6 1 7 3 2 857

“ Total 84 75 B6 67 38 35 8 74 68 67 78

%Found 71 83 79 48 55 B@ 58 66 82 42 73

| Overall correct 65.38 % -

C | Table 2. Classification Result of Nearest-Neighbor Analysis

| Given

| ) EE AE E I ASAAAR ACO U O |
| F EE 51 1 1 1 1

o AE 454 3 3 1 1
u Ek 6B 153 2 1 5 1 2

| | n 1 4 7 4 4b | |
\ d AS 4 1 2 3729 7 2 7 5

| AA 3 5 2 4 33 6 6b 4
| AR 1 1 45 1 1 1 | |
| A 2 1 5 53 1 2

00 5 1 4 1 5 66 2
U 2 2 1 2 3 44 2 | |

. 0 2 4 2 12 3 5 68 |

| Total 84 75 66 67 38 35 86 74 68 67 78

%Found 61 72 88 69 76 94 52 88 37 6b 87 |

« Overall correct 74.26 % |

| Table 3. Classification Result Using Signature Tables

29
C

.



Given | |

| EEAEE 1 ASAAAR AO0U O

- F EE 59 4 6412 4 8 1 2 4 3 |
co AE 76311 8 1 1

u E 4 45 4 4 b 2

n 1 1 1 225 7 1 8 1 |

| d AA 2
AR 18 3 3 9121766811 & 8 9

. A 2 1 1 1 238 2 1 1 |

00 2 2 11852 3

U 1 61 2 1 224 3

0 3 9 4 911 18 64

| Total 84 75 66 67 38 35 86 74 68 67 78 | |
\_ R

%Found 68 84 B68 37 8 6 77 51 76 36 82

: | Overall correct 58.13 % | | | |

Table 4. Classification Result with Independence Assumption |

Given

- EE AE E | AS AAAR AW O

F EE 42 3 7 16 18 18 1

| o AE 2161421 68 1 3 2
| u E 3 71617 16 1

n 1 3 813 1 115 |

C d AS 2 3 3 6 718 8 |

AA 3 3 91 3 3

AR 4 2 9 4 427 1 8 |

A 2 1 2 3 8

00 4 1

| U 2 13 4 3 1 4 5
Al

0 8 1 2 32

Total B65 23 61 75 43 43 71 18 66

Found B65 78 26 17 14 21 38 8B 48

. Overall correct 34.62 % |

Table 5. Recognition Result of Nearest-Neighbor Analysis

| 39
«

.



Given |

EE AE E 1 AS AA AR AW 0
oo F EE 31 1 4 3 1

o AE 5 9 716 5 § 3
| u E 3 42812 2 9

| n 8 212 8 1 1 8 3
d AS 2 411 24 14 5 29 8

AA 3 1 2 2 423 1 9 9

- AR 11 2 7 4 |A 2 1 2 2 2 4 |
a 00 6 4 1 9
| U 1 2 1 51 4 15 |

0 4 1 2 8 1 533

. Total 65 23 B81 75 43 43 7] 18 B66

- %Found 48 39 46 11 33 53 1p g 50 ] || | Overall correct 32.9 ¢
C | Table 6. Recognition Result Using Signature Tables |

L

\ ] Given

EE AE E | AS AA AR AW ©
| F BE 33 1 714 3111 § 7

| © AE 7211629 5 5 1 1
u LE 1 12315 7 3 ¢
n 1 3 718 3 119
d AR 14 8 4 92132 515 |

~ A 1 2 )
00 1 1 4
U 2 8 1 7 1

. 0 7 5 43

Total B5 23 61 75 43 43 71 18 65

| %Found 68 81 38 13 8 g 45 8 65
Overall correct 36.13 % |

Table 7. Recognition Result With Independence Assumption

31 | |



- | Given

EE AE E I AS AA AR AW O

F EE 39 3 1 1 4

o AE 417 7 7 > 3 5 ¢g

u E 13 8 2 2 4 3
n I 4 1 B21 1 2 4 1

} d AS 8 2 61724 161 1 | |
| AA 11 3 2293 6 2
- AR 2 52 17 3

A 2 332 31 4

: 00 2 4 1 2 9
u 2 6 2 3 2 3 2

| 0 1 1 1 2 5 1 8 145 |

. Total 65 23 61 75 43 43 71 18 66 oo

|  %Found 68 74 57 28 56 67 24 @ 68 |

| | Overall correct 48.82 % ” |

C Table 8. Recognition Result with Second Choice Considered

. .

.
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Fo Figure and Table Captions.

: g 1] Fig.l] A Simplified Example of a Two-level Signature Table

3 Arrangement Used in the Speech Recognition Program [2],

: 2] Fig.2 A Simplified Tuo-level Signature Table Arrangement.

3 Specific values of the inputs say, A’,B' and C’, when concatenated form an

address which points to the entry shown. During training if CLASS is indicated

| for this input then the column Ip] is incremented byl and column [Iq] is

incremented by the function f. The table outputs in column [r ] are obtained by

EL quantization of the values in [g 1. The probability calculation performed during
;

| the recognition phase is as shown in the figure,

bo | 3] Fig.3 A Six-input, Five-level Signature Table Arrangement Used in

the Experiments. A ==> indicates a Degenerate Input.
FN

= } 4] Table 1. Vowel Mnemonics Used in the Experiments.

5] Table 2. Classification Result of Nearest-Neighbor Analysis.

= Bl] Table 3. Classification Result Using Signature Tables. |

- 7] Table 4. Classification Result with Independence Assumption.

| 8] Table 5. Recognition Result of Nearest-Neighbor Analysis.

9] Table 6. Recognition Result Using Signature Tables.

“ : :

191] Table 7. Recognition Result with Independence Assumption.

B 11] Table 8. Recognition Result with Second Choice Considered.
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