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L - ABSTRACT: Signature table training method consists of cumulative
evaluation of a function (such as a probability density)

L_ at pre-assigned co-ordinate values of input parameters to

\ the table. The training is conditional: based on a binary
valued "learning” input to a table which is compared to the
label attached to each training sampie. Interpretation of

L' an unknoun sample vector is then equivalent of a table look-
up, i.e. extraction of the function value stored at the

proper co-ordinates. Such a technique is very useful when

a large number of samples must be interpreted as in the case

of samples must be interpreted as in the case of speech

recognition and the time required for the training as well

as for the recognition is at a premium.

However this method is limited by prohibitibe storage

- requirements, even for a moderate number of parameters, uwhen

their relative independence cannot be assumed. This report

investigates the conditions under uhich the higher dimensional

probability densttg function can be decomposed so that the

density estimate is obtained by a hierarchy of signature tables

, . - with consequent reduction in the storage requirement.

Practical utility of the theoretical results obtained in the
report is demonstrated by a vowel recognition experiment.
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1. Introduction

Signature table training has been described by Samuel [l] where it is used
in a program which plays the game of checkers. The input to the tables are
parameters which evaluate specific aspectes of a board situatidn. The output
from the table hierarchy is a number which represents in a sense, "figure of
merit" for the board. This board evaluation is then used in the search for the
best possible move.

The signature table scheme has been extended and modified to adapt it for
use in speech recognition(2]. The tables are used to compute the postiriori
probability of a specific sound feature such as voicing, a front vowel etc. or a
sound class such as a phonemic category, being present. These probabilities are
used for classification of the sound in Bayesian sense (the actual
implementation makes a compound decision using local context). However this
scheme makes several implicit, simplifying assumptions with regards to mutual
independence betueen sets of input parameters. This report describes a methdd of
probability density estimation using signature tables uhich does not require
independent set of parameters and still requires storage of the same order.

The concept of signature tables is best illustrated by a simplified table
arrangement (Fig.1) similar to the one used in the speech recognition program(2].
The two-level arrangement has six inputs. the Fi’s represent the frequencies of
amplitude maxima(formants) in the vowel spectrum and the Ai’s are their
corresponding amplitudes. The parameters are divided into two sets as inputs to

the two first level tables. The outputs from the first level tables are used as
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inputs to the second level table. The input marked "V" is a 1-bit learning
input and indicates whether the vowel "V" is the tag attached to the current
sample vector or it is not.

The inputs are quantized into adequate range of values, 8 in this case. A
signature table has an entry for every possible combination of inputs. Thus the
size of first level tables is 512. Each entry (one computer word) is divided
into three fields. The field [p]l is incremented by 1 if "V" is indicated
otheruise field [g] is incremented. The output of each entry is computed as:

POV | F1,F2,F3) = p/ (p+q) [1.1]
which directly gives the postiriori probability of the class "V" for the
specific entry shoun in Fig.l. This value is also quantized to a prespecified
accuracy, say 3-bits, and is stored in the output field [rl. The second level

table processes its input in a like manner. Thus the output of the second level

table is the probability

P("V"| P(F1,F2,F3),P(Al,A2,A3)) (1.2]
whereas the probability we require is
P("V"| F1,F2,F3,A1,A2,A3) (1.3]

Thus while any one table generates the required form of probability
densityleq. 1.1}, the two level arrangement generates 1.2, which is equivalent
to 1.3 only éf the parameters in thé sets (F1,F2,F3) and (Al,A2,A3) are mutually
independent.

The main objective of this report is to investigate the conditions under

which the decomposition of a multidimensional function into two or more factors

]
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is valid so that a hierarchy of tables as shoun in the above example still
generate a true higher dimensional probability density as in the equation 1.3
uhile mostly retaining all the advantages of the signature table method.

The three advantages that emerge from this method of training as it has
been used in the past are as follous:

1)Essentially arbitrary inter-relationships between the inputs are taken
into account by any one table. The only loss of accuracy is in the quantization.

2)The training is a simple process of accumulating counts.The training
samples are introduced sequentially, ahd hence simul taneous storage of all the
samples is not required.

3)The process linearizes the storage requirements. The examplie shown

{3%6)
requires 2x512+64, 1088 entries instead of 2 , 256 K entries, were the

entire space to be represented.

Before investigating the conditions under which the decomposition of a
multidimensional space is valid it will simplify the explanation if ue’first
consider a specific example in qualitative terms only.

Consider the simple table arrangement as shown in Fig.2 where we uish to
take account of 5 input parameters, each requiring say, 3 bits for its

15
specification. Were we to do all _this in one table it would require 2 or

32,768 entries, instead of the 1824 entries required for the tuwo level
arrangement shown, when the output from Table 1 is also quantized to 3 bits.
What we require as the output from the first level table is some function which

represents the contribution made by the inputs to the first table so that the



output from the second tablie truely represents the conditional probability that

CLASS has been represented by the specific values of the inputs. Thus, in order
to utilize the Bayesian decision rule we want to determine
P{CLASS|A,B,C,0,E)
where A B C D and E represent the input parameters. It is easier to determine
the inverse probability during the training phase in accordance with the rule
P(CLASS|A,B,C,0,E) = P(A,B,C,D,E|CLASS) % P{CLASS) / P(A,B,C,D,E}.
Thé divisor on the right hand side appears as a common factor in the conditional
probabilities for all the classes and hence need not be taken into account.
P(CLASS), the apriori of a class may either be knowun for the recognition problem
under consideration, or it can be estimated from the sample set used during the
training. The remaining factor P(A,B,C,D,E|CLASS) is to be determined using the
signature table arrangement shoun in Fig.2,
Consider the expansion
P(A,B,C,0,E|CLASS) = P(D,E|A,B,C,CLASS) . P(A,B,C|CLASS)
the second factor on r.,h.s., the marginél probability is independent of the
other inputs and hence given directly by the counts accumulated in first table
(field [p] Fig.2) with appropriate normalization by the the total counts in the
table. HWe nou focus our attention on the first factor, the conditional
probability P(D,E|A,B,C,CLASS) computed by the second table. We observe that the
input marked f(A,B.C) partitions this table into sections. In the expanded case
where Table 2 has one such section for every entry in Table 1, there would have
been enough of such sections to allou for every combination of values assignable

to A,B and C. However we are not finally interested in which particular paints



in (A,B,C,0,E) space are associated with each region {in the situation where the
variables are continuous, each region would be an equiprobable surface), but
only the value of the probability. Therefore we need only allow enough space to
represent these values to the desired accuracy(3 bits in this example). Thus the
outputs stored in the first level table (field [r]) correspond to those entries
which must be grouped together and have identical value. In effect what we are
doing is to reduce the dimensionality of the space represented by the second
table by 2 (i.e. from {A,B,C,0,E} to {D,E,f(A,B,C}}) by grouping together those
points in (A,B,C) space which give the same overall probability in (A,B,C,D,E)
space.

There is apparent circularity in this argument, that is we must know the
overall probability - which we are ultimately trying to find - in order to
accomplish the grouping in the lower dimensional space. Houever we shall prove
in later section that there exists a mapping f(A,B,C|CLASS) of the function
P(A,B,C,D,E|CLASS) uhich achieves the desired grouping.

In a manner similar to the one used to obtain marginal probabilities, the
function f(A,B,C|CLASS) is accumulated iteratively in field [q) in each table
entry. The values in the fields [q] are then quantized to a desired accuracy and
stored in the output field [r] of each entry.

So far we have dealt exclusively with the process of training, how the
data is entered into the tables. Interpretation of an wunknown samplie or
evaluation of it's class conditional probability may be explained with reference
to Fig.2. Suppose that the unknown input is (A’,8',C",D',E’). The marginal

density is given by



P(A*,B",C"|CLASS) = [p ] / SIGMA [p )
1 1

and the conditional probability is given by the second table as

P@O',E"|lr 1,CLASS) = [p ] / SIGMA [p ].
1 2 2

The required probability is then obtained as the product of these two factors.

The above highly simplified example also indicates an important property
of the signature table method. During both the training and interpretive phases
a table derives all the necessary information from the outputs of it’s immediate
predecessors. This fact can greatly simplify the programs required for the
construction and the execution of complicated signature table networks. For more
details of the programs and for more general speech specific aspects of the
signature table usage, the reader is refered to Samuel [3].

In the next section we obtain the conditions under which the decomposi tion
of a higher dimensional probability density function into a product of two |ower
dimensional functions is vélid. In the following section we outline a method of
estimation of marginal and conditional probability densities which occur in the
decomposition. The signature table is shoun to be an approximation of this
method of density estimation. The last section describes results of experiments
performed using a rather small set of training samples. The objective is to
demonstrate the feasibility of this ﬁethod, rather than obtain statistically
valid error bounds, were this technique used for probability density estimation

per se, rather than for a classification or a recognition task.
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2.9 Decomposition of Probability Density Functions

The simplified example given in the previous section made an implicit
assumption that the random variables were discrete, each with 8 distinct states

representable by 3 bits. It is more illuminating however to obtain the
conditions for decomposifion in the continuous domain. The discrete situation

may then be treated as a special case.

Let x ,x ,.. ,x be N continuous, non-independent random variables. Let
1 2 n

plx ,x ,..,x |C) define a class conditional probability density function which
1 2 n

N
is continuous everywhere in R  space. The objective is to factorize this

function such that each factor represents a function whose dimensionality is

less than N. Write

. p(x g X geeX 40X IC) = p(x yeeX ' X 4 X so e X ’C]op(x yee X ,C) [201]
1 2 i n i+l n 1 2 i 1 i

also let =plx  ,o.x | fix ,..x),Cl.plx ,..x ,C) [2.2]

i+l n 1 i 1 i
Consider the factorization in eguation 2.1. The second factor, the
marginal density has a dimensionality I which is less than N. But the first
factor, although a conditional, has implicit dimensionality of N. In equation

2.2 we have grouped together the conditioning variables (x ,..x ) by as yet
1 .

i
undefined functional f, to give a mapping of | dimensions to 1. So the
dimensionality of this factor is essentially (N-I+1).

Now define




Flx ox youx ) o= pix ox (oux o x =8, x =3} )
1 2 i 1 2 i+l n

or for notational convenience,

= di{x ,x ,..x |C) [2.3)
1 2 i

called the degenerate probability density function with the variables x
i+l

through x set to zero, or any other convenient, arbitrary set of constants.
N

With this definition of the function f we-shall show that equations 2.1 and 2.2
are equivalent.

N
Consider a partition in the R space generated by setting

plx ,x ,...x | C) =K where B<K<l [2.4]
1 2 n

and denote the set of all solution vectors uhich satisfy 2.4 by S (X ) where X
N N N

is a N-vector. Also let

dix ,x ,...x |C) =K
1 2 i

and denote the solution set of this equation by S (X ). Clearly from the
I 1

definition of the degenerate function 2.3,

for any (X ¢S ) o> (IX=X1¢8§S) [2.5]
I I I N N

With the proviso that only the first [ terms in the vectors X and X need
l N

match,
Now consider within this partition ({defined by 2.4), the factor which

determines conditional density in equation 2.2, namely,



p(x yeex | dlx ,..x 3,C) = plx  ,..x | (X €S5),0)
i+l n 1 i i+l n | I

p (x yeox | X e §,0) from 2.5
i+l n N N

plx ,eox | x yx +.x ,C)
i+1 n 1 2 i

Since other terms in the equations 2.1 and 2.2 are identical and the
condition 2.5 holds true for the complete range of values K (in 2.4) may take,
the required equivalence holds in general.

To summarize the result obtained ih this section, we have shoun that it is
possible to factorize a N dimensional probability density function into a l
dimensional marginal and a (N-I+l) dimensional conditional probability density
function. The explicit dimensionality of the product(eq. 2.2) is either I or (N-

1+1), which ever is greater. The savings in the storage requirement can

therefore be quite significant,

3.8 Estimation of Probability Density

In the previous section ue have obtained the conditions for the
decomposition which requires the estimation of three different functions:

1) the marginal density p{x ,x ,...x ),
1 2 i

2) the degenerate density d(x ,x ,..y% ),
1 2 i



and 3) the conditicnal density pix ,..x | d(x ,x ,..x }).
i+l n 1 2 i

Further we require that the training algorithm to be used for the
estimation be iterative so as to admit one sample at a time. The non-parametric
method of density estimation which uses superposed potential functions appears
to be the best candidate which satisfies all these conditions. In its most

general form, the density is estimated by the summation

M
p (X)) = 1/M % SIGMA psi(X,X ) - [3.11]
M m=1 m
th
where X is a random vector variable, X is the m sample, M the total number of

m
samples available and psi is any one of the admissible potential or kernel
functions. Parzenl4] has obtained the conditions on psi under which 3.1 becomes
a valid probability density in one dimension. MurthylS] has generalized these
conditions for N dimensions. A concise description of various admissible forms
of psi and the related conditions may be found in Andreus(6], Sec. &.3.
We shall use the Gaussian kernel
2 -N/2 t 2

psi (X,X ) 2na ) * expl(-[X-X 1 %xIX-X 1 / 2a )
m m m

[}

K x exp(.)

which was first proposed by Sebestyen(7] and also used later by Specht[8] to
obtain trainable polynomial discriminant functions. The attractive property of
this kernel is that the constant « may be chosen so as to produce required

smoothness in the generated density. Small values of « cause each sample to

18
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stand out in the summation 3.1, wuhereas larger values of o give a smoother
surface. The iterative form of the summation using the Gaussian kernel is
simply,
p X} = M-DI/Mxp (X)) + KM x expl.)
M M-1
The marginal densities can use this form directiy. The degenerate
densities become

d (x ,x ,oex ) =p (x ,x_,..%X ,x =B,...,x =0)

M1 2 i M1 2 PP+l n
The estimation of the density which is conditional to the degenerate is
clearly a second level process, in the sense that it presumes a stabilized,
consistent degenerate estimate. [t also implies that we need to estimate a

density of the form p{x ,..x ) for every possible value the degenerate may
i+l n

take. It appears therefore that evaluation of the conditional factor in the
continuous domain is infeasible. Thus we must quantize the range of values of
the degenerate generated by the training process at the first level and then

obtain the conditional densities for each of these values at the second level.

3.1 Pragmatic Considerations

The preceding discussion may give an impression that the fact that we have

achieved a decomposition which leads to a simpler estimation problem (as a

11




reduction in dimensionality) is largly illusiory. Reason being that the
estimation of the conditionals hides an inherently higher dimensional problem.
The argument is certainiy valid in continuous domain. However every practical
problem involves a discretization at some stage. At best it would be based on
the signal to noise ratio in the measurement and at the worst a more crude
quantization dictated by available resources. Now, our claim is that the method
outlined first simplifies the problem by decomposition and then gives you a
control over the error which will be propogated to the higher level: merely by
qQantization of the degenerate to a reguired accuracy. In the next section where
the signature table method of estimating the density is described, we outline
possible modes that can be used to quantize the degenerate. These modes of
quantization appear reasonable for the problem at hand, namely multicategory

pattern recognition.

4,9 Estimation Using Signature Tables

A signature table assumes explicit quantization (not necessarily uniform)
of the inputs. There is a unique entry or a signature-type in a table for all
the possible combinations generated by quantized inputs. Therefore any function
which is to be evaluated by a table is knoun only at those points.

First consider the estimation of a marginal probability density for say, 3
variables. Using the iterative formulation 3.4,

p (x ,x ,x) = (M-1}/Mxp (x,x,x) +KMx
M1 2 3 M-1 1 2 3

m 2 m 2 m2 2

expi-[{x =x ) +(x -x ) +{x -x ) 1/2u }
11 2 2 3 3

12
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2 -3/2 mom m th

where K=(2na ) for N=3 and (x ,x ,x ) is them training sample. Now
1 2 3

ij ok

consider an arbitrary table entry (x ,x ,x ). The factor (M-1/M) which
1 2 3

normalizes the accumulated density with M-1 samples can be neglected even for
- th

moderate values of M. Thus the new density after M sample is obtained by

adding the increment

im2 jp m2 k m2 2
K/M % expl-[{x -x ) +{x -x ) +{x -x ) 1/2a } (4.1}
11 2 2 3 3

to the count stored for this entry. Apparentiy the above increment must be

computed and added for each entry in the table. Houwever since the Gaussian

kernel decays exponentially the number of table entries for which the increment

is significant can be small. The entry for which the increment is maximum is

given by
iom jom k m

minx -x |,min]x -x |,min|x -x [}

3 3
where i,j and k are varied over the respective range of quantization. Other

entries for which the increment might be significant are the neighboring

entries. Thus the search for the entries wWwhich must be modified is

straightforward.

Estimation of the degenerate density is done in analogous manner. The

13



degenerate variables are set to Zero or cother more convenient constant and Jdo

not figure in location of an entry. Thus if x were a degenerate in the previous
-
J

example then the increment for entry (x',xj) would be
1 2
m2 2 i m2 j o m2 2
K/M x expi-(x ) /2a } x exp{-[(x -x ) +({x -x } 1/2a } (4.2]
3 11 2 2
and the degenerate contribution factor would be same for all the entries.

In the foregoing analysis we have assumed that all the variables are
continuous. However if some variables are inherentiy discrete or can be
reasonably assumed to be so, then the computational requirements may be reduced
considerably. The difference terms in the exponential factor become zero for the
discrete variables., [f all the variable are discrete then the maximum increment
becomes K/M, and the increments for the immediate neighbors may be obtained by
efficient table look up procedures.

The third type of density to be estimated, the conditional has a general

form (dropping the indices used in the decomposition)

plx ,x .. | dly,y..)).
1 2 1 2

Assume that previous training gives consistent estimates of dl(y ,y ..) and ue

1 2
have "suitably" guantized the range of d into Q intervals. Thus the value of Q
is also stable and consistent. Now the required conditional density is obtained
by a set of Q second level tables. Each table in effect estimates a separate

mafginal density function, or

14



s

TR T T ST s T e

j
p (x ,x yx ,es.lj) oo i=1 toAQ,
m 1 2 3

where the j merely acts as a suitch to choose one of the Q second level tables.

4,1 Quantization of the Degenerate Density

Appropriate guantization of the degenerate density turns out to be the
focal issue in this approach. The degreé of quantization determines the trade-
off between savings in storage{and computation) against the required accuracy.
At the risk of being repetitious we may say that if the degenerate is not
quantized at all then the storage required is same as for a large, single, one
level table. Whereas feuwer the intervals into which the degenerate is quantized,
more is the reduction in the storage.

There are tuwo possible approaches to the quantization problem. We may
treat the estimation of a class conditional probability independently of other
classes or we may cross reference betuween classes at lower levels in the
signature table hierarchy. First consider quantization of a degenerate
independently of other classes. Also assume that we are resource bound and the
number of intervals into which it must be divided (Q) is prespecified.

Division of the degenerate range in Q@ equal intervals may be ruled out.
This would mean that intervals reflecting lower density would have very few
samples at the next level. Q intervals spaced equally over logarithm of the

degenerate will give more equitable distribution of samples at the next level.

15
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Though this would not be optimal if the underlying multivariate density does not
have some exponential form, or if it is multimodal.

The quantization may be made dependent upon the data accumulated in the
table itself. Each interval is chosen such that the integral of the associated
marginal density over that interval is 1/Q. Computationally this involves 1)
ordering the accumulated degenerate values and 2) summing up the corresponding
marginal values until the sum equals 1/0 of the total and placing the interval
boundary at this point. The process is time consuming as it requires sorting
the degenerate values in a table. However this quantization need only be done
after sufficientiy large number of samples have been processed so as to give
stable quantization boundaries. This method of degenerate quantization was used
for the recognition experiment réported in the néxt section.

The quantization may be made error bound if Q is not prespecified. It

would also involve a sort of the degenerate values. The interval boundaries may

then be located such that every degenerate value is within the specified error

from the nearest boundary.

The guantization methods discussed so far attempt to get the best possible
multivariate density estimate for a single class. With simultaneous quantization
of the appropriate degenerates of all the class categories to be recognized, it
may be possible to minimize the misclassification rate and also minimize the
storage requirement. -

First consider a simple case with only tuo classes. The quantization
boundaries should be placed at a value where the two degenerate functions are

equal. The approximate boundry location may be found by comparing the ordered

16



sets of degenerate values. Clearly, the misclassification rate is given by the
sum of all the marginal densities for which the the degenerates are below this
value. The exact boundry value may then be chosen so as to minimize these sums.
The implication of following such a procedure in a tuo class situation is that
we have located the optimum discriminant boundry, and 1 bit quantization (Q=2)
of the degenerate is sufficient.

In a multi-category situation a similar procedure involves simul taneous
location of the discriminant boundaries betueen all the possible pairs of class
categories so as to minimize the overall misclassification rate. A sub-optimal
approach is possible which avoides the minimization problem. For a8 given class
locate all the cross-over points where the degenerates of all other classes are
neariy equal the degenerate of this class and provide a gquantization with
maximum resofution in the cross-over range.

This approach to quantization with cross reference between the classes to

"be recognized, would certainly produce near optimal results. However it would

tend to be highly sensitive to the stationarity of the underlying probability
distributions. One bad category whose probability distribution changes with time
could drastically alter the overall performance of the system. Houwever if each
class conditional probability density is obtained independentiy of the other
classes, then a drifting category would affect only the nearby categories and

could easily be identified.

5. Experiments

Experiments in vowel recognition illustrate the application of the
signature table method of probability density estimation discussed above. The

17



data used for the experiments is derived from 51 words spoken by one speaker.
Vowel data extracted from 26 words is used for training the tables. Data derived
from the remaining 25 words is used for recognition.

The speech is digitized with a sampling rate of 28 kHz and 12-bit
quantization; Frequency domain representation of the speech is obtained by
taking 256 sample FFT(12.8 msec.) uith 128 sample overlap betueen successive
FFTs. A set of 19 parameters, such as three major peaks in specified frequency
ranges and their corresponding amplitudes, energies average) in certain
frequency regions etc., are obtained by measurements on each FFT. However, in
the following limited experiments ue have used ﬁn!g the three vouwel! formants and
their amplitudes, since these six parameters are knoun to be significant for
vouel perception.

Each parameter measurement is scaled and quantized to a B-bit value in the
first instance. For more details of the parameterization, the reader is refered
to [2). Every parameter vector, one evefg 6.4 msec. of speech, is given an
appropriate tag according to the vouwel category to which it belongs. This
labeling is done by visual inspection of the speech waveform. The mnemonics that
have been used to identify the 12 vowel categories are given in Table 1.

Three types of analysis are performed to give a comparative evaluation of
the signature table method.

1) A nearest-neighbor analysis [3] is done using the full B-bit range of

the six parameters. The results of this analysis serve as a guide for the

18



interpretation of other results and also give a feel for the inherent overlap in
the data.

2) The six parameters are assumed to be independent of each other. The
qgquantization is reduced from B-bits to 3-bits and a single input signature table
is used to find the class conditional probability for a parameter for each
category. Thus, this method requires 72 tables each having 8 entries, a total
storage of 576 words. The six dimensional joint probability for a category is
obtained as the product of the six individual probabilities.

3) The probability density estimation method outlined in this report gives

the third set of results. The implementation details and the approximations used

therein, are given in the next section.

5.1 Implementation Details

The block schematic of the five level signature table arrangement 'used'to
generate the required 6 variable density is shown in Fig.3. All the inputs are
quantized to 3 bits. The size of each table is thus 64 words, The total storage
required is therefore 5%B4x12, or 3848 words.

Since all the inputs are discrete, the exponential factor in the
evaluation of a marginal density (eq. 4.1) becomes 1. The multiplicative factor
K/M ensures convergence of the estimate for large values of M. But it also has
the effect of ueighing down the the samples which come later in the training

sequence.Since the maximum number of training samples for a category in the

19
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present experiment was only 86, all the samples were given equal weight.

Therefore the increment used to to generate the marginal density is 1.

The evaluation of a degenerate increment involves an exponential
factor (eq. 4.2). For example, the first table in Fig.3 has four degenerate
inputs. Therefore this factor would be

2 2 2 2 2
exp(-{Al +A2 +F1 +F2 )}/2%a )

The quantization methods discussed in Sec. 4.1 shou that the absolute
value of the degenerate is unimportant so long as the relative ordering of the
entries within a table is maintained. The exponential may therefore be
approximated by using only the first term in the expansion for each input, i.e.

2 2 2 2
(1.-(AL/7) Ix(1.-(A2/7) Ix(1.-(F1/7) Yx(1.-(F2/7) ).

Also the contribution of a training sample to its neighbors is assumed to

be negligible as the quantization itself is rather gross. The factor «, uwhich

determines the smoothness of the distribution is also neglected.

Now consider how the six term conditional probability is obtained usiﬁg
the various marginal densities computed by the lower level tables in Fig.3. In
the factorization

p(F1,FZ,F3,A1,A2,A3) = p(F2| d(F1,F3,A1,A2,A3))xp(F1,F3,Al,A2,A3)
the first factor on the r.h.s. is given by the marginal output of Table 5. The
second factor is the five term marginal output of the Table 4, which in turn has
been obtained using a similar factorization. The configuration given in Fig.3 is
repeated for all the 12 categories.

As the total number of training samples, 738, is rather small and each
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level in the table hierarchy must be some what stable before meaningful training
of the next higher level can be done, the same data is used in five passes over
the set of tables. After each pass the next higher level tables are enabled, so

that accumulation of counts in appropriate entries can be started.

5.2 Results

Exactly the same data as used for the training is used for the
classification experiment. The objective is to determine the error introduced by
the gross quantization and the hierarchic organfzation of the signature tables.
Clearly, the nearest-neighbor procedure would give 188% correct classification.
Therefore, scatter matrix shoun in Table 2 is produced by finding the sample
vector which is closest without giving an exact match. The overall correct
figure of 65.9% indicates that on the average 34% of the training samples have a
neighbor of a different kind. The classification result using the the present
method (74.3%, Table 3} shows that even with 3-bit quantization, the probability
estimate does improve the classification. As expected, the results obtained when
independence is assumed are poorer(58.1%, Table 4). The vowels which are weakly
articulated (AS,I,A,U) have more variabilitg in the data and tend to get swamped
by the stronger vouels.

The recognition results obtained with unknown samples which have been

extracted from 25 words, are given in Tables 5,6 and 7. The reader is probably
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appalled by the low overall recognition rates. This "bad" example has been
chosen with a purpose. None of the vouels wused in the training set occur in
exactly the same phonemic context as in the recognition set. Because of the high
context sensitivity of some of the vowels, in particular AS,I,A,AR and U, most
of the unknoun samples tend to fall in the empty space between the "learned"
categories. The result of the nearest-neighbor analysis is 34.8% (Table 5)
compared wWith the signature table method result of 32.83% (Table B). The
signature tables thus have a comparable performance , even With 3-bit
quantization. The apparently superior performance obtained wuhen independence
betueen the inputs is assumed (36.1%), is at the expense of the weaker
categories as seen in Table 7.

However, to get back to the main purpose of choosing this particular
example, the signature table method allows us to defer making a decision until a
Wwider context has been analyzed. A compound decision can then be made using this
contextual information. If one is allowed to consider the second choices in the
above example, even when no context is taken into account, the recognition score
increases to 48.8%, a rise of 16% as shoun in Table 8.

It is also obvious that the context sensitivity in this data set is some
what contrived, 1) by rather arbitrary division of the list of 51 words into two
sets, and 2) by using only 738 samples for training against the 465 wused in
recognition. Clearly, in actual usage the training set would have an order of
magnitude more samples and also those would be derived from a more

representative context.
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6. Conclusions

We have shoun that it is possible to decompose a higher dimensional
probability density function into tuwo factors whose dimensionality is less than
the original function. The decomposition is iterative and hence the
dimensionality of the functions which are actually evaluated can reduced to any
desired order. However the errors are propogated in each iteration and savings
in storage accrued must be balanced against the desired accuracy.

The signature table method of tra{ning is shoun to be effective for the
estimation of the various probability density functions uhich arise as the
result of the decomposition. The signature table method 1) does not require
assumptions regarding the underlying probability distribution, 2} allous
sequential introduction of the training samples, and 3) is very efficient: the
estimation process reduces to simple counting when the input variables are
discrete.

The disadvantages of the method are 1)} the errors tend to propagate from
one level to the next in the table hierarchy and, 2) the number of training
samples required grous in proportion to the number of levels, so as to ensure
overall convergence of the final estimate.

The first set of classification experiments show that even with possibly
the worst decomposition, wuhere a six dimensional density is decomposed into S
levels with 2 inputs each, and with a reduced 3-bit quantization, the signature
table method has a better performance than the corresponding nearest-neighbor

and independence-assumption experiments.
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The second set of recognition experiments is some what artificially
contrived to highlight the application of this method to speech recognition and
other similar applications uhere high degree of context sensitivity makes it
imperative to have some confidence estimate of the purely local decision., A
compound decision can then be made using these local estimates. Ofcourse, the
basic assumption here is that the combinetorics of the problem rule out a
compound decision uwhich is based on the basic feature measurements over all of

the desired context.
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Fig.1 A Simplified Example of a Two-level Signature Table
Arrangement Used in the Speech Recognition Program [2].

PV F1,F2,F3) = p/(p+q) -=1[r)
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Fig.2. A Simplified Two-level Signature Table Arrangement
Specific values of of the inputs say, A’,B’ and C’, when concatenated form
an address which points to the entry shoun. During training if CLASS’is

indicated for this input then the column [p ] is incremented by 1 and column
1

lg ] is incremented by the function f. The table outputs in column [r ] are
1 1
obtained by quantization of the values in [g 1. The probability calculation

per formed during the recognition phase is as shoun in the figure.
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Fig.3 A Six-input, Five-ievel Signature Table Arrangement
Used in the Experiments. A ==> Indicates & Degenerate Input.
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EE : beet AE : bat E

AS : a.but AA : bar AR
AW

2

bought 00 : boot 0:

bait

bird

boat

U

¢ bit

but

book

Table 1. Vouel Mnemonics Used in the Experiments
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3

EEAE E 1 ASAAAR AO0 U O
F EE 68 2 1 &5 1 18 S 3
o AE 362 6 4 1
u E 3 6582 7 2 11 2
n I 5 2 231 2 5 )

d AS 2 2 3211 1 3 4 45
AA 4 121 4 6

AR 3 4 6 1 8508 5 4 5

A 1 1 1 543 4 3 3

oo 1 31 25 2 2

U 2 1 8 2 3 3 6 228 6

0 2 6 1 7 3 2 857

Total 84 75 66 67 38 35 86 74 68 67 78
%Found 71 83 79 48 55 68 58 66 82 42 73
Overall correct 65.98 %

Table 2. Classification Result of Nearest-Neighbor Analysis

Given
EEAE E T ASAAAR AO0 U O
F EE 61 1 1 1 1
o AE 454 3 3 1 1
u E B 163 2 1 51 2
n 1 4 7 4 4B
d AS 4 1 2 929 7 2 7 65
AA 3 5 2 4 33 6 b 4
AR 1 1 45 1 1 1
A 2 1 5 58 1 2
00 5 1 4 1 5 66 2
U 2 2 1 2 3 44 2
0 2 4 2 12 3 5 68

Total 84 75 66 67 38 35 86 74 68 67 78
%Found 61 72 88 69 76 94 52 88 37 66 &7
Overall correct 74.26 %

Table 3. Classification Result Using Signature Tables
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EE AE E T ASAAAR AO0 U O
F BE 50 4 412 4 8 1 2 4 3
o AE 768311 3 1 1
u E 4 45 4 4 6 2
n I 11 22 7 1 8 1
d AA 2
AR 18 3 3 8912176611 8 8 3
A 2 1 1 1 238 211
00 2 2 11852 3
u 1 61 2 1 224 3
0 3 9 4 911 18 64

Total 84 75 66 67 38 35 86 74 68 67 78
%Found 68 84 68 37 @ 6 77 51 76 36 82
Overall correct 58.13 %

Table 4. Classification Result with Independence Assumption

Given
EE AE E I ASAAAR Al O
F EE 42 3 7 16 18 18 1
o AE 2161421 6 1 3 2
u E 3 71617 180 1
n 1 3 813 1 115
d AS 2 3 3 6 718 8
AA 3 3 91 3 3
AR 4 2 9 &4 427 1 8
A 2 1 2 3 8
00 4 1
u 2 13 4 3 1 4 S
AW
0 g8 1. 2 32

Total 65 23 61 75 43 43 71 18 66
%Found B5 78 26 17 14 21 38 8 48
Overal!l correct 34.82 %

Table 5. Recognition Result of Nearest-Neighbor Analysis
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Given

EEAE E 1 ASAAAR AW O
F EE 31 1 4 3 1
o AE 5 9 716 5 8 3
u E 3 42812 2 9
n I 8 212 8 1 1 8 3
d AS 2 41124 14 5 29 8
AA 31 2 2 4231 9 g
AR 11 2 7 4
A 2 1 2 2 2 4
00 &6 4 1 9
u 1 2 1 51415
0 4 1 2 8 1 533

Total 65 23 61 75 43 43 71 18 66

. %Found 48 39 45 11 33 53 19 8 58

Overall correct 32.9 %

Table 6. Recognition Result Using Signature Tables

Given
EE AE E I AS AA AR AW 0
F EE 39 1 714 311 1 6 2
o AE 7211629 6 5 1 1
u E 1 12315 7 3 ¢
n 1 3 718 3 119
d AR 14 8 4 92132 515
A 1 2 6
00 1 1 4
u 2 81 7 1
0 7 5 43

Total 65 23 61 75 43 43 71 18 68
%Found 68 91 38 13 8 B 45 @ &S

Overall correct 36.13 %

Tablg 7. Recognition Result With Independence Assumption
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EE AE E I AS AA AR AN O
F EE 33 3 11 4
o AE 417 7 7 2 3 56
u E 13 8 2 2 4 3
n 1 4 1 621 1 2 4 1
d AS 8 2 617 24 16 1 1
AA 11 3 229 3 2
AR 2 5 2 17 3
A 2 3 3 2 314
00 2 4 1 2 9
u 2 6 2 3 2 3 2
0 1112518 145
Total 65 23 61 75 43 43 71 18 66

%Found 68 74 57 28 56 67 24 8 68
Overall correct 48.82 %

Table 8. Recognition Resuit with Second Choice Considered
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Figure and Table Cantions.

1] Fig.1 A Simplified Exampie of a Two-level Signature Table
Arrangement Used in the Speech Recognition Program [2].

2] Fig.2 A Simplified Tuo-level Signature Table Arrangement.

Specific values of the inputs say, A’,B’ and C’, uwhen concatenated form an
address which points to the entry shoun. During training if CLASS is indicated

for this input then the column [p ] is incremented by 1l and column I[q ] is
1 1

incremented by the function f. The table outputs in column [r ] are obtained by
1

quantization of the values in [g J. The probability calculation performed during

the recognition phase is as shoun in the figure.
3] Fig.3 A Six-input, Five-level Signature Table Arrangement Used in

the Experiments. A ==> indicates a Degenerate Input.

4] Table 1. Vowel Mnemonics Used in the Experiments.

5] Table 2. Classification Result of Nearest-Neighbor Analysis.
6] Table 3. Classification Result Using Signature Tables.

71 Table 4. Classification Result with Independence Assumption.
8] Table 5. Recognition Result of Nearest-Neighbor Anaiysis.

9] Table 6. Recognition Result Using Signature Tables.

19] Table 7. Recognition Result with Independence Assumption.

111 Table 8. Recognition Result with Second Choice Considered.



