AN ALGOR ITHM FOR THE CONSTRUCTION OF
THE GRAPHS OF ORGANIC MOLECULES

by

HAROLD BROWN
LARRY MASINTER

STAN-CS-73-36I
May 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

An algorithm for the construction of the graphs of organic molecules

By Harold Brown and Larry Masinter

ABSTRACT:
A description and a formal proof of an efficient computer implemented

algorithm for the construction of graphs is presented. qy;g algorithm,

C
which is part of a program for the automated analysis of organic com-
pounds, constructs all of the non-isomorphic,connected multi-graphs
based on a given degree sequence of nodes and which arise from a rel-

-

atively small "catolog" of certain canonical graphs. For the graphs

r—

of the more common organic molecules, 4 catolog of most of the canonical

graphs is known, and the algorithm can produce all of the distinct

r-”

valence isomers of these organic molecules.

This work was supported in part by ARPA Contract SD-183 and NSF Grant GP-16793

An Algorithm for the Construction of the Grauphs of Organic Molecules

By Harold Brown and Larry Masinter

T. TIntroduct ion. The usual prob I em in analytical orpan i ¢ chemist, ry

is to determine the molecular structure of an unknown organic compound.
The heuristic DENDRAL program for explaining empirical data [1,2] is a
machine implemented program which applies artificial intelligence
techniques to this problem of molecular structure determination. ppe
primary input to this program is the mass spectrum of the unknown
compound. Secondary inputs, if available, include the nuclear magnetic
resonance spectrum and the elementary formula of the compound. The output
of the program is a list consisting of one or more molecular graphs, each
of which represents a heuristically plausible explanation of the given
input. These graphs are rank ordered with respect to their relative
plausibility scores. Central to this DENDRAL program are algorithms which
generate all of the distinct valence isomers of a given set of atoms. It
is these algorithms that we will describe in this paper.

In graph theoretical terms, the problem that we consider is the
following: Given a degree sequence of nodes which corresponds to the
valences of the atoms of a given organic compound, algorithmically construct
a representative set of the distinct isomorphism classes of the connected,
loop-free multi-graphs based on that degree sequence. (For brevity, such
graphs will be referred to as elf-graphs.) Moreover, for pragmatic
reasons, the algorithm should:

a) Be machine implementable in a reasonably efficient manner.

b) Be able to accept as additional input certain constraints

arising from the chemical heuristics of the situation.
For example, generate only those graphs which contain a certain

substructure.

-

c) Generate no isomorphic graphs in the intermediate stages of the
algorithm.
This last restriction is necessary because of the time and the storage
limitations when using a machine.

In section II of the paper we define the concept of a superatom, and
we briefly describe the subalgorithms used by the main algorithm. In
section III, first a conceptual description and then a formal description
of the main algorithm is given. Section IV contains the graph theoretical
results on which the main algorithm is based, and in section V a formal

proof of the completeness and the correctness of the main algorithm is

nresented.
II. Terminology and Subalgorithms. The concept of a superatom is used
throughout the paper. A superatom is a collection of atoms bonded

together into a cyclic structure which possesses at least one unassigned
valence, i.e., at least one free valence. Graph theoretically, a

superatom is a connected, loop-free multi-graph with no isthmuscs, i.e.,
with no edge whose deletion disconnects the graph, and with at least one
unassigned valence. If a superatom A has k free valences, then in forming
molecular structures which include A, A behaves almost like an atom of
valence k. The difference in forming structures including A and in forming
structures including an atom of wvalence k is the following: The k free
valences on an atom of valence k are, as edge endpoints in a graph,

indistinguishable, i.e., barring optical. isomerism, the free valences on

[

the atom implicitly admit as symmetry group the group Sk’ the full
permutation group on k objects. However, the k free valences on the
superatom A usually are distinguishable from a symmetry view-point, and
the free valences on A will, in general, admit only a subgroup of Sk
For example, the superatom in Figure 1 has three free valences, but the
group of symmetries of these free valences is only {(1>§ g), (l 2 3)}

321
Thus, associated with each superatom with k free valences is a subgroup
of Sk’ namely, the group of symmetries on its free valences.

By the term tree we will always mean a graph whose nodes can
represent either atoms or superatoms and whose edges are all isthmuses.
Also, throughout the paper, a collection of atoms given by their
valences, 1.e., a degree sequence, will be represented as an integral
n-vector V = (al,az,...,an), where ai is the number of atoms of
valence 1 in the collection.

For a degree sequence V =(al,a2
n
U(V), is defined as U(V) = 1/2(2 + F (i-2)ai)- If there exists at

s

least one elf-graph based on V, i.e., a elf-graph with ai nodes of

,...,an), the unsaturation of V,

valence i, then U(V) is precisely the minimal number of edges of any
elf-graph based V which must be deleted in order to make the graph
into a tree of atoms.

The description of the main algorithm makes use of the following
subalgorithms:

a) A tree generator subalgorithm, TG. TG accepts as input

a list of valences corresponding to atoms and superatoms, each
superatom with its associated free valence group, and outputs all
non-isomorphic trees based on these atoms and superatoms. Such a

tree generator algorithm is described in [3].

b) A labeler subalgorithm, LAB. LAB accepts as input an ordered list

of m distinct symbols, a group H of permutations on these symbols,

and a list of m not necessarily distinct labels. It outputs all
non-equivalent, with respect to H, labelings of the given symbols

with the given labels subject to a set, possibly empty, of constraints
of the form that certain types of symbols must be labeled with certain

types of labels. Such a labeling algorithm is described in [h].l

¢) A "catolog", CAT, containing certain connected, loop-free, isthmus-

free multi-graphs, for brevity, clfif-graphs, underlying, in a sense
to be made explicit later, the graphs of organic molecules. A list
of these underlying graphs is known for most of the common organic

molecules, and consists of a relatively small number of graphs.

Main Algorithm. We give now a brief conceptual description of the main

algorithm. The input to the algorithm is a degree sequence, i.e., an integral

n-vector V.

Determine all distinct allowable partitions of V into atoms and
superatom sets with assigned free valences. These partitions
are based on the unsaturation of V.

For each superatom set, determine all the distinct allowable

allocations of the free valences to the atoms of the set.

3. For each such free valence allocation, determine recursively the
allowable sets of atoms remaining after the deletion of the
bivalent atoms and the "pruning" of any resulting loops. This
recursion is done until: a) the remaining bivalent atoms in any
clfif-graph based on the set must all be on edges, or b) one of
two special cases 1s encountered,

L. For each such set of atoms, 1if condition (a) terminates the recursion,
"look up" in the "catolog" all the clfif-graphs based on the non-
bivalent atoms in the set and for each such graph label the edges
with the bivalent atoms. If condition (b) terminates the recursion,
directly 'write down" the allowable graphs.

5. For each such graph, recursively label the atoms with loops and the
loops and edges with bivalent atoms.

6. For each graph so obtained, label the atoms with the free valences.
T. For each set of atoms and superatoms obtained as above, use the tree
generator to construct all the non-isomorphic elf-graphs based on

these atoms and superatoms.

The following formal description of the main algorithm is presented az

a sequence of subalgorithms:

Definitions. Given V = (al,ao,...,an), define:

n
a) UW) = (2 + Z(i-2)ai)/2‘

n
b) TD(V) = Tia,.
1

n

c) N(V) = a..

d) P (V)

1

al.

1

e) M(V) =max{l§_iin|ai¢0}.

Note that U(V) =

A.

(2

+ TD(V) - 2N(V))/2.

Superatom Partitioner (SAP).

Input: V = (al,a2,...,an).

1.

10.

11.

12.
13.

(Test)

If

U(V) 1s a non-negative integer and

2M(V) < TD(V), continue; else STOP.

If U(V)

0, go to TG.

Do 12 for each non-trivial summand V of V such that

P(V) =

0 and N(V) > 2.

Do 11 for 1 <k < [LN(V)/2_].

Do 10 for each distinct k-term ordered partition

of U(V), say U(V) =u, +u, + . . . + LY where

1 2

1 :_ul fu <. 8 u

Do 9 for each distinct set {(Vi’ui)| l<ic<k }

k

where 1 Vi = V and N(Vi) 22, 1 21Z%k.

= -u.),1<i=%k
Compute FVi 2(U(Vi) ul) l1<icxc

If FV, <max {1, 2(V,) - TD(V) } for any

1<1i<k, go to 6.

put { V; (Vl, FVl), e . (Vk, FVk) } on the list
GLSA (V) .
Continue.
Continue.
Continue.
If P(V) = 0, put { v; (V, 0) } on the list GLSA(V).

«

r

B. Free Valence Partitioner (FVP).

= >
(IWPE (0,v2,...,vn), FVi) where N(Vi) > 2,
2(U(V;) = ug) =, 1 va=>1 and
> -
FV, > max{ 1, 2M(V.) = TD(V,) }.
1. Determine all sets of non-negative integers

{ fop |05 7 max{0, j + (FV, - T(V.))/2} < t £ 3-2,

j 5 2,...50 } satisfying:

i) I f.jt =Vj, J = 254007

ii) z tf.t = FVi.
j=2 t=c.:J J

(Note that f20 =v,.).

2
2. For each such set, form

W= W(Vi, FVi, {fjt}) =(0,Wsr..,W). where

the Ylinst
we L fh(h—s)’ and put W on GLPV(Vi, FVi).
s<h<n
h_?_ch-fs

C. Loop-Bivalent Partitioner (LBP).

(LBPis applied recursively until either ml(W) = mo(W) =0

grlml(w) < mo(w)).

(Ihpn{s:.W,= wn) where N(W) > 2, U(W) is a
positive integer, and 2M(W) < TD(W).

n
1. Compute ml(w) = min{ w2’ijL(j—2)/2ij} and

mo(w) = max{ 0, w, + (2M(W) - TD(W))/2 }

2
2. If m, (W) > ml(W'), go to Special Case.

3. If mo(W) = ml(W) = 0, go to Catolog.

Do 9 for p = mo(W),...,ml(W).
Determine all sets of non-negative integers

{ Pjt I 3.54.5n,0<t<][(5-2)/2]} satisfying:
L(3-2)/2]
i) z pP., =W, 3<3<n.
t=0 9%

(Note that Pyp = ¥).

3

LC 3-2)72)
z tp

n
ii) .
=3 =0 J

:p.
. t
J

Do s for each such set {pjt}.

Form Y = Y(W, p, {pjt}) = (0.y2,...,yn) where

n
Vg :mZS Pp.(m-s)/2 . (Note that p,o = 0).

by 2

the list
If 2M(Y) < TD(Y), put Y onYGLIB(W,p).

Continue.

Special Case (SC).

(Here ml(W) < mO(W)).

1.

If ml(W) = 0, put the graph consisting of the ring
with N(W) bivalent nodes and its associated node
the list

symmetry group onYGLGPH(W) and go to Loop Labeler;

else go to 2.

If ml(W) = s > 0, put the graph consisting of one

node of degree 2(s+l) with s+l loops attached and
the list

its associated edge-loop symmetry group onYGLGPH(W)

and go to Bivalent Labeler.

L._.

E. Catolog (CaT).

Input: Y = (O,yz,...,yn) where ml(Y) = mO(Y) = 0.

1. If Y, # 0, "look-up" all non—isomorphiccaﬁifErivalent
graphs G with Yq nodes and their associated edge
symmetry groups, EGRP(G); else go to 6.

2. Do 4 for each such graph G.

3. Determine all distinct ordered partitions of Y,

into TD(G)/2 non-negative integral terms.

4, For each such partition, say b1 .. 1 bTD(G)/2 _ Yoo

use the general labeling subalgorithm to determine
all distinct, with respect to EGRP(G), labelings
of the edges of G with the labels b

1""’bTD(G)/2’
replace the label bi on the labeled graphs by

bi bivalent nodes, and place the resultant graphs

the 1ist
and their node symmetry groups onYGLGPH(Y).

5. Go to Loop-Bivalent Labeler.

clfif-
6. If y, = 0, "look-up" all non-isomorphic \ graphs

based on Y, and put these graphs and their associated
the list
node symmetry groups, on GLGPH(Y).

7. Go to Loop-Bivalent Labeler.

F. Loop-Bivalent Labeler (LBL).

(LBL is applied recursively to each graph G on GLGPH(Y)

up the path of vectors from which G arose until reaching

the W = W(Vi, FVi, fjt) on GLFV(Vi, FVi) heading the path).

10

Loop Labeler (LL).

Input: A elf-graph G, its node group NGRP(G) and the
vector Y = Y(W,p,{pjt}) on GLL(W,p) from which
G arose.

n
1. Compute qt =jz=33'3.tl t = O’---’L(n‘2)/2_l-
2. Determine all distinct, with respect to NGRP (G),

labelings of the nodes of G with qt-t's subject to
the constraint that pjt_t'S must go on nodes of

valence j-2t.

3. For each such labeling, replace the label t by t loops.

Bivalent Labeler (BL).

Input: A connected graph H with p loops, the edge-loop
group of H, ELGRP(H), and Wiy the number of bivalent
nodes in the vector W from which H arose.

1. Compute h = p + number of (non-loop) edges in H.

2. Do 4 for each ordered partition of W, into h

non-negative terms, say w2 = bl + .. .1+ bh,
bl <. . .:_mh, such that at least p of the bi's
are non-zero.

3. Determine all distinct, with respect to ELGRP(#),
labelings of the edges ahd loops of H with the
labels { bil 1<i <h } subject to the constraint
that each loop gets a positive label.

4, For each such labeling, replace the label bi by

bi bivalent nodes, 1 < i < h, and place the

the 1ist
resultant graph and its node group onYGLGPH(W).

11

G. Free Valence Labeler (FVL).

Input: A graph G , its node group NGRP(G), and the vector

w = W(V,,FV.,{f. }) from which G arose.
RS i |
1. Compute ft =j§2f'jt' t =0,...,0 + (FVi-TD(Vi))/2.

2. Determine all distinct, with respect to NGRP(G),
labelings of the nodes of G with ft-t's subject to
the constraint that fjt_tls must go on nodes of
valence j-t.

3. For each such labeling, replace each label t by t
free valences and put the resultant graph and its

the’;ist
free valence symmetry group oﬁ\GLGPH(Vi,FVi).

H. Input for Tree Generator.

_ the list
For { Vi (V, FV)), . . ., (V,, FV) } onVGLSA(V),
input to TG:
a) V-V. (The atoms).
b) A k-tuple of graphs (Gl’ e Gk) and their

associated free valence groups where G.l is on the list

GLGPH(Vi, FVi), 1 <ic<k. (The superatoms).

IV. Theoretical Results. We now present the graph-theoretical results on

which the main algorithm is based. Even though some of these results are

known, we give proofs for the sake of clarity and completeness. Throughout

this section, V = (al,...,an) denotes an integral n-vector.

Lemma 1. If there is at least one elf-graph ¢ based on V = (a,,___, a),

il

then U(V) is a non-negative integer.

Proof. A spanning tree of G has N(V)-1 edges, and ¢ has TD(V)/2 edges.

Hence U(V) = TD(V)/2 - (N(V)-1) is a non-negative integer.

12

Lemma 2. If 2M(V) < TD(V) and U(V) is a non-negative integer, then there

is at least one elf-graph based on V.

Proof. Let m = M(V), the maximum valence of V. Given non-negative integers,
b e Py b # 0, let bl = L(bg""’bm) be the least non-negative integer
such that there is at least one elf-graph based on B = (bl'bz""’b). Since
m
m m
for sufficiently large bl’ e.g., bl =z ibi - 2(z bi—l), such a graph exists,
2 2

L(bg,...,bm) is well-defined.

Assume bl = L(b2,...,bm) > 2, and let G be a elf-graph based
on B. If there where two distinct nodes N1 and N2 of G both of
which had adjacent nodes of valence 1, we could delete these valence
1 nodes and add the edge (Nl’N2) to G obtaining a elf-graph with
a lesser number of nodes of valence 1. Thus all valence 1 nodes of
G must be adjacent to the same node, say N. If there was a node
Nl adjacent to N and a node N2 # N adjacent to Nl’ we could delete
the edge (Nl,N2) and two of the valence 1 nodes and add the edges
(Nl,N) and (N,NQ) obtaining a elf-graph with a lesser number of
valence 1 nodes. (See Figure 2). Thus all nodes adjacent to N are
adjacent only to N, and since G is connected, all nodes must be
adjacent to N. (See Figure 3). Hence, N must be the unique node of
valence m, i.e., bm = 1, and bl = m ?_é ib..

1=2

Now assume the lemma is false, i.e., 2m < TD(V), U (V)

is-a non-negative integer and there is no elf-graph based on V = (a,,' an).

m-1

Then a, < L(a2,...,am). If L§a2,...,am) > 2, then a, <m- 152 iai,

and TD(V) < 2m, a contradiction. If L(a2,...,am) = 0, then a, < 0,

1

a contradiction. If L(a2,...,am) = 1, then al = 0. Since a

13

=

elf-graph based on (l,az,...,am) does exist, by Lemma l,c = 1 + I
i=2

is even. Hence U(V) = (c+l)/2 is not integral, a contradiction.
Theorem 1. There exists at least one elf-graph based on V if and
only if 2M(V) < TD(V) and U(V) is a non-negative integer.

Proof. The sufficiency is just Lemma 2. For the necessity, let

m = M(V). By Lemma 1, U(V) is a non-negative integer. Assume that
2m > TD(V). Then m > a, + 2a2 + .. .4 (m-l)am

1 1
m - |

and m > I iai. This contradicts the loop-free assumption.
i=3

. Hence %1= 1

Corollary 1. V determines a loop-free tree if and only if U(V) = 0.
Moreover, in this case every graph based on V is a loop-free tree.
Theorem 2. There is-a clfif-graph based on V if and only if U (V)

is a positive integer and 2M(V) < TD(V).

Proof. If there is a clfif-graph based on V, then by Theorem 1

and Corollary 1, U(V) is a positive integer and 2M(V) £ TD(V).

Conversely, by Theorem 1 there exist elf-graphs based on V.
Assume that every such graph has at least one isthmus. Let G be
a graph based on V with a minimal number of isthmuses, i.e., a
"least criminal." We will show that G can be modified to a elf-graph
based on V with a lesser number of isthmuses, a contradiction to
our assumption.

Let the edge (A,B) be an isthmus of G, and let X and Y be the
connected components of G\(A,B). Since U(V) > 0, not both X and Y
are trees. Say X is not a tree and A is in X. Let C be an elementary
circuit in X, and let C be a node on ¢ of minimal path length from

A,where we consider here a multiple edge as a circuit. (Note that

(i—2)a.1

14

we may have A = C). By the choice of C, there is a path
from A to C which is edge-disjoint from €. Let D be a node on C
adjacent to C. (See Figure 4).
Case 1. Y is a tree.
Since ¢ is loop-free, there must be a valence 1 node N in Y. Say
N is attached to the node E of Y. Then, delete (C,D), add (D,E),
and move N from E to C. (See Figure 5).
Case 2. Y is not a tree.
Let £ be a elementary circuit in Y, E a node of E of minimal path
length from B and F a node of E adjacent to E. Then, delete (C,D)
and (E,F), and add (D,F) and (C,E). (See Figure 6).

In both cases, the resulting graph is a elf-graph based on
V and has at least one less isthmus than G. Hence our assumption

was false, and there is at least one clfif-graph based on V.

Lemma 3. Let V and FVi, i=1,%, be as in Superatom Partitioner.

k
Then I FV, = 2(k - u(v-v)).
i=1

Lemma 4. In a loop-free graph based on V, there are TD(V)/2 - 3,

edges between non-univalent nodes.

Theorem 3. let V = (0,a2,...,an), N(V) > 2, U(V) a positive

integer, and 2M(V) < TD(V). Let mo(V) = max {0, (32 + (2M(V)-TD(V))/2)}

n
and m (V) = min{ az,.Zq [(i-2)/2]a; }. Then, my (V) < m (V)

except in precisely the following two cases:

a) ml(V) = 0 and mo(V) = 2.

b) ml(V) s> 0 and mO(V) = s + 1.

iioreover, case (a) holds if and only if a3. =0, j»> 3, and case (b)

holds if and only if a2(s+l) = 1 and a3 =0, > 3, j#2(stl).

15

Proof. Let mO(V) >ml(V). If ml(Vv) = s then 2M(V) - TD(V) > 0,

n
a contradiction. Hence ml(V) = D) L(i-2)/2_]ai. Assume ml(v) = 0.
izy

Then a.3 =0, j>3. By Theorem 1, a elf-graph based on V exists.
Hence a; is even. From 0 < mo(V) = (2M(V) - 3a3)/2, it follows
that a3 = 0 and mO(V) = 2. The converse is immediate. Assume that
m (V) = s > 0. Then, a, + (24(V) - TD(V))/2 > s > 0, and
M(V) > 2s + 3a, +...t (M(V)—l)aM(V)_l > 2s. Hence Ay = 1.

M(V)
Also, s =ml(V) =1]_(:'L--Q)/2__|ai implies that 2s > M(V) - 3.
Thus, 2s + 3 > M(V;-f 2s. This implies that a; =0, 3 <1<M(V).
Since a elf-graph based on V exists, M(V) must be even. Thus
M(V) = 2(s +1). A direct computation gives that mo(V) =s + 1.
The converse follows directly from 2M(V) < TD(V).
Lemma 5. Let V, mO(V), and ml(V) be as in Theorem 3. Assume that
mO(V) = ml(v) = 0 and a2# 0. Then a3# 0 and is even 'and a; = 0

for i > 3.

n
Proof. a, # 0 implies that ml(V) =iEuL(i-2)/2Ja;l= 0. Thus a. = 0,

i>3. Now m, (V) =0 implies that 2M(V) - 3a3 < 0. Hence a, £ 0.

Since a elf-graph based on V exists, a3 must be even.

V. Proof of Main Algorithm.

A. Every elf-graph based on V occurs. Let G be a elf-graph based

on V. We will show that the algorithm produces a graph isomorphic
to G.

Since G exists,.by Theorem 1, U(V) is a non-negative integer
and 2i(V) < TD(V). If u(v) = 0, the tree generator produces a
graph isomorphic to G. Assume U(V) > 0. Let B be the set of

isthmuses in G, and let Gl‘ Gk be those connected components

16

of G\bhavingat least two nodes. Since U(V) *> 0, G is not a tree

and k 2 1. Also, no Gi has univalent nodes. Let Vi = (0, a;, cees a:;),

where a.;' is the number of valence j nodes of GI’ and let FVi be the

numbef: of elements of B connected to G.l in G, 1 £1 £ k. Set

e ;.:Klv'l' Note that k, Vi’ FVi and V depend only on the isomorphism
i=

class of G. Now P(V) = 0 and N(V) > 2. Thus V is an allowable
summand of of V in SAP. Also, N(Vi) >2,1<i<k,and 1< k < [N(V)/2].
set v, = (2U(Vi) = FV.)/2. Let 6\1 be the graph obtained from Gi
by replacing in G each of the FV, connected components of G/B
connected to Gi by a univalent node. Then /G\l is a elf-graph which
is not a tree. Let ?i be the n-vector associated with ?}: Then

U(V\i) = u., and u. is a positive integer. Moreover, by Lemma 3,

=~

z ug - U(V). Since G is a elf-graph, by Theorem 1,

A=1 .

24(V.) = 2m(v.) < TD(V.) = TD(V.) t EV Thus FV. > 2M(V.) - TD(V.)
AVl = emiVi) 2 i’ ” i i us £y o i i’

and, after suitable reindexing,{ Vi V., FV.), e wus (V. , FV)}
. 1 1 k k
the list
is oniGLSA(V).

For a fixed i, 1 < i < k, let fjt be the number of valence

5
-

3 nodes of /G\ with t univalent nodes attached, 2 < j <n, 0 <t <.

Since /G: is a elf-graph and has isthmuses only to univalent nodes,

r;, = 0 fort>j2. Also, by Lemma 4, T} has (TD(V,) - FV)/2
edges between non-uivalent nodes. Hence, any node of valence j

A . .
in G, has at least o = max{ 0, j + (Fv. - TD(Vi))/2 } univalent

nodes - attached, 1i.e., f.Jt = 0 for t < c.J. The set

{ f"t | 2 <3 <n, c. <t<j-2} satisfies the conditions of FVP.
’ ! the list

Aence, w(vi, v, {fjt}) is on\’GLFV(Vi, FVi) and depends only on

the isomorphism class of G'1'

17

Let ('i be the graph obtaincd from (/'i

by deleting the FVi
univalent nodes and their connccting edges. Then
W = W(V. . . = i - i

(i FVl, {f]t}) = (0, Woseens wg is the n-vector associated
~ ~

with Gi’ and Gi is a cifif-graph. Assume that m, (W) f_ml(W) where

s rs
m, and m, are as in LP. By Theorem 3, Gi is not one of the special

case graphs, and hence deleting the bivalent nodes of rGj leaves

a connected, isthmus-fret graph Ei with at least two nodes and say
t, loops. Since Ei is isthmus-free, each node of _G'i must have at
least two non-loop edges attached. Hence

ts < min{ Woo .iui'”/aw,.l} = ml(W). Let G’l be the graph
obtained from N Ei by deleting the ti loops. G;': is a clfif-graph.

Let Y be the n-vector associated with Gl Then M(W) < M(Y) + 2t..
- i

Hence, by Theorem 1, 2M(W) - ln:i < 2M(Y) < TD(Y) = TD(W) - 2w2 - 21:1,

ard w, + (24(W) - TD(W))/2 <ft.; Thus t; >m (W). Let Py be the

number of valence Jj nodes of Gi with t loops, 4 <J <n,

0tz uj‘Q)/QJ . Then {pjt} satisfies the conditions of LP and
Y is precisely the n-vector Y(W, T {pjt})' Since Gj': is a elf-graph,
i
the lJist
24(Y) < TD(Y) and Y is onYar,KW, ti). Moreover, Y depends only on

~
the isoxorphism class of Gl..

Recursive application of the above process yields a sequence

B ~ e % 3 s
of graphs G.io = Gi’ Gz.l = Gi’ Gi2’ ooy Glsl' and associated n-vectors
Y5 oo WL, BV, R, YR oy, e, L)), v Y here
0 i i jt 1 O S & A R S

i

i i
Y. i G . . . '
5 is on LL(Yj-l’ p]_l) for some allowable pj_l and either
(D) m (Y2) = m (Y-) =0, or G m (Y2) > vt). m vt
0 s, 1 s, ’ o s 1Y) oreover, 3
i

depends only on the isomorphism class of G

i,5-10 Assume (i) holds

18

for Y = Y; = (O,yz,...,yn). Now by Lemma 5, Y has only bivalent
and trivalent nodes or no bivalent nodes. In the first case deleting

the bivalent nodes of G;s leaves a proper clfif, trivalent graph.
- i
In the second case G.ls is a graph with no bivalent nodes. In either
i
isomorphic to Gis is produced by CAT. If (ii)
i

Wl
case, a graph G.
ls.1

holds, by Theorem 3, G;S is either the ring with Y, bivalent nodes
i

or st. with its bivalent nodes deleted is a single node of valence
2m0(Y) with m, (Y) loops attached, and a graph gis isomorphic to

G?s. is produced by BL. Hence we have that a gra;h Gi;
to éis. and the vector Y:i_l

isomorphic

i
are produced in the algorithm as input
to LLBL. Since d;s -1 induces in the obvious manner a loop and/or
1 oo

. ;] Lo Y % . . .
bivalent node labeling of Gi§ arising from Ysi-l’ Gis.-l is 1isomorphic
x!
to one of the graphs produced by LLBL with input (Gis ’ Ys -l)'
. i Py
Recursively applying LLBL up the sequence {Y;}, we obtain a graph

i

“l isomorphic to Gi with associated n-vector w. = W(Vi, FV., {fjt})
in the output, i =1, k. With the input (Gi, Wi), FVL produces
a graph Gi isomorphic to G;. Hence, (V-V, Gi, Co Gé) is among

the inputs to TG arising from V, and with this input TG produces

a graph isomorphic toG.

B. The algorithm produces no redundances. Let G and Hbetwo graphs

produced by the algorithm with input V. We will show that G and #

are not isomorphic, i.e.q G ¥ H.

Assume G = H . TG 1s irredundant. Hence if G
and H arise from the input to TG, (V-v, GL, Gk) and
(v-v', dys «-vs H), respectively, where the G, and H.3 are superatoms

with attached free valences, we must have that A V, k = k', and

19

tne Hj can be so indexed such that Hj ?G., 1< j< k. Hence, H.
3 -7 - i
and Gi both must have the same free valence FVi, and G and H# must

arise from the same SAP of V, say { V; (Tl’ EV)), o o .o (Tk, BV }.

1

L]

Now since the labeler is irredundant, so is FVL. Hence from 1{. ’:"Gl

it follows that the graphs '51 and Hi defined as in (A) must be iso-
~ ~

morphic. Also, Gi and Hi must arise from the same FVP of (Ti’ FVi),

say W. = W(Ti, FV., {fjt})’ 1< i< k. Since BL is irredundant,

it follows that the graphs Gi and Ei defined as in (A) must be

isomorphic. Similarly, since LL is irredundant, the graphs Cr'l

%

and H? must be isomorphic. Moreover, G;ﬁ and Hi must arise from the
same LP of W., say 3& = Y(Wi, P> {pjt}), 1 < i < k. Applying the
above argument recur sively to Gl and H::f, we have that the CAT
"look-up" (or SC determination) graphs, say Gi and HJ':, respectively,
must be isomorphic and that the sequence of loop partitions leading
from Yi to the partitions determining G:IL and Hi must be identical.
Now Gi z Hi if and only if GJI. and Hi are equal. Thus G:!L = Hi,
1 :_i < k.

ence we have that if G ¥ #, they arise from the identical
sequence of vector inputs to the various labelers and TG, and that
Gi = Hi, 1 <i £ k. Since for a given input, the labelers produce
only non-isomorphic graphs, we must have, successively, that
5 0 G5 i G .}Land Gi = ”i’ 1 =i2 k. Hence if G =¥,
they both arise from tne same input to TG. 3ut for a given input,

TG produces only non-isomorphic graphs, a contradiction,

20

C. The partit ioners produce onlv allowable partitions of V. We

will now show that every sequence of partitions of V produced by

the algorithm yields at least one elf-graph based on V.

the list
Let Y = Y(W, p, {p4t}) be a member onGLL(W, p) . By direct
]
n
computation, U(Y) = U(W) - p. Also, p < L (i-2)w,/2 < U(W).
i=y *

Thus U(Y) is a positive integer. By construction, 2M(Y) < TD(Y).
Since ml(W) > mO(W), it follows from Theorem 3 that N(Y) > 2.
Hdence by Theorem 2, there is a clfif-graph based on Y. In the
case ml(W) < mo(w), Theorem 3 assures 'us that a clfif-graph based

on W exists. Thus LP produces only allowable output.

the list
Let W = W(V, FV,, {fjt}) be a member ofYGLVF(V., FV.). By
direct computation, U(W) = U(Vi)- FVi/2 =ug, a positive integer.

Also, TD(W) = TD(V.) - FV,. Now M(W) = max{ j-t [3 < j <n,

< < 3~ i T — < -
c§ <t < j-2, fjt # 0}, and j-t __(TD(Vi) FVi)/2. Hence,
2M(W) < TD(Vi) - FV, = TD(W). By Theorem 2 there is a clfif-graph

based on W, and FVP produces only allowable output.

_ the list
Let {V; (Vl, FVl), e e (Vk, FVk)} be a member OfYGLSA(V),
1 . i 1

° < < . c) - R - .
e.9 an), 1 24 < k. Let Hy (FVl, a5 o o an)
Now 2U(Hi) = 2U(Vi) - FVi = 2u,, and U(Hi) is a positive integer.

= > = > = .
Also, P(Hi) FV. 2 1, and TD(Hi) TD(Vi) + FV, 2 2M(Vi) 2M(Hi)
Thus, by Theorem 2, there is a clfif-graph based on Hi, 1 <1< k.
Hence, at least one set,Gl, Co Gk,of superatoms based on the
given partition of V exists. 1£ € is the n-vector corresponding

to v - V and the free valences of the Gi’ then a direct computation

21

using Lemma 3 gives that U(V) = 0. By Corollary 1, a loop-free

tree based on V - ¥ and the G, exists. Thus the sequence of psrtions
of V does yield at least one elf-graph based on V.
— VI. Acknowledgements. The DENDRAL concept and its applications to
- organic chemistry were originally conceived by Professor Joshua
N Lederberg. The authors thank Professor Lederberg for his guidence
and his critical suggestions which have made this work possible.
o
-

Computer Science Department

Stanford University

— 7

Stanford, California 94305

— r-

r—

— 1.

22

REFERENCES

E. A. Feigenbaum, B. G. Buchanan and J. Lederberg, On generality
and problem solving: A case study using the DENDRAL program, in:
Machine Intelligence 6 (Edinberg University Press, 'Edinberg, 1971)

165-190.

B. G. Buchanan, G. L. Sutherland and E. A. Feigenbaum, A program
for generating explanatory hypotheses in organic chemistry, in:
Machine Intelligence 4 (Edinberg University Press, Edinberg,

1969) 208-254.

J. Lederburg, et. al., A tree generation algorithm, To appear.

H. Brown, L. Hjelmeland and L. Masinter, Constructive graph

labeling using double cosets, To appear, Discrete Math,

.

FOOTNOTES.

1. More formally, if X is an m-element set and H is a group of

permutations on X, then a labeling of X with ny labels a

n.+n. +...+n, = m, L
n, labels Ays oer Dy labels ak,v’ss a mapping ¢: X -+ {al,ag,...,ak}
-1
such that iw (ai)l = ni. Two such mappings wl and IPQ are

equivalent with respect to H if there is ann¢ H such that ¥;=yon.

\ B

Figure 3.

Figure 4.

Figure 6.

