
|

AN ALGORITHM FOR THE CONSTRUCTION OF

THE GRAPHS OF ORGANIC MOLECULES

by

HAROLD BROWN

LARRY MASINTER

STAN-CS-73-36l

May 1973

COMPUTER SCIENCE DEPARTMENT

| School of Humanities and Sciences
STANFORD UNIVERSITY

PTI

yy

|_

3 BN An algorithm for the construction of the graphs of organic molecules
“

By Harold Brown and Larry Masinter

ABSTRACT:

A description and a formal proof of an efficient computer implemented

| algorithm for the construction of graphs 1s presented. This algorithm,
C

which 1s part of a program for the automated analysis of organic com-

pounds, constructs all of the non-isomorphic, connected multi-graphs

based on a given degree sequence of nodes and which arise from a rel-

-

atively small "ecatolog" of certain canonical graphs. For the graphs

graphs is known, and the algorithm can produce all of the distinct
h

L valence 1somers of these organic molecules.

This work was supported in part by ARPA Contract SD-183 and NSF Grant GP-16793

- pn

2 An Algorithm for the Construction of the Graphs of Organic Molecules

. By Harold Brown and Larry Masinter

N
_ I. Introduct ion. The usual prob I em in analytical organ 1 ¢ chemist, ry

1s to determine the molecular structure of an unknown organic compound.

lO The heuristic DENDRAL program for explaining empirical data [1,2] is a
| machine implemented program which applies artificial intelligence

techniques to this problemof molecular structure determination. The

C primary input to this program 1s the mass spectrum of the unknown

| compound. Secondary inputs, if available, include the nuclear magnetic

- resonance spectrum and the elementary formula of the compound. The output

C of the program is a list consisting of one or more molecular graphs, each
| of which represents a heuristically plausible explanation of the given

. input. These graphs are rank ordered with respect to their relative
\ plausibility scores. Central to this DENDRAL program are algorithms which

L generate all of the distinct valence isomers of a given set of atoms. It

| is these algorithms that we will describe in this paper.
In graph theoretical terms, the problem that we consider is the

1 following: Given a degree sequence of nodes which corresponds to the
valences of the atoms of a given organic compound, algorithmically construct

= a representative set of the distinct isomorphism classes of the connected,

: loop-free multi-graphs based on that degree sequence. (For brevity, such
graphs will be referred to as elf-graphs.) Moreover, for pragmatic

| reasons, the algorithm should:
a) Be machine implementable in a reasonably efficient manner.

b) Be able to accept as additional input certain constraints

arising from the chemical heuristics of the situation.

For example, generate only those graphs which contain a certain

substructure.

ha

-
: 2

\

| ¢c) Generate no isomorphic graphs in the intermediate stages of the

— algorithm.

“ | oo |
This last restriction 1s necessary because of the time and the storage

limitations when using a machine.

| In section II of the paper we define the concept of a superatom, and
Cc

| we briefly describe the subalgorithms used by the main algorithm. In

- section III, first a conceptual description and then a formal description

of the main algorithm is given. Section IV contains the graph theoretical

“_
results on which the main algorithm is based, 3nd in section V a formal

proof of the completeness and the correctness of the main algorithm 1s

nresented.

«
hr

II. Terminology and Subalgorithms. The concept of a superatom is used

= throughout the paper. Asuperatom is a collection of atoms bonded
.

together into a cyclic structure which possesses at least one unassigned

valence, 1.e., at least one free valence. Graph theoretically, a

- superatom 1s a connected, loop-free multi-graph with no isthmuscs, i.e.
¢

with no edge whose deletion disconnects the graph, and with at least one

= unassigned valence. If a superatom A has k free valences, then in forming

molecular structures which include A, A behaves almost like a1 atom of
£E —

valence k. The difference in forming structures including A and in forming

. structures including an atom of valence k 1s the following: The k free

valences on an atom of valence k are, as edge endpoints in a graph,

\

indistinguishable, 1.e., barring optical. isomerism, the free valences on

‘ 3
-

the atom implicitly admit as symmetry group the group Sk the full

. permutation group on k objects. However, the k free valences on the
superatom A usually are distinguishable from a symmetry view-point, and

the free valences on A will, in general, admit only a subgroup of Sy
For example, the superatom in Figure 1 has three free valences, but the

“ 123 12 3
group of symmetries of these free valences 1s only {(15 3)» (3 , 7

= Thus, associated with each superatom with k free wvalences 1s a subgroup

. of Sp namely, the group of symmetries on its free valences.
By the term tree we will always mean a graph whose nodes can

represent either atoms or superatoms and whose edges are all isthmuses.

" Also, throughout the paper, a collection of atoms given by their
valences, 1.e., a degree sequence, will be represented as an integral

| n-vector V = (8) 5850058), where a 1s the number of atoms of
|—

C valence 1 1n the collection.

| 8 For a degree sequence V = (8;,8,,...,2), the unsaturation of V,
n

| U(V), is defined as U(V) = 1/2(2 + Z (i-2)a.). If there exists at
1

- least one elf-graph based on V, 1.e., a elf-graph with a, nodes of
valence 1, then U(V) is precisely the minimal number of edges of any

—

elf-graph based V which must be deleted in order to make the graph

— into a tree of atoms.

The description of the main algorithm makes use of the following

L subalgorithms:

< a) A tree generator subalgorithm, TG. TG accepts as input

¢

| a list of wvalences corresponding to atoms and superatoms, each

— superatom with its associated free valence group, and outputs all
-

non-isomorphic trees based on these atoms and superatoms. Such a

B tree generator algorithm is described in [3].

b) A labeler subalgorithm, LAB. LAB accepts as input an ordered list

of m distinct symbols, a group H of permutations on these symbols,

— and a list of m not necessarily distinct labels. It outputs all

C non-equivalent, with respect to H, labelings of the given symbols
BN with the given labels subject to a set, possibly empty, of constraints

L of the form that certain types of symbols must be labeled with certain

0 types of labels. Such a labeling algorithm is described in [4].
— c) A "catolog'", CAT, containing certain connected, loop-free, isthmus-

| free multi-graphs, for brevity, clfif-graphs, underlying, 1n a sense
L

to be made explicit later, the graphs of organic molecules. A list

- of these underlying graphs 1s known for most of the common organic

- molecules, and consists of a relatively small number of graphs.

ITI. Main Algorithm. We give now a brief conceptual description of the main

| algorithm. The input to the algorithm 1s a degree sequence, 1.e., an integral

n-vector V.

C— 1. Determine all distinct allowable partitions of V into atoms and

superatom sets with assigned free valences. These partitions

L are based on the unsaturation of V.

« 2. For each superatom set, determine all the distinct allowable

i

H

-

| allocations of the free valences to the atoms of the set.

— 3. For each such free valence allocation, determine recursively the

L

allowable sets of atoms remaining after the deletion of the

bivalent atoms and the "pruning" of any resulting loops. This

recursion 1s done until: a) the remaining bivalent atoms in any

~~
clfif-graph based on the set must all be on edges, or b) one of

— two speclal cases 1s encountered,

L. For each such set of atoms, if condition (a) terminates the recursion,
“_

"look up" in the '"catolog" all the clfif-graphs based on the non-

bivalent atoms in the set and for each such graph label the edges

with the bivalent atoms. If condition (b) terminates the recursion,

\

CC — directly 'write down" the allowable graphs.

5. For each such graph, recursively label the atoms with loops and the

loops and edges with bivalent atoms.
\

6. For each graph so obtained, label the atoms with the free valences.

f. For each set of atoms andsuperatoms obtained as above, use the tree

—_— generator to construct all the non-isomorphic elf-graphs based on
C

these atoms and superatoms.

o The following formal description of the main algorithm 1s presented az

a sequence of subalgorithms:
“—

Definitions. Given V = (a) rages), define:
: n

Co a) UV) = (2 + z(i-2)a.)/2.
1

n

be b) TD(V) = Xia,.
i

1

“

- 0

] n

oT c) N(V) =I a..
1?

C
— d) P(V) = al.

| e) M(V) =max{1l<i<nl|a #0}.
C Note that U(V) = (2 + TD(V) - 2N(V))/2.

oT A. Superatom Partitioner (SAP).

oo Input: V = (a;,2,50.05a).
&

1. (Test) If U(V) 1s a non-negative integer and

_ 2M(V) < TD(V), continue; else STOP.

x 2. If WV) = 0, go to TG.

“ _
3. Do 12 for each non-trivial summand V of V such that

—

P(V) = 0 and N(V) > 2.

4. Do 11 for 1 <k < [LN(V)/2].
L

— 5. Do 10 for each distinct k-term ordered partition

| | of U(V), say UV) =u, + uy + Co. t wu where
| < < < < .

C lu fu, <...2y
oo 6. Do 9 for each distinct set { (V.,u;) | l<i<k }
= k

where 1 A = V and N(V.) 22, 121% k.

= 7. Compute FV, = 2(U(v,) - u,), 1 <i < k.

_ 8. If FV, <max {1, 24(V,) - TD(V)) } for any
l1<i<k,go to 6.

« = .

9. Put { V; (v., EV), ce. (V,.» EV,) | on the list
GLSA (V) .

a.

10. Continue.

. 11. Continue.

12. Continue.

— 13. If P(V) = 0, put { v; (V, 0) } on the list GLSA(V).

«

1

— B. 'ree Valence Partitioner (FVP).

\ = >(Mput= (0,V,5eeesv), EV.) where N(V.) > 2,
2(U(V.) =u.) =®., 1 v.1->1, and

i i

Fv, > - . .N Vv, > max{ 1, 2(v,) - ™D(V,) }
‘ 1. Determine all sets of non-negative integers

{ fat | oF = max{0, j + (FV, - TD(V.))/2} <t < j-2,
J = 2,...,0 } satisfying:

‘ 3-2
i) z f.. = Vi. J = 25.040

t=c. Jt]
_]

n j—2

11) L Ef. = IV.,.
_ j=2 t=c,] .

J

(Note that £50 = vy).

2. For each such set, form

C

_ Ws= W(v., Fv., {f..}) =(0,Wss..,w). where

+ + it ! theJ
| We z fr(h-s)? and put W on GLEV(V,, EV.).
L s<h<n

h>c, +s
«

_ C. Loop-Bivalent Partitioner (LBP).

(LBPis applied recursively until either m, (W) = mo (W) = 0

. or m,(W) < my (W)).

~ (Mprys s « W, = W_) where N(W) > 2, U(W) is a
positive integer, and 2M(W) < TD (W) .

| n

C— l. Compute m, (W) = min { Wos L 3-232], | and
J=h

u mo(W) = max{ 0, w, + (24(W) - TD(W))/2 }.

2. If m, (W) > m, (W), go to Special Case.
8

- 3. If my(W) = m, (W) = 0, go to Catolog.

L$

L

4. Do 9 for p =m (W),...,m(W).

_ 5. Determine all sets of non-negative integers

| { Pig T 35 45m ct < [(5-2)/2) } satisfying:
— L(3-2)/2]
C i) z P., = W., 3 <j <n.

t=0 Jt 3

(Note that Pag = Wa)

n {(§-2)/2]
> ii) I I tps, =D.

| j=3 t=0 J

| 6. DO8 for each such set SINE

— 7. Form Y = Y(W, p, (Psd) = (03 ¥,5eeesy) where

n

| m=s

- by 2

— the list| 8. If 2M(Y) < TD(Y), put Y onVGLIB(W,p).
. -

| 9, Continue.

D. Special Case (SC).

o (Here m(W) < m(W)).

_ B 1. If m, (W) = 0, put the graph consisting of the ring
with N(W) bivalent nodes and its associated node

the list

\— symmetry group onYGLGPH(W) and go to Loop Labeler;

else go to 2.

2. If m, (W) = s > 0, put the graph consisting of one

. node of degree 2(s+l) with s+l loops attached and
B the list

its assoclated edge-loop symmetry group onYGLGPH(W)

— and go to Bivalent Labeler.

“

)

= E. Catolog (CaT).

$ Input: Y = (0,y,500esy) where m(Y) = m,(Y) = 0.
= | ~ clfif-

1. If Ys, # 0, "look-up" all non-isomorphic Vv trivalent

ne graphs G¢ with Yq nodes and their associated edge

- symmetry groups, EGRP(G) , else go to 6.

— 2. Do 4 for each such graph G,

3. Determine all distinct ordered partitions of Yq

~ into TD(G)/2 non-negative integral terms.
_ 4, For each such partition, say b_ +... +

HER Partitiof, say by Orp(gy/2 = V2
| use the general labeling subalgorithm to determine

—
all distinct, with respect to EGRP(G), labelings

: of the edges of G with the labels b ,...
n J 122 Prp(gy/2°

: replace the label b. on the labeled graphs by

— bs bivalent nodes, and place the resultant graphs
: the Tisat

| and their node symmetry groups onYGLGPH(Y).

5. Go to Loop-Bivalent Labeler.

~ clfif-

_ 6. If y, = 0, "look-up" all non-isomorphic \ graphs

| based on Y, and put these graphs and their associated
the list

— node symmetry groups, on GLGPH(Y).
\

7. Go to Loop-Bivalent Labeler.

F. Loop-Bivalent Labeler (LBL).

C (LBL is applied recursively to each graph G on GLGPH(Y)
| up the path of vectors from which G arose until reaching

— the W = WV, EV., fay) on GLEV(V., FV.) heading the path).

“_

“ 10

: Loop Labeler (LL).

L

- Input: A elf-graph G , its node group NGRP(G) and the

vector Y = Y(W,p, {ps 1) on GLL(W,p) from which
- G arose.

¢ n

l. Compute q, = X ry t = 0y.445[(n=-2)/2].
2. Determine all distinct, with respect to NGRP (G),

_ labelings of the nodes of G with q.~t's subject to
«

the constraint that Py t's must go on nodes of
— valence j-2t.

E 3. For each such labeling, replace the label t by t loops.
.—

Bivalent Labeler (BL).

Input: A connected graph H with p loops, the edge-loop

. | group of H, ELGRP(H), and w,, the number of bivalent“~

— nodes 1n the vector W from which H arose.

l. Compute h = p + number of (non-loop) edges in H.

« 2. Do 4 for each ordered partition of Wo into h

- non-negative terms, say Ww, - by +... + bs

| bl < . . . £ bo» such that at least p of the b.'s

ES are non-zero.
| 3. Determine all distinct, with respect to ELGRP(H),

labelings of the edges ahd loops of H with the

— labels { b, | 1<i <h } subject to the constraintC 3 a1

that each loop gets a positive label.

= 4, For each such labeling, replace the label b, by
b. bivalent nodes, 1 <i < h, and place the

the 11st

resultant graph and its node group onYGLGPH(W).

oT G. Free Valence Labeler (FVL).

‘ Input: Agraph G , its node group NGRP(G), and the vector

w= W(V,,FV.,{f. }) from which G arose.
1 i. Jt

- 1. Compute £, =z fpr t = 0,...,n + (EV. -TD(V.))/2.
C 1=2

| 2. Determine all distinct, with respect to NGRE((G),

labelings of the nodes of G with £ -t's subject to

om the constraint that Fogt's must go on nodes of
| valence j-t.

3. For each such labeling, replace each label t by t

« free valences and put the resultant graph and its
the list

free valence symmetry group onYGLGPH(V, ,EV,).
— H. Input for Tree Generator.

_ the list

« For { V: (Vis BV)y «oo, (Vy, FV) } onVGLSA(V),
input to TG:

_ a) V-V. (The atoms).

« b) A k-tuple of graphs (Gs Co G,) and their

— associated free valence groups where G. 1s on the list

GLGPH(V., EV:), 1 <1i<k. (The superatoms).

“

IV. Theoretical Results. We now present the graph-theoretical results on

which the main algorithm is based. Even though some of these results are

w— known, we give proofs for the sake of clarity and completeness. Throughout

this section, V = (3500052) denotes an integral n-vector.

- Lemma 1. If there is at least one elf-graph G based on V = (a,,..., a),
« then U(V) is a non-negative integer.

Proof. A spanning tree of G has N(V)-1 edges, and ¢ has TD(V)/2 edges.

— Hence U(V) = TD(V)/2 - (N(V)-1) is a non-negative integer.

‘
-

“ 12

oo Lemma 2. If 2M(V)< TD(V) and U(V) is a non-negative integer, then there

L 1s at least one elf-graph based on V.

Proof. Let m = M(V), the maximum valence of V. Given non-negative integers,

_ 2 a b> b # 0, let bl = L(b,,...sb) be the least non-negative integer

v such that there 1s at least one elf-graph based on B = (b, Drsenesb). Since' m
m m

— for sufficiently large ob, e.g., oy = 2 1b, - 2(z b.-1), such a graph exists,
2 2

L{b,,. 0b) is well-defined.
Co

Assume bl = L(b,se..sD) > 2, and let & be a elf-graph based

on B. If there where two distinct nodes N1 and N, of G both of

“.— which had adjacent nodes of valence 1, we could delete these valence

: 1 nodes and add the edge (M15N,) to G obtaining a elf-graph with

- a lesser number of nodes of valence 1. Thus all valence 1 nodes of

\ G must be adjacent to the same node, say N. If there was a node

Ny adjacent to N and a node N, # N adjacent to Ni» we could delete

— the edge (N,,N,) and two of the valence 1 nodes and add the edges

L (N,N) and (N,N) obtaining a elf-graph with a lesser number of
| S——

valence 1 nodes. (See Figure 2). Thus all nodes adjacent to N are

| adjacent only to N, and since & is connected, all nodes must be

‘ adjacent to N. (See Figure 3). Hence, N must be the unique node of
m-1

— valence m, i.e., b = 1, and b, =m - I ib..
m 1 . _ 1

1=2

— Now assume the lemma is false, i.e., 2m < TD(V), U(V)

| is-a non-negative integer and there 1s no elf-graph based on V = (a,,' a).Po.
m-1

| _— .

Then a, < L(ay,...5a). If L(a,s..0sa) > 2, then a, <m- R ia,
1=2

— and TD(V) < 2m, a contradiction. If L(ayse..,a) = 0, then a, < 0,

a contradiction. If L(a,,...ja_) = 1, then al = 0. Since a
2 m

I

C

-

“ 13

m

elf-graph based on (1,a55.045a) does exist, by Lemma 1l,c = 1 +I (i-2)a,
“ 1=2

= is even. Hence U(V) = (c+l)/2 is not integral, a contradiction.

Theorem 1. There exists at least one elf-graph based on V if and

« only if 2M(V) < TD(V) and U(V) is a non-negative integer.

-— Proof. The sufficiency is Just Lemma 2. For the necessity, let

m = M(V). By Lemma 1, U(V) 1s a non-negative integer. Assume that

“ 2m > To{Y). Then m >a, + 2a, + . . . + (m-1l)a_ y+ Hence a = 1
and m > L ia.. This contradicts the loop-free assumption.

1=1

C Corollary 1. V determines a loop-free tree 1f and only 1f U(V) = 0.
- Moreover, 1n this case every graph based on V 1s a loop-free tree.

_ Theorem 2. There isa clfif-graph based on V if and only if U(V)

C is a positive integer and 2M(V)< TD(V).
Proof. If there 1s a clfif-graph based on V, then by Theorem 1

and Corollary 1, U(V) is a positive integer and 2M(V)< TD(V).

u Conversely, by Theorem 1 there exist elf-graphs based on V.
Assume that every such graph has at least one isthmus. Let G be

a graph based on V with a minimal number of isthmuses, 1.e., a

o "least criminal." We will show that G can be modified to a elf-graph

based on V with a lesser number of isthmuses, a contradiction to

our assumption.

w— Let the edge (A,B) be an isthmus of G, and let X and Y be the

connected components of G\(A,B). Since U(V) > 0, not both X and Y

| are trees. Say X is not a tree and A is in X. Let C be an elementary

“ circuit in X, and let C be a node on ¢ of minimal path length from

A,wnere we consider here a multiple edge as a circuit. (Note that

-

i

14

we may have A = C). By the choice of C, there 1s a path

from A to C which is edge-disjoint from C. Let D be a node on C

adjacent to C. (See Figure 4).

_ Case 1. Y 1s a tree.

- Since (1s loop-free, there must be a valence 1 node N in Y. Say

= N is attached to the node E of Y. Then, delete (C,D), add (D,E),

and move N from E to C. (See Figure 5).

N Case 2. [Y is not a tree. |

Let & be a elementary circuit in Y, E a node of EF of minimal path

length from B and F a node of E adjacent to E. Then, delete (C,D)

“oo . :
and (E,F), and add (D,F) and (C,E). (See Figure 6).

i In both cases, the resulting graph is a elf-graph based on
[Y—

V and has at least one less isthmus than G. Hence our assumption

L

— was false, and there 1s at least one clfif-graph based on V.

Lemma 3. Let V and FV. , i1i=1,k, be as in Superatom Partitioner.
— k —

Then I FV. = 2(k - U(vV-V)).
“ i=l

|

— Lemma 4. In a loop-free graph based on V, there are T™D(V)/2 - a,

edges between non-univalent nodes.

. Theorem 3. Let V = (0,a,,...,a), N(V) > 2, U(V) a positive

_ integer, and 2M(V) <TD(V). Let my (V) = max {0, (a, + (2M(V)-TD(V))/2))
n

and m,(V) = min{ 2k [(i-2)/2]a; }. Then, m,(V) < my (Vv)
l= except 1n precisely the following two cases:

a) m(V) =0 and m(V) = 2.L 0

b) m, (V) =s>0 and my(V) = s + 1.

“ 110oreover, case (a) holds if and only if a = 0, 7 > 3, and case (b)
holds if and only if 2 (s+1) = 1 and 2 = 0, 3 > 3, j#2(stl).

‘

-

15

Proof. Let m, (V) > ml(V). If ml(V) = 2,5 then 2M(V) - TD(V) > 0,

) a contradiction. Hence ml (V) = : [(i-2)/2]a,. Assume ml (v) = 0.
1=4

3 Then as = 0, jJ>3. By Theorem 1, a elf-graph based on V exists.

Hence a, is even. From 0 < my {V) = (2M(V) - 3a,)/2, it follows

= that a3 = 0 and my (V) = 2. The converse is immediate. Assume that

m(V) =s > 0. Then, a, + (2M(V) - TD(V))/2 > s > 0, and

\ M(V) > 2s + 3a, +...t MV) =1)ayyy-1 > 2s. Hence AM(V) = 1.
M(V)

Also, s = ml(V) =I [(i-2)/2]a; implies that 2s > M(V) - 3.

- Thus, 2s + 3 > ws 2s. This implies that a, = 0, 3 < 1 < M(V).
Since a elf-graph based on V exists, M(V) must be even. Thus

— M(V) = 2(s +1). A direct computation gives that my (V) =s + 1.

% The converse follows directly from 2M(V) < TD(V).

Lemma5. Let V, m,(V), and m, (V) be as in Theorem 3. Assume that

3 my (V) - m, (V) = 0 and a, # 0. Then a, # 0 and is even 'and ap © 0

w for 1 > 3.
n

- Proof. a, # 0 implies that m,(V) = I L1-2)/2]a, 0. Thus a.= 0,

_ i>3. Now m,(V) = 0 implies that 2M(V) - 3a, < 0. Hence a, F 0.

> Since a elf-graph based on V exists, aq must be even.
V. Proof of Main Algorithm.

A. Every elf-graph based on V occurs. Let G be a elf-graph based

v on V. We will show that the algorithm produces a graph isomorphic

- to G.

Since G exists, .by Theorem 1, U(V) is a non-negative integer

te and 28(V) < TD(V). If u(v) = 0, the tree generator produces a
graph 1somorphic to G. Assume U(V) > 0. Let B be the set of

g isthmuses in (, and let Go Ca Gy be those connected components

of G\bhavingat least two nodes. Since U(V) > 0, G is not a tree
“. . .

| - and k 2 1. Also, no CG, has univalent nodes. Let v. = (0, az, ces a),

where a, 1s the number of valence Jj nodes of Gs and let EV. be the
— number of elements of B connected to G. in ¢G, 1 £1 Xk. Set

C _ X =
V = Ve Note that k, Vos EV. and V depend only on the 1somorphism

— 1=1

class of G. Now P(V) = 0 and N(V) > 2. Thus V is an allowable

_ summand of of V in SAP. Also, N(VS) > 2, 1 <1<k,and 1 < k £ IN(V)/2].
- A

set u, = (2u(v.) = EV.)/2. Let G, be the graph obtained from G,

— by replacing in G each of the FV, connected components of G/B
: \ :

connected to G. by a univalent node. Then G, 1s a elf-graph which“_

1s not a tree. Let Vs be the n-vector associated with G. - Then

a u) = Ue, and Ue, 1s a positive integer. Moreover, by Lemma 3,
‘ A

« Z us = U(V). Since G, is a elf-graph, by Theorem 1,
— A= 1 !

24(V.) = 2m(v.) < TD(V.) = TD(V,) t EV.. Thus EV. > 2M(V.) - TD(V.)
SEARS SAAS CA il” i if us try = i i’?
and, after suitable reindexing/{ IR (Vos FV.), eo waa (V, , FV) |

| 1 1 KX kK
“ the list

is on 1 GLSA(V).

| For a fixed 1, 1 < 1 < k, let Fi be the number of valence
— ; nodes of G. with t univalent nodes attached, 2 < J <n, 0 <t <j.

. IN B
Since G, 1s a elf-graph and has isthmuses only to univalent nodes,

— Tig = 0 for t >» j-2. Also, by Lemma 4, TC; has (TD(V,) = FV.)/2
edges between non-uivalent nodes. Hence, any node of valence j

iy -
A

. in G, has at least 2 = max { 0, j + (EV, - TD(V.))/2 } univalent

- nodes- attached, 1i.e., Fay = 0 for t < Co The set

{ Leo | 2 <j <n, c. <t< j-2 | satisfies the conditions of FVP.
“_ ’ the list

rence, (Vv. . £, : NER: CFWV, FV., { je) is on/GLFV(V,, FV.) and depends only on

| the isomorphism class of G. .

|
[—

Let G. be the graph obtained from “. by deleting the EV.
« |

— univalent nodes and their connecting edges. Then

| W=W(v., Fv,, {f. }) =(0, w_,..., w) is the n-vector associated
1 1 Jt 2 ol

—— . r~ ~~ . ' '

n with Gs and G, is a cifif-graph. Assume that m, (W) < my (W) where
my and m, are as in LP. By Theorem 3, c, 1s not one of the special

~

case graphs, and hence deleting the bivalent nodes of G, leaves

oo a connected, 1isthmus—-fret graph a. with at least two nodes and say
t; loops. Since G, is isthmus-free, each node of G, must have at
least two non-loop edges attached. Hence

. t. <min{ w,, I|[(i-2)/2]w.}= m (W). Let G. be the graph
| 1 2 Tes * 1 i

| obtained from [A by deleting the t. loops. G, 1s a clfif-graph.

_ Let Y be the n-vector associated with G, . Then M(W) < M(Y) + 2t..— i

. Hence, by Theorem 1, 2M(W) - ht, < 2M(Y) < TD(Y) = TD(W) - 2w - 2t, ,
- and w, + (2M(W)- TD(W))/2 < t.. :, + (2M(W) (W))/2 <_t.. Thus t. 2m (W). Let Puy be the

number of valence Jj nodes of [2 with t loops, 4 < Jj <n,

« 0 <t < [(j-2)/2] . Then pt satisfies the conditions of LP and

— Y is precisely the n-vector Y(W, tos ps 1). Since 6; is a elf-graph,
theaast24%(Y) < TD(Y) and Y is onlYar,nW, to). Moreover, Y depends only on

— ~~

“ the isoxorphism class of G, .

oo Recursive application of the above process yields a sequence

Ww ~ tS ve ve %

of graphs Gg = G. G. 1 = G. » G. 5» voy “ls, and associated n-vectors
— i 1 i 1

1

Y. is on GLL(Y. ., bp. .ee ; (5-1 Psy) for some allowable p;_, and either
(1) m (YZ) = m (YS) = 0, or (ii) m (Y>) > m.(Y'). Moreover, Y*

0's, 1's, 0's, ls, T]
_ 1 i i 1

depends only on the isomorphism class of G. pe Assume (i) holdsEYhe

-

— for Y = vt = (03¥550eesy De Now by Lemma 5, Y has only bivalent
‘ and trivalent nodes or no bivalent nodes. In the first case deleting

the bivalent nodes of ;, leaves a proper clfif, trivalent graph.
— In the second case Gy. is a graph with no bivalent nodes. In either

. case, a graph 2 ; somorphic to de, is produced by CAT. If (11)
- holds, by Theorem 3, c;. 1s either the ring with Y, bivalent nodes
3 or 6; with its pivalent nodes deleted 1s a single node of valence

v 2m, (Y) with m, (Y) loops attached, and a graph G,. isomorphic TO
— cl. is produced by BL. Hence we have that a _— 6... isomorphic

to c+ and the vector vo are produced 1n the rhgoeitim as input
“e 1 x i

to LLBL. Since G.o 1 induces in the obvious manner a loop and/or

_ bivalent node labeling of Cig arising from ty 1 Gis m1 1s 1somorphic
to one of the graphs produced by LLBL with input G;, SPY

t_ Xecursively applying LLBL up the sequence (¥3)s we obtain graph
G isomorphic to 6, with associated n-vector W. = wv. FV. (fo))

” in the output, i =1, k. With the input Gs W.)s FVL produces

_ a graph G: isomorphic to G.. Hence, (V-V, Gq» Cy Gy) is among

the inputs to TG arising from V, and with this input TG produces

J a graph 1somorphic to G&G.

B. The algorithm produces no redundances. Let G and Hbetwo graphs

produced by the algorithm with input V. We will show that G and A

« are not isomorphic, i.e4 G ZH.

Assume G = H . TG 1s irredundant. Hence if G

. and H arise from the input to TG, (V-v, Gl, G.) and

. (V-V', Hy cory Hoi) respectively, where the G, and 1, are superatoms
with attached free valences, we must have that V' = V, k = k', and

-

.

- the 4 can be so indexed such that £s ToL, 1 <j < k. Hence, H.
So and G. both must have the same free valence EV: and ¢ and # must

| arise from the same SAP of V, say { Vs (T)5 Ev.), « . . . (Tk, tv,) }.

a Now since the labeler is irredundant, so 1s FVL. Hence from q. = 6G,
| 1t follows that the graphs G, and i defined as in (A) must be iso-

morphic. Also, ¢, and 7, must arise from the same FVP of (T., EV),

ow say W. = W(T. , FV., {£5.1), l<1i< k. Since BL is irredundant,
it follows that the graphs G. and H, defined as in (A) must be

l1somorphic. Similarly, since LL is irredundant, the graphs G,

o and fi, must be isomorphic. Moreover, c; and H must arise from the
same LP of W., say ¥. = YW, P. (Ps 10s 1 < i < k. Applying the

L above argument recur sively to Hh and H,, we have that the CAT
C "look-up" (or SC determination) graphs, say G. and Hs respectively,
— must be isomorphic and that the sequence of loop partitions leading

from Tr, to the partitions determining Gs and Hi must be identical.

. Now G! H H; if and only if Gi and H; are equal. Thus G} = HI,
— l <1 <k.

Hence we have that if G ¥ #, they arise from the identical

“ sequence of vector inputs to the various labelers and TG, and that

8 G: = Hs 1 £1 << k. Since for a given input, the labelers produce

only non-isomorphic graphs, we must have, successively, that

C —- c, = i), G, = H#,,G; =H. , and CG. =4., 1 <i2 k. Hence if G TH,
they both arise from the same input to TG. 3yut for a given input,

- IG produces only non-isomorphic graphs, a contradiction,

-

Co C. The partit ioners produce onlv allowable partitions of V. We

- will now show that every sequence of partitions of V produced by

the algorithm yields at least one elf-graph based on V.

the list

- | Let Y = Y(W, p, {p.. D be a member ofYGLL(W, Pp). By directJ

| :
oa computation, U(Y) = U(W) - p. Also, p < I (i-2)w./2 < UW).

| izy +

o Thus U(Y) is a positive integer. By construction, 2M(Y) < TD(Y).

Since a, (W) > m (HW), it follows from Theorem 3 that N(Y) > 2.
=

dence by Theorem 2, there 1s a clfif-graph based on Y. In the

- case m, (W) < my (WJ, Theorem 3 assures 'us that a clfif-graph based

oo on W exists. Thus LP produces only allowable output.
the list

Let W = LIQ EV. fe) be a member of YGLVE(V.., EV.) . By
direct computation, U(W) = uv.) - EV. /2 = us, a positive integer.

| Also, TD(W) = TD(V,) - FV. Now M(W) = max{ j-t | 3 < § <n,
\

—_ < < Ve 1 — < -C4 <t < 3-2, fi £0 | and j-t < (TD(V.) FV.)/2. Hence,
2M(W) < TD(V.) - FV, = TD(W). By Theorem 2 there is a clfif-graph

| _—

based on W, and FVP produces only allowable output.

NN B the list
Co Let {V; (Vis EV), Ce. (Vy, Fv) be a member ofYGLSA(V),

sayV. = (0 ak .e.9 ab) 1 < i < k. Let H. = (FV, al at)i ’ 2? . I ’ —_— — i i? 2? e MO n *

—_ x = - = I 1 1 1 1Now 2U(H,) 20(V.) FV. = 2u., and UCH,) is a positive integer.
| = > = > - .| Also, P(H;) EV. > 1, and TD(H.) TD(V.) + FV, > 2u(V.) 2M(H,)

Thus, by Theorem 2, there 1s a clfif-graph based on Hy, 1 <1 < k.

you Hence, at least one set, G, Ce G sof superatoms based on the
given partition of V exists. If A is the n-vector corresponding

— to v - V and the free valences of the Gs then a direct computation

«

.

|]

21

] using Lemma 3 gives that U(V)= 0. By Corollary 1, a loop-free

A a ry .
tree based on V - Vv and the G. exists. Thus the sequence of psrtions

of V does yield at least one elf-graph based on V.

— VI. Acknowledgements. The DENDRAL concept and its applications to

nt organic chemistry were originally conceived by Professor Joshua

Bh Lederberg. The authors thank Professor Lederberg for his guidence

and his critical suggestions which have made this work possible.

=

-.

| Computer Science Department

| Stanford University

i Stanford, California 94305

~ REFERENCES

CL 1. E. A. Feigenbaum, B. G. Buchanan and J. Lederberg, On generality
.

| and problem solving: A case study using the DENDRAL program, in:

= Machine Intelligence 6 (Edinberg University Press, 'Edinberg, 1971)

| 165-190.

«|

- 2. B. G. Buchanan, G. L. Sutherland and E. A. Feigenbaum, A program

| for generating explanatory hypotheses in organic chemistry, in:

|
Machine Intelligence 4 (Edinberg University Press, Edinberg,

L 1969) 209-254,

oe 3. J. Lederburg, et. al., A tree generation algorithm, To appear.

| 4. H. Brown, L. Hjelmeland and L. Masinter, Constructive graph
«

labeling using double cosets, To appear, Discrete Math.

“

C=

\

“

_ FOOTNOTES.

« ’

1. More formally, 1f X 1s an m-element set and H 1s a group of

permutations on X, then a labeling of X with n, labels a.
— nitn,t...tn =m,

N n, labels a,, ..., n, labels a, Vis a mapping y¢: X = {a),a,,...52,)
-1

Co such that K (a) i n.. Two such mappings vy and v, are
equivalent with respect to H 1f there 1s anné¢ H such that ¥;=¥on.

1

“we

.

$

“

«—

|

\

TTT

2

” 3
“ |

|
/

r *

: Figure 1.

. ah7
| od
——_———— | NL

Figure 2.

. J Bi

TNC
Figure 3.

“

RNYg |
X Y

\ Figure 4.

C Ds VN Aree B
| \4a

- X \ Y
‘“ Figure 5S.

_ F

~- D—"vu V——C Ame pT 7
AA A \L 7 /

- —- — _ — g
X] Y

— Figure 6.

\

