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ABSTRACT

A simple finite source model is used to gain insight into the
effect of central processor scheduling in multiprogrammed computer
systems. CPU utilization is chosen as the measure of performance
and this decision is discussed. A relation between CPU utilization
and flow time is developed. It is shown that the shortest-remaining-
processing-time discipline maximizes both CPU utilization and I/O
utilization for the queueing model M/G/1/N. An exact analysis of
processor utilization using shortest-remaining-processing-time
scheduling for systems with two jobs is given and it is observed that
the processor utilization is independent of the form of the processing
time distribution. The effect of the CPU processing time distribution
on performance is discussed. For first-come-first-served scheduling,
it is shown that distributions with the same mean and variance can yield
significantly different processor utilizations and that utilization may
or may not significantly decrease with increasing variance. Tpe results
are used to compare several scheduling disciplines of practical interest.
An approximate expression for CPU utilization using shortest-remaining-

processing-time scheduling in systems with N jobs is given.
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DISCUSSION

Scheduling in a multiprogramming system can be divided into three
major areas. Size of the main memory limits the number of jobs which
can be resident simultaneously. Since there will frequently be more
jobs to execute than will fit in memory, the system must have a rule for
selecting a set of jobs from the jobs waiting to be executed to reside
in main memory. This rule will be referred to as the job selection rule

or job scheduling. The job selection rule may try to optimize the job

mix to give good turnaround time to short Jjobs, make efficient utilization
of the hardware, etc.

The jobs that are currently resident in main storage will alternate
between I/0 and CPU operations. If the number of jobs multiprogrammed
exceeds the number of CPUs, a waiting line or queue for the CPUs may
develop. We will refer to the rule used to manage this queue as the CPU

scheduling algorithm. Similarly, a queue may form in front of the I/O

channels and devices and I/0 scheduling must be considered. The purpose

of this paper is to present an analysis of CPU scheduling algorithms.
Several authors have given heuristic approaches to CPU scheduling
[Stevens, 1968], [Marshall, 1969], [Ryder, 1970], [Wulf, 1969], [HASP,
1969]. Most of the heuristics are based on the idea that some jobs are
"compute bound" and other jobs are "I/O bound." The I/0 bound jobs
should be given priority for the CPU over CPU bound jobs in order to
prevent "hogging" of the CPU by a compute bound job and hence poor
CPU-I/0 overlap. All of the above references describe implementations
of heuristic scheduling algorithms on specific systems. Stevens [1968],

Marshall [1969], Ryder [1970], and Wulf [1969] have all observed significant
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improvement in CPU utilization and throughput using their new scheduling
algorithms. In [Stevens, 1968] and [Wulf, 1969] other parts of the system
were changed at the same time the scheduling algorithm was changed, so it
is difficult to determine exactly what the effect of changing the
scheduling algorithm was. Ryder's [1970] heuristic is complicated, and
it is difficult to determine which features are important. Finally, the
relation between the job mix and the CPU scheduling algorithm is difficult
to see because an adequate description of the system loads is not available.
Ryder [1970] makes an effort to deal with this problem. Sherman [1971] has
used a trace driven simulation model to systematically compare several CPU
scheduling algorithms and has overcome most of the problems mentioned above.
Theoretical work on computer system scheduling has been performed by
using a probability model to represent the computer system and then per-
forming an analysis of particular scheduling algorithms for the chosen
model. Probability models of computer systems can be divided into two
major classes, finite source models and infinite source models [McKinney,
1969]. Most of the work on scheduling has used infinite source models.
This is due primarily to the fact that infinite source models are easier
to analyze than finite source models. Although infinite source models
can give some insight into the operation of computer systems, they appear
to be poor models of multiprogrammed computer systems since only a few
jobs can fit in main storage simultaneously. Finite source models
have been analyzed for first-come-first-served (FCFS) scheduling [Gaver,
1967], [Jaiswal, 1968], processor sharing scheduling [Baskett, 1971], and
preemptive resume last-come-first-served (LCFS) scheduling [Chandy, 1972].
Baskett [1971] has noted that processor sharing can give considerable
improvement over FCFS when the compute times are highly variable. Similar

remarks apply to preemptive resume LCFS.
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In this paper a simple finite source model is used to study the
effect of the CPU scheduling algorithm on system performance. CPU
utilization is used as the measure of system performance and the reason
for this is discussed in section 2. The basic finite source model is
shown in Fig 1. When a job arrives at the CPU the processing time for
its next CPU operation, which will be called a "CPU time," is selected
independently from a CPU processing time distribution which is identical
for all jobs. At the completion of its CPU service, the job goes to an
I/0 processor (or channel). The service time at the I/0O processor,
which will be called an "I/O time," is selected from an I/0 processing
time distribution, again identical for all jobs. Each job is either
doing I/O or using the CPU or waiting and no overlap is allowed.

Throughout this paper the assumptions necessary for each result
are stated explicitly with the result. A few general comments about
the assumptions will be given here. Most of the results in the paper
assume that the CPU processing time distribution is general and the
I/0 processing time distribution is exponential. It is usually assumed
that no queuing for I/0 occurs. With these assumptions the model is
equivalent to the M/G/1/N queueing process. This notation is due to
Kendall and is described in [Jaiswal, 1968]. This model is sometimes
referred to as the machine interference model [Cox, 1961]. The machine
interference model has been suggested as a model of multiprogrammed
computer systems [Gaver, 1967], [Baskett, 1971] and of time sharing
systems [Scherr, 1967], [McKinney, 1969].

Many of these assumptions are not strictly true in real systems.

I/0 times are usually not exponentially distributed. Successive CPU
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Figure 1.

The Finite Source Model
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times and I/O times may not be independent. Different jobs have dif-
ferent resource requirements. Many systems do allow for overlap of

I/0 and computing for a single job. Baskett [1972] has discussed some
of the deficiencies of this type of model. Despite all of the problems,
models of this type have been shown to be a fair approximation to real
systems [Baskett, 1972]. Thus, while the model does not exactly reflect
the structure and behavior of real systems, it retains many of the
significant aspects of multiprogramming and is close enough to real

systems to give us insight into the effect of scheduling.
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