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ABSTRACT

A simple finite source model 1s used to gain insight into the

— effect of central processor scheduling in multiprogrammed computer

systems. CPU utilization 1s chosen as the measure of performance

= and this decision 1s discussed. A relation between CPU utilization

| and flow time is developed. It is shown that the shortest-remaining-
processing-time discipline maximizes both CPU utilization and I/0

| utilization for the queueing model M/G/1/N. An exact analysis of

| processor utilization using shortest-remaining-processing-time
scheduling for systems with two jobs is given and it 1s observed that

| the processor utilization 1s independent of the form of the processing
a time distribution. The effect of the CPU processing time distribution

| on performance 1s discussed. For first-come-first-served scheduling,
. it 1s shown that distributions with the same mean and variance can yield

b significantly different processor utilizations and that utilization may

or may not significantly decrease with increasing variance. The results

are used to compare several scheduling disciplines of practical interest.

| An approximate expression for CPU utilization using shortest-remaining-
processing-time scheduling in systems with N jobs 1s given.

1



.

DISCUSSION

Scheduling 1n a multiprogramming system can be divided into three

major areas. Size of the main memory limits the number of jobs which

Co can be resident simultaneously. Since there will frequently be more

jobs to execute than will fit 1n memory, the system must have a rule for

selecting a set of jobs from the jobs waiting to be executed to reside

in main memory. This rule will be referred to as the job selection rule

or job scheduling. The job selection rule may try to optimize the job

mix to give good turnaround time to short jobs, make efficient utilization

of the hardware, etc.

L The jobs that are currently resident in main storage will alternate

i between I/O and CPU operations. If the number of jobs multiprogrammed
- exceeds the number of CPUs, a waiting line or queue for the CPUs may

i develop. We will refer to the rule used to manage this queue as the CPU
scheduling algorithm. Similarly, a queue may form in front of the I/O

L channels and devices and I/O scheduling must be considered. The purpose

| of this paper is to present an analysis of CPU scheduling algorithms.

L Several authors have given heuristic approaches to CPU scheduling

8g [Stevens, 1968], [Marshall, 1969], [Ryder, 1970], [Wulf, 1969], [HASP,
1969]. Most of the heuristics are based on the idea that some jobs are

i "compute bound" and other jobs are "I/O bound." The I/O bound jobs
should be given priority for the CPU over CPU bound jobs in order to

g prevent "hogging" of the CPU by a compute bound job and hence poor
| CPU-I/0 overlap. All of the above references describe implementations
i of heuristic scheduling algorithms on specific systems. Stevens [1968],

| Marshall [1969], Ryder [1970], and Wulf [1969] have all observed significant

L

i



bo |

| improvement in CPU utilization and throughput using their new scheduling
-

algorithms. In [Stevens, 1968] and [Wulf, 1969] other parts of the system

- were changed at the same time the scheduling algorithm was changed, so it

| is difficult to determine exactly what the effect of changing the
2 scheduling algorithm was. Ryder's [1970] heuristic is complicated, and

| it 1s difficult to determine which features are important. Finally, the

B relation between the job mix and the CPU scheduling algorithm 1s difficult

_ to see because an adequate description of the system loads 1s not available.

Ryder [1970] makes an effort to deal with this problem. Sherman [i971] has

1 used a trace driven simulation model to systematically compare several CPU

scheduling algorithms and has overcome most of the problems mentioned above.

~ Theoretical work on computer system scheduling has been performed by

| using a probability model to represent the computer system and then per-
forming an analysis of particular scheduling algorithms for the chosen

i model. Probability models of computer systems can be divided into two

| major classes, finite source models and infinite source models [McKinney,
1969]. Most of the work on scheduling has used infinite source models.

| This 1s due primarily to the fact that infinite source models are easier
to analyze than finite source models. Although infinite source models

| can give some 1nsight into the operation of computer systems, they appear
to be poor models of multiprogrammed computer systems since only a few

= jobs can fit 1n main storage simultaneously. Finite source models

u have been analyzed for first-come-first-served (FCFS) scheduling [Gaver,
1967), [Jaiswal, 1968], processor sharing scheduling [Baskett, 1971], and

- preemptive resume last-come-first-served (LCFS) scheduling [Chandy, 1972].

Baskett [1971] has noted that processor sharing can give considerable

~ improvement over FCFS when the compute times are highly variable. Similar

L remarks apply to preemptive resume LCFS.
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In this paper a simple finite source model 1s used to study the

effect of the CPU scheduling algorithm on system performance. CPU

L utilization 1s used as the measure of system performance and the reason
for this is discussed in section 2. The basic finite source model 1is

~ shown in Fig 1. When a job arrives at the CPU the processing time for

4 its next CPU operation, which will be called a "CPU time," 1s selected
independently from a CPU processing time distribution which 1s identical

8 for all jobs. At the completion of its CPU service, the job goes to an
f 1/0 processor (or channel). The service tineat the I/O processor,

L
which will be called an "I/O time," is selected from an I/O processing

| time distribution, again identical for all jobs. Each job 1s either
doing I/O or using the CPU or waiting and no overlap is allowed.

L Throughout this paper the assumptions necessary for each result
are stated explicitly with the result. A few general comments about

I the assumptions will be given here. Most of the results in the paper
assume that the CPU processing time distribution is general and the

- 1/0 processing time distribution is exponential. It 1s usually assumed
5 that no queuing for I/O occurs. With these assumptions the model is

equivalent to the M/G/1/N queueing process. This notation is due to

- Kendall and is described in [Jaiswal, 1968]. This model is sometimes

referred to as the machine interference model [Cox, 1961]. The machine

interference model has been suggested as a model of multiprogrammed

{ computer systems [Gaver, 1967], [Baskett, 1971] and of time sharing

systems [Scherr, 1967], [McKinney, 1969].

- Many of these assumptions are not strictly true in real systems.

i I/0 times are usually not exponentially distributed. Successive CPU

|
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Figure 1. The Finite Source Model
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| times and I/O times may not be independent. Different jobs have dif- |
L |

ferent resource requirements. Many systems do allow for overlap of

I/0 and computing for a single job. Baskett [1972] has discussed some

of the deficiencies of this type of model. Despite all of the problems,

. models of this type have been shown to be a fair approximation to real

systems [Baskett, 1972]. Thus, while the model does not exactly reflect

the structure and behavior of real systems, 1t retains many of the

i significant aspects of multiprogramming and is close enough to real
systems to give us insight into the effect of scheduling.
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