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RANDOM ARRIVALS AND MTPT DISK SCHEDULING DISCIPLINES

ABSTRACT

This article investigates the application of minimal-total-
processing-time (MTPT) scheduling disciplines to rotating storage units
when random arrival of requests is allowed. Fixed-head drum and moving-
head disk storage units are considered and particular emphasis is placed
on the relative merits of the MTPT scheduling discipline with respect to
the shortest-latency-time-first (SLTF) scheduling discipline. The data
presented are the results of simulation studies. Situations are
discovered in which the MTPT discipline is superior to the SLTF
discipline, and situations are also discovered in which the opposite is
true.

An implementation of the MTPT scheduling algorithm is presented and
the computational requirements of the algorithm are discussed, It is
shown that the sorting procedure is the most time consuming phase of the

algorithm.
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1. Introduction

This article looks at the practical implications of the drum
scheduling discipline introduced in Fuller [1971]. The scope of this paper
will include the classes of rotating storage devices shown in Fig. 1.1.

Let the device in Fig. 1,1(a) be called a fixed-head file drum, or just

fixed-head drum; the essential characteristics of a fixed-head drum is

that there is a read-write head for every track of the drum's surface
and consequently there is no need to move the heads among several tracks.
Furthermore, the drum in Fig. 1.1(a) allows information to be stored in
blocks, or records, of arbitrary length and arbitrary starting addresses
on the surface of the drum. Physical implementations of a fixed-head
file drum may differ substantially from Fig. l.l(a); for instance, a
disk, rather than a drum may be used as the recording surface, or the
device may not rotate physically at all, but be a shift register that
circulates its information electronically.

The other type of rotating storage unit that will be studied here

is the moving-head file disk, or simply moving-head disk, the only

difference between a moving-head disk and a fixed-head drum is that a
particular read-write head of a moving-head disk is shared among several

tracks, and the time associated with repositioning the read-write head

over a new track cannot be ignored. A set of tracks accessible at a
given position of the read-write arm is called a cylinder. Figure l.l(b)

shows the moving-head disk implemented as a moving-head drum, but this is
just to simplify the drawing and reemphasize that 'fixed-head drum' and
'moving-head disk' are generic terms and are not meant to indicate a

specific physical implementation.
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Figure 1.1. Storage units having rotational delays.



The analysis and scheduling of rotating storage units in computer
systems has received considerable attention in the past several years
[cf. Denning, 1967; Coffman, 1969; Abate et al., 1968; Abate and Dubner,
1969; Teorey and Pinkerton, 1972; Seaman et al., 1966; Frank, 1969]. In
these papers, first-in-first-out (FIFO) and shortest-latency-time-first
(SLTF) are the only two scheduling disciplines discussed for fixed-head
drums or intra-cylinder scheduling in moving-head disks; in [Fuller, 1971]
however, a new scheduling discipline is introduced for devices with
rotational delays, or latency. This new discipline finds schedules for
sets of I/0 requests that minimize the total processing time for the
sets of I/O requests. Moreover, if we let N be the number of I/0O
requests to be serviced, the original article presents a minimal-total-
processing-time (MIPT)* scheduling algorithm that has a computational
complexity on the order of NlogN, the same complexity as an SLTIF
scheduling algorithm.

Several other articles have been written since the MTPT scheduling
discipline was originally presented, and they develop upper bounds and
asymptotic expressions for differences between the SLTF and MTPT
scheduling disciplines [Stone and Fuller, 1971; Fuller, 1972H]. Like the
original paper, however, these articles address the combinatorial, or

static, problem of scheduling a set of I/0 requests; new requests are

* The algorithm was called an optimal drum scheduling algorithm in the
original article, but this article refers to the algorithm as the
minimal-total-processing-time (MTIPT) drum scheduling algorithm. This
name is more mnemonic and recognizes that other drum scheduling

algorithms may be optimal for other optimality criteria.



not allowed to arrive during the processing of the original set of I/O
requests. Although the MTPT scheduling discipline can always process a
set of I/0 requests in less time than the SLTF scheduling discipline, or
any other discipline, we cannot extrapolate that the MTPT discipline
will be best in the more complex situation when I/0 requests are allowed
to arrive at random intervals. On the other hand, even though the SLTF
discipline is never as much as a drum revolution slower than the MTPT
discipline when processing a set of I/O requests [Stone and Fuller, 1971],
we are not guaranteed the SLTF discipline will take less than a drum
revolution longer to process a collection of I/0O requests when random
arrivals are permitted.

Unfortunately, the analysis of the MTPT scheduling discipline
presented in the previous articles does not generalize to MTPT scheduling
disciplines with random arrivals. Moreover, attempts to apply techniques
of queueing theory to MTPT schedules has met with little success. For
these reasons, this article presents the empirical results of a simulator,
written to investigate the behavior of computer systems with storage
units having rotational delays [Fuller, 19724].

Another important question not answered by the earlier papers is
what are the computational requirements of the MTPT scheduling algorithm?
Although the MTPT scheduling algorithm is known to enjoy a computational
complexity on the order of NlogN, where N is the number of I/O requests
to be scheduled, nothing has been said about the actual amount of
computation time required to compute MTPT schedules. MIPT scheduling '
disciplines will be of little practical interest if it takes NlogN
seconds to compute MTPT schedules, when current rotating storage devices

have periods of revolution on the order of 10 to 100 milliseconds. No



obvious, unambiguous measure of computation time exists, but this article
will present the computation time required for a specific implementation
of the MTPT scheduling algorithm, given in the Appendix, on a specific
machine, an 1BM 360/9 1.

The next section, Sec. 2, discusses the implementation of the MTPT
scheduling algorithm that will be used in this article and presents the
computation time required by this algorithm, and Sec. 3 introduces two
modifications to the original MTPT algorithm. Section 4 shows the
results of using the SLTF and MTPT scheduling disciplines on fixed-head
drums where a range of assumptions are made concerning the size and
distribution of I/O records, Section 5 continues to present the results
of the simulation study but considers moving-head disks. We will see
situations with fixed-head drums and moving-head disks, where the MTPT
disciplines offer an advantage over the SLTF discipline; and the
converse will also be seen to be true in other situations. The ultimate
decision as to whether or not to implement a MTPT discipline for use in
a computer system will depend on the distribution of record sizes seen
by the storage units as well as the arrival rate of the I/O requests;
the discussion in the following sections will hopefully provide the

insight necessary to make this decision.

2. An Implementation of the Original MTIPT Drum Scheduling Algorithm

In this section we will try to add some quantitative substance to
the significant, but qualitative, remark that the MTPT drum scheduling
algorithm has an asymptotic growth rate of NlogN.

An informal, English, statement of the original MIPT scheduling

algorithm is included in the Appendix, along with a well-documented copy



of an implementation of the MTPT scheduling algorithm, called MTPTO.
This implementation of the MIPT algorithm has been done in conjunction
with a larger programming project, and as a result two important
constraints were accepted. First, MIPTO is written to maximize clarity
and to facilitate debugging; the primary objective was not to write the
scheduling procedure to minimize storage space or execution time.
Secondly, the algorithm is written in FORTRAN because this is the
language of the simulator with which it cooperates [Fuller, 1972A]. A
glance at MTPTO, and its supporting subroutines: FINDCY, MERGE, and
SORT, shows that a language with a richer control structure, such as
ALGOL or PL/I, would have substantially simplified the structure of the
procedures.

The results of this section were found with the use of a program
measurement facility, called PROGLOOK, developed by R. Johnson and
T. Johnston [ 1971]. PROGLOOK periodically* interrupts the central
processor and saves the location of the instruction counter. The
histograms of this section are the results of sampling the program
counter as MIPTO is repetitively executed, and then the number of times
the program counter is caught within a 32 byte interval is plotted as a
function of the interval's starting address.

Figure 2.1 is the result of PROGLOOK monitoring MIPTO as it
schedules N requests where N = 2, 3, 4, 6, 8, 10, 13, and 16. The
abscissa of all the histograms is main storage locations, in ascending

order and 32 bytes per line, and the ordinate is the relative fraction

¥ For all the results described here, PROGLOOK interrupted MIPTO every

500 microseconds.
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Legend for Computation Time Histograms of Figure 2.1

Initialize data structures.

Find f&'

Redefine record endpoints relative to f&‘

Construct the minimal cost, no-crossover permutation.
Find the membership of the cycle of {°'.

Transform the permutation §' to the permutation wo.

. o . .
Transform the permutation § to the single-cycle permutation ¢o.

Construct MIPT schedule from ¢0.

Subroutine FINDCY: find cycle in which specified node is a member.

Subroutine MERGE: merge two cycles.

Subroutine SORT: an implementation of Shellsort.
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of time MTPTO spends in an interval in order to schedule a set of N
requests. The scales of the histograms in Fig. 2.1 are selected so that
an interval whose computation time grows in direct (linear) proportion
to N will remain a constant height in all the histograms. Figure 2.1
illustrates that only the sort procedure is growing at a rate
perceptively faster than linear; for N in the range of 2 to 16 the rest
of MIPTO experiences a linear, or less than linear, growth rate.

The particular sorting algorithm used in MIPTO is Shellsort [Shell,
1959; Hibbard, 1963] because, for most machines, Shellsort is the fastest
of the commonly known sorting algorithms for small N [Hibbard, 1963].

If MIPTO is regularly applied to sets of records larger than 10, quick-
sort, or one of its derivatives [Hoare, 1961; van Emden, 1970 A,B ]may
provide faster sorting. Whenever the algorithm is used for N more than
three or four, Fig. 2.1 indicates that initially sorting the starting
and ending addresses of the I/0O requests is the most time consuming of
the eleven major steps in MTPTO.

The upper curve of Fig. 2.2 is the expected execution time of MIPTO

as a function of queue size. Note that it is well approximated by
100N + 50 microseconds

for N < 8. For N 2 8§ the sorting algorithm begins to exhibit its
greater than linear growth rate. The lower curve in Fig. 3.2 is the
expected execution time for MTPTO minus the time it spends sorting; it

can be approximated by
50N + 50 microseconds.

The curves of Fig. 2.2 suggest an implementation of MIPTO might

maintain a sorted list of the initial and final addresses of the I/O
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requests at all times: techniques exist to add, or delete, I/O requests
from the list in O(log N) steps [Adel'son-Vel-skiy and Landis, 1962].
Then a schedule could be found more quickly after it is requested since
there would be no need to execute the costly sorting step.

Figure 2.2 can only be used as a rough guide to execution times
since it is very sensitive to implementation. In particular, these
statistics were collected on an IBM 360/91 and they must be appropriately
scaled for processors that are slower, or faster. The algorithm is
implemented in FORTRAN and has been compiled by the IBM FORTRAN H
compiler* [IBM, 1971A]. An examination of the machine instructions
produced by this compiler indicates a factor of 2 or 4 could be gained
by a careful implementation in machine language. Furthermore, the
starting and final values of the I/O requests are represented as double
precision, floating point numbers, and practical implementations of
MIPTO would very likely limit the starting and ending addresses to a

small set of integers, 128 or 256 for example.

3. Two other MIPT scheduling algorithms

The original MIPT drum scheduling algorithm whose implementation
was just discussed in the previous section, is not the only MTPT
scheduling algorithm that may be of practical significance; for example,
consider Fig. 3.1. Application of the MIPTO scheduling algorithm shows

the schedule it constructs 1is

4, 3, 5, 1, 2. (3.1)

% During compilation, the maximum code optimization was requested, i.e.

// EXEC FORTHCLG, PARM.FORT='OPT=2'
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16

This is a MTPT schedule, but then so are the sequences

5, 3, L", 1, 2; (32)
L, 1, 3, 5, 2; and (3.3)
5, 1, 3, 4, 2. (3.4)

The only properties that can confidently be stated about all the MTPT
schedules is that they require the same amount of processing time to
service a particular set of I/0O requests, and the last record that they
process is the same.

Two of the MTPT sequences for the example of Fig. 3.1 share a
distinct advantage over the MTPT sequence constructed by MTPTO. The
last two sequences process record 1 on the first revolution while the
sequence constructed by MTPTO, as well as the second sequence, overlook
record 1 on the first revolution, even though they are latent at the
time, and process it on the second revolution. Any reasonable measure
of drum performance will favor the last two MIPT sequences over the first
two.

Although MTIPTO is the only MIPT scheduling algorithm that has been
studied in detail and known to enjoy a computational complexity of
NlogN, the above example indicates that other MTPT algorithms may be of
interest. For this reason, two other MIPT scheduling algorithms have
been implemented and are listed following the MTPTO algorithm in the
Appendizx,

The MTPT1 procedure corrects the deficit in the MTPTO procedure
just illustrated; MTPT1 uses MTPTO to find a MTPT sequence and then
traces through the schedule looking for records, like record 1 in our
example, that can be processed at an earlier revolution without

disturbing the processing of any of the other records. No claim is made
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here that MTPT1 is an NlogN process, it is used here to indicate how
much better improved MTPT algorithms can be expected to be over MTPTO.
The third MTPT algorithm studied here, MTPT2, is what might be
called the shortest-latency-time-first MIPT scheduling algorithm. Like
MIPT1 it used MIPTO to find a MTPT sequence for the I/0 requests
currently in need of service. Then, it sees if the first record in the
MTPT sequence is closest to the read-write heads, if it is not it deletes
the record with the shortest potential latency from the set of requests,
applies the MTPTO algorithm to the remaining I/O requests and checks if
this new sequence is a MIPT sequence by comparing its processing time to
the processing time of the MIPTO sequence for the N requests. If not,
it continues searching for the nearest record that starts a MTPT
sequence. As in the case for the MTPT1 algorithm, the MTPT2 algorithm
is not an NlogN process, the purpose of discussing it here is to see how
the MTIPT2 scheduling discipline compares with the other MTPT disciplines,
as well as the SLTF discipline. In the example of Fig. 3.1, sequence

(3.4) is the MTPT2 sequence and (3.3) is the MTPT1 sequence.

., Random Arrivals and Fixed-Head Drums

We will now compare the performance of the MTPTO, MTPT1, MTPT2, and
SLTF scheduling disciplines when they are used on a fixed-head drum
(Fig. 1.1(a)) and I/O requests are allowed to arrive at random points in
time. Before proceeding with the results, however, some discussion is
needed to clarify the models of drum and record behavior that are used

in the simulations.
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As successive I/0 requests arrive for service, some assumptions
must be made about the location of the starting and ending addresses of
the new I/O request. In at least one real computer system, it is
reasonable to model the starting addresses of successive I/0 requests as
independent random variables uniformly distributed around the circum-
ference of the drum, and to model the length of the records as exponent-
ially distributed random variables with a mean of about one third of the
drum's circumference [Fuller and Baskett, 1972].

The other assumption made here is that the arrival of I/O requests
form a Poisson process. In other words, the inter-arrival time of
successive I/0 requests are independent random variables with the density

function
f(t) = \e , A> 0 and t > 0.

A more realistic assumption might be to assume that the drum is part of
a computer system with a finite degree of multiprogramming on the order
of 4 to 10. So little is known about the relative merits of SLTF and
MTPT disciplines, however, it is prudent to keep the model as simple as
possible until we have a basic understanding of these scheduling
disciplines.

Several other minor assumptions must be made, and at each point an
attempt was made to keep the model as simple as possible. The time
required to compute the scheduling sequence is assumed to be insignificant,
the endpoints are allowed to be real numbers in the interval [O,l% the
period of revolution of the drum will be assumed constant and equal to T,
no distinction is made between reading and writing on the drum, and no
attempt is made to model the time involved in electronically switching

the read-write heads.
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A number of different measures of drum performance are reasonable.
In this section, however, three measures will be used: expected waiting
time, the standard deviation of the waiting time, and expected duration
of drum busy periods. I/0 waiting time will be defined here in the
common queueing theory sense; that is, the time from the arrival of an
I/0 request until that I/O request has completed service. Let a drum be
defined by busy when it is not idle, in other words the drum is busy
when it is latent as well as when it is actually transmitting data.

These three measures of performance will be shown as a fraction of
P, where p is the ratio of the expected record transfer time to the
expected interarrival time. Use of the normalized variable p assists in
the comparison of simulations with records of different mean lengths and
always provides an asymptote at p = 1. In the figures in this section,

p is shown from 0 to .75. The statistics of drum performance for

p > .75 blow up very fast, and moreover the expense required to run
simulations of meaningful precision for large p outweighed the possible
insight that might be gained. Observed p's for operational computer
systems are commonly in the range of .1 to .5 [cf. Bottomly, 1970].

The precision of the summary statistics of the following simulations
is described in detail in [Fuller, 1972A]. All the points on the graphs in
this article represent the result of simulation experiments that are run
until 100,000 I/O requests have been serviced; this number of simulated
events proved sufficient for the purposes of this article. The sample
mean of the I/O waiting times, for example, are random variables with a

standard deviation less than .002 for p = .1 and slightly more than .1

for p = .75.
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The corresponding statistics for the expected duration of busy
intervals are
o7 = .005 for p = .1,

=.1 for p = .55.

)

The variability of the simulation points is often hard to see, but plots
of the residuals at the bottom of the graphs often show the experimental
error.

All the graphs in this section are really two sets of curves.
First, they show the measure of performance as a function of p for the
four scheduling disciplines studied: MTPTO, MTPT1, MTPT2, and SLTF;
and then on the same graph the difference between SLTF and each of the
three MTPT disciplines is shown. The residual curves more clearly
demonstrate the relative performance of the scheduling disciplines than
can be seen from directly studying the original curves. Some of the
curves, particularly the residual curves, do not go all the way to the
right hand side of the graph; this is simply because it was felt that the
marginal gain in insight that might be obtained from the additional
points did not justify the additional cost.

Figure 4.1 shows the mean I/0 waiting times for a fixed-head drum
servicing record with lengths drawn from an exponential distribution

with a mean of 1/2, i.e. pu =2and density function
£(t) = pe H, £ > 0.

Figure 4.1 displays an unexpected result, the SLTF and MTPT2 curves
lie directly on top of each other to within the accuracy of the
simulation. MTPTO and MTPT1 perform progressively poorer than MTPT2 and
SLTF as the arrival rate of I/O requests is increased. MTPTO, MTPTI1,

and MTPT2 show increasingly smaller mean waiting times; this is
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consistent with the observation that MTPTO is an 'arbitrary' MTPT
schedule while MTPT2, and to a lesser extent MTPT1, look at several MTPT
schedules in the process of deciding how to sequence the set of I/0
requests. We will see in all the figures that follow in this section,
and the next, that MIPTO, MTPT1, and MTPT2 consistently perform in the
same order of performance shown in Fig. 4.1. The observation that

MTPTO and MTPT1 are poorer scheduling disciplines than the SLTF
disciplines for heavily loaded drums is not too surprising. It is very
rare for large p that all the current requests will be processed before
any new request arrives. When an additional request does arrive, a new
MTPT sequence must be calculated and the non-robust nature of the MIPTO
algorithm suggests there will be little resemblance in the two sequences.

Figure 4.2 shows the standard deviation of the I/0O waiting time for
a fixed-head drum and records with lengths exponentially distributed
with p = 2, i.e. the same situation as Fig. 4.1. As in Fig. 4.1, the

SLTF and MTPT2 sequences behave very similarly except that the MIPT2
curve is below the SLTF by a small, but distinct, amount, indicating
that the MIPT2 discipline, while providing the same mean waiting time
exhibits a smaller variance, or standard deviation, than does the SLTF
discipline.

Figures 4.3 and 4.4 show the mean waiting time for drums with
records having exponentially distributed records lengths with means of
1/3 and 1/6 respectively. These figures reinforce our general
impressions from Fig. 4.1. The relatively poor performance of the MTPTO
and MTPT1 disciplines becomes more pronounced as the mean record size
decreases; this follows from the observation that the number of MTPT

sequences, for a given p, increases as p increases. We can see this by
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applying Little's formula, L= XW, or equivalently, L= pr. Hence, the
mean queue depth for the corresponding p coordinate in Figs. 4.1 and k4.4
is three times deeper in Fig. 4.4 than in Fig. 4.1.

A disturbing aspect of Fig. 4.4 is that the MTPT2 sequence is
slightly worse than the SLTF sequence, a change from the identical
performance indicated in Figs. 4.1 and 4.3. The difference is too large
to be dismissed as a result of experimental error in the simulation;
these two disciplines were simulated a second time, with a different
random number sequence, and the same difference was observed. The
standard deviation of the I/0 wait times whose means are shown in Figs.
4.3 and 4.4 are essentially identical to Fig. 4.2 with the same trend
exhibited in the mean; the difference in the MTPTO and MTPT1 curves,
with respect to the SLTF and MTPT2 curves, becomes increasingly
pronounced as the mean record size is decreased.

Figures 4.5-4.8 explore the relative merits of the four scheduling
disciplines along another direction. Figures 4.5 and 4.6 show the
performance of a drum with record lengths uniformly distributed from
zero to a full drum revolution, and Figs. 4.7 and 4.8 show the
performance of a drum with record exactly 1/2 of a drum revolution in
length. Figures 4.1, 4.5, and 4.7 show the mean I/O waiting time for
drums with records that all have a mean of 1/2, but have variances of
1/4, 1/12, and 0 respectively. This set of three curves clearly shows
that as the variance of the record sizes is decreased, the relative
performance of the MIPT sequences improves with respect to the SLTF
discipline.

The standard deviation of the waiting times for uniformly

distributed record lengths, Fig. h.6, and constant record lengths,
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Fig. 4.7, show an even more impressive improvement in the MTPT schedules
as the variance of the record lengths are decreased. Clearly the
advantage of MIPT disciplines is enhanced as the variation in the
lengths of records is decreased.

Figures 4.8 and 4.9 include another smooth curve as well as the
four curves already discussed. These curves show the mean and standard
deviation of a drum organized as a paging drum, with 2 pages per track.
There is no need to simulate a paging drum since Skinner [1967] and
Coffman [ 1969] derived the exact formula for the mean waiting time and
Fuller [1972C] derive@ the standard deviation. The paging drum shows a
pronounced improvement over any of the four scheduling disciplines
discussed in this article, and if a drum is only going to service fixed-
size records, Figs. 4.7 and 4.8 indicate the pronounced advantages in
organizing the drum as a paging drum.

Figures 4.9 and 4.10 illustrate another measure of drum performance,
the mean drum busy interval. Since a MIPT scheduling discipline
minimizes the total processing time of the outstanding I/0O requests, it
might be suspected the MTPT disciplines will minimize the drum's busy
periods even when random arrivals are allowed. Figure 4.9 shows the
mean drum busy interval for a drum with exponentially distributed
records, W = 2. The result is surprisingly close to what we might have
guessed from previous combinatorial observations [Fuller, 1972]. We see
that the expected difference between the MIPT discipline and the SLTF
when no random arrivals are allowed, approached the mean value of the
records' length, modulo the drum circumference, as N gets large. In
other words, for exponentially distributed records, with p = 2 and the

drum circumference defined to be unity, the mean record length, modulo 1,

is .3435.
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For fixed-size records, the mean record length, modulo a drum
revolution is still 1/2, Both Figs. 4.9 and 4.10 show that the best of
the MTPT disciplines, MTPT2, and the SLTF discipline are approaching a

difference of the expected record size, modulo the drum's circumference.

5. Random Arrivals and Moving-Head Disks

A storage device even more common than a fixed-head drum is the
moving-head disk, or drum, schematically depicted in Fig. 1.1(b). For
the purposes of this article, the only difference between a moving-head
disk and a fixed-head drum is that a single read-write head must be
shared among several tracks, and the time required to physically move
the head between tracks is on the same order of magnitude of a drum
revolution, and hence cannot be ignored even in a simple model, as was
the analogous electronic head-switching time in the fixed-head drum.

Before proceeding with the results of this section a few more
comments must be made on the simulations in order to completely specify
conditions leading to the results of this section. Some assumption must
be made concerning the time to reposition the head over a new cylinder.
Let AC be the distance, in cylinders, that the head must travel, then
the following expression roughly models the characteristics of the

IBM 3330 disk storage unit [IBM, 1971B]:

’

seek time = 0.6 + .0065 AC . (5.1)

Our unit of time in Eq. (5.1) is a disk (drum) revolution, and in the
case of the IBM 3330, the period of revolution is 1/60 of a second. The
relative performance of the four scheduling disciplines of this article

is insensitive to the exact.form of Eqg. (5.1) and replacing Eq. (5.1) by
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seek time =1 + .07 AC,

which approximates the IBM 2314 [IBM, 1965 ] does not change any of the
conclusions of this section.

A decision has to be made concerning the inter-cylinder scheduling
discipline. Although an optimal disk scheduling discipline might
integrate the intra-queue and inter—-queue scheduling disciplines, in
this article they will be kept separate. The inter—queue scheduling
discipline chosen for this study is called SCAN, [Denning, 1967] (also
termed LOOK by Teorey and Pinkerton [1972]). SCAN works in the following
way: when a cylinder that the read-write heads are positioned over is
empty, and when there exists another cylinder that has a non-empty queue,
the read-write heads are set in motion toward the new cylinder. Should
more than one cylinder have a non-empty queue of I/0 requests the read-
write heads go to the closest one in their preferred direction; the
preferred direction is simply the direction of the last head movement.
This inter-cylinder discipline is called SCAN because the read-write
heads appear to be scanning, or sweeping, the disk surface in alternate
directions.

SCAN gives slightly longer mean waiting times than the SSTF

(shortest-seek-time-first) inter-cylinder scheduling discipline.
However, from Eq. (5.1) we see the bulk of the head movement time is not
a function of distance, and SCAN has the attractive property that it
does not degenerate, as SSTF does, into a 'greedy' mode that effectively
ignores part of the disk when the load of requests becomes very heavy
[Denning, 1967].

An I/0 request arriving at a moving-head disk has a third attribute,

in addition to its starting address and length, the cylinder from which



36

it is requesting service. In the spirit of keeping this model as simple
as possible, we will assume that the cylinder address for successive I/0
records are independent and uniformly distributed across the total number
of cylinders. While no claim is made that this models reality, like the
Poisson assumption it simplifies the model considerably and allows us to
concentrate on the fundamental properties of the scheduling disciplines.
Furthermore, the results of this section are shown as a function of the
number of cylinders on the disk, where we let the number of cylinders
range from 1 (a fixed-head disk) to 50, Conventional disk storage units
have from 200 to 400 cylinders per disk but for any given set of active
jobs, only a fraction of the cylinders will have active files.

Therefore, the results of this section for disks with 5 and 10 cylinder
is likely to be a good indication of the performance of a much larger
disk that has active files on 5 to 10 cylinders.

Finally, in all the situations studied here, the records are
assumed to be exponentially distributed with a mean of 1/2. This
assumption is both simple and realistic and the observations of the
previous section for other distributions of record lengths indicates the
sensitivity of this assumption.

Figure 5.1 is the mean I/O weiting time for the SLTF, MIPTO, MTPT1
and MTPT2 scheduling disciplines for the disk model just described; the
numbers of cylinders per disk include 1, 2, 5, 10, 25 and 50. Note the
abscissa is now labeled in arrivals per disk revolution (A) rather than
p, and the curves for one cylinder are just the curves of Fig. 4.1, and
are included here for comparative purposes. Figure 5.1 shows quite a
different result than seen for fixed-head drums of the last section. As

the number of cylinders increases, the MIPT disciplines show more and
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more of an advantage over the SLTF scheduling discipline and also the
difference between the MIPT disciplines decreases as the number of
cylinders increases.

The reasons for the results seen in Fig. 5.1 are straightforward.
The waiting time on an I/O request is made up of three types of
intervals: the time to process the I/O requests on other cylinders, the
time to move between cylinders, and the time to service the I/0 request
once the read-write heads are positioned over the I/0 request's own
cylinder. By their definition, MTPT disciplines minimize the time to
process the set of I/O requests on a cylinder and hence minimize one of
the three types of intervals in an I/O request's waiting time. The
chance a new I/0 request will arrive at a cylinder while the MTPT
schedule is being executed is minimized since a new request will only go
to the current cylinder with a probability of 1/(number of cylinders).
All three MTPT disciplines process the I/O requests on a cylinder in the
same amount of time, barring the arrival of a new request, and so the
difference in expected waiting times between the three implementations
can be expected to go to zero as the number of cylinders increases.

Figure 5.2 shows the difference between each of the MTPT disciplines
and the SLTF discipline; for clarity the residual curves for one
cylinder are not included in Fig. 5.2. Figure 5.3 shows the residuals
of Fig. 5.2 divided by the mean I/O waiting time for the SLTF discipline.
In other words, Fig. 5,3 is the fractional improvement that can be
expected by using the MIPT disciplines instead of the SLTF disciplines.
Normalizing the residuals in this way shows a phenomenon not obvious
from the first two figures; as the number of cylinders increases, the

fractional improvement becomes relatively independent of the number of



39

"ouTTdTOSTP IdIW B Pue SUTTdIOSTP JITS SY3 bursn usym

(uotanToasx umip xad sTeaTIIR) ‘Y

o't G¢Lo

G0

YSTPp pesy-butaow ® JO SwWT3} DUuT3ITEM poloadxs oYl USSMISQ S0USISIITP Syl ‘g°G 2inbta

&z o

) |

sIaputTdo b

777

* SIdIN —p—/—
TIdIN —F——W—
OLdIN —de————s—

0°G-

o
i\

0°0T

0°G1

(suotinroasx umap)



40

SUl DbUuTISnN USUYM SYSIP pPeSy-HuTaAOwW JO SWI3 DUTITeMm pPo3o0adxs S(Yl USSMIS(Q SDUSISIITP SUL

Gt

"ouTTATOSTP JITS 9yl I0F M 9yl Aq popTATP

TAR

‘outTTdIOSTP IJIN B pue SUTTdIOSIP 4LTS

(uoTanToasx umip iad sTeaTaae) ‘Y

o't

Gl o

G0

éz°o

*€*G 2anbra

|

1

CIdIN ——H—
TIdIN —#———
OLdIN ————t—

¢r°o-

0T"0-

Go o=

€0°0

0T"0

G1°o



41

cylinders and is slightly more than 10 per cent for heavily loaded
situations.

Figure 5.4 shows the standard deviation of the cases shown in Fig.
5.1. The remarks made concerning the mean I/0 waiting time apply
unchanged to the standard deviation of the I/O waiting times. The only
additional observation that can be made is that the coefficient of
variation, 1i.e. the standard deviation divided by the mean, is
decreasing as the number of cylinders increases, and this is independent
of the scheduling discipline used. This would be expected since the I/0
waiting time is made up of intervals of processing time at other
cylinders that are independent, random variables, and from the property
that the mean and variance of a sum of independent random variables 1is
the sum of the individual means and variances, respectively, we know the
coefficient of variation of the waiting time should decrease as the

square root of the number of cylinders.

6. Conclusions

The graphs of Secs. 4 and 5 are the real conclusions of the
simulation study reported on in this article.

The purpose of this article is to empirically examine what
application MTPT disciplines will have in situations with random
arrivals. Section 3 shows that in situations where: (1) the
coefficient of variation of record sizes is less than one, (ii) it is
important to minimize the variance in waiting times, or (iii) it is
important to minimize the mean duration of busy intervals; MTPT

disciplines offer modest gains. It is important, however, to implement
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as good a MTPT discipline as possible, and unfortunately only the MTPTO
algorithm has been shown to enjoy an efficient computation time, on the
order of 100N + 50 microseconds for the naive implementation presented
here. More work will be required in order to find efficient algorithms
for the MIPT1 and MTPT2 scheduling disciplines.

Although the relative performance of the SLTF and MTIPT scheduling
disciplines have been considered here, little insight has been gained
into what the optimal drum scheduling algorithm is when random arrivals
are allowed, or even how close the disciplines studied in this article
are to an optimal scheduling discipline. An intriguing topic of further
research in this area will be to investigate optimal scheduling
disciplines for random arrivals, and even if algorithms to implement the
discipline are too complex to allow practical application, they will
still provide an excellent measure of the sub-optimality of more
practical scheduling disciplines.

The results of applying the MIPT discipline to a moving-head disk
is encouraging. For heavy loads improvements of over 10 per cent are
consistently achieved and just as importantly, it is relatively
unimportant which of the MTPT disciplines is used. In other words,
MIPTO, which has an efficient implementation, offers very nearly as much
of an improvement over SLTF as does MIPT1 and MTPT2 when 5 or more
cylinders are actively in use.

In the course of this study, the performance of MIPT2 was traced
several times. It was observed that as the queue of outstanding requests
grew, the probability that the MTPT2 discipline could use the shortest-
latency record also grew. This observation leads to the reasonable, but

as yet unproved, property of MTPT schedules that as the queue of I/0O
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requests grows, with probability approaching unity there exists a MTPT
sequence that begins with a SLTF sub-sequence. If this conjecture is
true, then an obvious implementation feature of MIPT disciplines appears;
when the depth of the I/O queue exceeds some threshold, suspend the MIPT
algorithm in favor of a SLTF algorithm until the queue size drops below

the threshold.

Acknowledgements

The author gratefully acknowledges many halpful suggestions

from F. Baskett, E. J. McCluskey, and H. S. Stone.



45

Appendix

IMPLEMENTATION OF THE MTPT DRUM SCHEDULING ALGORITHM

This appendix lists the implementation, in FORTRAN IV, of the
MTPT drum scheduling algorithm developed in Fuller [1971]. The
results discussed in this report are based upon the subroutines
listed here, and the formal parameters of the subroutines are com-
patible with the conventions of the simulator described in Fuller
[1972]. Three versions of the MTPT scheduling algorithm are
included here: MTPTO, an implementation of the original MTPT
algorithm of Chapter 4; MTPT1l, an obvious modification to MIPTO;
and MTPT2, a shortest-latency-time-first version of MTPTO. Both
MTPT1 and MTPT2 are described in detail in Chapter 6. Also in-
cluded in this appendix is a restatement, in English, of the

original MTPT drum scheduling algorithm.
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1. A Statement of the Original MTIPT Drum Scheduling Algorithm

Listed here is an informal, English statement of the original
minimal-total-processing-time (MTPT) drum scheduling algorithm developed

in Puller [1971].

The Minimal-Total-Processing-Time Scheduling Algorithm

1. Based on the unique value associated with each node, sort fo,fi,
and Sys 1 <i <N, into one circular list. If fi = Sj for any 1
and j then fi must precede f"

2. Set the list pointer to an arbitrary element in the list.

3. Scan in the direction of nodes with increasing value for the next
(first) fi in the list.

L. Place this fi on a pushdown stack.

5. Move the pointer to the next element and if it is an fi go to Step 4,
else continue on to Step 6. In the latter case, the element must be
an s..

6. Pop the top fi from the stack and move the pointer to the next
element in the circular list.

7. If the circular list has been completely scanned go to Step 8, else

if the stack'is empty go to Step 3, else go to Step 5.

8. Let the bottom £, on the pushdown stack be identified as f

i 6[

Change the circular list to an ordinary list where the bottom
element is f6'

and starting from the top of the list match the kth

9. Match £, to s

8 0’

4 to the kth fi' (This constructs the permutation ¢'.)

10. Determine the membership of the cycles of {'.



11.

12,

b7

Moving from the top to the bottom of the list, if adjacent arcs
define a zero cost interchange and if they are in disjoint cycles
perform the interchange. (This step transforms {' to WO.)

Moving from the bottom to the top of the list, perform the positive
cost, type 2a, interchange on the current arc if it is not in the

same cycle as the arc containing f5' (The permutation defined at

the end of this step is wmtpt')
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2. Implementation of the Original MTPT Algorithm, MTPTO

SUBROUTINE MTPTO0(QSIZE,QUEUE,START,FINISH, HDPOS,SDOREC,RESCHD)
INTEGER*2 QS1ZE,QUEUE(1),SDOREC
REAL*8 START(1),FINISH(1),HDPOS
LOG | CAL* 1 RESCHD

This subroutine is an implementation of the drum
scheduling algorithm described in “An Optimal Drum
Scheduling Algorithm’, (Fuller, 1971). Th i s procedure
finds a schedule for the outstanding I/O requests
such that the total processing time is minimized.

The formal parameters have the following inter-
pretat ion:

QSIZE ::=the number of requests to be scheduled.

QUEUE ::=a vector of length QSIZE that contains
the integer identifiers of the I/O requests
to be scheduled. The current implementation
restricts the identifiers to be positive
integers less than 1001 .

START ::=START(i)is the starting address of 1/0
request i.

FINISH ::= FINISH(i) is the finishing address of
I1/O request i.

HDPOS ::=the present position of the read-writeheads.
SDOREC ::t= the identifier of the pseudo record.

RESCHD ::= a boolean variable to signal when rescheduling
is required.

OO0 OOOO0

INTEGER I ,J,N,COMPNS,QPLUS1,QMIN1,QMIN2, TEMP,K, L M
INTEGER FINDCY

INTEGER*2 STACK,FPOINT,SPOINT,DELTA,DELTAS
INTEGER*2 FNODES(1001),F(1001),SNODES(1001),S(1001)
REAL*8 PERI0OD/1.00/

REAL*8 LATEND,LATSTR,SJ,FJ,ADJUST

C

COMMON /0PTIM/ PERM,CYCLE,LEVEL

INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)
C

RESCHD =.FALSE.

IF(QSIZE.LE.1) RETURN
C
C Initialize data structures and constants
C

QPLUS1 = QSIZE + 1
QMIN1=QSIZE - 1
QMIN2 =QSIZE = 2
DO100 I=1,QSIZE
FNODES(1) = QUEUE(I
SNODES(1) = QUEUE(I
100 CONTINUE

)
)



o0

OO0

OO0

OO0

OO0

310
330

300

49

Enter current position of read-write heads.
FNODES(QPLUS1)= SDOREC
FINISH(SDOREC)= HDPOS

Sort list of F and S nodes.

CALL SORT(FNODES,FINISH,QPLUS1)
CALL SORT(SNODES,START,QSIZE)

Find F(DELTA).

STACK=0
FPOINT = 1
SPOINT = 1
N = 2#QSIZE + 1
DO 3001=1,N
IF(FINISH(FNODES(FPOINT)),LE.START(SNODES(SPOINT))) GO TO 310
IF(STACK.GT.0) STACK = STACK = 1|
SPOINT = SPOINT #+ 1
IF(SPOINT.LE.QSIZE) GO TO 300
IF(STACK.GT,.0) GO TO 335
DELTA = FPOINT
DELTAS = 1
GO TO 335
IF(STACK.GT.0) GO TO 330
DELTA = FPOINT
DELTAS =MOD(SPOINT-1,QSIZE)+ |
STACK = STACK + 1
FPOINT = FPOINT + 1
IF(FPOINT.GT.QPLUS1) GO TO 335
CONTINUE

redefine S and F nodes relative to F(DELTA).

335 DO 3401=1,QSIZE

340

400

500

F(1) = FNODES(MOD(DELTA+!1=-2,QPLUS1)+1)
S(I+1) = SNODES(MOD(DELTAS+1-2,QS1ZE)+1)
CONTINUE
F(QPLUS1) = FNODES(MOD(DELTA+QPLUS1-2,QPLUS1)+1)
DELTA =1
ADJUST = PERIOD =FINISH(F(DELTA))

Construct the permutation Psi'.

PERM(F(1))= SOOREC
DO 400 1=2,QPLUS1

PERM(F(I))=S W
CONTINUE

Determine the membershfp of the cycles of Psi',

DO 500 I=1,QPLUS1

CYCLE(F(1)) = F(1)

CONTINUE
COMPNS =0
DO 501 K=1,QPLUS1

I = F(K)

IF(CYCLE(1).NE. 1) GO TO 501
COMPNS = COMPNS + 1
LEVEL(1) = |
J= |
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502 J = PERM(J)
IF(J.EQ.1) GO TO 501
LEVEL(1) = 2
CYCLE(J) = I
GO TO 502
501 CONTINUE
IF(COMPNS.EQ.I) GO TO 800

Transform Psi’ to Psi(0),

OO0

‘DO 600 I=1,QMIN1
J = QPLUS1 - |
IF(DMOD(ADJUST+START(S(J)),PERIOD).LT.
1 DMOD(ADJUST+FINISH(F(J+1)),PERIOD) .OR.
2 (FINDCY(F(J)).EQ.FINDCY(F(J+1)))) GO TO 600
CALL MERGE(F(J),F(J+1))
COMPNS = COMPNS - 1
IFWOMPNS.EQ.I) GO TO 800
600 CONTINUE
C )
c Transform Psi(0)to Phi(0),
c
DO 700 I1=2,QPLUS1
IF(FINDCY(F(DELTA)).EQ.FINDCY(F(}))) GO TO 700
CALL MERGE(F(DELTA),F(1))
DELTA =|
COMPNS = COMPNS - 1
. IF(COMPNS.EQ.lI) GO TO 800
700 CONT INUE

C
c Construct schedule from Phi (0).
C

800 J = SDOREC
DO 810 I-1,QSIZE
J = PERM(J)
QUEUE(I) = J
810 CONTINUE
RETURN
END

INTEGER FUNCTION FINDCY(NODE)
INTEGER*2 NODE
COMMON /0PTIM/ PERM,CYCLE,LEVEL
INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)

This is a function subroutine whose value is an
integer identifying the cycle of the permutation in
which NODE is a member. CYCLE is a tree structure
defining the cycles of the permutation.

QOO OO0

FINDCY = NODE
10 IF(FINDCY.EQ.CYCLE(FINDCY)) RETURN
FINDCY = CYCLE(FINDCY)
GO TO 10
END
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100

200

200
207
208
201
202

203
205

204

SUBROUTINE MERGE (NODE1,NODE2)
INTEGER*2 NODE1,NODE2

MERGE connects the tree representation of CYCLE 1
and CYCLE2, The integer vectors CYCLE and LEVEL
define the membership of the cycles of the permutation.
MERGE also executes the interchange of the successors
of NODE1 and NODE2,

INTEGER*2 C1,C2, TEMP

INTEGER FINDCY

COMMON /0PTIM/ PERM,CYCLE,LEVEL

INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)
C | =FINDCY(NODE1)

C 2=FINDCY(NODE2)

Merge the two cycle structures.

IFCLEVEL(C1) .GE.LEVEL(C2)) GO TO 100

CYCLE(Cl)=C 2

GO TO 200
IFCLEVEL(Cl).EQ.LEVEL(C2)) LEVEL(C1) = LEVEL(C1) + 1
CYCLE(C2)=CC 1

Perform the Interchange on the permutation.

TEMP = PERM(NODE1)
PERM(NODE1l) = PERM(NODE2)
PERM(NODE2)=TEMP

RETURN

END

SUBROUTINE SORT(NODES, VALUE,N)
INTEGER*2 NODES(1),N
REAL*8 VALUE(1)

Shellsort. For further discussion of Shellsort
s eeShell(1959), Hibbard(1963), a n d Knuth(1971),

INTEGER=*4 |,J,D,Y
REAL+8 VALUEY
D - 1
D=D+0D
IF(D - N) 200,208,207
D =D/2
D-D -1
F(D.LE.O)RETURN
=1
= |
= NODES(1+D)
ALUEY = VALUE(NODES(1+D))
IF(VALUEY, LT.VALUE(NODES(J))) GO TO 204
NODES(J+D) = Y
| =1+ 1
IFCC1+D).LE.N) GO TO 202
D = (D-1)/2
GO TO 201
NODES(J+D) = NODES(J)
J =J-D
IF(J.GT.0) GO TO 203
GO 70 205

|
|
J
Y
V.

END
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An Obvious Modification to MTPTO, MTPT1

w

SUBROUTINE MTPT1(QS!ZE,QUEUE,START,FINISH,HDPOS,SDOREC,RESCHD)
INTEGER*2 QSIZE,QUEUE(1),SDOREC
REAL#*8 START(1),FINISH(1),HDPOS
LOGICAL*1 RESCHD

INTEGER 1,J,N,COMPNS,QPLUS1,QMIN1,QMIN2, TEMP,K,L,M
INTEGER FINDCY

INTEGER*2 STACK,FPOINT,SPOINT,DELTA,DELTAS
INTEGER*2 FNODES(1001),F(1001),SNODES(1001),5(1001)
REAL+8 PERIOD/1.00/

REAL*8 LATEND,LATSTR,SJ,FJ,ADJUST

CALL MTPTO(QSIZE,QUEUE,START,FINISH,HDPOS,SDOREC,RESCHD)
QMIN2 = QSIZE = 2
IFCQMIN2.LE,2) RETURN
LATSTR = PERIOD - DMOD(HDPOS,PERIOD)
DO 900 I=1,QMIN2
J = 1+ |
LATEND = DMOD(LATSTR+START(QUEUE(1)),PERIOD)
DO 920 J=J,QMIN1
SJ = DMOD(LATSTR+START(QUEUE(J)),PERIOD)
IF(SJ.GT.LATEND) GO TO 920
FJ = DMOD(LATSTR+FINISH(QUEUE(J)),PERIOD)
IF((FJ.LT.SJ).OR.(FJ.GT.LATEND)) GO TO 920
TEMP = QUEUE(J)
K=dJ - |
DO 930 L=1,K
M= J-L
QUEUE(M+1) = QUEUE(M)
930 CONT INUE
QUEUE(I ) = TEMP
LATEND= DMOD (LATSTR+START(TEMP), PERIOD)
920 CONT INUE
LATSTR = PERIOD - DMOD(FINISH(QUEUE(1)),PERIOD)
900 CONT INUE
RETURN
END




L.

200

100

101

The Shortest-Latency-Time-First MIPT Algorithm, MTPT2

SUBROUTINE MTPT2(QS,Q,START,FINISH,HD,SDOREC,RESCHD)
INTEGER*2 QS,Q(1),SDOREC
REAL*8 START(1),FINISH(1),HD
LOGICAL*1 RESCHD

INTEGER |,J,K,REND,RBEGIN
INTEGER*2 QSM1

IF(QS.LE.1) RETURN

CALL MTPTO(QS,Q,START,FINISH,HD,SDOREC,RESCHD)
IF(QS.LE.2) RETURN

RBEGIN = Q(1)

REND = Q(QS)

QSM1 = QS - |

DO 100 I-L0OS | .
CALL SLTF(QS,Q,START,FINISH,HD,SDOREC,RESCHD, 1)
IF(Q(1).EQ.RBEGIN) RETURN
DO 200 J=2,QS
QT(J-1) = Q(J)
CALL MTPTO(QSM1,QT,FINISH(Q(1)))
RESCHD = , TRUE.
IF(QT(QSM1).EQ.REND) RETURN
CONTINUE
WRITE(6,101) QS
FORMAT(10X, 'ERROR IN MTPT2; QS = ',14,';")
CALL MTPT0(QS,Q,START,FINISH,HD,SDOREC, RESCHD)
RETURN
END
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