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RANDOM ARRIVALS AND MTPT DISK SCHEDULING DISCIPLINES

ABSTRACT

This article investigates the application of minimal-total-

processing-time (MTPT) scheduling disciplines to rotating storage units

when random arrival of requests 1s allowed. Fixed-head drum and moving-

head disk storage units are considered and particular emphasis 1s placed

on the relative merits of the MTPT scheduling discipline with respect to

the shortest-latency-time-first (SLTF) scheduling discipline. The data

presented are the results of simulation studies. Situations are

discovered in which the MTPT discipline 1s superior to the SLTF

discipline, and situations are also discovered in which the opposite is

true.

An implementation of the MTPT scheduling algorithm 1s presented and

the computational requirements of the algorithm are discussed, It is

shown that the sorting procedure is the most time consuming phase of the

algorithm.
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1. Introduction

This article looks at the practical implications of the drum

scheduling discipline introduced in Fuller [1971]. The scope of this paper

will include the classes of rotating storage devices shown in Fig. 1.1.

Let the device in Fig. 1,1(a) be called a fixed-head file drum, or just

fixed-head drum; the essential characteristics of a fixed-head drum is

that there 1s a read-write head for every track of the drum's surface

and consequently there 1s no need to move the heads among several tracks.

Furthermore, the drum in Fig. 1.1(a) allows information to be stored in

blocks, or records, of arbitrary length and arbitrary starting addresses

on the surface of the drum. Physical implementations of a fixed-head

file drum may differ substantially from Fig. 1,1(a); for instance, a

disk, rather than a drum may be used as the recording surface, or the

device may not rotate physically at all, but be a shift register that

circulates its information electronically.

The other type of rotating storage unit that will be studied here

1s the moving-head file disk, or simply moving-head disk, the only

difference between a moving-head disk and a fixed-head drum is that a

particular read-write head of a moving-head disk 1s shared among several

tracks, and the time associated with repositioning the read-write head

over a new track cannot be ignored. A set of tracks accessible at a

given position of the read-write arm 1s called a cylinder. Figure 1.1(b)

shows the moving-head disk implemented as a moving-head drum, but this is

just to simplify the drawing and reemphasize that 'fixed-head drum' and

'moving-head disk' are generic terms and are not meant to indicate a

specific physical implementation.
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Figure 1.1. Storage units having rotational delays.
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The analysis and scheduling of rotating storage units in computer

systems has received considerable attention in the past several years

[cf. Denning, 1967; Coffman, 1969; Abate et al., 1968; Abate and Dubner,

1969; Teorey and Pinkerton, 1972; Seaman et al., 1966; Frank, 1969]. In

these papers, first-in-first-out (FIFO) and shortest-latency-time-first

(SLTF) are the only two scheduling disciplines discussed for fixed-head

drums or intra-cylinder scheduling in moving-head disks; in [Fuller, 1971]

however, a new scheduling discipline 1s introduced for devices with

rotational delays, or latency. This new discipline finds schedules for

sets of I/0 requests that minimize the total processing time for the

sets of I/0 requests. Moreover, if we let N be the number of I/O

requests to be serviced, the original article presents a minimal-total-

processing-time (MTPT)* scheduling algorithm that has a computational

complexity on the order of NlogN, the same complexity as an SLTF

scheduling algorithm.

Several other articles have been written since the MTPT scheduling

discipline was originally presented, and they develop upper bounds and

asymptotic expressions for differences between the SLTF and MTPT

scheduling disciplines [Stone and Fuller, 1971; Fuller, 1972H]. Like the

original paper, however, these articles address the combinatorial, or

static, problem of scheduling a set of I/O requests; new requests are

* The algorithm was called an optimal drum scheduling algorithm in the

original article, but this article refers to the algorithm as the

minimal-total-processing-time (MTPT) drum scheduling algorithm. This

name 1s more mnemonic and recognizes that other drum scheduling

algorithms may be optimal for other optimality criteria.

”
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not allowed to arrive during the processing of the original set of I/0

requests. Although the MTPT scheduling discipline can always process a

set of I/0 requests in less time than the SLTF scheduling discipline, or

any other discipline, we cannot extrapolate that the MTPT discipline

will be best in the more complex situation when I/0 requests are allowed

to arrive at random intervals. On the other hand, even though the SLTF

discipline 1s never as much as a drum revolution slower than the MTPT

discipline when processing a set of I/O requests [Stone and Fuller, 1971],

we are not guaranteed the SLTF discipline will take less than a drum

revolution longer to process a collection of I/O requests when random

arrivals are permitted.

Unfortunately, the analysis of the MTPT scheduling discipline

presented in the previous articles does not generalize to MTPT scheduling

disciplines with random arrivals. Moreover, attempts to apply techniques

of queueing theory to MTPT schedules has met with little success. For

these reasons, this article presents the empirical results of a simulator,

written to investigate the behavior of computer systems with storage

units having rotational delays [Fuller, 19724].

Another important question not answered by the earlier papers 1s

what are the computational requirements of the MTPT scheduling algorithm?

Although the MTPT scheduling algorithm 1s known to enjoy a computational

complexity on the order of NlogN, where N is the number of I/O requests

to be scheduled, nothing has been said about the actual amount of

computation time required to compute MTPT schedules. MIPT scheduling '

disciplines will be of little practical interest if it takes NlogN

seconds to compute MTPT schedules, when current rotating storage devices

have periods of revolution on the order of 10 to 100 milliseconds. No
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obvious, unambiguous measure of computation time exists, but this article

will present the computation time required for a specific implementation

of the MTPT scheduling algorithm, given in the Appendix, on a specific

machine, an 18M 360/9 1.

The next section, Sec. 2, discusses the implementation of the MTPT

scheduling algorithm that will be used in this article and presents the

computation time required by this algorithm, and Sec. 3 introduces two

modifications to the original MTPT algorithm. Section 4 shows the

results of using the SLTF and MTPT scheduling disciplines on fixed-head

drums where a range of assumptions are made concerning the size and

distribution of I/O records, Section 5 continues to present the results

of the simulation study but considers moving-head disks. We will see

situations with fixed-head drums and moving-head disks, where the MTPT

disciplines offer an advantage over the SLTF discipline; and the

converse will also be seen to be true 1n other situations. The ultimate

decision as to whether or not to implement a MTPT discipline for use in

a computer system will depend on the distribution of record sizes seen

by the storage units as well as the arrival rate of the I/0 requests;

the discussion in the following sections will hopefully provide the

insight necessary to make this decision.

2. An Implementation of the Original MTPT Drum Scheduling Algorithm

In this section we will try to add some quantitative substance to

the significant, but qualitative, remark that the MTIPT drum scheduling

- algorithm has an asymptotic growth rate of NlogN.

An informal, English, statement of the original MTPT scheduling

algorithm 1s included in the Appendix, along with a well-documented copy
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of an implementation of the MTPT scheduling algorithm, called MTPTO.

This implementation of the MTPT algorithm has been done in conjunction

with a larger programming project, and as a result two important

constraints were accepted. First, MIPTO is written to maximize clarity

and to facilitate debugging; the primary objective was not to write the

scheduling procedure to minimize storage space or execution time.

Secondly, the algorithm is written in FORTRAN because this 1s the

language of the simulator with which it cooperates [Fuller, 19724].a

glance at MTPTO, and its supporting subroutines: FINDCY, MERGE, and

SORT, shows that a language with a richer control structure, such as

ALGOL or PL/I, would have substantially simplified the structure of the

procedures.

The results of this section were found with the use of a program

measurement facility, called PROGLOOK, developed by R. Johnson and

T. Johnston [ 1971]. PROGLOOK periodically* interrupts the central

processor and saves the location of the instruction counter. The

histograms of this section are the results of sampling the program

counter as MIPTO 1s repetitively executed, and then the number of times a

the program counter is caught within a 32 byte interval is plotted as a

function of the interval's starting address.

Figure 2.1 is the result of PROGLOOK monitoring MIPTO as it

schedules N requests where N = 2, 3, 4, 6,8, 10, 13, and 16. The

abscissa of all the histograms 1s maln storage locations, 1n ascending

order and 32 bytes per line, and the ordinate is the relative fraction

*¥ For all the results described here, PROGLOOK interrupted MTPTO every

500 microseconds.
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Legend for Computation Time Histograms of Figure 2.1

1. Initialize data structures.

2. Find f,.
6

3. Redefine record endpoints relative to Ly.

I, Construct the minimal cost, no-crossover permutation.

5. Find the membership of the cycle of {'.

lo]

6. Transform the permutation {' to the permutation { ,

- 0 0

Te Transform the permutation {§ to the single-cycle permutation ¢ .

0

8. Construct MIPT schedule from ¢ .

9. Subroutine FINDCY: find cycle in which specified node is a member.

10. Subroutine MERGE: merge two cycles.

. 11, Subroutine SORT: an implementation of Shellsort.
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Figure 2.1. (continued)
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Figure 2.1. (continued)
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of time MTPTO spends in an interval in order to schedule a set of N

requests. The scales of the histograms 1n Fig. 2.1 are selected so that

an interval whose computation time grows in direct (linear) proportion

to N will remain a constant height in all the histograms. Figure 2.1

illustrates that only the sort procedure is growing at a rate

perceptively faster than linear; for N in the range of 2 to 16 the rest

of MIPTO experiences a linear, or less than linear, growth rate.

The particular sorting algorithm used in MTPTO is Shellsort [Shell,

1959, Hibbard, 1963] because, for most machines, Shellsort 1s the fastest

of the commonly known sorting algorithms for small N [Hibbard, 1963].

If MIPTO is regularly applied to sets of records larger than 10, quick-

sort, or one of its derivatives [Hoare, 1961; van Emden, 1970 A,B ]may

provide faster sorting. Whenever the algorithm is used for N more than

three or four, Fig. 2.1 indicates that initially sorting the starting

and ending addresses of the I/O requests is the most time consuming of

the eleven major steps in MTPTO,

The upper curve of Fig. 2.2 1s the expected execution time of MTPTO

as a function of queue size. Note that it 1s well approximated by

100ON + 50 microseconds

for N < 8. For N 2 8 the sorting algorithm begins to exhibit its

greater than linear growth rate. The lower curve in Fig. 3.2 1s the

expected execution time for MIPTO minus the time it spends sorting; it

can be approximated by

50N + 50 microseconds.

The curves of Fig. 2.2 suggest an implementation of MIPTO might

maintain a sorted list of the initial and final addresses of the I/0
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requests at all times: techniques exist to add, or delete, I/O requests

from the list in O(log N) steps [Adel'son-Vel-skiy and Landis, 1962].

Then a schedule could be found more quickly after 1t 1s requested since

there would be no need to execute the costly sorting step.

Figure 2.2 can only be used as a rough guide to execution times

since 1t 1s very sensitive to implementation. In particular, these

statistics were collected on an IBM 360/91 and they must be appropriately

scaled for processors that are slower, or faster. The algorithm 1s

implemented in FORTRAN and has been compiled by the IBM FORTRAN H

compiler* [IBM, 1971A].An examination of the machine instructions

produced by this compiler indicates a factor of 2 or 4 could be gained

by a careful implementation in machine language. Furthermore, the

starting and final values of the I/0 requests are represented as double

precision, floating point numbers, and practical implementations of

MTPTO would very likely limit the starting and ending addresses to a

small set of integers, 128 or 256 for example.

3. Two other MTPT scheduling algorithms

The original MIPT drum scheduling algorithm whose implementation

was just discussed in the previous section, 1s not the only MTPT

scheduling algorithm that may be of practical significance; for example,

consider Fig. 3.1. Application of the MTPTO scheduling algorithm shows

the schedule it constructs 1is

hk, 3, 5, 1, 2. (3.1)

* During compilation, the maximum code optimization was requested, 1.e.

// EXEC FORTHCLG,PARM. FORT="'OPT=2"
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Figure 3.1. An example with four MIPT sequences.



16

This 1s a MTPT schedule, but then so are the sequences

5, 3, 4, 1, 2; (3.2)

hk, 1, 3, 5, 2; and (3.3)

5, 1, 3, 4, =. (3.4)

The only properties that can confidently be stated about all the MTPT

schedules 1s that they require the same amount of processing time to

service a particular set of I/O requests, and the last record that they

process 1s the same.

Two of the MTPT sequences for the example of Fig. 3.1 share a

distinct advantage over the MTPT sequence constructed by MTPTO. The

last two sequences process record 1 on the first revolution while the

sequence constructed by MTPTO, as well as the second sequence, overlook

record 1 on the first revolution, even though they are latent at the

time, and process it on the second revolution. Any reasonable measure

of drum performance will favor the last two MIPT sequences over the first

two.

Although MTPTO 1s the only MIPT scheduling algorithm that has been

studied in detail and known to enjoy a computational complexity of

NlogN, the above example indicates that other MTPT algorithms may be of

interest. For this reason, two other MIPT scheduling algorithms have

been implemented and are listed following the MTPTO algorithm in the

Appendix,

The MTPT1 procedure corrects the deficit in the MIPTO procedure

just 1llustrated; MTPT1 uses MIPTO to find a MTPT sequence and then

traces through the schedule looking for records, like record 1 in our

example, that can be processed at an earlier revolution without

disturbing the processing of any of the other records. No claim is made
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here that MTPT1 is an NlogN process, 1t is used here to indicate how

much better improved MTPT algorithms can be expected to be over MTPTO.

The third MTPT algorithm studied here, MIPT2,is what might be

called the shortest-latency-time-first MIPT scheduling algorithm. Like

MIPT1 it used MIPTO to find a MTPT sequence for the I/O requests

currently in need of service. Then, it sees if the first record in the

MTPT sequence 1s closest to the read-write heads, 1f 1t 1s not it deletes

the record with the shortest potential latency from the set of requests,

applies the MTPTO algorithm to the remaining I/0 requests and checks if

this new sequence 1s a MTPT sequence by comparing 1ts processing time to

the processing time of the MTPTO sequence for the N requests. If not,

it continues searching for the nearest record that starts a MTPT

sequence. As 1n the case for the MTPT1 algorithm, the MTPT2 algorithm

is not an NlogN process, the purpose of discussing it here is to see how

the MTPT2Z scheduling discipline compares with the other MTPT disciplines,

as well as the SLTF discipline. In the example of Fig. 3.1, sequence

(3.4) is the MIPT2 sequence and (3.3) is the MTPT1 sequence.

4. Random Arrivals and Fixed-Head Drums

We will now compare the performance of the MTPTO, MTPT1l, MTPT2, and

SLTF scheduling disciplines when they are used on a fixed-head drum

(Fig. 1.1(a)) and I/0 requests are allowed to arrive at random points in

time. Before proceeding with the results, however, some discussion is

needed to clarify the models of drum and record behavior that are used

in the simulations.
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As successive I/0 requests arrive for service, some assumptions

must be made about the location of the starting and ending addresses of

the new I/0 request. In at least one real computer system, 1t 1s

reasonable to model the starting addresses of successive I/0 requests as

independent random variables uniformly distributed around the circum-

ference of the drum, and to model the length of the records as exponent-

ially distributed random variables with a mean of about one third of the

drum's circumference [Fuller and Baskett, 1972].

The other assumption made here is. that the arrival of I/O requests

form a Poisson process. In other words, the inter-arrival time of

successive I/O requests are independent random variables with the density

function

F(t) = re MF, A> 0 and t > 0.

A more realistic assumption might be to assume that the drum 1s part of

a computer system with a finite degree of multiprogramming on the order

of 4 to 10. So little 1s known about the relative merits of SLTF and

MTPT disciplines, however, it 1s prudent to keep the model as simple as

possible until we have a basic understanding of these scheduling

disciplines.

Several other minor assumptions must be made, and at each point an

attempt was made to keep the model as simple as possible. The time

required to compute the scheduling sequence 1s assumed to be insignificant,

the endpoints are allowed to be real numbers in the interval (0,1), the

period of revolution of the drum will be assumed constant and equal to T,

no distinction is made between reading and writing on the drum, and no

attempt 1s made to model the time involved in electronically switching

the read-write heads.
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A number of different measures of drum performance are reasonable.

In this section, however, three measures will be used: expected waiting

time, the standard deviation of the waiting time, and expected duration

of drum busy periods. I/0 waiting time will be defined here in the

common queueing theory sense; that 1s, the time from the arrival of an

I/0 request until that I/0 request has completed service. Let a drum be

defined by busy when it 1s not idle, in other words the drum is busy

when 1t 1s latent as well as when 1t 1s actually transmitting data.

These three measures of performance will be shown as a fraction of

P, where p 1s the ratio of the expected record transfer time to the

expected interarrival time. Use of the normalized variable p assists in

the comparison of simulations with records of different mean lengths and

always provides an asymptote at p = 1. In the figures in this section,

Pp 1s shown from 0 to .75. The statistics of drum performance for

Pp > .75 blow up very fast, and moreover the expense required to run

simulations of meaningful precision for large p outweighed the possible

insight that might be gained. Observed p's for operational computer

systems are commonly in the range of .1 to.5 [cf. Bottomly, 1970].

The precision of the summary statistics of the following simulations

is described in detail in [Fuller, 1972A]. All the points on the graphs in

this article represent the result of simulation experiments that are run

until 100,000 I/O requests have been serviced; this number of simulated

events proved sufficient for the purposes of this article. The sample

mean of the I/0 waiting times, for example, are random variables with a

standard deviation less than .002 forp = .1 and slightly more than .1

for p = .75.
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The corresponding statistics for the expected duration of busy

intervals are

oO = . 005 for p =.1,

ox = 1 for p = .55.

The variability of the simulation points 1s often hard to see, but plots

of the residuals at the bottom of the graphs often show the experimental

error.

All the graphs in this section are really two sets of curves.

First, they show the measure of performance as a function of p for the

four scheduling disciplines studied: MTPTO, MTPT1, MTPT2, and SLTF;

and then on the same graph the difference between SLTF and each of the

three MTPT disciplines 1s shown. The residual curves more clearly

demonstrate the relative performance of the scheduling disciplines than

can be seen from directly studying the original curves. Some of the

curves, particularly the residual curves, do not go all the way to the

right hand side of the graph; this is simply because it was felt that the

marginal gain 1n 1nsight that might be obtained from the additional

points did not Justify the additional cost.

Figure 4.1 shows the mean I/O waiting times for a fixed-head drum

servicing record with lengths drawn from an exponential distribution

with a mean of 1/2, i.e. up =2and density function

f(t) = pe HE / t > 0.

Figure 4.1 displays an unexpected result, the SLTF and MTPT2 curves

lie directly on top of each other to within the accuracy of the

simulation. MTPTO and MTPT1 perform progressively poorer than MIPTZ2 and

SLTF as the arrival rate of I/0 requests is increased. MTPTO, MTPTI1,

and MIPT2 show increasingly smaller mean waiting times; this is
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consistent with the observation that MTPTO is an 'arbitrary' MTPT

schedule while MTPT2, and to a lesser extent MTPT1l, look at several MTPT

schedules in the process of deciding how to sequence the set of I/O

requests. We will see in all the figures that follow in this section,

and the next, that MIPTO, MTPT1, and MTPT2 consistently perform in the

same order of performance shown in Fig. 4.1. The observation that

MTPTO and MTPT1l are poorer scheduling disciplines than the SLTF

disciplines for heavily loaded drums 1s not too surprising. It 1s very

rare for large p that all the current requests will be processed before

any new request arrives. When an additional request does arrive, a new

MTPT sequence must be calculated and the non-robust nature of the MIPTO

algorithm suggests there will be little resemblance in the two sequences.

Figure 4.2 shows the standard deviation of the I/0 waiting time for

a fixed-head drum and records with lengths exponentially distributed

with yp = 2, 1.e. the same situation as Fig. 4.1. As in Fig. 4.1, the

SLTF and MTPT2Z sequences behave very similarly except that the MTPT2

curve 1s below the SLTF by a small, but distinct, amount, indicating

that the MTIPTZ2 discipline, while providing the same mean waiting time

exhibits a smaller variance, or standard deviation, than does the SLTF

discipline.

Figures 4.3 and L.4 show the mean waiting time for drums with

records having exponentially distributed records lengths with means of

1/3 and 1/6 respectively. These figures reinforce our general

impressions from Fig. 4.1. The relatively poor performance of the MTPTO

and MTPT1 disciplines becomes more pronounced as the mean record size

decreases; this follows from the observation that the number of MTPT

sequences, for a given p, 1ncreases as yu 1ncreases. We can see this by
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applying Little's formula, L = AW, or equivalently, L = pW. Hence, the

mean queue depth for the corresponding p coordinate in Figs. 4.1 and 4.4

is three times deeper in Fig. 4.4 than in Fig. 4.1.

A disturbing aspect of Fig. 4.4 is that the MTPT2 sequence is

slightly worse than the SLTF sequence, a change from the identical

performance indicated in Figs. 4.1 and 4.3. The difference is too large

to be dismissed as a result of experimental error in the simulation;

these two disciplines were simulated a second time, with a different

random number sequence, and the same difference was observed. The

standard deviation of the I/0 wait times whose means are shown in Figs.

L.3 and L.4k are essentially identical to Fig. 4.2 with the same trend

exhibited in the mean; the difference in the MTPTO and MTPT1 curves,

with respect to the SLTF and MTPT2Z curves, becomes increasingly

pronounced as the mean record size 1s decreased.

Figures U4.5-4.8 explore the relative merits of the four scheduling

disciplines along another direction. Figures 4.5 and 4.6 show the

performance of a drum with record lengths uniformly distributed from

zero to a full drum revolution, and Figs. 4.7 and 4.8 show the

performance of a drum with record exactly 1/2 of a drum revolution in

length. Figures 4.1, 4.5, and 4.7 show the mean I/O waiting time for

drums with records that all have a mean of 1/2, but have variances of

1/4, 1/12, and 0 respectively. This set of three curves clearly shows

that as the variance of the record sizes 1s decreased, the relative

performance of the MIPT sequences improves with respect to the SLTF

discipline.

The standard deviation of the waiting times for uniformly

distributed record lengths, Fig. 4.6, and constant record lengths,

.
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Fig. 4.7, show an even more impressive improvement in the MTPT schedules

as the variance of the record lengths are decreased. Clearly the

advantage of MIPT disciplines 1s enhanced as the variation in the

lengths of records 1s decreased.

Figures 4.8 and 4.9 include another smooth curve as well as the

four curves already discussed. These curves show the mean and standard

deviation of a drum organized as a paging drum, with 2 pages per track.

There 1s no need to simulate a paging drum since Skinner [1967] and

Coffman [ 1969] derived the exact formula for the mean waiting time and

Fuller [1972C] derive@ the standard deviation. The paging drum shows a

pronounced improvement over any of the four scheduling disciplines

discussed in this article, and if a drum is only going to service fixed-

size records, Figs. 4.7 and 4.8 indicate the pronounced advantages in

organizing the drum as a paging drum.

Figures 4.9 and 4.10 illustrate another measure of drum performance,

the mean drum busy interval. Since a MTPT scheduling discipline

minimizes the total processing time of the outstanding I/0 requests, it

might be suspected the MTPT disciplines will minimize the drum's busy

periods even when random arrivals are allowed. Figure 4.9 shows the

mean drum busy interval for a drum with exponentially distributed

records, @ = 2. The result is surprisingly close to what we might have

guessed from previous combinatorial observations [Fuller, 19728]. We see

that the expected difference between the MIPT discipline and the SLTF

when no random arrivals are allowed, approached the mean value of the

records' length, modulo the drum circumference, as N gets large. In

other words, for exponentially distributed records, with py = 2 and the

drum circumference defined to be unity, the mean record length, modulo 1,

is «3435.



|

32

\O

ER ||

| | A
\ ) ;

oO
Y

) Oo

NN 00)Y
RX jo

NN >

| 7
= =

R | oO (Q\|
n

— I

Sz
7c
il) +H
ct -—
-— =

oO

53=
=

MM “ QO
o CHE

\ Qa SD
: n

-

\ RE:o>SE
-— —
i) ©
© -—
“ +
— -
Oo Q\ :\ a

o e 0

[ ()] 0)
cl “
= ©

OC ~~ ON .

EEE 3
mn EE § E =

)
“

— 3
I—| on

O -—

: O

Sd O O O OO
= oo Ql —t —i

|

(suot3nioaad wnip) ‘uotriexnp poraad Asngq ueou



33 :

\O

ANN O

2 on
eese | RB . G

\\ ©) ©
0p]

(c
“

O
@)

~ nN Xx 0)

C
BD

aN |e = 9 .

\ o SES
on

nc
— 0
CI

| 2 =

>Gg
wooooq
S00

—_— ™ Q
\ y £O Q

\ a go &PG
-

uy 0
Oo

n

a-

Oo Eg
a 5
IEE
©

5
. BD
o =

Td
0)

\ £oo«~  —
©

5 EEE
pu .

<

—

! o

=
on
-—

Fr

OQ O Oo O Oo oO
= 38) Ql — —

|

(suoTanToASI WMI) ‘fporaad £snq JO uoIjeBINP UBOU



3h

For fixed-size records, the mean record length, modulo a drum

revolution is still 1/2. Both Figs. 4.9 and 4.10 show that the best of

the MTIPT disciplines, MTPT2, and the SLTF discipline are approaching a

difference of the expected record size, modulo the drum's circumference.

Se Random Arrivals and Moving-Head Disks

A storage device even more common than a fixed-head drum is the

moving-head disk, or drum, schematically depicted in Fig. 1.1(b). For

the purposes of this article, the only difference between a moving-head

disk and a fixed-head drum is that a single read-write head must be

shared among several tracks, and the time required to physically move

the head between tracks 1s on the same order of magnitude of a drum

revolution, and hence cannot be ignored even in a simple model, as was

the analogous electronic head-switching time in the fixed-head drum.

Before proceeding with the results of this section a few more

comments must be made on the simulations in order to completely specify

conditions leading to the results of this section. Some assumption must

be made concerning the time to reposition the head over a new cylinder.

Let AC be the distance, 1n cylinders, that the head must travel, then

the following expression roughly models the characteristics of the

IBM 3330 disk storage unit [IBM, 1971 B]:

seek time = 0.6 + ,0065 AC . (5.1)

Our unit of time in Eq. (5.1) is a disk (drum) revolution, and in the

case of the IBM 3330, the period of revolution is 1/60 of a second. The

relative performance of the four scheduling disciplines of this article

1s insensitive to the exact form of Eg. (5.1) and replacing Eg. (5.1) by
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seek time = 1 + .07 AC,

which approximates the IBM 2314 [IBM, 1965 ] does not change any of the

conclusions of this section.

A decision has to be made concerning the inter-cylinder scheduling

discipline. Althoughan optimal disk scheduling discipline might

integrate the 1intra-queue and inter—-queue scheduling disciplines, in

this article they will be kept separate. The inter-queue scheduling

discipline chosen for this study is called SCAN, [Denning, 1967] (also

termed LOOK by Teorey and Pinkerton [1972]). SCAN works in the following

way: when a cylinder that the read-write heads are positioned over is

empty, and when there exists another cylinder that has a non-empty queue,

the read-write heads are set in motion toward the new cylinder. Should

more than one cylinder have a non-empty queue of I/O requests the read-

write heads go to the closest one in their preferred direction; the

preferred direction is simply the direction of the last head movement.

This inter-cylinder discipline 1s called SCAN because the read-write

heads appear to be scanning, or sweeping, the disk surface in alternate

directions.

SCAN gives slightly longer mean walting times than the SSTF

(shortest-seek-time-first) inter-cylinder scheduling discipline.

However, from Eq. (5.1) we see the bulk of the head movement time 1s not

a function of distance, and SCAN has the attractive property that it

does not degenerate, as SSTF does, 1nto a 'greedy' mode that effectively

ignores part of the disk when the load of requests becomes very heavy

[Denning, 1967].

An I/O request arriving at a moving-head disk has a third attribute,

in addition to 1ts starting address and length, the cylinder from which
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it 1s requesting service. In the spirit of keeping this model as simple

as possible, we will assume that the cylinder address for successive I/0

records are independent and uniformly distributed across the total number

of cylinders. While no claim 1s made that this models reality, like the

Poisson assumption 1t simplifies the model considerably and allows us to

concentrate on the fundamental properties of the scheduling disciplines.

Furthermore,the results of this section are shown as a function of the

number of cylinders on the disk, where we let the number of cylinders

range from 1 (a fixed-head disk) to 50, Conventional disk storage units

have from 200 to 400 cylinders per disk but for any given set of active

jobs, only a fraction of the cylinders will have active files.

Therefore, the results of this section for disks with 5 and 10 cylinder

is likely to be a good indication of the performance of a much larger

disk that has active files on 5 to 10 cylinders.

Finally, in all the situations studied here, the records are

assumed to be exponentially distributed with a mean of 1/2. This

assumption is both simple and realistic and the observations of the

previous section for other distributions of record lengths indicates the

sensitivity of this assumption.

Figure 5.1 is the mean I/O weiting time for the SLTF, MIPTO, MTPT1

and MTPT2 scheduling disciplines for the disk model just described; the

numbers of cylinders per disk include 1, 2, 5, 10, 25 and 50. Note the

abscissa is now labeled in arrivals per disk revolution(A) rather than

Pp, and the curves for one cylinder are just the curves of Fig. 4.1, and

are included here for comparative purposes. Figure 5.1 shows quite a

different result than seen for fixed-head drums of the last section. As

the number of cylinders increases, the MIPT disciplines show more and



37

TT
SAI

|

) ) I. ump ) oy



36

more of an advantage over the SLTF scheduling discipline and also the

difference between the MIPT disciplines decreases as the number of

cylinders increases.

The reasons for the results seen in Fig. 5.1 are straightforward.

The waiting time on an I/0 request is made up of three types of

intervals: the time to process the I/O requests on other cylinders, the

time to move between cylinders, and the time to service the I/0 request

once the read-write heads are positioned over the I/0 request's own

cylinder. By their definition, MTPT disciplines minimize the time to

process the set of I/0 requests on a cylinder and hence minimize one of

the three types of intervals in an I/0 request's waiting time. The

chance a new I/0 request will arrive at a cylinder while the MTPT

schedule is being executed 1s minimized since a new request will only go

to the current cylinder with a probability of 1/(number of cylinders).

All three MTPT disciplines process the I/0 requests on a cylinder in the -

same amount of time, barring the arrival of a new request, and so the

difference 1n expected waiting times between the three implementations

can be expected to go to zero as the number of cylinders increases.

Figure 5.2 shows the difference between each of the MTPT disciplines

and the SLTF discipline; for clarity the residual curves for one

cylinder are not included in Fig. 5.2. Figure 5.3 shows the residuals

of Fig. 5.2 divided by the mean I/0 waiting time for the SLTF discipline.

In other words, Fig. 5.3 1s the fractional improvement that can be

expected by using the MIPT disciplines instead of the SLTF disciplines.

Normalizing the residuals in this way shows a phenomenon not obvious

from the first two figures; as the number of cylinders increases, the

fractional improvement becomes relatively independent of the number of
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cylinders and 1s slightly more than 10 per cent for heavily loaded

situations.

Figure 5.4 shows the standard deviation of the cases shown in Fig.

5.1. The remarks made concerning the mean I/0 waiting time apply

unchanged to the standard deviation of the I/0 waiting times. The only

additional observation that can be made 1s that the coefficient of

variation, i.e. the standard deviation divided by the mean, is

decreasing as the number of cylinders increases, and this 1s independent

of the scheduling discipline used. This would be expected since the I/O

walting time 1s made up of intervals of processing time at other

cylinders that are independent, random variables, and from the property

that the mean and variance of a sum of independent random variables 1s

the sum of the individual means and variances, respectively, we know the

coefficient of variation of the waiting time should decrease as the

square root of the number of cylinders.

6. Conclusions

The graphs of Secs. 4 and 5 are the real conclusions of the

simulation study reported on in this article.

The purpose of this article 1s to empirically examine what

application MTPT disciplines will have 1n situations with random

arrivals. Section 3 shows that in situations where: (1) the

coefficient of variation of record sizes is less than one, (ii) 1t 1s

important to minimize the variance in waiting times, or (111i) it 1s

important to minimize the mean duration of busy intervals; MTPT

disciplines offer modest gains. It 1s important, however, to implement
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as good a MTPT discipline as possible, and unfortunately only the MTPTO

algorithm has been shown to enjoy an efficient computation time, on the

order of lOON + 50 microseconds for the naive implementation presented

here. More work will be required 1n order to find efficient algorithms

for the MTPT1 and MTPT2 scheduling disciplines.

Although the relative performance of the SLTF and MTPT scheduling

disciplines have been considered here, little insight has been gained

into what the optimal drum scheduling algorithm is when random arrivals

are allowed, or even how close the disciplines studied in this article

are to an optimal scheduling discipline. An intriguing topic of further

research in this area will be to investigate optimal scheduling

disciplines for random arrivals, and even if algorithms to implement the

discipline are too complex to allow practical application, they will

still provide an excellent measure of the sub-optimality of more

practical scheduling disciplines.

The results of applying the MIPT discipline to a moving-head disk

1s encouraging. For heavy loads improvements of over 10 per cent are

consistently achieved and just as importantly, 1t 1s relatively

unimportant which of the MTPT disciplines 1s used. In other words,

MIPTO, which has an efficient implementation, offers very nearly as much

of an improvement over SLTF as does MIPT1 and MTPT2Z when 5 or more

cylinders are actively 1n use.

In the course of this study, the performance of MIPT2 was traced

several times. It was observed that as the queue of outstanding requests

grew, the probability that the MIPT2 discipline could use the shortest-

latency record also grew. This observation leads to the reasonable, but

as yet unproved, property of MTPT schedules that as the queue of I/0
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requests grows, with probability approaching unity there exists a MTPT

sequence that begins with a SLTF sub-sequence. If this conjecture 1is

true, then an obvious implementation feature of MIPT disciplines appears;

when the depth of the I/O queue exceeds some threshold, suspend the MIPT

algorithm in favor of a SLTF algorithm until the queue size drops below

the threshold. .
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Appendix

IMPLEMENTATION OF THE MTPT DRUM SCHEDULING ALGORITHM

This appendix lists the implementation, in FORTRAN IV, of the

MTPT drum scheduling algorithm developed in Fuller [1971]. The

results discussed in this report are based upon the subroutines

listed here, and the formal parameters of the subroutines are com-

patible with the conventions of the simulator described in Fuller

[1972]. Three versions of the MTPT scheduling algorithm are

included here: MTPTO, an implementation of the original MTPT

algorithm of Chapter 4; MTPT1, an obvious modification to MTPTO;

and MTPT2,a shortest-latency-time-first version of MTPTO. Both

MTPT1 and MTPT2 are described in detail in Chapter 6. Also in-

cluded in this appendix 1s a restatement, in English, of the

original MTPT drum scheduling algorithm.
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1. A Statement of the Original MTPT Drum Scheduling Algorithm

) Listed here 1s an informal, English statement of the original

minimal-total-processing-time (MTPT) drum scheduling algorithm developed

| in Puller [1971].

The Minimal-Total-Processing-Time Scheduling Algorithm

| 1. Based on the unique value associated with each node, sort YSLTE

and Sis 1 £1 <N, into one circular list. If ft, = So for any 1

and Jj then f, must precede se

| 2. Set the list pointer to an arbitrary element in the list.

| 3. Scan in the direction of nodes with increasing value for the next

(first) ty in the list.

| L. Place this ts on a pushdown stack.
5. Move the pointer to the next element and if 1t 1s an LY go to Step Uk,

else continue on to Step 6. In the latter case, the element must be

an s..

6. Pop the top t, from the stack and move the pointer to the next

element in the circular list.

7. If the circular list has been completely scanned go to Step 8, else

if the stack'is empty go to Step 3, else go to Step 5.

8. Let the bottom t, on the pushdown stack be identified as Ee

Change the circular list to an ordinary list where the bottom

element 1s Lge

9. Match Te to Sys and starting from the top of the list match the kth

S35 to the kth t,. (This constructs the permutation v'.)

10. Determine the membership of the cycles of {'.
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11. Moving from the top to the bottom of the list, 1f adjacent arcs

define a zero cost interchange and if they are in disjoint cycles

0

perform the interchange. (This step transforms {§' to | .)

12. Moving from the bottom to the top of the list, perform the positive

cost, type 2a, interchange on the current arc if it is not in the

same cycle as the arc containing Fge (The permutation defined at

the end of this step 1is
pois Vi)
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2. Implementation of the Original MTPT Algorithm, MTPTO

SUBROUTINE MTPTO0(QSIZE,QUEUE,START, FINISH, HDPOS,SDOREC,RESCHD)
INTEGER*2 QS1ZE,QUEUE(1),SDOREC
REAL*8 START(1),FINISH(1),HDPOS
LOG | CAL* 1 RESCHD

C

Cc This subroutine is an implementation of the drum
C scheduling algorithm described in “An Optimal Drum

Cc Scheduling Algorithm’, (Fuller, 1971). Th i s procedure
C finds a schedule for the outstanding I/O requests
C such that the total processing time is minimized.
C

C The formal parameters have the following inter-
C pretat ion:
C

Cc QSIZE ::=the number of requests to be scheduled.
C

C QUEUE ::=a vector of length QSIZE that contains
C the integer identifiers of the I/O requests
C to be scheduled. The current implementation
C restricts the identifiers to be positive
C integers less than 1001.
C

C START ::=START(i)is the starting address of 1/0
C request i.
C

C FINISH ::= FINISH(i) is the finishing address of
C |1/O request i.
C

C HDPOS ::=the present position of the read-writeheads.
C

C SDOREC ::= the identifier of the pseudo record.
C

C RESCHD ::= a boolean variable to signal when rescheduling
C is required.
C

C

INTEGER | ,J,N,COMPNS ,QPLUS1,QMIN1,QMIN2, TEMP, K,L M
INTEGER FINDCY

INTEGER*2 STACK,FPOINT,SPOINT,DELTA,DELTAS

INTEGER*2 FNODES(1001),F(1001),SNODES(1001),S5(1001)
REAL*8 PER10D/1.00/

REAL*8 LATEND,LATSTR,SJ,FJ,ADJUST
C

COMMON /OPTIM/ PERM,CYCLE,LEVEL
INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)

C

RESCHD =.FALSE.

IF(QSIZE.LE.1) RETURN
C

C Initialize data structures and constants

C

QPLUS1 = QSIZE + 1

QMIN1=QSIZE~- 1
QMIN2= QSIZE = 2

DO100 I=1,QSIZE

FNODES(1) = QUEUE(1)
SNODES(1) = QUEUE(I)

100 CONTINUE
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C Enter current position of read-write heads.
FNODES(QPLUS1)= SDOREC
FINISH(SDOREC)= HDPOS

Cc

Cc Sort list of F and S nodes.
Cc

l CALL SORT(FNODES,FINISH,QPLUS1)
CALL SORT(SNODES,START,QSIZE)

C

C Find F(DELTA).,
C

STACK= (

FPOINT= 1

SPOINT= 1

N = 2#QSIZE+ 1

DO 3001=1,N

IF(FINISH(FNODES(FPOINT)),LE.START(SNODES(SPOINT))) GO TO 310
IF(STACK.GT.0) STACK=STACK = 1

SPOINT= SPOINT+ 1

IF(SPOINT.LE.QSIZE) GO TO 300
IF(STACK.GT.0) GO TO 335

DELTA = FPOINT

DELTAS = 1

GO TO 335

310 IF(STACK.GT.0) GO TO 330
DELTA = FPOINT

DELTAS =MOD(SPOINT-1,QSIZE)+ |
330 STACK = STACK + 1

FPOINT= FPOINT+ 1

IF(FPOINT.GT.QPLUS1) GO TO 335
300 CONTINUE

c

C redefine S and F nodes relative to F(DELTA).
C

335 DO 3401=1,QSI1ZE
F(1) = FNODES(MOD(DELTA+!1-2,QPLUS1)+1)
S(i+1) = SNODES(MOD(DELTAS+1-2,QSI1ZE)+1)

340 CONTINUE

F(QPLUS1) = FNODES(MOD(DELTA+QPLUS1-2,QPLUS1)+1)
DELTA=|

ADJUST= PERIOD =FINISH(F(DELTA))
Cc

C Construct the permutation Psi’.
C

PERM(F(1))= SOOREC

DO 400 1=2,QPLUS1
PERM(F(I))=S W

400 CONTINUE

Cc

C Determine the membershfp of the cycles of Psi',
C

DO 500 I=1,QPLUS1
CYCLE(F(1)) = F(1)

500 CONTINUE

. COMPNS = 0
DO 501 K=1,QPLUS1

| = F(K)

IF(CYCLE(I).NE,I) GO TO 501
COMPNS = COMPNS + 1

LEVEL(I1)= |
J = |
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502 J = PERM(J)

IF(J.EQ.1)GO TO 501
LEVEL(1)= 2

CYCLE(J)=I
GO TO 502

501 CONTINUE

IF(COMPNS.EQ.I) GO TO 800
Cc

C Transform Psi’ to Psi(0).
C

‘DO 6001I=1,QMIN1
J = QPLUS1- |

IF(DMOD(ADJUST+START(S(J)),PERIOD)}.LT.
| DMOD(ADJUST+FINISH(F(J+1)),PERIOD) .OR.
2 (FINDCY(F(J)).EQ.FINDCY(F(J+1)))) GO TO 600

CALL MERGE(F(J),F(J+1))
COMPNS = COMPNS = 1

IFWOMPNS.EQ.I) GO TO 800
600 CONTINUE

C ]

Cc Transform Psi(0)to Phi(0),
C

DO 700 1=2,QPLUS1
IF(FINDCY(F(DELTA)).EQ.FINDCY(F(1))) GO TO 700

CALL MERGE(F(DELTA) F(1))
DELTA =|

COMPNS = COMPNS = 1

- IF(COMPNS.EQ.lI) GO TO 800
700 CONT INUE

Cc

C Construct schedule from Phi (0),
C

800 J = SDOREC

DO 810 1-1,QSIZE
J = PERM(J)

QUEUE(I)= J
810 CONTINUE

RETURN

END

INTEGER FUNCTION FINDCY (NODE)

INTEGER*2 NODE

COMMON /0PTIM/ PERM,CYCLE,LEVEL
INTEGER*2 PERM(1001) ,CYCLE(1001),LEVEL(1001)

C

C This is a function subroutine whose value is an

C integer identifying the cycle of the permutation in
C which NODE is a member. CYCLE is a tree structure

C defining the cycles of the permutation.
Cc

FINDCY= NODE

10 IF(FINDCY.EQ.CYCLE(FINDCY)) RETURN
FINDCY = CYCLE(FINDCY)

GO TO 10

END



51

SUBROUTINE MERGE (NODE1,NODE2)
INTEGER*2 NODE1,NODE2

Cc

C MERGE connects the tree representation of CYCLE1
C and CYCLE2, The integer vectors CYCLE and LEVEL
C define the membership of the cycles of the permutation.
Cc MERGE also executes the interchange of the successors
C of NODE1 and NODE2.
Cc

INTEGER*2 C1,C2, TEMP
INTEGER FINDCY

COMMON /OPTIM/ PERM,CYCLE,LEVEL
INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)
C | =FINDCY(NODE1l)

C 2=FINDCY(NODE2)
C

Cc Merge the two cycle structures.
Cc

IFC(LEVEL(C1).GE.LEVEL(C2)) GO TO 100
CYCLE(Cl1l)=C 2

GO TO 200

100 IF(LEVEL(C1).EQ.LEVEL(C2)) LEVEL(C1) = LEVEL(C1l) + 1
CYCLE(C2)= C 1

Cc

C Perform the Interchange on the permutation.
C

200 TEMP= PERM(NODE1)
PERM(NODE1l) = PERM(NODE2)
PERM(NODE2)= TEMP

RETURN

END

SUBROUTINE SORT (NODES, VALUE,N)
INTEGER*2 NODES(1),N
REAL*8 VALUE(1)

C

Cc Shellsort. For further discussion of Shellsort
C s ee Shell(1959), Hibbard(1963), a n d Knuth(1971).
C

INTEGER*4 |,J,D,Y
REAL+8 VALUEY

D - 1

200 D =D + D

IF(D - N) 200,208,207
207 D =D/2
208 D -D -1

201 IF(D.LE.O) RETURN
| = 1

202 J = |

Y = NODES(1+D)

VALUEY = VALUE(NODES(1+D))
203 IF(VALUEY, LT.VALUE(NODES(J))) GO TO 204
205 NODES (J+D) = Y

| =1+ 1

IF((1+D).LE.N) GO TO 202

D = (D-1)/2
GO TO 201

204 NODES (J+D) = NODES(J)
J =J-D

IF(J.GT.0) GO TO 203
GO TO 205

END
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3. An Obvious Modification to MTPTO, MTPT1

SUBROUTINE MTPT1(QS!ZE,QUEUE,START,FINISH, HDPOS,SDOREC,RESCHD)
INTEGER*2 QSIZE,QUEUE(1),SDOREC
REAL*8 START(1),FINISH(1),HDPOS
LOGICAL=1 RESCHD

C

INTEGER 1,J,N,COMPNS,QPLUS1,QMIN]1,QMIN2,TEMP ,K,L ,M
INTEGER FINDCY

INTEGER*2 STACK,FPOINT,SPOINT,DELTA,DELTAS
INTEGER*2 FNODES(1001),F(1001),SNODES(1001),S(1001)
REAL+«8 PERIOD/1.00/

REAL«8 LATEND,LATSTR,SJ,FJ,ADJUST
C

CALL MTPTO(QSIZE,QUEUE,START,FINISH, HDPOS,SDOREC,RESCHD)
QMIN2 = QSIZE ~ 2
IF(QMIN2,LE.2) RETURN
LATSTR = PERIOD - DMOD(HDPOS, PERIOD)
DO 900 I=1,QMIN2

J = [+ |

LATEND = DMOD(LATSTR+START(QUEUE(!1)),PERIOD)
DO 920 J=J,QMIN1

SJ = DMOD(LATSTR+START(QUEUE(J)),PERIOD)
IF(SJ.GT.LATEND) GO TO 920

FJ = DMOD(LATSTR+FINISH(QUEUE(J)),PERIOD)
IF((FJ.LT.SJ).OR.(FJ.GT.LATEND)) GO TO 920

TEMP = QUEUE(J)
K=dJ - |

D0 930 L=1,K
M= J-L

QUEUE(M+1) = QUEUE(M)
930 CONTINUE

QUEUE(I) = TEMP
LATEND= DMOD(LATSTR+START{(TEMP), PERIOD)

920 CONTINUE

LATSTR = PERIOD - DMOD(FINISH(QUEUE(!1)),PERIOD)
900 CONTINUE

RETURN

~ END
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L. The Shortest-Latency-Time-First MIPT Algorithm, MTPT2

SUBROUTINE MTPT2(QS,Q,START,FINISH,HD,SDOREC,RESCHD)
INTEGER*2 QS,Q(1),SDOREC

REAL+8 START(1l),FINISH(1)HD
LOGICAL*1 RESCHD

Cc

INTEGER 1,J,K,REND,RBEGIN
INTEGER*2 QSM1

C

IF(QS.LE.1) RETURN
CALL MTPTO(QS,Q,START,FINISH,HD,SDOREC,RESCHD)
IF(QS.LE.2) RETURN
RBEGIN = Q(1)
REND = Q(QS)
QSM1 = QS - 1

C

DO 100 I-L0OS | :

CALL SLTF(QS,Q,START,FINISH,HD,SDOREC,RESCHD, 1)
IF(Q(1).EQ.RBEGIN)RETURN
DO 200 J=2,QS

200 QT(J-1) = QJ)

CALL MTPTO(QSM1,QT,FINISH(Q(1)))
RESCHD = , TRUE.

IF(QT(QSM1).EQ.REND) RETURN
100 CONTINUE

WRITE(6,101) QS
101 FORMAT(10X, 'ERROR IN MTPT2; QS = ‘',14,';")

CALL MTPTO0(QS,Q,START,FINISH,HD,SDOREC, RESCHD)
RETURN

END
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