STAN-CS-73-350 SU-SEL-73-009
An Almost-Optimal Algorithm for the
Assembly Line Scheduling Problem

by

Marc T. Kaufman -

’

January 1973

Technical Report No. 53

Reproduction in whole or in part
is permitted for any purposeo f
the United States Government.

This document has been approved for public
release and sale; its distribution is unlimited.

This work was supported in part by the

. National Science Foundation under
Grant GK 23315 and by the Joint
Services Electronic Programs U.S. Army,
U.S. Navy and U.S. Air Force under
Contract N-00014-67-A-0112-0044.

DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STANFORD, CRLIFORNIA

STAN-CS-73-350

AN ALMOST-OPTIMAL ALGORITHM FOR THE
ASSEMBLY LINE SCHEDULING PROBLEM

by

Marc T. Kaufman

January 1973

Technical Report No. 53

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

This document has been approved for public
release and sale; its distribution is unlimited.

DIGITAL SYSTEMS LABORATORY

SEL 72-009

Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

This work was supported in part by the National Science Foundation under
Grant GK 23315 and by the Joint Services Electronic Programs U.S. Army,
U.S. Navy and U.S. Air Force under contract N-00014-67-A-0112-0044.

AN ALMOST-OPTIMAL ALGORITHM FOR THE
ASSEMBLY LINE SCHEDULING PROBLEM

ABSTRACT

This paper considers a solution to the multiprocessor scheduling
problem for the case where the ordering relation between tasks can be
represented as a tree. Assume that we have n identical processors, and
a number of tasks to perform. Each task Ti requires an amount of time
ui to complete, 0 < ul £ k, so that k is an upper bound on task length.
Tasks are indivisible, so that a processor once assigned must remain
assigned until the task completes (no preemption). Then the "longest

path" scheduling method is almost-optimal in the following sense:

L Let w be the total time required to process all of the

tasks by the "longest path" algorithm.

L Let w, be the minimal time in which all of the tasks can
be processed.
-
Let mP be the minimal time to process all of the tasks if
L arbitrary preemption of processors is allowed.

Then: L% < w < W < wP + k - k/n, where n is the number of
o

.processors available to any of the algorithms.

INDEX TERMS: Multiprocessing, Parallel Processing, Optimal

Scheduling, Tree Graphs, Assembly line Problem

ii

TABLE OF CONTENTS

Abstract

Table of Contents

List of Figures

Introduction

Task Labeling

Longest Path Scheduling —-- The Discrete Case
Examples

Extension to Noninteger Tasks

Comparison With Other Results

Conclusions

Bibliography

Page

ii

iii

12
14
15

17

18

iii

LIST OF FIGURES

Page
1 Example of a Tree of Tasks ;
2 Rewriting Chains of Tasks :
3 A system that illustrates wo =w =0 +k - rk/n 1
p /.
4 A system that illustrates w _ _ L
y p =Yg @ = wp + k [khﬂ 12

o

. r'"""

1. Introduction

The "assembly line" problem is well known in the area of multiprocessor
scheduling. In this problem, we are given a set of tasks to be executed by
a system with n identical processors. Each task, Tl’ requires a fixed,
known time p, to execute. Tasks are indivisible, so that at most one
processor may be executing a given task at any time; and they are unin-
terruptible, so that a processor, once assigned a task, may not leave it
until the task is complete. The precedence ordering restrictions between
tasks may be represented by a tree (or forest of trees) graph. A task
may not be started until all of its predecessors have finished.

This paper examines the execution of such a set of tasks using the
"longest path" scheduling algorithm. The longest path algorithm assigns
free processors at any time to those available tasks which are furthest
from the root of the tree. Processors are never left idle if they can be
assigned. T.C. Hu investigated this algorithm for the case where all
tasks are the same (unit) length [Hu 61]. He showed that the total exe-
cution time is minimal. That is, given the same number of processors, no
other non-preemptive algorithm will complete the tasks in less total time.

The results of this paper show that the longest path algorithm remains
"almost" optimal when arbitrary times are allowed for each task. In par-
ticular, the following relations hold:

Let @ be the total time required to process all of the tasks by

the longest path algorithm.

Let wo be the minimal time in which all of the tasks can be

processed by any nonpreemptive algorithm.

Let wp be the minimal time to process all of the tasks if arbitrary

preemption of processors is allowed.

Then: w < w < w < w + k - k/n
P o P

where recalling the definitions above, n is the number of processors
used by any of the algorithms and k is an upper bound on task length.

Section 2 of this paper gives a labeling procedure which allows one to
find the tasks which are furthest from the root at any time. Section 3
develops the theorem for the case where all task times are integers. Section
4 provides examples which show the inequalities to be tight. Section 5 ex-

tends the result to tasks with arbitrary execution times. Finally, Section

6 compares this result to other published results for related problems.

2. Task labeling

The following algorithm allows one to label the tasks in a tree
graph with their level, or distance to the root of the tree:
1. If task Ti is a root node (has no successors), the level of
T. is ., .
i S Hy
2. If Tiis a node whose successor, S, is at level £(S), the

level of Ti is £(S) + Mi.

Note that higher levels are further from the root.

3. Longest Path Scheduling -- The Discrete Case

Let us consider the assembly line problem for the case where the
task lengths (ui) are all integers. If Ti is any task,
by € {1.2,3,...,k1 only. Graphically, we can represent the tasks with

their precedence relations and execution times as shown in Fig. 1.

1.

Example of a Tree of Tasks

direction
of
execution

We first consider an execution procedure which violates the unin-
terruptability condition and which allows tasks to be interrupted and
processors to be reassigned after each unit of time. For this reason, it
is more convenient to represent a task of length m by a chain of m tasks
of length 1, as illustrated by Fig. 2. The "double bond" symbol is used
to indicate we cannot reassign a processor that is working on such a chain
when preemption is not allowed. Since all tasks in the rewritten graph
have p=1, we no longer need to state this explicitly. It is easy to see
that each chain-task corresponds to a particular multi-unit task in the
original graph. Also, one can quickly verify that the level of the task-
Egig node (the node furthest from the root) of a chain-task is the same
as the level of the corresponding multi-unit task.

Now consider the execution of a tree of tasks, T, by two longest path
algorithms, G and H. Algorithm G corresponds to the case in which processor
preemption during a multi-unit task is not allowed:

Algorithm G: At any time, t, assign the n processors as follows:

(1) If a processor was assigned at time t-1 to a task that is
connected to its successor by a double bond, assign the
processor to that successor (i.e. we are in a multi-unit
task, so stay with that task).

(2) Otherwise assign the processor to (one of) the highest level
task in T that is ready to be executed. This task will always

be a task-head.

Algorithm H is an optimal algorithm (one which gives a minimal total

execution time) in which we permit the reassignment of any or all processors

SRR

F”'" r I r r— r— r— r— 1 r—

r—

~head node

head node >chain—task

head node

chain-task

Fig. 2. Rewriting Chains of Tasks

at each unit of time, ignoring the uninterruptability condition. Since
all tasks in the rewritten graph are of unit length we may use Hu's
algorithm, as it is known to be optimal. The G and H algorithms are
identical if there are no multi-unit tasks.

Let wp be the time needed to execute the graph by algorithm H.

Let wobe the time needed to execute the graph in minimum time, under

the restriction that multi-unit tasks not be interrupted. Let w be the

time needed to execute the graph by algorithm G, which also may not in-

terrupt multi-unit tasks. Then:
w £w
X (1)
< w
. (2)

Equation (1) follows from the fact that the possible sequences of task
assignments by any restricted algorithm are a subset of the possible
sequences available to the optimal unrestricted algorithm, H. Equation
(2) follows from the definition of an optimal algorithm, since G is also
restricted, and so its sequence of task assignments is a possible choice
for the algorithm which found wo.

As the tree is executed by either algorithm, its depth (the maximum
level of any nodes remaining in the tree) decreases with time. Note that
the depth cannot decrease faster than one level per unit of time, since it
takes (by definition) one time unit to execute a task at any level, and it
must be completely finished before its successor can start. We denote the
depth of the tree by dG(t) or dH(t), accordingly as the algorithm executing

the tree is G or H. The following equations derive from the definitions:

— 1 r-

d_(0) d._(0) = maxi{level of T.]
G H i

i

dG(uu) dH(wp) =0

d(t) 2 d(t+1) = d(t)-1

We are interested in a particular time, t', in the execution by
algorithm G. This is the earliest time at which the depth of the tree

decreases by one at each further step of execution. Specifically:

d (t)-1 d. (t+1) for all t, t' < t < w.
G G

1 _ — '
But, dG(t 1) dG(t).

We will reach t' no later than time ®w-1, since the last unit of execution
time must remove one level of the tree (the root level). On the other

hand t' may be zero, meaning that the depth of the tree decreases by one

every unit of time. If so, G is optimal since no algorithm can go faster,

Hence w=t in this case.
P

For t'> 0, the following two lemmas are needed.

Lemma 1: Algorithm G uses all n processors at each time unit up to t'

Proof:

1. G assigns n processors at each time, until there are fewer
than n leaf nodes in the reduced tree. Because we are exe-
cuting a tree, the number of leaf nodes at each step is non-
increasing with time. Therefore the number of processors
assigned at each step is also nonincreasing with time.

2. The highest level in the tree is the same at t'-1 and at t',
by the definition of t'. Call this level 4. Hence there is
some node at level &that was not assigned at t'-1, Rut this
node was available for assignment at t'-1 because { is the
highest level in the reduced tree; and the node thercfore had
no unexecuted predecessors. Thus, there are not enough free
processors at time t' -1 to cover all of the unexecuted nodes
at level {9 so all n processors must be assigned at time t'-1,

3. By (1), all n processors are assigned at all earlier times

also, QED.

Corollary 1: At time t' (i.e. after t' units of time have elapsed),

algorithm G has completed execution of a total of ut' unit tasks.

Proof: Immediate.

r r'l

Lemma 2: At time t', suppose algorithm G reduces the highest level in the

Proof:

tree to dG(t'). Then the lowest level at which algorithm G has

executed any unit tasks (nodes) is at or above dG(t')—(k—l).

We show that, at t', G has not completed execution of any task-
head nodes at a level less than dG(t'). Then since no multi-unit
task is longer than k units, the lowest level unit-task in a task-
chain which has been executed can be no lower than level
dG(t')—(k~1).

Assume (by way of contradiction) that a task-head node of level
less than dG(t') was assigned at a time t < t'. Then there must
have been, at this time t, fewer than n leaf nodes at levels at or
above dG(t'). Since nodes have at most one successor, execution of
those nodes could not leave more than n leaf nodes at or above level
d,(t') at any time after time t. since all of the leaf nodes which
are at or above level dG(t') at time t are actually assigned to
processors at t, we can reduce the depth of the tree by one level
at each subsequent time unit, down through level dG(t'). Then, by
the definition of t', we can remove one level at each subsequent
time unit. So t is an earlier time for which algorithm G begins
removing one level of the tree at each time unit. But t' 1is the
earliest time for which this property holds (contradiction). So

there is no assignment to such a task-head at time t < t'.

10

Theoren:; & < (L)P + k - rk/n-l

Proof:

At t', G has executed nt' nodes (by Corollary 1).

The 'lowest level executed by G at time t' is at or above
level dG(t')—(k—l),(by Lemma 2). Let 4 be the lowest level at
which any node has been executed by G. Let g = dG(t')-{+1. It
requires g more units of time to complete all unit tasks in the

tree that are at levels at or above level %,(since we will com-—

plete one level per unit of time from now on), This means that

there are at least (nt'+q) unit tasks at or above level 4, in

total. G then requires £-1 more units of time to complete the

remainder of the tree (i.e. all those nodes at levels less than 8).
Algorithm II must execute_at least (nt'+q) nodes to complete

all nodes in the tree at or above level {; after which it also

has 4-1 more levels to execute to complete the tree. So:

for Gt w = t' + g + -1

-1
. for H: o > l-u1 + A1
P n

. . nt' + ; ; L
since it takes at least [~——E——g1 units of time to finish
(nt' + g) nodes with n processors,

Then:

. t' + g o
- " ' 4 Ao - E__.__.-.._._ -+ ,t,_
® =)< (t" + q + £-1) I— - 1 1

IA
o+
+

Ke!
i
(—L
]
!
~
1=V

IN
o
!
|
e
<
=

Ldaiias

TSI O

rﬁA

Now,

and

since

q = d () - £ +1

/ = 1 - —
e dG(t) = (k-1)

we have:

S0,

Then,

q £ d(t) = (d (t)-(k=1)) + 1

g - k, and we can write:

k
wng+k—lﬂ;1 (3) QED.

combining (1), (2) and (3):

W, Sw o<W s:wP+k-|—k/?|. (4)

11

4, Exampl es
The following; constructions demonstrate that each combination of

inequalities is attainable, thus Proving (l4). 1o be a tight: bound.

E 1 l1: w=w =
LXxample _ DP o

Trivially, any- tree with unit tasks only, e.g. lO

0

'oYorofiiforo)

(n+]) tasks of length k, no precedence constraints

Example 3: o = = wp + k - rk/n-l

Figure 3. A system that illustrates L= ka) + k - rk/n-|

It takes 2k units of time to complete these nt+l tasks by algorithm G,
H can complet ¢ them in |—k(n+1)/n-l units of time.

2k - [k(n+1)/n—] = k- rk/n]

A
cample ¥ @ = =0 -tk-tk/n
Example 3 up a)o, W up r/.

] 1 . .
L Q This area contaj us
> k(n-1) unit tasks,

spread asevenly as
possible over the
first n tasks.

k ° k @e-—'l‘ask A

/

(n+1) tasks of length k

Figurc 4. A system that illustrates %) =W _,

W = (Dp + k - rk/tﬂ

VN

e

13

The optimal completion time for this system is reached by starting
one processor on task A (of length k) and the other n-1 processors
on the unit tasks. The optimal time is 2k. Algorithm G completes

all of the tasks above the length k tasks and then one of the length

k tasks before it starts task A . Algorithm G's time is:

2k + L———k(“'lil
n

The difference between these two times is:

262 - [4] - - 5]

14

5. Extension to nponinteger Tasks

This result can be extended to trees for which tasks take arbitrary
time, so long as the times are all mutually commensurable.

Let e be the largest real number such that all task times are mul-
tiples of e. Muntz and Coffman have shown [Mu70] that there is an
integer, s, such that if each task is split into chain-tasks, with each
node of length e/ns, application of Hu's algorithm to the resulting graph
yields an execution time which is minimal among all algorithms, including
processor sharing and arbitrary preemption. Application of algorithm G,
of course, yields the same results as before because the chain tasks
cannot be broken.

This extension is reducible to the integer case, where the basic

unit of time is e/ns rather than 1. So we can rewrite (4) as:
k k
w <w <£w<w + (e/ns -
b o P (e/ns) e/ns LﬂeﬁmJ
w <w <w<w + k- (e/ns) [Eé]
P o P €

. o ks , .
However, since e divides k, . is integral and

w < w € w<w+ k- (e/ns)(ks/e)
P o P

ws;.ws?w.{wp+k-(k,n). (5)

15

6. Comparison With Other Results

Hu's algorithm is optimal for trees with unit tasks only. Manacher
[Ma 67] and Graham [Gr 66, Gr 69, Gr 72] have investigated longest-
path scheduling for structures other than trees. Manacher, using simu-
lation, observed that longest-path schedules tended to be close (within
15%) to optimal in a small set of test cases. Graham has shown in [Gr
66] that, for general directed acyclic graphs, the ratio between the
time required to execute the graph with a random list and the optimal

time is given by:
w/wos 2 -1/n

He also conjectured that this ratio can be improved if a longest-path

schedule is used, to:
‘“/‘”o < 2 - 2/(n+1)

though this has not yet been proved.

In [Gr 69, Gr 72] Graham presents bounds on execution time for
systems in which the tasks are all independent (no precedence constraints).
He showed that the "decreasing list" schedule, which is equivalent to a

longest-path schedule in this case, satisfies:

w/w <4/3 - 1/3n

0
Since this represents a line with a crossing at the origin, it is better
than the result of this paper for small values of wo. However, the slope
of this line is greater than unity while the slope of the inequality in
(5) is exactly unity. For wo > 3k, (5) is a better bound.

Again in [Gr 72] Graham noted (without proof) that, for independent

tasks:

16

w/w <1+ np (6)

where:
B = max p(T)/T u(T)
T

In the terminology of this paper, max u(T)=k, the length of the longest

T
task, and:

Z u(T) < nw
T P

If we then approximate B by k/nwp, we can rewrite (6) as:

k
1+ - .
o Y = nw,

However, dividing both sides of (5) by wo gives us the slightly better

bound:

Q)p K
(.I.)/(DO < E‘; 1+ —mﬂ;—" (n—l)

17

7. Conclusions

In this paper we have considered the "longest-path" scheduling

algorithm as an "almost" optimal algorithm for the scheduling of trees.
An upper bound on the execution time for this algorithm is presented.

and shown to be better than previous upper bounds for related problems.

r— r—

18

BIBLIOGRAPHY

[Gr 66] Graham, R.L., "Bounds for Certain Multiprocessing Anomalies,”

Bell System Tech. J., Vol. 45, No. 9, Sept. 1966, pp. 1563-1581.

[Gr 69] , "Bounds on Multiprocessing Timing Anomalies,"

SIAM J. Appl. Math, Vol. 17, No. 2, March 1969, pp. 416-429.

[Gr 72] , "Bounds on Multiprocessing Anomalies and Packing

Algorithms," Proceedings SJCC, Vol. 40, 1972, pp. 205-217.

[Hu 61] Hu, T.C., "Parallel Sequencing and Assembly Line Problems,"

Operations Research, Vol. 9, No. 6, Nov. 1961, pp. 841-848.

[Ma 67| Manacher, G.K., "Production and Stabilization of Real-Time
Task Schedules," J. ACM, Vol. 14, No. 3, July 1967, pp. 439-
465.

[Mu 70] Muntz, R.R., and E.G. Coffman, Jr., "Preemptive Scheduling
of Real-Time Tasks on Multiprocessor Systems," J. ACM, Vol.

17, No. 2, April 1970, pp. 324-338.

