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THE MINIMUM ROOT SEPARATION OF A POLYNOMIAL

1. Introduction. Let A(xX) be a polynomial of degree n>C with

complex coefficients ai and complex roots gﬁ, so that

xi=anﬂ?=l(x-a.). (1)

<'n
A(x)—Z‘izo a j

i

We define sep(A), the minimum root separation of A, by

A)=mi .- s 2
sep(A) mlnajfdklaJ ak‘ ( )

with the convention that sep(A)= » in case A has only one distinct root.
The computing time required by any algorithm to isolate the zeros
of A depends inversely on sep(A). Hence we are interested in easily com-

putable functions f(ao,...,an) of the coefficients such that
O<f(ao,...,an)§ sep(A). (%)

Heindel, [%], in analyzing the computing time of an algorithm
based on Sturm's theorem for isolating the real zeros of any polynomial
with integer coefficients, used a weak lower bound for sep(A) due to

Collins. Pinkert, [9], presents an analogous algorithm for isolating all

zeros, real and complex, of any polynomial with Gaussian integer coefficients.

His algorithm is based on Sturm's theorem and the Routh-Hurwitz theorem and
uses a stronger lower bound for sep(A) obtained more recently by Collins.
Horowitz, using another simpler approach, has recently obtained a third

lower bound, interm. diate in strength, but just slightly weaker than the
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stronger bound of Collins. In the following, these three bounds are all
derived, with the hope of stimulating further research on the problem.

If A(x) has rational complex coefficients, we can easily compute
another polynomial, having the same roots, with Gaussian integer co-
efficients. Further, if A(x) has Gaussian integer coefficients, we can
easily compute another polynomial A*(x) with Gaussian integer coefficients,

having the same roots as A(x) and having only simple roots, namely

A*(x>=A(x)/gcd(A(x),A'(X)), (u)

where A'(x) is the derivative of A(x) and "gcd" denotes the greatest common
divisor. Hence in the following A is assumed to have Gaussian integer co-
efficients and no multiple roots.

Also, the three lower bounds to be obtained will all be of the form

0<g(n,d)<sep(A), (5)

where n=deg(A), the degree of A, and d=y(A), where y is some "semi-norm".
In the next section we introduce the notion of a semi-norm for a ring and
then derive some lemmas which will be used in deriving the root separation

theorems.
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2. Semi-Norms and Resultants. If @ is any commutative ring, a

semi-norm for @ is any function y from @ into the non-negative real numbers

satisfying the following three conditions for all a, bg £:

v(a)=0 if and only if a=0, (6a)
via-b)< vla)+u(b), (6b;
v(ab)< v(a)v(b). (6c)

These conditions imply also

v(-a)=v(a), (6d)

\

viatb)< v(a)+u(b). (6e)
A norm for K is a semi-norm for R such that
(ab)=yla)yu(b) (1)
v(ab)=yla)yu(b). L

For the ring G of the Gaussian integers a familiar norm is
. , 2,.2.1/2 . L
v(a+b1/=\a+b1|=\a +b7) . A semi-norm for G which is not a norm is
v(atbi)=|atbi| =|a|+[b].
Any semi-norm y on a commutative ring R can be extended to a semi-

norm on the polynomial ring gﬁd by the definition
TTn 1, ‘" n o}

V() =022 )7 j=o¥(ag): (&)
By induction on r, repeated application of (8) extends v to a semi-norm on
E{Xl""’xf[’ which is easily seen to be independent of the order in which
the indeterminates x, are adjoined.

As a special case, (8) defineslA\ and\A\l for any Gaussian poly-
nomial A(Xl"°"xr) EG[Xl""’Xr] as extensions ©f the semi-norms for G

defined above. For integral polynomials A(x .,xr) with rational integer

ERE

coefficients, the norm ‘A‘l has been used extensively for the analysis of
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algebraic algorithms. See, for example, [1], [2], [7] and [€]. Its
extension to Gaussian polynomials, however, 1s new.

If M is an arbitrary matrix (or vector) over g, we define

M)=y ' V" ™ 9)
\)\M> /i j\)‘ i_]), ()‘
where the summation extends over all entries of M. It is easy to verify

that the conditions (6a)-(6c) hold for matrices over @whenever the opera-

tions are defined. In particular, this extends v to a semi-norm for the

ring of all n by n square matrices over g.
By combining the semi-norm extensions for polynomials and matrices,

we obtain the following general analogue of Hadamard's determinant theorem

([61, p. 2ot

Theorem 1. Let R be a commutative ring, v a semi-norm for g, M an

n by n matrix over @. Then
vldetM))< n§=1v(Mi) (10)
where M, is the 1™ row of M and det(M) is the determinant of M.

Proof. By induction on n, the case n=l being trivial. We denote

th . th
by Mi j the element of M in the i row and j column of M, by M; ; the
3 b

. . ,  th . th
submatrix of M obtained by deletion of the 1 row and J column. By

Laplace expansion,
7 nt+l it 11"
det ’MI—L -1 ]Mljdet(M'lj). (11,
By (6) and (11),

v(det M) )<> \)/M1 Ju(det(M') ). (12)
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.th
The i row of M'lj is a subrow of Mi o)

+1°

v(det (') )< v, (13)

by the induction hypothesis. gy (12) and (13),

v(det (M))< fﬂri‘:év(Mi)}Z?E\)(Mlj). (1)

Since Egiiv(Mlj)=v(M1) , this completes the induction. @

A corollary of Theorem 1, needed in Section 3, will now be obtained by
consideration of certain submatrices of the Sylvester matrix of two poly-
nomials, A and B, over 2. Let m=deg(A), n=deg(B). The Sylvester matrix

-

of A and B is the m+n by m+n matrix S whose successive rows are the co-

efficients of the polynomials xn-lA(X), . esxA(x), A(x),X m-lB(x), o
. . . Ayl i n i
xB(x B(x). D t 11 f A =/, =
(x), B(x) iagrammatically, i (x) "/ i=03;% and B(x) Li=ObiX , then
4 -1 aO
°n dn-1 aO
a a
_ m m-1 a
§= o |»
bn bn 1 bﬂ
Dn bn—l bo
b
bn n-1 . bO
in which all missing entries are zero. By definition, the resultant of
A and B, res(A,B), is the determinant of S.
Theorem 2. Let A and B be polynomials over a commutative ring #




with semi-norm y. Let m=deg(A)>0, n=deg(B)>0, c=res(A,B). Then
n m )
v(c)<v(A) v(B) . (16)

Also, there exist polynomials U and V over‘j?such that AU#BV=c, deg(U)<n,
deg(V)<m,
n-1 m
v(U)<v A) )

\)(B s (]-ﬁ’

and
WV <o(a) ()™ (18)

Proof. If S, is the ith row of S then v(Si)=M(A) for 1<i<n and

v(S.)=y(B) for ml<i< mtn, and (16) follows from Theorem 1. Now consider
i o SIS

X% m+n-i
the matrix S which is obtained by adding to the last column of S x

*
times the i Tcolumn of S, for l<i<mtn. det(S )=det(S)=c and the last

* , ) \ m-1
column of S contains the entries x  A(x),...,xA(x), A(x), X

B(X),eees
xB(x),B(x) . Applying the Laplace determinant expansion theorem to the
last column of S we obtain AU+BV=c with deg(U)<n-1 and deg(V)<m-1, where
the coefficients of U and V are the cofactors of the last column of Sﬁ)e
Each coefficient of U is the determinant of a matrix obtained from S

by deleting one row of coefficients of A and the last column, and so

Theorem 1 yields (17), and similarly (18) holds.4

%. Root Separation Bounds. For each of the first two root

separation bounds we will :se the following upper bound on the roots of
a polynomial.
Theorem 3. Let A be any non-zero Gaussian polynomial, and let o

be a root of A. Then

| <& /1a| (19)

where an=ldcf(A).
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Proof. lA‘z‘an|, so (19) holds for lgl<l. Let A<X)%Zi=0aix and

lo|sl. Th n_\n-1l 1
>L. en a = . _~4a. SO
assume lgl|= n® T/ i=08i% 7

13,1 ol "5 a1l (20)
o nrl
Dividing (20) by lol 7,

-1

i-ntl ¥n
< i=0

Sicla;l<lal,  (21)

|an"\a| Iai|-|gl

from which (19) is immediate.

Theorem 4. (Collins, 1970) Let A be a Gaussian polynomial of

degree n22 with only simple roots, and d=‘A|. Then
- -1)/2
sep(A)>(2d) n(n-1)/ : (22)

Proof. Let 00y be the zeros of A and A=sep(4). We may
choose notation so that A=|a1-aél. Let D be the discriminant of A,

so that
23)

and ([10], Section 28), D is a Gaussian integer. Since the o; are

distinct, D#0 and hence |D|21. Combining this with (23), we have

2n-2 2
- 2
ls‘an‘ ﬂj ]‘Uj akl . (2k)

2
Dividing by A7,

)
™ |

-2 2n-2
N sgla . (25)

i<k [aj-ak
(3,k)#4(1,2)

2
There are (ng—n—Z)/Z factors |aj-ak| in (25) and laj-ak|g|aj|+'ak|<

9d/|anl by Theorem 3. Hence,

2 2
A Ce(ea)® VB 1a 1T O, (26)

Now n2-5n+220 and lanlzlso
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-2 n -n-2 2 n -n
A "<«(2d) la_1"<(2d) , (27)
from which (22) is immediate. H
Theorem 5. (Horowitz, 1973) Let A be a Gaussian polynomial of
degree n>? with only simple roots, and d=|A|, Then
-lin+
sep(A)=(nd) "2, (28)

Proof. Let . ,...,GLn be the zeros of A and A=sep(A). We may
suppose thatA=4di&o(2\. By Theorem 2, there exist Gaussian poly-

nomials U and V such that
AUHA 'V=c, (29)

deg(U)<n-2 and deg(V)<n-1, where c=res(A,A'). Since A(x)=a N : 1(Xqill,

we have

At (x)=a Y m (o) (30)

if3
Evaluating (30) at x=£i, we obtain

!
AN )=a T ey o) - (31)
Hence, evaluating (29) at x=¢& and using (31 ),
w7y by
{ i=2""1 V (32)
By [ 10] , Section 28,c=anD, where D is the discriminant of A, a non-

zero Gaussian integer. Hence V@(l)#O and by (32),
_ \
sep (A) D/V¢*1/ﬂ2=5@(114i). (33)
A" nla] so
n-1.2n-2

|V]en™ d (34)

by Theorem 2. Since deg(V) <n-1 and |a} <d,
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n-lsnn-ldBn-B.

|V(eq) 5]V} -d (35)
From (33) and (35), using |D|21 and |a1~ai!<2d,
sep(A)ZQ-n+2n-n+ld-hn+5l (36)

The proof is completed by observing that nx2. l
In order to obtain the third root separation bound, we construct
a Gaussian polynomial B* whose roots are all the differences ai-a:

J
with i#j. The idea of constructing B¥*¥ as a resultant was suggested
by some current research of R. Loos, [5]. After obtaining upper
bounds for the coefficients of B¥, we will apply the following theorem
to obtain a lower bound for the roots of B¥*, and hence for sep(4).

7N i .
Theorem 6. Let A(x)f2i=oaix be a complex polynomial of degree
n>0, with aof 0. If ¢ is any root of A, then
: 1/i
>%m a .
lo|>ming ;. lag/a G37)
a,#
i

n =1, _{n i .
* = = *
Proof. Let A¥(x)=x A(x ) i=0%n-iX *+ A* is a polynomial of

degree hwhose roots are the reciprocals of the roots of A, for
-1
__ .n -1 _. A - - _ _ -
ax ()= o'y (7= ap)ma oy (Lmagx)=a, T (<o) 1y (5 oy )
-1 -1 -1
an(ao/an)ﬂ?=1(x- o )=a0ﬂ2=l(x-ai ) . Hence A¥(y )=0 and from [k],

Exercise 14.6.2.20, we have

|o,"1l<2 max lai/aoll/i, (38)

l<i<n
from which (37) is immediate.l (39)
Theorem 7. (7ollins, 1973) Let A be a Gaussian poly-

. Then

nomial of degree n>2 with only simple roots and d=|A
1 -
sep(a)>4(efn?/2a)™, (40)

where e 1is the base of the natural logarithm.
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Proof. Let B(x) be the resultant of A(y) and A(xty). If the

coefficients and roots of A are given by (1), then,

A(XW)=anT§=1(y-(aj-%,)). (k1)
Expressing the resultant B(x) as a symmetric function of the roots of

A(y) and A(x+y) by the theorem of van der Waerden ([10], Section 208,

B(x)=a5 "My g n(x-(0q0))- (v2)

Since o= if and only if i=j, B(x)=xnﬁ(x), where
=, \_.2n
B(x)=a_ wi¥j(x-(ai-aj)), 43)
is a polynomial of degree n(n-1) with B(0)#. Also, (43) can be written

in the form

B(x)=aim; o (6 (ogma) %) s (1)

so that if B(x) §;<8 1)b xl then b, ;=0 for i odd.

Expanding A(xty) in a Taylor series,

A(xHy) Z; O{Al%y /it (45)

th

where A;)is the i7" derivative of A. Let

1 (3,y)= (A ety ) -8 () Vo g (A2 /220 TE (06)
Let M be the Sylvester matrix of A(y) and A(x+y). If we subtract the
ith row of M from the (n+i)th row and then divide the latter by x, for
l<isn we obtain a matrix M such that det(M)=x det(M). The first column
of M contains a in the first row and zeros elsewhere. Hence det(ﬁ)=

andet(M*), where M* results from M upon deletion of its first row and

column. But M¥ is the Sylvester matrix of A(y) and A¥{x,y),so

B(x)=a_B*(x) 47)

where B*(x) 1s the resultant of A(y) and A*<XaY>-
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We now proceed to obtain bounds for the coefficients of B*. Let

Tk+1 i . i-1 .

A*k ‘\ {A HMy)/ilx" 7, (48)

so that Aﬁ is the result of deleting from A* all terms of degree
ktl or greater in x. Since A* and Aﬁ are both of degree n-1 in vy,

k+1 k
B*(x)zBﬁ(x) (modulo x ) for k20. Hence the coefficients of x in

Vn(n 1)b*xi

B*(x) and BE(X) are identical, and if B*(x LJ 0 ? then
‘.bii‘.S\Bfil : (19)
Now IA y)/iltl d, so, by (k8),
x,) |9 (B dzen”" a. (50)

By Theorem 2 and (50),

(k+1)nd2n-ll 51)

B¥ <enn
|| <

By (49) and(51), together with fbglzl,

1/2k2e-n/2n-3n/2d-n+1/2

!bg/bgk| (52)
for k>1. Since b§=O for i odd, by Theorem 6,
1/2 2.\ -
‘ai”aj|>%(e 123/ a)™", (53)

completing the proof.)

The computing time of an algorithm, e.g. [9], for isolating the
zeros of a Gaussian polynomial A is dominated (in the sense of [2]) by
a polynomial function of n=deg(A), log d where d=|A|, and -log sep(A).
If ".'" denotes codominance of functions as in [2] and if Cl(n,d),

H(n,d) and C.(n,d) are the bounds on sep(A) given by Theorems 4, 5 and

7, then we have

-log C (n,d)~n2log d, (54)

1
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whereas

-log H(n,d)~-log C.(n,d)~n log nd. (55)

2
In this sense the last two bounds are equivalent.
2
When n=2, sep(A) can be given explicitly. If A(x)=ax +bx+c has two

distinct roots, then
2 1/2
sep(A)=|b -kac| / /\al- (56)

Also, by Theorem k4, sep(A)>l/2d. Let a=k, b=2k-1 and c=k-1 with k=2l.
Then d=[ARLk-2 and sep(A)=1/k<t/(kk-2)=k/d.

Define
L(n,d)=min{sep(A):deg(A)=n&[A|sd}. (57)

Then, we have just shown,

L(2,d),\.d-1. (58)

It does not seem unreasonable to ask for an explicit relation such
as (58) for L(3,d), but we have thus far not succeeded with this
apparently simple problem. We know only, by Theorem 57 and some

obvious examples, that

- -1
d72a(3,d)=d™, (59)

where "<" is the dominance relation.
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