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: ABSTRACT: The minimum root separation of a complex polynomial A 1is

L defined as the minimum of the distances between distinct
roots of A. For polynomials with Gaussian integer coeffi-

cients and no multiple roots, three lower bounds are de-

| rived for the root separation. In each case the bound isa function of the degree, n, of A and the sum, d, of the
absolute values of the coefficients of A. The notion of

a semi-norm for a commutative ring 1s defined, and it 1s

— shown how any semi-norm can be extended to polynomial
rings and matrix rings, obtaining a very general analogue
of Hadamard's determinant theorem.
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THE MINIMUM ROOT SEPARATION OF A POLYNOMIAL

L 1. Introduction. Let A(x) be a polynomial of degree n>C with
complex coefficients a, and complex roots 0s so that

Alx)=) © a.x' =a mm (xo. ) (1)
i [1=0 1 n j=l ]
|.

[ We define sep(A), the minimum root separation of A, by
sep(A)=min o. (2)

J

L with the convention that sep(A)= © 1n case A has only one distinct root.
The computing time required by any algorithm to isolate the zeros

t ofA depends inversely on sep(A). Hence we are interested in easily com-

[ putable functions f(a ,-+>a) of the coefficients such that
o<f(a ,...,a )< sep(A). (7)

| 0 n’=

L Heindel, [%], in analyzing the computing time of an algorithm
based on Sturm's theorem for isolating the real zeros of any polynomial

L with integer coefficients, used a weak lower bound for sep(A) due to
Collins. Pinkert, [9], presents an analogous algorithm for isolating all

f

| zeros, real and complex, of any polynomial with Gaussian integer coefficients.

1 His algorithm is based on Sturm's theorem and the Routh-Hurwitz theorem and
uses a stronger lower bound for sep(A) obtained more recently by Collins.

L Horowitz, using another simpler approach, has recently obtained a third
lower bound, interm. diate in strength, but just slightly weaker than the

.
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stronger bound of Collins. In the following, these three bounds are all |

derived, with the hope of stimulating further research on the problem.

If A(x) has rational complex coefficients, we can easily compute

another polynomial, having the same roots, with Gaussian integer co-

efficients. Further, if A(x) has Gaussian integer coefficients, Wwe can
bo

easily compute another polynomial A* (x) with Gaussian integer coefficients,

- having the same roots as A(x) and having only simple roots, namely

- A¥(x)=A(x)/ged(A(x),A"'(x)), (4)

a where A' (x) is the derivative of A(x) and "gcd" denotes the greatest common

divisor. Hence 1n the following A is assumed to have Gaussian integer co-

efficients and no multiple roots.

| Also, the three lower bounds to be obtained will all be of the form
—

L 0<g(n,d)<sep(A), (5)

L where n=deg(A), the degree of A, and d=y(A), where y is some "semi-norm".
In the next section we introduce the notion of a semi-norm for a ring and

- then derive some lemmas which will be used in deriving the root separation

theorems.

—

-
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2. Semi-Norms and Resultants. If @ is any commutative ring, a

— semi—-norm for gp is any function v from p into the non-negative real numbers

satisfying the following three conditions for all a, bg gf:

v(a)=0 if and only if a=0, (6a)

— v(a-b)< yla)+u(b), (6b)

v(ab)< v(a)u(b). (6c)
Neer

These conditions imply also

— v(-a)=via), (6d)

L wiath)< v(a)+u(b). (be)
A norm for AK 1s a semi—norm for Rg such that

g v(ab)=v(a)u(b). (7)
L For the ring G of the Gaussian integers a familiar norm 1s

oy 2,..2.1/2 CL
, v(atbi)=|atbil=(a +b) . A semi-norm for G which 1s not a norm 1si * .
!

- i |= 1 =
v(atbi) |atbil, |al+|b].

L Any semi-norm y on a commutative ring £ can be extended to a semi-
norm on the polynomial ring A x] by the definition

L ) 7 n 1,_7n a"v() paix )7) j=oviag) (€)

| By induction on r, repeated application of (8) extends v to a semi-norm on
RLx 5 esx 1, which 1s easily seen to be independent of the order in which

| the 1ndeterminates x, are adjoined.
As a special case, (8) defines |Al and [A], for any Gaussian poly-

- nomial Ax eeesx) £G[ x50 e0rx ] 2s extensions Of the semi-norms for G

. defined above. For integral polynomials A(x sees) with rational integer
coefficients, the norm |A|, has been used extensively for the analysis of

-
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algebraic algorithms. See, for example, [1], [2], [7] and [&]. Its

ee extension to Gaussian polynomials, however, 1s new.

If M 1s an arbitrary matrix (or vector) over fg, we define

— (M)=> TUM.) 2)v( = 1) Vf ii) (9.
- where the summation extends over all entries of M. It 1s easy to verify

that the conditions (6a)-(6c) hold for matrices over @whenever the opera-

~ tions are defined. In particular, this extends v to a semi-norm for the

ring of all n by n square matrices over PgR.

By combining the semi-norm extensions for polynomials and matrices,

— we obtain the following general analogue of Hadamard's determinant theorem

| Theorem 1. Let RP be a commutative ring, v a semi-norm for gp,M an
n by n matrix over g. Then

n

| Set 1) Tuli, (10)— 1

. th

| where M, 1s the 1 row of M and det(M) is the determinant of M.1

Proof. By induction on n, the case n=l being trivial. We denote

: th . th '

- by M. 3 the element of M 1n the 1 row and J column of M, by M, ; thePY b

‘th . th

. submatrix of M obtained by deletion of the |i row and J column. By
Laplace expansion,

UT ntl it :
/ \ = {_ . ! . }L det/a)=) TL 0-1) My det (M ) (11°

. By (6) and (11),
. intl :

v(detM))< ) TT ue) u(der(M') 1) (12;

—



th .
The 1 row of M 1; is a subrow of M.11o SO

- n+1
< ;

v(det(M 15))S mi —oV(M,) (13)
by the induction hypothesis. gy (12) and (13),

ha n+1 Ihtl
det (M))< {1, hs .v(det ())< AMHLow(M)DN TI00 ) (11)

\n+l

— Since ) ov (y=) this completes the induction.
A corollary of Theorem 1, needed in Section 3, will now be obtained by

consideration of certaln submatrices of the Sylvester matrix of two poly-

nomials,A and B, over 2». Let m=deg(A), n=deg(B). The Sylvester matrix

of A and B is the m+n by m+n matrix S whose successive rows are the co-

CL. : n-1 m-1
- efficients of the polynomials x" "A(x), . . .,xA(x), A(x),X B(x), ...,

xB(x), B(x). Diagrammatically, if A (x)= 0 a. xt and B(x)="0 bx: then
—

“mn “m-1 . == %0
—

“mn “m-1 20

— “nm “m-1 aS= CY o |,

- b

L b_ a1 b,

= b 1 by
—

-
b

®y n-1 - == by

. in which all missing entries are zero. By definition, the resultant of

A and B, res(A,B), is the determinant of 8S.

— Theorem 2. Let A and B be polynomials over a commutative ring #

-

|.



with semi-norm y. Let m=deg{A)}>0, n=deg(B)>0, c=res(A,B). Then

w(e)Sv(a) u(B)". 16)

Also, there exist polynomials U and V ower gp such that AU+BV=c, deg(U)<n,

deg(V)<m,

= w(0)<w 2)"Hu(B)", (17)

and

o(V)<u (A) (B)™L, (18)

Proof. If S. is the {TP row of S then w(8.)=v(A) for 1<i<n and

v(8,)=u(B) for mtl<i< min, and (16) follows from Theorem 1. Now consider

the matrix gs which 1s obtained by adding to the last column of S (

times the i column of S, for 1l<i<mtn. det (Ss )=det(8)=c and the last

column of 5 contains the entries «PIA (x), eee xAx) A(x), Sex),

xB(x),B(x) . Applying the Laplace determinant expansion theorem to the

last column of S we obtain AU+BV=c with deg(U)<n-1 and deg(V)<m-1, where

the coefficients of U and V are the cofactors of the last column of 5

Each coefficient of U 1s the determinant of a matrix obtained from S

] by deleting one row of coefficients of A and the last column, and so

Theorem 1 yields (17), and similarly (16) holds. 4

%. Root Separation Bounds. For each of the first two root

separation bounds we will use the following upper bound on the roots of

_ a polynomial.

Theorem 3. Let A be any non-zero Gaussian polynomial, and let of

—- be a root of A. Then

_ lo] <| A /la_| (19)

where a =ldcf(A).
—

-
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la | 19) holds for lyl<l. Let A(x) a.x' andProof. NE al, so (19) holds o . \ 1=0%1
| | n {n-1 1N assume |= . Then a o =j=08;% , SO

n n-i i

1a |+]ol <) i=0l2;! lal : (20)
— oo no]

Dividing (20) by | ,

on-1 i-nt+l Tn-1
= la 1-lalgy, ola; 1-]ol goo], I<lal, (21)

from which (19) is immediate.Ni
——

Theorem 4. (Collins, 1970) Let A be a Gaussian polynomial of

L degree n22 with only simple roots, and d=|al. Then
- -1)/2

sep(A)>(2d) n(n-1)/2 (22)
a

| Proof. Let gq,...,0, De the zeros of A and A=sep(A).We may

L choose notation so that A=loy =o, - Let D be the discriminant of A,
so that

~ 2n-2 2
=a" (oman) 23)

L and ([10], Section 28), D is a Gaussian integer. Since the 0; are
| distinct, D#0 and hence |D|21. Combining this with (23), we have

en=2 2
- . 24l<|a_} Tc 9 4 | (2h)

L Co
Dividing by A,

-2 2n=2 2

[ Nn “<al Tk 9; oy 1 25)
(3,k)#(1,2)

L Th ( © _n-2)/2 factors |g.- 1° in (25) and |g. =o |<] & 1+] o |<ere are n oy Oe O k i Kk

| d/la_| by Theorem 3. Hence,2 2

APee) TREla TO, (26)
L :

Now n =-3n+2>0 and la_l=zlso



i :

2 2
-2 n -n-2 2 n -n

|.

from which (22) is immediate. B

Theorem 5. (Horowitz, 1973) Let A bea Gaussian polynomial of
|

degree n>2 with only simple roots, and d=|A] Then

| -4n+sep(A)=(nd) (26)

C Proof. Let Asenese be the zeros of A and N=sep(A). We may
suppose that A=led; “od, | - By Theorem 2, there exist Gaussian poly-

A nomials U and V such that

L ALES v=, (29)

| deg(U)<n~2 and deg(V)<n-l, where c=res(A,A'). Since A(x)=a_m_ (x44),
we have

| At(x)=a qT gn (xd). (30)
| - ay

1f7

Evaluating (30)at x=k; , we obtain

L . np
AYA )=aToyAy) (31)

L Hence, evaluating (29) at x= and using (31 ),

{ my.)L ) *n i=? 1 i bit ye. (32)

| By [ 10] | Section 28, c=a D, where D 1s the discriminant of A, a non-
zero Gaussian integer. Hence Viel )70 and by(32),

| sep (A)=D/VEy) of 4, )JV dy Ties ely oA, ) (33)

L |A'|<n|A| SO
. n-1_2n-2

i ME (34)
by Theorem 2. Since deg(V) sn-1 and |o] <d,



= n-1 n-1_3n-3%
|V(ey) 5] V] d <n dd . 35)

be From (33) and (35), using |D|=1 and | oy oy | <2d,
-nt+2 -n+l. -hnt

L sep(A)=2 en" Lg=hnt5. (36)

| The proof is completed by observing that n>2. I
In order to obtain the third root separation bound, we construct

L a Gaussian polynomial B* whose roots are all the differences oy To.J
with i#j. The idea of constructing B¥ as a resultant was suggested

- by some current research of R. Loos, [5]. After obtaining upper

| bounds for the coefficients of B*¥, we will apply the following theoremto obtain a lower bound for the roots of B¥*, and hence for sep(A).

7n i

| Theorem 6. Let A(x)=);_ a,x be a complex polynomial of degree
n>0, with af 0. If ¢ is any root of A, then

lo) >in; lag/a 170, (37)
a,#0

L Proof Let A (x)=x" (x 1)=" a ut. A* is a polynomial of
— [i=0 n=-1i

. degreen whose roots are the reciprocals of the roots of A, for

| n -1 n In n -> = - = = = - I =ax(x)=a my (6 = op)=a mg(Tegx) =a, 1g(0p) 1m (x0 op)
- n -1 -1 -1

- = - x =L a_(a,/a )m, _q(x og Fa mM, (x 0 ) . Hence A¥(y )=0 and from [4],
Exercise 4.6.2.20, we have

| -1 1/1
lo 12 max;_; la;/a 77, (38)

- from which (37)is immediate.l (39)

| Theorem 7. (7ollins, 1973) Let A be a Gaussian poly-

— nomial of degree n>2 with only simple roots and d=|A]. Then
¢ 1

1 Da

L sep(A)>p(en?/ 2a), (40)

L where e 1s the base of the natural logarithm.

b
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Proof. Let B(x) be the resultant of A(y) and A(xty). If the

_ coefficients and roots of A are given by (1), then,

= - - 1A(xHy) a, Tie (9 (0-%)) (11)
Expressing the resultant B(x) as a symmetric function of the roots of

A(y) and A(xty) by the theorem of van der Waerden ((10], Section 28,

B(x)=a_ Tm (x=( 5-01) - (12)
n 1i<i,j<n i 7]

| } Ne

Since Tac? if and only if i=j, B(x)=x B(x), where
—~, \_ 2n

Bx) =," 4g (x= (ag=), 43)
is a polynomial of degree n(n-1) with B(0)#. Also, (43) can be written

Ba in the form

- 2n 2 2
= - - )

= yA\n(n-1)r 1 =
so that if B(x)= .-q  b;x" then b,=0 for i odd.

= Expanding A(xty) in a Taylor series,

— Alxcty)=y, {4 y)/1ilIx ’ 5
where A 5g the j Fh derivative of A. Let

— nn (1 cq 1-1

Ax (x,y) =(A (xy) =A (9) V/x=y | {AT (v)/120 Te (16)
| Let M be the Sylvester matrix of A(y) and A(xty). If we subtract the
—

th th CL
1 row of M from the (n+1i) row and then divide the latter by x, for

— l<i<n we obtain a matrix M such that det(M)=x"det (}M). The first column

of M contains a in the first row and zeros elsewhere. Hence det(M)=

a_det(M¥), where M* results from M upon deletion of its first row and
column. But M¥ is the Sylvester matrix of A(y) and A¥{x,y),so

B(x)=a_B*(x) 47 )
ha where B* (x) 1s the resultant of A(y) and A¥ (x,y).
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We now proceed to obtain bounds for the coefficients of B*. Let

~~ Tkt+1 i } i-1
ax, (x,y)=V{A Ty) ix, (46)

— so that AT is the result of deleting from A* all terms of degree

k+l or greater in x. Since A* and Af are both of degree n-1 in vy,
— k+1 Co k |

B* (x )=B (x) (modulo x) for k=0. Hence the coefficients of x in
Vn(n-1) i

* * * = ¥X h

u B* (x) and Br (x) are identical, and if B* (x) / 5=0 bX then

Ibi l<|Bg] (49)
(_— (3

vow 1a iy) /itl< (1), so, by (48),

: +1, n k+1
- lA (x,y) |<). _7(i)d<en  d. (50)Tk = i=1

By Theorem 2 and (50),
——

k+1 2n=-1

|B | <e™n Jngen-1 51)
—

By (49)and (51), together with [b¥|=1,
1/2k -n/2 -%n/2 -nt+1/2!

- bx /b%, | ze n d 52)

| for kl. Since b%=0 for i odd, by Theorem 6,
1/2 3/2 =n

1 lo; mors >5(e /203/24)™, (53)
completing the proof.)

The computing time of an algorithm, e.g. [9], for isolating the
|—

zeros of a Gaussian polynomial A is dominated (in the sense of [2]) by

_ a polynomial function of n=deg(A), log d where d=|A|, and -log sep(A).

If "." denotes codominance of functions as in [2] and if c,(n,d),
|

— H({n,d) and C,(n,d) are the bounds on sep(A) given by Theorems 4, 5 and
"y, then we have

-

2

-log Cy (n,d)~n log 4g, (54)

-
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whereas

= ~log H(n,d)~- log C,(n,d)~n log nd. (55)

— In this sense the last two bounds are equivalent.

2

When n=2, sep(A) can be given explicitly. If A(x)=ax +bx+c has two

— distinct roots, then

2 1/2

sep(A)=|b -lac| / /\a]- (56)|—

Also, by Theorem lL, sep(A)>1/2d. Let a=k, b=Pk-1l and c=k-1 with k=l.

= Then d=[ARLk-2 and sep(a)=1/k<h/(4k-2)=k/d.

Define

—

L(n,d)=min{sep(A):deg(n)=nglAl«d}. (57)
|S-—

Then, we have just shown,

, -1

— L(2,d)~d ~. (58)

It does not seem unreasonable to ask for an explicit relation such
-

as (58) for L(3,d), but we have thus far not succeeded with this

u apparently simple problem. We know only, by Theorem 57 and some

| obvious examples, that

d70<1(3,d)=d, (59)

— where "<" is the dominance relation.

|
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