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Abstract

This report discusses a modified version of Edmondsts algorithm for
partitioning of a set into subsets independent in various given matroids.
If Wﬁ,...,ﬁ& are matroids defined on a finite set E , the algorithm

yields a simple necessary and sufficient condition for whether or not

the elements-of E can be colored with k colors such that (i) all

elements of color j are independent in W& , and (ii) the number of

elements of color j 1lies between given limits, n. < HE-H < n' . The
Jd — " - 7

algorithm either finds such a coloring or it finds a proof that none

5

exists, after making at most n +n%k tests of independence in the

given matroids, where n is the number of elements in E
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Let Wﬁ,...,ﬁk be matroids (i.e., pregeometries) over the n-element
set E . Edmonds [1] has given an efficient algorithm for determining
whether or not the elements of E can be partitioned into k disjoint

subsets, E = ElU o UE such that E.J is independent in 'mj for

K '
all j . The purpose of this paper is to present his algorithm in a
somewhat different way, which indicates how he might have discovered it
in the first place; and to extend the algorithm slightly so that bounds
are placed on the number of elements in the subsets E.J

In order to make this report somewhat colorful, we shall imagine
that the elements of E are being painted with k colors, so that E,
contains the elements of color j . The reader is assumed to know the
basic definitions of matroid theory, since by now there are dozens of
papers in which these definitions occupy the first two pages. Edmonds's

paper [1] indicates the wide variety of applications for matroid

partitioning.

Derivation of an algorithm

The natural way to get the elements colored is to start with them
all blank and successively to paint them. Many combinatorial algorithms
have the following general form: "Starting with a certain configuration,
try to find a better configuration by some reasonably straightforward
method. If this succeeds, replace the initial configuration by the
improved one, and start again. If this fails, prove that no better
configuration exists." Of course it is not always possible to carry out

the latter proof; but in many important cases, such a proof is possible,



hence a rather simple algorithm emerges. Matroid partitioning is such a
case.

Suppose we have painted certain elements and that E. {5 the set
of elements having color j ; we assume that Ej is independent in ”73'
Let E, = E\(ElU e UEk)ke the unpainted elements. If x is some
element not of color j , we could paint it with that color if XlJEj
were independent in mj . On the other hand, if xLJEj is dependent,
there is a unique circuit PC XUEJ > and we can paint x with color j
if the color of any element y of PFWEJ is scraped off. Then perhaps
we can paint y with some other color.

A sequénce of such repaintings might be denoted by, say,

X =y -2z -0

3

meaning "paint x with the current color of y , then repaint y with
the current color of z , then repaint z with color 3 ." In general

we may write

X >y e x UEj\y is independent in mj

when yeEj and xﬁEj; and

X - Oj @ xLJEJ is independent in W%

where x 1is an element of E\Ej and Oj is a special symbol distinct
from the elements of E ; we may think of 0, as a 'standard' element
of color j , whose color never needs to be washed off. Note that if
X - Oj then x - y for all yeEj

In effect, this arrow notation defines a directed graph on the n+k

vertices E U {Ol,...,ok} s and X »y -z -0, is an oriented path

3
from x to O5 . We shall denote oriented paths, as usual, by writing
+ .
X—= Yy & there is a path x = XO — x1 a0 de =y, m>1.



If x is uncolored and there is a path x A Or + this path
specifies a repainting which results in a net increase of one more
element painted the r-th color. This would give us a way to decrease the
number of unpainted elements. However, we have overlooked an important
consideration: All the " -»" relationships have been calculated with
respect to a particular choice of the E.J , and some repaintings may
invalidate future ones. 1In fact there do exist paths x T Or which
correspond to no correct repainting.

Fortunately this problem does not arise when we consider shortest

paths instead of arbitrary paths.

Lemma. In terms of the_above notation, let x = XO - Xl - . . .=2x =0 ,

X '|"x.J for j > i+l . Then if X, is painted the color of Xigq 7 for

O <i<n, the resulting elements of color j are independent in sz s

for 1 <j<k.

Proof. The result is trivial whenm =1 . If m > 1, consider what
happens after making just the m-th step of the repainting: TLet X g
have color s , and let

1 -

Er N ErUXm 1
nk SR
By = Es\xm—l

E! =E.J , for j #r,s

Let -' denote relations in the directed graph corresponding to these E! ;
J

and let x!1 = xi for 0 <i<m , th 17 OS . The lemma will follow by
. ' ' o, L SN | —t t i tx.
induction, if we prove that x} -' x| ... x! | and x! + ] for
j < i+l .
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— To prove that X:.l - X:{"'l » the only nontrivial case occurs when

Xi+l has color r . In this case, i+l < m-1 and we must show that

the set I = El"\xi+l Uxi is independel’lt in mr . If it were dependent,

it would contain a unique cycle P ; and p pust contain both x. and
1

X o1 since I\xi and I\Xm—l are independent. But this would imply

that X, - X 1+ contrary to hypothesis.

On the other hand if x! -' x'! for j > i+l , we reach an immediate

L i ;

contradiction unless X'J has color s and j <m-1 . Otherwise we find
L that Eé\xj UXi is independent but Es\xj Ux:.L is dependent; thus there
is a unique cycle Pc Es\xj Uxi , and X and X, are both in this
- cycle, so )Ei - Xm—l . This contradiction completes the proof.
- This lemma tells us that an existing coloration can be improved
(i.e., the number of unpainted elements reduced by one) if we can find
B a path from an uncolored element to Or for some r.This would give
L us an algorithm if we could show conversely that a better coloration
exists only when there is such a path. 1Indeed, it isn't hard to convince
~ oneself that this is true: Consider any painting EgsEqs ... B, where
each Ej has HEJH = n:j elements, and suppose there is another one

(3’E:'L""’E}’< where E5 has nj+6jr—8j0 elements. (Thus, the second
coloration has one more element of color r .) Then there is some
element x in EI" which is independent of Er , because Er has rank
. in 7/Yr and it could not span all of the nr+l elements in B:,r .
We can repaint x with color r ; then if x was painted color s ,
we can find some y in E; which is independent of Es\x , etc. Each

repainting brings the EJ. closer to the E!J , so the process eventually

terminates by finding an uncolored element to paint.



Derivation of good characteristics

So we know that the above path method will indeed lead to a good
algorithm for matroid partitioning. However, experience with other
algorithms; for which matroid partitioning provides a generalization,
encourages us to look for more: We would like to find a "simple reason"
that the painting cannot be extended, so that a person who doesn't
necessarily believe that our computer program is correct can see for
himself that the best painting it has found is optimum. This is far
more desirable than if we merely said "the computer has made an exhaustive
search and found nothing better." A simple reason that improvements are

impossible is what Edmonds has called a good characterization. The

programmer can present his supervisor with a convincing answer, whether
the algorithm succeeds or not.
Therefore let us try to find a good characterization. Suppose there

. . + . . L.
is no oriented path x - Or satisfying the conditions of the lemma, for

any uncolored erO and for some fixed value of r . Let
+
B; = {x[erJi and x - 0} ,
A. = E.\B
J 5\ 3!

for0 < j < k . Then BO is empty, for if XEBO the shortest path

+ o
X - Or would satisfy the conditions of the lemma. ILet

A :AOUAJ_U“'UAk , B =B U...UBk ’
so that we have partitioned E into two disjoint sets A and B
Experience with other algorithms suggests that we might be able to use
these sets A and B to obtain a "good characterization".

If x is independent of Aj in m;a, then either x is independent

of Ej in 77(_.J, or XeB. ! or x » y for some yeB_.J . These three cases



imply that either XeB or B, is empty. 1In other words, the following

J
statement holds for 1 <_j <k :

if xeA, and either BJ. #¢ or j = r, then x depends on A. in ¢
J J.

A little fiddling around with this condition, and simplifying, leads to

the good characterization that is desired:

Theorem 1.  Let Mys-+-sM, be matroids on a _set E . It is possible

to find disjoint subsets El""’Ek 9£ E , such that Ej is independent

in M, and || =0, , if and only if

k
lall < lleff- J_Z max(n, - r,(A),0)

for all A ¢ E , where rs is the Mank function in

J.
Proof.  The condition is necessary, for if B, | @‘@@6 is such a collection

of subsets and A c E then HEJ ﬂA“ < rJ.(A) , hence
]]EJ. N (BN > ny -74(4)

Also clearly HEJ N(EVA)|| > 0 . Summing over j gives

k
B\l > 20 max(n, -7.(a),0)
j=1 ’

which is the condition of the theorem.

Conversely, if we have disjoint subsets El""’Ek with E .

independent in 77, and HEJH < n; and IE |l <n . the algorithm
sketched above will be able to increase Eg1 without changing the
number of elements in the other sets FE. This must be so, for if the

algorithm fails, the set A constructed above satisfies the condition

I'J-(A) = “AJH or (A-J= E’j and j # r) , for all j . Therefore



”BJH = “EJH-HAJ” < max(nj -rj(A),o) ; and HBTH < nr-rr(A) )
Hence || B | = I & -1 4 | < 2 max(‘nj - Tj A),0) contradicts the

condition of the theorem.
a

The special case of this theorem in which all m are identical
J
and all n, = rj(E) was proved by Edmonds [2].

A similar characterization applies when we ask whether or not all

elements can be painted.

Theorem 2.  Tet Mys - ++>M, be matroids on a set E . It ig possible

to find disjoint subsets g of E, such that E. ig independent
J ——— -

l}"’;Ek

in 778J- and HEJH < n5. and E = ElU' UEk’ if and only if

k
Al :ji min(r;(4),n!)

for all A ¢c E , where ry is_the_rank function in 7, .
J

Proof. The condition is necessary, since || Alj = 2. Ej najl < Z min(z, (A),n
in any such partitioning. ’ ’
Conversely, the condition is sufficient. Consider an algorithm which

looks for paths x N Or where xeE, and j/E,// <n! , and which paint::

such x , until this is no longer possible. p construction like that

preceding Theorem 1 can be used, put with

Bj = {X|X€Ej, and x - O, for some r with “ErH < n}} )
Then we find HAJH - (A) or HA:]”, = nJ! for 1 < J <k . Hence either
all elements are painted, or 4A; ;g nonempty and ”AH = HAO”+ L+ “Ak“

2> mi N .
> mln(rj (A),nj) -



Theorem 2 is implicit in the paper of Edmonds [1], who proved it
when all the ns are infinite. To get the general case, simply "truncate"
mj by saying that a set is dependent in mj whenever it contains more
than rl% elements. Furthermore we can derive Theorem 1 from Theorem 2,
by setting nb = nj and introducing a new matroid M, with all sets
independent and né =] E| -(nl+ - nk) . However, the following

theorem seems to be a mild generalization of Fdmonds's theorem, not so

readily deducible from it:

Theorem 3. ml" "’mk. be matroids on a set E |, and let (n.,n')
J

B J

be pairs of numbers with nj < n& for 1 <j <k . It is possible to

find disjoint subsets El""’Ek of E , such that Ej is independent
in 7M; and n; < ||E| Snjand E = B y...yE,_, if and only if both

the conditions of Theorems 1 and 2.Pold qu all A CE

Proof. Consider an algorithm which first looks for a painting satisfying

Theorem 1; if it fails, it finds a set A which violates the first

condition. If it succeeds, it continues to extend the painting a¢ in
Theorem 2. If this fails, it finds a set A which violates the sccond
condition.

O

The algorithm

The proof of Theorem 3 leads essentially to the following algorithm,

which either finds a partition El""’E as specified in that theorem,

k

or finds a set A which proves that no such partition is possible. For

ease in description, the algorithm is not "optimized" here.



begin EO :=E; for j

t=1 wntil k do E, :=f; for xcE do color (x)

=1 until k do for i :=1 until nJ_ do augment (j);
while T # 9 4O augment (0);
for j

:=03
for j :

:=1 until k do output E.;
exit: end.

procedure augment (integer value r);

begin far xeE do succ(x) :=none;

A:=E;
B :=if r > 0 then {Or] else {OJ.| HEJH <n3};
comment later succ(x) will be set to y if there is a shortest

path x = y ¥ Oj for some Oj now in B. Also
A = {x|suce(x) = none];
while B £ f do
- begin C :=¢;
for yeB do for xeA do
begin j :=color(y);
if xUEJ.\y independent in 772;f
then begin succ(x) :=y; A :=A\x; C :=C UX;
if color(x) =

0 then go to repaint
end

end;
B :=C

end;

output A; output "This set A violates the condition of Theorem";

output if r > 0 then 1 else 2; go to exit;
repaint: while xeE do

begin y :=suce(x); J :=color(x); By i=E\x; 3 i=color(y);
Ej :=EJ. Ux; color(x) :=Js; X :=y;
end

end.

10



The innermost loop of this algorithm is the test whether leEj\y
is independent in mj’ and it is performed at most O(n2+nk) times
per call of augment, where n = | E| . Hence it is performed at most
O(n?i'ngk)'times in all. However in practice this estimate is probably
much too high since the loop will terminate quickly. (The loop "for xeh"
should consider those X(EO before the other x's .) It ig an open

question whether this OOY» upper bound can be reduced.

Discussion

Consider a very special case of this algorithm, namely the "bipartite
matching" or "distinct representatives" problem. Given an n xk matrix
of O's and 1's , it is desired to encircle exactly one 1 in every
row and at most one 1 in every column. Here Wj corresponds to
column j and element x to row X , and n; =0, rl% =1 for all J
As et HJ of rows is independent in wj if and only if %, = or
Ej = {x} where row x contains a 1 in column j . 1In this case the
test for independence is, of course, extremely simple, and the algorithm
runs in O(HB'*ngk) units of time. Hopcroft and Karp have shown how to
reduce this to O(n2'5) when n =k .

If this example is slightly generalized so that a set Ej is
independent in mj iff row x contains a 1 in column j for all
erD , and if we allow arbitrary nj and.115 , we have the problem of
encircling exactly one 1 in each row, and between nj and n; of
them in column j . The algorithm works in O(n5+n2k) units of time
for this case also. Ford and Fulkerson [4, 5] call this the "system of

restricted representatives" , (SRR) problem, and they proved Theorem % in

this case. The conditions in both Theorems 1 and 2 can be simplified in

11
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the SRR problem, to

&l

IA

NE|l- 2 {njlrj(A) =0}

and H A H

LA

7 {n'jlrj(/\) > 0}
respectively, by altering the set A whenever 0 < I‘j(A) < n. or n?
J J
Another important case of the algorithm occurs when k = 2 and 77(2

is taken as the orthogonal complement (or dual) to some matroid 7 .

Then this algorithm can be used to find maximum-cardinality intersections

of 77(1 and 7 . (See Edmonds [3, p. 82].)

The algorithm can also probably be generalized to allow the Ej tg
to overlap, with each x appearing at least nx and at most n}'{ times,
and where the set {j |X€Ej} is independent in some given matroid 7721,1&.

Edmonds [3, p. 83] shows essentially that matroid intersection would give

- cuch an alpgorithm if all the lower bounds gare zero.
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