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. Abstract

This report discusses a modified version of Edmondsts algorithm for

1

— partitioning of a set into subsets independent 1n various given matroids.

| If Myo «es My are matroids defined on a finite set E , the algorithm
yields a simple necessary and sufficient condition for whether or not

| the elements-of E can be colored with k colors such that (i) all

| elements of color j are independent in Me and (11) the number of
elements of color J lies between given limits, n. < IE. || < n!' . The

J J - J

algorithm either finds such a coloring or it finds a proof that none

exists, after making at most n” +1 tests of independence in the

. given matroids, where n is the number of elements in E .
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- Let Mys ees be matroids (i.e., pregeometries) over the n-element
- set E . Edmonds [1] has given an efficient algorithm for determining

whether or not the elements of FE can be partitionedinto k disjoint

= subsets, E = BE U... UE , such that E. 1s independent in mM ; for

L all J . The purpose of this paper 1s to present his algorithm in a
somewhat different way, which indicates how he might have discovered it

it in the first place; and to extend the algorithm slightly so that bounds

are placed on the number of elements in the subsets BE. .
. In order to make this report somewhat colorful, we shall imagine

a that the elements of E are being painted with k colors, so that E,
contains the elements of color j . The reader 1s assumed to know the

basic definitions of matroid theory, since by now there are dozens of

papers in which these definitions occupy the first two pages. Edmonds's

L paper [1] indicates the wide variety of applications for matroid

| partitioning.
L

_ Derivation of an algorithm

The natural way to get the elements colored is to start with them

= all blank and successively to paint them. Many combinatorial algorithms

have the following general form: "Starting with a certain configuration,

} try to find a better configuration by some reasonably straightforward

. method. If this succeeds, replace the initial configuration by the

improved one, and start again. If this fails, prove that no better

" configuration exists." Of course it 1s not always possible to carry out

the latter proof; but in many important cases, such a proof 1s possible,

L
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hence a rather simple algorithm emerges. Matroid partitioning 1s such a

case.

| Suppose we have painted certain elements and that E., jg the set

| of elements having color j ; we assume that E is independent in ms -
Let E, = EN(E; U ++. UE) be the unpainted elements. If x is some

element not of color J , we could paint it with that color if x UE,
were 1ndependent in Ue . On the other hand, if x UE, 1s dependent,

there 1s a unique circuit PC *UE , and we can paint x with color

if the color of any element y of PAE, is scraped off. Then perhaps
we can paint y with some other color.

“ A sequence of such repaintings might be denoted by, say,

| X »y= Z = Oz
meaning "paint x with the current color of y , then repaint y with

| the current color of z , then repaint z with color 3 ." In general
we may write

- X »y © x UE. \y is independent in ms

when yeE, and XE, 3 and

X ~ 0; = x UE, 1s independent 1n mM;

whereX 1s an element of ENE, and 0, 1s a special symbol distinct
from the elements of E ; we may think of 0. as a 'standard! element

of color Jj , whose color never needs to be washed off. Note that if

x =O, then x - y for all YEE,
In effect, this arrow notation defines a directed graph on the ntk

vertices E U 1075 +4450] yy and X =» y oz ~ 0; is an oriented path

fromx to 03 . We shall denote oriented paths, as usual, by writing
+

X— yy © there 1s a path x =Xy Xo. .ox% =y, m>1.

5



+

If x 1s uncolored and there 1s a path x = 0, r this path

specifies a repainting which results in a net increase of one more

element painted the r-th color. This would give us a way to decrease the

number of unpainted elements. However, we have overlooked an important

consideration: All the " -»" relationships have been calculated with

respect to a particular choice of the B. , and some repaintings may
+

invalidate future ones. In fact there do exist paths x = 0. which

correspond to no correct repainting.

Fortunately this problem does not arise when we consider shortest

paths instead of arbitrary paths.

Lemma. In terms of the_above notation, let x = X, VX. ee x = 0. /

— Xy bx for 3 > 1 l . Then if x. 1s painted the color of Xiiq , for

0 <1 <n, the resulting elementsof color j are independent In Ms
= for 1<j<k.

ee Proof. The result 1s trivial when m =1 . Ifm > 1 , consider what

happens after making just the m-th step of the repainting: Tet X 1
have color s , and let

; Co

— Ep Bh BUX 1

SE

fg Bh EM

E! =E. , for j # r,s .
J J

Let -' denote relations in the directed graph correspondingto these E! ;
J

and let xl =X for 0 <i <m , x 1 = Og . The lemma will follow by

induction, if we prove that xJ -'x] -'. . . -'x' , and x! te for
Jj < 1+1 .
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- To prove that x: ~! Xi » the only nontrivial case occurs when

Xie has color r . In this case, i+l < m-1 and we must show that

the set I = BINS, 4 Ux, 1s independent in 7. . If it were dependent,

it would contain a unique cycle P j; and Pp pust contain both x, and

x1 since Ix. and I\x. are independent. But this would imply

that X, =» X 1 r contrary to hypothesis.

| On the other hand if x3 —F a for J > i+l , we reach an 1mmediate
contradiction unless x has color s and Jj <m-1 . Otherwise we find

_ that EG\X, Ux. is independent but EMS Ux, is dependent; thus there

is a unique cycle PC EX Ux, , and X 1 and x, are both in this

_ cycle, so X, — X 1 . This contradiction completes the proof. .
L This lemma tells us that an existing coloration can be improved

| (i.e., the number of unpainted elements reduced by one) 1f we can find
a path from an uncolored element to 0. for some r.This would give

| us an algorithm if we could show conversely that a better coloration
exists only when there 1s such a path. Indeed, it isn't hard to convince

~ oneself that this 1s true: Consider any painting Ey Es «- 5B, where

each Bs has IE] = 0. elements, and suppose there 1s another one

" SERENE where BE has n+ 04-850 elements. (Thus, the second
i coloration has one more element of color r .) Then there is some

element x 1in E. which is independent of E. , because E has rank

Nn. in nm. and 1t could not span all of the n tl elements 1n E .
We can repaint x with color r ; then if x was painted color s ,

we can find some y in E! which is independent of EB \x , etc. Each

repainting brings the ES closer to the EL , SO the process eventually
terminates by finding an uncolored element to paint.

p



Derivation of good characteristics

So we know that the above path method will indeed lead to a good

algorithmfor matroid partitioning. However, experience with other

algorithms; for which matroid partitioning provides a generalization,

encourages us to look for more: We would like to find a "simple reason"

that the painting cannot be extended, so that a person who doesn't

necessarily believe that our computer program is correct can see for

- himself that the best painting it has found is optimum. This is far

. more desirable than 1f we merely said "the computer has made an exhaustive

search and found nothing better." A simple reason that improvements are

impossible is what Edmonds has called a good characterization. The

programmer can present his supervisor with a convincing answer, whether

} the algorithm succeeds or not.

Therefore let us try to find a good characterization. Suppose there

1s no oriented path x iN Or satisfying the conditions of the lemma, for

any uncolored XeE, and for some fixed value of r . Let
+

B, = {x|xeE, and x — 0,1 ,

A = E\B .

for0 < j < k . Then Bj 1s empty, for if xeB, the shortest path

x J 0. would satisfy the conditions of the lemma. TILet

A = Ag UA Ue UA , B = BU... UB, ,

so that we have partitioned E into two disjoint sets A and B .

Experience with other algorithms suggests that we might be able to use

these sets A and B to obtain a "good characterization".

If x 1s independent of As in Ms then either x 1s independent

of E. in Mes Or XeB. / or x —» y for some yeB., . These three cases
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 — imply that either xeB or B is empty. In other words, the following
statement holds for 1 < j < k :

if xeA, and either B. #6 or § =r, then x depends on A. in 7J J.

A little fiddling around with this condition, and simplifying, leads to

the good characterization that 1s desired:

Theorem 1. Let Mise sMy be matroids ona set E . It is possible

Lo find disjoint subsets Boer By of E , such that E, is independent
- in 7; and IE | =n if and only if

| k

All < El- 2 max (n, -r.(A),0)- - J=1 :

1 for all A ¢c E , where I is the Mank function in- J.

i Proof. The condition is necessary, for if £5 | MEE is such a collection
of subsets and A c¢ E then IE, Nall < r (4) , hence

| E. N (ENA) > n, =r. (4) .Ie; 0 (BOY> ny =x, (4)

| Also clearly IE Nn (E\A)]| > 0 . Summing over Jj gives
k

| |E\A]| > 2, max(n, -r.(A),0)=] J JJ

i which 1s the condition of the theorem.
Conversely, if we have disjoint subsets ERR with E.J

independent in Mm and IE <n, and |E.| <n , the algorithm

sketched above will be able to increase 1B without changing the
number of elements in the other sets FE. This must be so, for if the

~ J

algorithm fails, the set A constructed above satisfies the condition

~ r; (A) = ia] or (A. = E and j # r) , for all j . Therefore

f



1B = IE] - fla] < max(n, -r(4),0) ; and Bl <n, -x(a) .

Hence ||B||=||E|-]All< 2 max(n, - Ts A),0) contradicts the
condition of the theorem.

| Od

| ] The special case of this theorem in which all Mm. are identical
and all n, = ri (E) was proved by Edmonds [2].

A similar characterization applies when we ask whether or not all

i elements can be painted.

Theorem 2. Tet Ms : ces My be matroids on a set E . It ig possible

i to find disjoint subsets Bove os By of E, such that 5 1s independent
| in Mm, and |IE,|| < n! and E=EU...UE if and onlyif
| .

iA] = 2 min(r,(a),n')
j=1 J J

- for all A ¢c E , where ry is_the_rank function in Me

Proof. The condition is necessary, since || A] = 2. IE, najl < 2 min(r. (A),n"
in any such partitioning. ! y

Conversely, the condition is sufficient. Consider an algorithm which

| looks for paths x - 0. where xcB, and J/E,// <n! , and which paint::
such xX , until this is no longer possible. A construction like that

preceding Theorem 1 can be used, put with

B, = {x |xeE and x JF 0.. for some r with EI < n!}

Then we find 14, = 2 (A) or Ii _ n] for 1< j <k . Hence either
all elements are painted, or Ay sg nonempty and |All _ A]! + Rt la, |
> 2 min(r,(4),n') .

J J [J]
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Theorem 2 is implicit in the paper of Edmonds [1], who proved it

3 when all the n. are infinite. To get the general case, simply "truncate"

| ns by saying that a set is dependent in ms whenever it contains more
| than nt elements. Furthermore we can derive Theorem 1 from Theorem 2,

by setting nL = and introducing a new matroid M, with all sets

independent and n. =| E | - (ng + . Lt n,) . However, the following
theorem seems to be a mild generalization of Tdmondg's theorem, not so

i readily deducible {rom it:

“

Theorem 3. mys cM be matroids on a set E | and let (non?)
| oe palrs of numbers with ny < ni for 1 <j <k . It is possibleto

1 find disjoint subsets Bis sB of BE, such that ES is independent
in My and ny < |B] <n! and E = 8y...UE , if and only if both
theconditions of Theorems 1 and 2 hold for all A C E .

.

Proof. Consider an algorithm which first looks for a painting satisfying

Theorem 1; if 1t fails, it finds a set A which violates the first

condition. If it succeeds, it continues to extend the painting ag in

Theorem 2. If this fails, it finds a set A which violates the second

condition.

[]

The algorithm

The proof of Theorem 5 leads essentially to the following algorithm,

which either finds a partition Es. sB as specified in that theorem,
or finds a set A which proves that no such partition is possible. For

ease in description, the algorithm is not "optimized" here.
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begin EO :=E; forj :=1 untilk do E. :=0; for x¢E do color (x) :=0;
forJ :=1 untilk do for i:=1 util n, do augment (J);
while Fy # [0 d@® augment (0);
forJ :=1 until k do output E.;

exit: end.

procedure augment (integer value r);

begin far xeE do succ(x) :=none;

A:=EF;

B:=if r > 0 then {Or] else (©. | IE < nil;
comment later succ(x) will be set to y if there is a shortest

path x = y a 0; for some Oy now in B. Also
A = {x|succ(x) = none];

while B £ § do

- begin C :=4;

for yeB do for xeA do

begin j :=color(y);

if XUE\y independent in Ue
then begin succ(x) :=y; A :=A\x3; C :=C Ux;

if color(x) = 0 then go to repaint

end

end;

B :=C

end;

output A; output "This set A violates the condition of Theorem";

output if r > 0 then 1 else2; go to exit;

repaint: while xeE do

begin y :=succ(x); j :=color(x); E P= EL \x; J :=color(y);
E i=E, Ux; color (x) :=J; X :=y;

end

end.
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The innermost loop of this algorithm is the test whether x UE \y
is independent in Ms» and it is performed at most 0(n° + 1k) times

| per call of augment, where n = E] . Hence it 1s performed zt most

| 0 (rf +n°k) times in all. However in practice this estimate is probably
much too high since the loop will terminate quickly. (The loop "for xeA'

should consider those xk before the other x‘'t .) It is an open

question whether this O(n) upper bound can be reduced.

Discussion

Consider a very special case of this algorithm, namely the "bipartite

| matching" or "distinct representatives" problem. Given an n xk matrix
of O's and 1's , it 1s desired to encircle exactly one 1 in every

i row and at most one 1 in every column. Here ur corresponds to
column Jj and element x to rowX , and n. = 0 , ni = 1 for all J .

As et I of rows is independent in us if and only if f. = § or

ES = {x} where row x contains a 1 in column j . In this case the
test for independence is, of course, extremely simple, and the algorithm

runs in O(n” + nk) units of time. Hopcroft and Karp have shown how to

’ reduce this to 0(n°"?) when n =k .

If this example 1s slightly generalized so that a set E. is

independent in Ms iff row Xx contains a 1 in column Jj for all

eR, , and 1f we allow arbitrary n and nt , we have the problem of

encircling exactly one 1 in each row, and between n, and n; of
them in column j . The algorithm works in O(n” + nk) units of time

for this case also. Ford and Fulkerson [4, 5] call this the "system of

restricted representatives" , (SRR) problem, and they proved Theorem J in

this case. The conditions in both Theorems 1 and 2 can be simplified in
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| the SRR problem, to

fall < lell- Z {nr(8) = 0]
Jd

and ||Al] < 7° ni fr. (1) > 0]

respectively, by altering the set A whenever 0 < r.(A) < n. or n? .
J J J

Another important case of the algorithm occurs when k = 2 and m,
: is taken as the orthogonal complement (or dual) to some matroid 7 .
L-

Then this algorithm can be used to find maximum-cardinality intersections
l

|

i of my and 7 . (See Edmonds (3, p. 821.)

| The algorithm can also probably be generalized to allow the g rg. J

to overlap, with each x appearing at least n and at most n times,X

| and where the set {j | x€E] 1s independent in some given matroid 7_ .
Edmonds [3, p. 83] shows essentially that matroid intersection would give

| such an algorithm 1f all the lower bounds gre zero.
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