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Abstract. We present various heuristic techniques for use

” in proving the correctness of computer programs. The tech-

| niques are designed to obtain automatically the “inductive
assertions” attached to the loops of the program which pre-

L viously required human “understanding” of the program’s per-
formance. We distinguish between two general approaches:

- one 1n which we obtain the inductive assertion by analyzing

predicates which are known to be true at the entrances and

exits of the loop (top-down approach), and another in which we

generate the inductive assertion directly from the statements

, of the loop (bottom-up approach).

I. Introduction

The desirability of proving that a given program 18S

correcthas been noted repeatedly in the computer literature.

Floyd [1967] has provided a proof method for showing partial

correctness of 1terative (flowchart) programs, that 1s, it

shows that if the program terminates, a given input -output

relation 1s satisfied. The method involves cutting each loop
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| of the program, attaching to each cutpoint an “inductive
.

. assertion” (which is a predicate in first-order predicate

calculus), and constructing verification conditions for each

- path from one assertion to another (or back to itself). The

program 1s partially correct 1f all the verification condi-

tions are valid. Elements of these techniques have been

L shown amenable to mechanization. King [1969], for example,
has actually written a ‘verifier’ program which, given the

i proper inductive assertions for programs written in a

_ simplified Algol-like language, can prove partial correct-

ness. Thus, it 1s fairly clear that the parts of this method

L which 1nvolve generating verification conditions from i1induc-
tive assertions and then proving or disproving their validity

i 1s a difficult but programmable problem. However, as King
puts 1t, finding a set of assertions to ‘cut’ each loop of

the program'depends on our deep understanding of the program's

performance and requires some sophisticated intellectual

. endeavor”.

In this paper we show some general heuristic techniques

for automatically finding a set of inductive assertions which

will allow proving partial correctness of a given program.

More precisely, we are given a flowchart program with input

variables x (which are not changed during execution), program

variables y (used as temporary storage during the execution

of the program), and output variables z (which are assigned

values only at the end of the execution). In addition, we are

given “input predicate” ¢(x) , which puts restrictions on the
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| B input variables, and “output predice" v(X,zZ), which
~ indicates the desired relation between the input and output

variables. Given a set of cutpoints which cut all the loops,

our task 1s to attach an appropriate inductive assertion Q;
\ to each cutpoint1 .

We distinguish between two general approaches:

C (a) top-down approach in which we obtain the inductive asser-

i tion inside a loop by analyzing the predicates which are known

to be true at the entrances and exits of the loop, and

-

(b) bottom-up approach in which we generate the inductive

L assertion of a loop directly from the statements of the loop.

L For '"toy'" examples, having only a single loop, it is generally

clear that the top-down approach 1s the natural method to use.

I However, this is definitely not the case for real (non-trivial)
programs with more complex loop structure. [pn this case Some

i} bottom-up techniques were found indispensible. (post commonly
- we have found 1t necessary to combine the two techniques, with

the bottom-up methods dominant.

Preliminary attempts to attack the problem of finding asser-

tions have been made by Floyd [private communication], and

Cooper [1971]. Heuristic rules basically similar to some of

our top-down rules have been discovered independently by

Wegbreit [1973]. Elspas, et.al. [1972], used “difference
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equations” derived from the program’s statements which is,

in essence, a bottom-up approach.

| We handle programs with arrays separately, since
generating assertions involving quantification over the indices

of arrays requires special treatment. Thus in Section II we

discuss heuristic techniques for flowchart programs without

C arrays, while in Section III we extend the treatment to programs

with arrays. In Section IV (conclusion) we discuss open problems

] and possible implications of our techniques. Related problems

_ where these approaches seem applicable include proving termination

of programs, and discovering the input and output assertions of

| a program.

- Our emphasis in this paper 1s on the exposition of the

rules themselves and we are purposely somewhat vague on other

problems, such as correctly locating the cutpoints or ordering

the application of the rules. Though we do not enter into

details, we assume that whenever possible we conduct immediate

tests on the consistency (with known information) of a new

component for an assertion as soon as it 1s generated, and that

algebraic simplifications and manipulations are done whenever

necessary.

IT. Heuristics for Programs without Arrays

A. Top-down approach. We begin by listing the top-down rules,

which may be divided into. two classes: entry rules and exit rules.
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1. Entrv rules. These rules are intuitively obvious,

but provide valuable informat jon In a surprising number of cases.

rule Enl. Any conjunct* in the input predicate ¢(Xx) may be

added to any Q . It need not be proven since the input variables

are not changed inside the program.

rule EnZ2. Any predicate known to be true upon first reaching

C a cutpoint i should be tried 1n Q1 .

2. Exit rules. For simplicity in the statement of

.- these rules,w assume that a cutpolnt is attached to the arc

immediately before an exit test of the loop. Thus we may consider

- an exit from a loop to be of the form

.

Co TG - = 0.
— 1 Q

|
\ LL —- - t.

— F 1 T
Pi

.

where ty is the exit test, Ps is some conjunct of a predicate

known to be true when the exit test first holds, i 1s the

« cutpoint on the arc leading into the exit test, and Qs 1s the
assertion which we wish to discover. We attempt to extract

* If a predicate is expressed as a conjunction AAAALL AA,
\

then each A is a conjunct of the predicate.

.
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- information from P. and t. in order to find an assertion

. for the cutpoint i. . The exit rules will lead to a

predicate R which is guaranteed only to satisfy

C t. An Ro Pj ;

we then must show that the R obtained 1s indeed a valid

assertion.

Eu

rule ExI. If Py 1s not 1dentical to ty > let R be Pp.
— itself .

a rule ExZ2. (transitivity) Although this rule could be applicable

to a wider class of operators and relations, we restrict the

treatment to inequalities. Suppose Ps has the form a Aa, and

. t, has the form b,Bb,, where a; and b, are any terms and
A,B are equality or inequality relations. If one of the a ‘S

— 1s 1dentical to one of the b, 's, try to find an appropriate

“ inequality or equality relation R so that t; A R op, becomes

- true. For example, 1f t1 18 x <y, and | 1s X < (y,+1)°%,
. 2 : 2

then we let R be y, < (y, +1) since Xx < y, AY, < (y,+1) =
2

\- x < (y,+1) is true.

We may extend rule Ex2 and use in our search for R any

«— conjunct attached to cutpointi which has somehow been

previously verified (i1.e., it is true upon entry to the loop, and

— 1s invariant going around the loop, but does not yet imply the

exit predicate Pp, J). For example, if the conjunct y, = vy, Xx,

“



— has been previously verified at cutpointi, and t is the

N test y,= 1 , while P; 1S y, <X, , then we may try R
- being y, < y, , since Y, = YX, Ay.= 1 A Y, < ¥,> ¥Y, <X,.

Co Another possible extension of rule Ex2 1s to search for
additional information on the variables in the exit test. We

seek information which along with t, would imply stronger

(— restrictions on the exit values of those variables. For example,

] suppose t. IS ¥y,> X, we know that y, < x upon first
reaching 1 (1.e., the loop is executed at least once), and Y,

| 1s incremented by 1 at each pass through the loop. Then we
let ¢” be y, =X since y, >» X Ay -1 <x oy =x in the

| integers. Thus, rather than looking for R satisfying
Y, 2 XA RD P; > it suffices to find an R satisfying

~ Y, = XA RD P; -

} rule Ex3. If rule Exl fails, a natural “weaker” attempt could

be tolet R be t; op; . This rule 1s sometimes of practical

use ; however, it says very little about the computation taking

| place in the loop. Our strategy would give this rule a low
priority, trying other rules with stronger resultant claims

first.

It 1s possible to continue and design rules for obtaining

R for specific forms of P;» but since our aim 1s to explain

the general tone of these techniques, we will not go into

further details 1n this direction.
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B. Bottom-up Approach.

: - Al T of the rules given abovehave in common that they

| E cxpect to be provided with some information on either whatconditions were true upon entering the loop or what conditions

- were expected to hold upon completing the loop (or both).

However, 1it is possible to produce conjuncts of the assertion Q

without considering predicates already established elsewhere in

. the program, In order to accomplish this goal we shall look

. for a predicate which 1s an 1nvariant of the loop L , 1.e.,

| it remains true upon repeated executions of the loop.
-

Clearly, any conjunct in the inductive assertion of a loop

| must be an invariant of the loop. However, in the top-down rules
this 1s usually the last fact which 1s established about a

~ perspective assertion. In the pure bottom-up approach, assertions

which arise “naturally” from the computations in the loop are

| directly generated -- and only afterward checked for relevance

to the overall proof.

- Most invariants may be traced back to the fact that at any

stage of the computation, those assignment statements which =~

on the same paths through the loop have been executed an

identical number of times, and this 1s a ‘constant’ which may

be used to relate the variables iterated.

For an assignment statement y; + E(X,y) we let vim)
denote the value of Yi after n executions of the statement,
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- 0) . .. ea
while Ys indicates the “initial” value of y; upon first
reaching a given cutpoint of the loop.

Our technique for finding invariants 1nvolves constructing

an “operator table” in which we record useful information for

each operator. Among the entries for an operator are its

definition (using “weaker” operators), a description of a general

CC computation after n jterations, and other common identities
which facilitate simplications. For example, for + our

table will include the fact that for an assignment statement of
n :

the form i <«vy.+k, i (n) = L(0) + (i-1)C, y Yi 1n generaly; yi np) k
3=1

where x (3 ) 1s the value of k before the j-th iteration

of the assignment statement. Important identities are also noted
. . 1

- including that for a constant c¢ , Y) ¢ = cn, and that
- i=1

n

Do n (n+l) : : : :
| Lo 1 —— Rules for producing invariants linking

| variables which receive assignments on different paths through
the loop are presently being developed. Here we present rules

| " only for the simple case of variables changed only on the same

| paths through the loop.
rule 11. (invariant) To construct an 1nvariant, given a group

of assignments* (y, ,...,V,) «(5 00y), 00, £, (7), we consider

. : : : —

The above notation implies that the value of £.(X,5) i 3

assigned to Y; for all 1 's simultaneously.
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those variables Yj 1 € j £ £ , which are not changed
elsewhere 1n the loop. Using the operator table we express the

value of each Y; after n iterations, i.e. (nn) We then
attempt to find a factor common to two expressions 1n order to

R obtain a usable relationship between y (™) and yo) . The
relation obtained after substituting the initial values of

Y4 and Yi at cutpoint A for yO) and yO) , respectively,
¢ and removing the superscript (n) is an invariant of the loop.

It also holds for the initial values of the variables at A

and thus may be alded to Qp

For example, if y, and y, are changed only in the

L assignments (y, Vy (Y1+X-y, » Ya*5:y,) tnside a loop, then
n + 1 - 1-1

i ey x py ang yf yO es pi
L 1=1 1=1

n 0

yo, Om) (0)
Therefore, forx # 0 — ) y (1 1) = 2‘2

Assuming we know that the initial values of J, and y, upon

. first reaching the cutpoint are y (0) = 1 and y (0) = 0 , we
obtain the invariant 5(y,-1) = X-y, If the assignments

n 0)
were (y, ,¥,) * (2-y,,y,/2) then y! ) = y! Jom 2 and

i=1

(n) _ (0) j (1 Co
Yo = yy, 7 : (5) Simplifying we obtain1=

(n) _ (0) ,n n |
Ya =Y, + 2° and y! ) = y (0) 1 » therefore
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(n) 0

a nl Ye) (0) (0)
SOR 2° = Tay Thus given that vy, = 1 and y,;"/ = x
Yi Y, :

(x # 0) we get that y, ® y2=X jis an invariant.

. rule 12. Whenevery!™ may be expressed in terms of only
0 : n

y! ) and nn, 1 .e, y! ) £(y 0) ,n) , and the value of

. y (0) at the cutpoint A is known to be m |, then replacing

y 0) by its value and removing superscript (n) , we may obtain
the invariant 3n[nx 0 A yi = f(mn)] . Variables iterated

\_ simultaneously may be quantified by the same n . For example,

in the second example of 11, 3n[n> 0 A y, = 2 , y, = x/2™
|

= 1s an invariant of the loop.

L Our heuristic rules are all relevant to programs having an

| arbitrary number of loops, and an arbitrary complex "topology" :
| although, of course,they will yield valid inductive assertions

| more often and more immediately in a simple program.
One of the problems in applying the rules 1s deciding

B what order 1s preferable. [In particular, it has been found

that many terms of the assertion may be obtained both by the

bottom-up rules and by repeated use of the top-down rules.

However, usually one method will yield the result immediately,

while considerable effort 1s expended 1f the other method 1s

applied first. Experience shows that there is a need for

interaction between the top-down and bottom-up approaches
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For example, we may use established invariants to deduce the

relation R in the top-down rule Ex2, and on the other hand,

: we may direct the search for particular invariants based on

_ variables or operators which appear 1n Pp.

C. Examples. We demonstrate the rules listed so far on a

few examples.

L

Example 1: Integer square root. The program in Figure 1

computes z = |/x] for every natural number Xx . That is, the

. final value of z jis the largest integer k such that k <£vX.

We show partial correctness for ¢(x) : x > 0 an d v(x,z):

i z2< XxX A x <(z+1)? . Clearly, y? <€ X AX < (y,+*1)%i s
required to be true after exit from the loop. We first try the

L top-down approach. By rule Exl we attempt adding the conjunct
. y: < x to Q . The verification condition x 20 Dy, «x 1s,

in fact, true for the initial value of y, at the cutpoint,

- 1.e., y, = 0. For the moment we do not attempt to verify that

- 1t 1s an invariant of the loop. Considering the second conjunct

of the predicate, x <(y,;+#1)%, an attempt to apply Exl fails

| because this relation 1s not true for the values of the variables

when the cutpoint is first reached. Since the exit test y,” X

and the predicate x < (y,+1)° both contain x , we apply rule

Ex2. We find that y,<(y +1)° 1s the desired relation since

y, > x Ay, <(y,+1)* > x < (vy +1)® is a valid statement.

Y, g (y, +1)? 1s satisfied for the 1nitial values of the variables.
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) | ------et0 xo 0

Yo, €Y, Ys

- == Q

(x
. EE ~— Yi € X AX < (y,+1) 2
. (y, »Y 3) + (y,+1,y,+2) Zz + y,

—— V(x,2): 2% € X A X < (z+1)2

Figure 1. Integer Square-Root Program.



— 14.

BN However, an attempt to prove the validity of

~ Q yi € Xx Avy, £(y,+1)* does not yet succeed.
At this point we try to use the bottom-up approach, 1.e.

C try to find invariants. We note that the assignments along one
pass of the loop may be combined into the single group of

assignments (y |y ,y) <«(y +Ly +y+2,y+2) . From the
1 2 3 1 2 3 3

operator table we obtain the equations
L

CORN (1) BE
(1) y = y t+ ) 1 =0+n =n

| i=0

" (n) _ (0) v i-1 3 L i-1
(2) y= yi oes sie + 7 EOD

1=1 1=1 3

(n) _ (0) , 7
| (3) y,o = +) 2 = 1+2n |
L ? i=1

i
We may use equation (3) to substitute for y (1-1) in

3

| equation (2), and simplify to

} (n) v 2
(2") y, 7 =1+2n + J [1+2(i-1)] = 1+2n+n + nin _1=1

= 1+2n+n?% = (1+n)?% .

In the simplification above known facts about the summation

operator (obtained from the operator table) are used.

- Since y(n) = n , we obtain
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. (n) (n) (n)= ]+2 = (n) 2
y, y; ay, (I+y =)

z
for every n , le, y =1l+Zy Ay _ (1+y)® are invariants

3 1 2 1

of the loop and should be added to the trial Q . QO becomes
2

yy, «xa y = 2y +1 Ay =(y +1)? which will prove theb 1 3 1 2 1 ’ Pp

partial correctness of the program.

Example2: Division within tolerance. Tp program of Figure 2

divides X, by X, within tolerance X, We try first to
} find invariants. Considering the assignments

i (Y, »Y3)* (y,/2,y,/2) » we obtain the equation sy (n) _ y (0) 1
2 n

2

(n) (n)
Ya y| and y (1) = y (0). 1 Therefore 2 = 1 3

3 3 on. OY CT 3 TOT Since/) y, 2h .Y. :

g yO oz gpg JO1 a2 a J > = a e cutpoint, we obtain

(n) _ nj
- 2y, = x,y! - Thus 2y, =X,-y is the first conjunct

in the trial Q . Next we consider the assignments

(yy sy, =< (y,+y, »Y,*Y,/2) . In order to be able to find a common
: : n

factor 1n the equations for, (n) and y(n) we first eliminate
y, by using the already established invariant

V2 = X,y,/2 ’ obtaining (y, VY, ) * (Yotx, oy /2,y + /2) . Now
(1-1) (i-1(n)_ (0) y J _ ny,

we get Y, =, a, ») - - and y (1) = y (0) 4 ) 3
1=1 2 i=1 2 :

CLG)
Eliminating the common term ) EAA the result is

iz1



|ol

| 16

.

(Lom
| — === (X) : Ox; <x, A O<x,I UDB IND © (0,x,/2,1,0)

Xp <y +y| 1 1 2 T| FF

. ©, ,) “ty, Ly, ty s2)

; y, < x, |YWsX, /x, A X1/X, x, cy, -——— T | F
2) rzex x, XIX, x<z —TT

Figure 7. Real Division Within Tolerance Progranm



(n)__ (0)
yy TTY, (n) (0) ..

| — YY, Y. Since there are two possible paths
_ X

to initi : : 0 0

initially reach the Futpoint. the pair (y Jy! )) may be. 2 .

either (0,0) or ( > 5) . In either case, the simplified
-

(n) _,(n) _
BE expression becomes y, =y, °/x,. Therefore y, = %/X,

1s added as a conjunct to the trial Q .

. Since no further information can be gained from the

invariant rules, we turn to the top-down rules. We have

y, € X,/x, A X;/x, - X, < y,_ true upon exit from the loop.

= Trying Exl on y, £ x /X, , the conjunct can be seen to hold

initially at the cutpoint by cases, since ifx <x, /2 then

y, 1s initially OO at the cutpoint and by ¢ we have

- 0 < x,/x, , while if xX,» Xx _/2 , then 1/2 ¢ x /x, and y,

is 1/2 at the cutpoint. Thus by Ex] we may add y,€X /x,
_ to Q . The second conjunct, x /x - XxX <y on the other

1° 72 3 y 7?

hand,does not hold initially so we try Ex2Z. The necessary

‘transitive’ relation is found to be x, /X, -y,< y, since

3 Y; < X53 A x /x, -yY, £Y, ox /x, - X, <vy, . We note that

| x /x, -Y, «VY, holds for the initial values at the cutpoint

L so we add it to Q . Q is now y, = X,y,/2AY, = y,/x, A

i Yi © Xx, /X, A X,/x, SY, < Y. which will prove the program
| partially correct.

Example 3. Hardware (integer) division. The program of

Figure 3 1s a simulation of how integer division might be carried
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START

A CI Xx, 20Ax,>0

(Y,»Y, »Y 4 Yo) € (x,,x,,1,0
HE.

------- Q,

<

F T _ an[nz0 A y,=x,- 2" A y,=2"] A
y,20ay,>0 A

— > yy <Y

. (Y,5Y3) « (2:¥,,2:¥,) i

(Y,,Y,) + (Y,"Y,sY3*Y,)k — <n
_ Q, "°°"

YP,XT YX, ty AD gy, Ay; <x, T r

(z,,2,) « (y,,y,) (y,,y,)*« (y,#2,y,%2)

UX ,2)¢8 et E0SE, A,X]
HALT )

Figure 3. Hardware (Integer) Division Program.

L

L_

L



19.

— out by a computer. The 'division by 2' represents a

. 'shift-right,, and the 'multiplication by 2' a 'shift-left'.

- Although the second loop of this example 1s similar to the

program of Example 2, we bring it in order to illustrate how

. programs with more than one loop may be handled, and how

— complications which could arise from integer division may be

solved with the aid of the invariant rule. Our strategy 1s to

C obtain a maximum amount of information from the first loop,

which will be true upon entrance to the second loop. Then top-

| down rules can be used conveniently for the second loop.

- In the-first loop we attempt to link y, and y3 |,

obtaining y (0) = x, +20 and y (7) = 1-2" which leads to the

invariant y, = X,Y, by rule Il. By rule 12 we also have the

- conjunct 3n[n > 0 A y, = X, 2M Ay, =2"]. We now consider

top-down rules. Since y, > 0 Ay > 0 holds initially, it is

— added by rule En2 to Q,, which thus becomes the valid invariant

- y, =X, y,a3n[n >» 0ay, =x,-20 Ay, =2"7ay >0ay, >0.
~ All this information, as well as vy, < Y, 1s a predicate Dp,
_ true upon first reaching the second loop. Recall that for the

- entrance rules we consider the predicates true upon first

— . reaching the cutpoint i . Thus the information in Pp, must be

'moved' along the paths to cutpoint 2 .

CC y, >0 Ay, =X, y, A3n[n30ay,s= Xx, 20 Ay, = 2] are
unchanged by either path to 2 , while y, might be changed

but y, 3 0 can be seen to remain true by inspection. If the
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right path is taken, vy, « y is strengthened toy, < y, |,

while the left path may be used only if y, =y,. In this case

y, 1s set to zero, and since y, > 0 is known, in either case

y, <y, at cutpoint 2. At this point, all the necessary

« assertions for handling the second loop are already given

explicitly in the entry and exit predicates. Using rule En2

we obtain Q, ry, = X,*y,~3n[n20Ay, = x, 2" AY, = 2M A

. y, 20 Ay, >0Ay, <y,, while from Exl we add

X, Ty, x,*y, to Q, . This Q, will be a good inductive

assertion.

The rule involving n , obtained by 12, is necessary here

| in order to guarantee that the conjunct y,6 _ x,y, is valid,
because of the ‘shift-right’ division. We clearly could have

- obtained some of the conjuncts in Q by other rules. For

example, ¥,<Y, could have been obtained by rule Ex2 (because

p, contains y <x, y = X,-y, is an invariant, and y,=1

1s the exit test), or x, = y, X,*y, by rule II.
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L11. Heuristics for Arrays

The problem of finding assertions involving arrays 1s

quite different from that of finding assertions for simple

| variables because an array assertion generally will be an
entire family of claims. This is the reason most assertions

about arrays will involve quantifiers. All rules in Section II

continue, of course, to be applicable for those variables not

in arrays. In addition, rules Enl, En2, Exl and Ex3 may be

used for assertions with arrays.

t Underlying the heuristics which {follow 1s the assumption
that arrays 1n a program are used “properly,’, 1.€., to treat a

| large number of variables in a uniform manner, and not just as
a collection of unrelated variables fulfilling different roles

” in the program. The further assumption is usually made that an

assertion about an array will be of the form

vj [<j -index> o <j-array>] or 3j [<j-index> A <j-array>] ,

where <j -index> is a claim on the indices of the array and

<j -array> is the claim which is made about the array elements

themselves. We often separate the two problems of finding the

<) -index> and of finding the <j -array> .

As 1n Section II, we distinguish between the top-down and

bottom-up approaches.

In order to apply some of the array rules 1t 1s convenient

to first determine the “one-pass” assertion, 1.e., the claim
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which can be made about the effect on the arrays of one circuit

- through the loop. This claim is often not difficult to

establish, in particular for loops which do not contain other

— loops since then the circuit through the loop 1s a simple

. sequence of statements. The assertion can be most easily

= established by the known technique of “backward substitution”,

moving backwards around the loop past each assignment statement.

b

- A. Top-down rules. As noted above, all previous top-down

rules, except for the transit ivity rule Ex2 (which involves

b— inequalities), are directly applicable for arrays. In the rules

L listed below, p denotes an assertion with quantification
concerning an array which 1s true after exit from the loop, while

48 P° 1s an assertion like p , but true upon entrance to the

loop. Q denotes the desired loop assertion. Rules Al, A2, and

L A4 attempt to either transform or create assertions p and

bo p> having a form which will facilitate generating Q by rule A3.

- rule Al. Let p be a claim about a specific element of an

- array, say S[c} (and thus not necessarily including
L quantifiers). We rewrite it as 3j [c €j €c A <j-array>]

where <j-array> is p with j in place of ¢ . Similarly,

Ya 1f a p' as above is true upon entrance to the loop, we rewrite

i it as Vj [ccj<c> <j-array>] :
The underlying principle here 1s that a claim whose

u <j-index> is made smaller by the loop probably has an existential

2



quantifier (we are “looking for something”), while if the

<j-index> 1s extended to cover more elements by the loop, the

claim probably has a universal quantifier (we want something to

— be true for a larger part of the array). Thus we may check the

. feasibility of the resulting assertion by determining whether

the <j -array> is in fact expanded or contracted in the loop.

This principle 1s also used in the bottom-up rules.

-

g rule AZ. Given a p , we examine the definitions of the

operators and relations in p and whatever information is known

b— about the array upon first reaching the loop. Using this infor-

1 mation we produce the <j -index> for a p' which must be true
upon entrance to the loop, and has a <j -array> identical to

{ Pp. For example, if p is 3j[1<jg 3 a A[j]=
max (A[1],...,A[n])] , and we know only that A is defined upon

L entrance to the loop, by the rule we require a <j -index> such
that A[j]= max(A[1]},...,A[n]) must be true. By the definition

of max we can determine that the maximum element must belong

§ ~ to the array. Thus 3j[1<j<n a A[j] = max(A[1],...,A[n])]
1s the parallel assertion upon entrance to the loop.

= In some cases of a predicate p with universal quantifiers

the corresponding initial claim may require a <j -index> which

is empty (so that the overall claim 1s vacuously true). For example,

if p is Vj [1 €j<n o>A[j}<A[j+1}] , and we have not

sorted A before the loop, p' might be
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PL vi[lgj <1 2 A[j]« Alj+1]] :

= Rule A2 1s the only example in this paper of a rule which

| enables us to project “backwards” to find the minimal condi-| BN tions which must hold upon entrance to a given loop. Such
- rules should be useful not only to aid in discovering the

correct assertion for the loop in question, but also to carry

Co information backwards for loops earlier in the program. Thus
further investigation of this general technique 1s warranted.

rule A3. If =p contains a term r as a boundary of the

indices, and we have determined that for some term s , s = ¢

L upon exit from the loop (by any of the rules 1n Section II) , we
let Q be the predicate obtained by substituting § for some

- appearances of r 1m p .

- Similarly, 1f p' contains a term r , and s=r upon

entrance to the loop, let Q be the predicate obtained by

substituting s for some appearances of r in Pp".

F or example,1f p 1s Vvi[l<i< m o> A[ i]J<A[m]] , and

2 =m 1s the exit test of the loop, we could try letting Q

be- either vi[l < 1 « & > A[i] < A[m]],

Vi[l < 1 ¢€ m 2 A[1]}] <A[R]] or Vil < 1 < % => A[i]< A[2]] .

Obviously, if information is known about both p and 1p',

the application of A3 can often be directed by matching the

results of various substitutions until the entrance and exit

claims are identical. Thus, if there are several possibilities
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for substition, we may decide for which appearances of terms in

: N P or P' to substitute.

~ We would like to be able to also use the transitivity rule Ex2

for an array assertion with quantification (specifically, a p with

Ea an inequality as its <j -array> ). This requires establishing that

¢ for each pair of terms compared, we may find a third term such that

- there will be two new inequalities, true upon exit from the loop,

i which will imply the original inequality (as in Ex2).

i rule A4. Given a p with universal quantifier and an inequality
including arrays as its <j -array> , we use the “one-pass” assertion

| to find a term which contains the two needed inequalities for a parti-
cular value of j (i.e., for a single pair of values from p ). Then

- let each new inequality be the <j -array> for a claim having the

" <{j-index> of p . The other top-down rules may then be used separately

J on each of the new inequality claims to obtain the loop assertion.

For example, given p:Vi[l<i< m 2 A[i]<B{i]] , we might

discover a C [k] such that A[k]<C[k] A C[k] < B[k] for some k :

and assume Vi[l< ig m > AJi}l]g C[i]] aA Vi[l €i1i<« m > C[i] <€ B{i]]

1s true upon exit from the loop. Then, if, for example, £ = m and

i = 1 upon exit from the loop, A3 used along with other information

could result in Vi[l << 1 < & 2 A[i]< C[i]]A

vi[jc1«< m oC[i]J<B[i]] as the loop assertion.

B. Bottom-up approach. In order to identify which heuristics to

use, we must differentiate between two methods of computation:

a) If the exit test has the variable i compared with a term

which 1s not changed inside L, and 1 1s incremented
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- monotonically inside L , then it is assumed to be a counter

. controlling the loop in an “iterative going up'" computation.

(b) If the variable 1 is compared with a term which does

not change in the loop, and is decremented monotonically inside

C L , then 1 is a counter controlling the loop in an

~— “iterative going down' computation.

In the rules below we assume all loops have the index 1 ,

‘ and let 1, denote the value of i when it first reaches the

cutpoint of the loop, while 1, denotes the value of i upon

exit from the loop. As in Section II, we assume that the

. cutpoint is located immediately before the exit test.

We first list the rules for finding the <j-index> .

rule XI. If 1 1s a counter (incremented by 1 ) in a

~ “going-up” iteration and is also the variable which appears in

| the index of array elements receiving assignments, then try
—

assertions of the forms vj[i <j<io> <j-array>] or

L 3j [i <j <i;A <j-array>] in the inductive assertion. These

| will also be the form of the predicate p which is true after
exit from the loop.

| If 1, is known, say 1, = Cc upon entrance to the loop,
| then the ¢ should be substituted for 1,1n Q and p

= Similarly, 1t 1, = d upon exit from the loop, d should

be substituted for 1,.
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rule X2. If 1 is a counter (decremented by 1 ) in a

- “going-down” iteration and is also the variable which appears

in the index of array elements. receiving assignments, try

assertions of the forms

vili<j<i o <j-array>] or 3j[1, €J<in <j-array>]

As in rule Xl, p will also have the above form and i, or

1, should be eliminated if possible.

i rule X3. Discover whether XI] and X2 fail only because i is
assigned a function f(1) rather than merely incremented or

| decremented by 1 in the loop. If so, try to find the set of
elements which 1 assumes during the loop (using rule 12).

- The assertion will have the same form as 1n X1 or X2, except that

the <j -index> will include the 12 invariant. For example, if

1 « 1+7 in the loop, and i is initially zero, then the

assertion 1s

~ Vj{0< j <iAa3n[nxz 0 Aj= 7.n] o <j-array>}

The following two conditions are used to decide which of

the bottom-up <j -array> rules to apply assuming that the

<j -index> has already been determined.

(a) All assignments in the loop are to array elements

with indices not specified by the <j-index> before executing

the loop. That is, once we have included an element of the array
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in the assertion after some circuit, we will make no more assign-

ments to that element 1n subsequent circuits around the loop.

For example, the program segment

1 « 2 |
=== Q at left could be part of a

F "bubble-sort" program. The ''one-

pass'' assertion 1s clearly

« ! S[i-11< S[i] . but if the form

Ee] of the assertion before executingthe loop 1s

fst stnsisun
“_ Q: Vvilzgj<ino <j-array>]

the loop violates condition (a)

tc itd because S[i-1] may receive an
| assignment and 1-1 is already

in the domain of the <j-index> .

C (b) The "one-pass" assertion can be written as a single

conjunct. Furthermore this conjunct is valid for all array

: elements whose indices are added to the domain of the <j-index>

C by one circuit through the loop. Thus if the "one-pass"”

assertion 1s S{i1] = S[i+1)A S[1+1] «S[i+2] and i and i+1

are added to the <j-index> by the loop, the condition (b) is

LC not fulfilled because 1t cannot be expressed by an appropriate

single conjunct.

q

.



A———

29.

rule RI. If both (a) and (b) are true the “one-pass” assertion

itself 1s taken as the <j -array> . Of course, the quantified

variable of the <j -index> must be substituted for the actual

| array index which appears in the loop. For example, if we have
found the assertion to be Vj[l<j<i> <j-array>] and in

the loop we have only A[i]<« O and then i <«i+1, the “one-pass”

assertion is Afi]= 0 , and (a) and (b) hold. Thus we obtain

Vi[l <j <1 >A[j] = 0] as the loop assertion.

The following rule 1s based on the fact that we have already

established the desired form of the <j -index> part of the

assertion. We want to be able to write one conjunct, say

| Vi[lgj<i1> <j-array>] , where the <j -array> will be a
statement about (only) the array elements with indices 1 ¢ j < i

and not contain any additional restrictions on the indices.

rule R2. (generalization) If (a) is true, but (b) 1s not,

check whether (b) fails only because the assertion 1s not a

single conjunct. If so, the <j-array> parts of all the con-

juncts 1n the assertion are searched to find the strongest single

conjunct which 1s true for all array elements specified by the

known <j-index> . This conjunct becomes the <j-array> . For

example, given a one-pass assertion

Vi[l<j <n 2 A[j-1] < A[j]] A A[n-1] < A[n] and a required

Q of the form Vj[l<j< n+l ><j-array>]., the correct

<j-array> by this rule is A[j-1]<A[j].
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rule R3. If (b) 1s true, but (a) 1s not, take the “one-pass”

assertion as the <j -array> and consider the effect of an

additional pass through the loop on this predicate. Then apply

the generalization rule R2 to the result. For example, for
LC

the segment of the bubble-sort program introduced above, the

one-pass assertion yields

C vi[2<j <i =S[j-11< SGN

One circuit will change this to:

Vi[2 « j < 11 o S[j-1]1< S[j]] A S[i-2] < S[i] A S[i-1] < SI[i] .

Generalizing this predicate by R2 1s a relatively difficult

step, not yet completely investigated. The generalization
\

procedure would be expected to recognize that no predicate

comparing each element with its neighbor 1s possible, since no

information 1s available about the relation between S[i-2] and
w

S[i-1] . Then the transitivity of the inequality would yield

that vi[lg jj <1 2S[j]c« S[]] is the strongest claim which

can be made about the entire segment.

{ —

.

-
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Example 4. Minimum of an Array. The program in Figure 4

To will find the minimum of an array A using an array S in

an unusual way. (The upper half of the array is set to A ,

and the computation takes place in the lower half, using only

v comparisons.) For the first loop, top-down rules give no
information, so we use bottom-up rules. By XI, we will try

the assertion Vj[lgj<k> <j-array>] (because k,= 1,

and we have a "going-up" iteration). The "one-pass" assertion

s is clearly S[n+k] = A[k], and conditions (a) and (b) are

| fulfilled. Thus by rule Rl we obtain Q:vj[l<j<koo Sh+]l =
~ A[j}}l . Since upon exit from the loop k = n+2, we have

| P : vj[l<jg<n+l>s Sh+j] = A[j]]. By rule En2, p is added
to Q, . We try rule ExI on g', but S[1] is undefined on

~ entrance to the loop, so the rule fails.

Using array top-down rules, we first rewrite ¢' as

3)[1<j< 1 AS[j]l=min(A[1],...,A[n])] by rule Al. Using

AZ, we would like to retain the <j-array> part in an assertion

.true on entrance to the loop. By the definition of min we know

that one of the elements is the minimum, and the p we have

at the entrance to the loop states that A has been copied to

the upper half of S . Thus we obtain

3j[n+l€j € 2n+l1aA S[j] = min(A[1],...,A[n])] as the initial

assertion which must be true. Since the assignment before the

loop implies that 1 = n upon entrance to the loop, a possible

substitution by A3 1s
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( START )
‘ é: n => 0 .

- Qi = -- )| -

L P:Vj[l<jsn+l > bom J] S{n+k]eA[k]
S[n+jl=A[j]1~~~ - - - oy

= | 1 <n | k«k + 1
| ys = min (A[1],.. ,A[n+1]) Qe

biz=en T -
S[i] « S[21] 1 STi] « S[2i+1]

———— - -
| 1 « i -

Figure 4. Program for Finding the Minimum of an Array
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q : 3j[i+1 <j <2i+1 A S[j] = min(A[1],...,A[n])] .

Since 1 = 0 upon exit from the loop, this gq becomes

identical to ¢'. (Any of the other possible substi-

tutions of1 for n will fail to match ¢'.) Thus we let

B Q, b eqap . The second conjunct 1s not needed to prove

p' , but can be retained to provide the additional information

that the upper half of S 1s unchanged by the second loop, and

contains A .

.-

Example 5. Partition Program. The program of Figure 5,

~ due to Hoare, will. find a partition of the elements of a

o real array S . We would like to show that 1t 1s partially

correct with respect to ¢ :n 2 0 and

3 yp : vavb{0< a <i aj <b <gno>osS[a] € S[b]} Aj <i .We

use the bottom-up approach, seeking a Q, for the large outer

loop. Thus we consider one pass through the loop. (It should

; be noted that the invariants we will find at cutpoints 2 and 3

- during the "linear" pass are not necessarily the desired Q,

or Q, for the overall execution of the program.) The first

inner loop yields immediately by rules Xl and Rl, the invariant

a p, : Vvkfi, € k <1 >S[k]< r] . Thus upon exit from the first

inner loop Pp;A S[] => r is true. Similarly, after the second

inner loop, we obtain P, : V&[j,22>joS[el>rlAaS[il< x

by X2 and Rl. There is no possibility that the second loop could

disturb the claim of p,, because there are no assignment



34.

TTT" ¢6:n > 0

r «Sn % 2]

(i,j) « (0,n)]
«

-.—

C F
yp: Vavb {0sa<iaj<bsn>oS[a]<S[b]}-- Q, ="

F T

“._ Q, -———

F T

F T |

L . . .a (s{il, S[3j1) « (S[il,S[i])

(1,3) « (+1, 3]-1)
q

B

A

L

Figure JS. Partition Program

L

(
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statements to the array in the loop. Moving P, A DP, A

S[1] 2 vr AS[j]« r through the two possibilities for the test

1 €« j , if we reach point A, the assertion is unchanged

while at point B we have

L

P, : vk[1i, £ k < 1-1 o S[k] < r] AS[i-1]«g r and

Pp, : V&[j, 22> j+l oS[L]> r] A S[+l] = r .

“ Rules XI and X2 indicate that we require
* *

P, : vk[1, <k <i> <k-array>] and p, : velj, 3 2 > 3 >

<R-array>] . Thus by R2 we seek weaker array assertions about

- the entire range of k and 2 which will fulfill these forms.

The weakest assertion made about an element in p, or p, 18

that S[i-1] <r. Thus we let Pp; be vk[i c<k<io Sk| <r] .
*

~ Similarly p, 1s v&[j, > & > j o S[&2] >» r] . Since 1, 1s

initially 0 , while J, 1s initially n , we assume a Q

assertion of the form Vk[0g< k <i > S[k] <€ r] a

N ve[n = & > j = S[2] > vr]. By rule En2,Q, and Q, will be

- given the assertion of Q,, and verifying these assertions

"will show the program partially correct. We clearly could have

, used the transitivity rule here, but for this example, the amount

of work required 1s about the same.

oC

“

“
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IV. Conclusion

Clearly, the rules and examples given 1n this paper are

far from being a general system for finding inductive asser-

tions. More and better rules are needed, particularly,

: for array assertions, which tend to be complex and unwieldy.
In addition, before the rules can be incorporated into a

B practical framework, we must order their application. That

¢ 1s, at each step we must provide more exact criteria for
deciding which rule to apply and on which cutpoint of the

program. The order 1n which the rules are presented in each

= subclass does implicitly provide a partial specification. Tpys
we presently would try to apply ExIl, and only 1f 1t failed try

ExZ2, etc. Moreover, we generally would try to gather infor-

mation on simple variables using the rules of Section II

before attempting to treat array assertions.

u The more basic (and open) questions are (a) whether to
attempt top-down or bottom-up techniques first for a given loop,

and (b) which loop of a program should be treated first. Although

we experimented with various orderings in the examples in this

paper, we have tentatively formulated a more fixed approach.

Our present inclination 1s to first use top-down rules from

- the (physical) beginning of the program. (Since in general

there 1s more than one outer loop, usually only entrance rules

are applicable .) Then we use bottom-up rules for the same loop,

.

.
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to create a p true after exit from the first loop containing

= as much information as possible. We continue with the next

) outer loop in a similar manner. [f however, we are stymied and

. unable to find a loop assertion, we start with top-down rules
from the end of the program, and try to work backwards towards

the beginning.

= A more sophisticated approach would require a weighted

evaluation function capable of making a very cursory scan of

| the program. This function would identify loops which seemed

o ‘promising’, 1.e. likely to yield valuable information rapidly,

and apply selected rules first to these loops.

i
Since some of the rules could continue searching for a

possibly non-existent form of assertion almost indefinitely
-

(the transitivity rule, for example), such rules would have a

_ "weak" version and a "strong" version. The "weak" version

would be used in the initial attempt to find an assertion, and

would "give-up” rapidly if it did not provide an almost immediate

‘solution. Then other, possibly more appropriate, rules may be

tried on the cutpoint. Only if all rules failed to add relevant

information, would the "strong" version be applied. Tpis

division 1s parallel to the human attempt to first find what 1s

"obviously" true in the loop, and only afterwards bring out

the fine points.

The overall strategy we have adopted in this paper has been
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to find assertions strong enough to prove the partial correct-

ness 1n as few steps as possible. Thus, 1n general, we

attempt to directly produce a near-exact description of the

operation of a loop, without going through numerous inter-

mediate stages where we are unable to show either validity or

unsatisfiability. If our heuristic 1s wrong, this fact will

be revealed relatively rapidly by generating an unsatisfiable

- verification condition. We then may try a weaker alternative

claim. We feel that this is the approach which should be taken

in order to construct a practical system which could be added

he to a program verifier.

We believe that the bottom-up approach may also be used to

solve other problems. For example, in the partition program
C

(Example 5) , the inductive assertion was actually found without

using the Y given by the programmer. In one single step VY

. may be generated from Q,, and thus we have ‘discovered’
what the program does without the use of additional information.

This feature of the bottom-up approach can probably be most

« useful for strengthening a too-weak assertion, 1.e., revealing
that the program does more than 1s claimed 1n y .

Another apparent application 1s for proving termination

C- using well-founded sets. For termination, predicates Qs and

functions u, are required, where u. (a mapping to the well-

- founded set) has 1ts domain bounded by Qs and descends each

. time the loop is executed. Here again the bottom-up approach

~
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1s useful since no § is provided. We have already begun

investigating bottom-up methods for generating both the

Q; 's and the u; 's which will ensure termination.

The ultimate goal of automatic assertion generation 1s

\ almost certainly unattainable ; thus the optimal system would

involve man-machine interaction. Whenever 1t was unable to

generate the proper assertion, the machine would supply

L detailed questions on problematic relations among variables

and possible failure points (incorrect loops) of the program.

Cl early, a partial specification of the assertions, provided

\ : :
= by the programmer, could shorten this entire process.

—
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