STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM - 191

STAN-CS-73-341

A HEURISTIC APPROACHTO PROGRAM VERIFICATION

BY

SHMUEL M. KATZ AND ZOHAR MANNA
WEIZMANN INSTITUTE OF SCIENCE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

MARCH, 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

STANFORD ARTIFICTAL INTELLIGENCE TABORATORY Marct 1974
MEMO AIM-191

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-3L1

Abstract:

A HEURISTIC APPROACH TO PROGRAM VERIFICATION

by

Shmuel M. Katz and Zohar Manna
Applied Mathematics Department
Weizmann Institute of Science

We present various heuristic techniques for use in
proving the correctness of computer programs. The
techniques are designed to obtain automatically the
"inductive assertions' attached to the loops of the
program which previously required human 'understanding"
of the program's performance. We distinguish between
two general approaches: one in which we obtain the
inductive assertion by analyzing predicates which are
known to be true at the entrances and exits of the loop
(top-down approach), and another in which we generate
the inductive assertion directly from the statements

of the loop (bottom-up approach).

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Contract SD-183.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Re-
search Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

May, 1973

A HEURISTIC APPROACH TO PROGRAM VERIFICATION

by

SHMUEL M. KATZ and ZOHAR MANNA
Applied Mathematics Department
Weizmann Institute of Science
Rehovot, Israel.
Abstract. We present various heuristic techniques for use
in proving the correctness of computer programs. The tech-

niques are designed to obtain automatically the “inductive

assertions” attached to the loops of the program which pre-

— 1

viously required human “understanding” of the program’s per-

! formance. We distinguish between two general approaches:

r

one in which we obtain the inductive assertion by analyzing
predicates which are known to be true at the entrances and
exits of the loop (top-down approach), and another in which we
generate the inductive assertion directly from the statements

. of the loop (bottom-up approach).

I. Introduction

The desirability of proving that a given program is
correcthas been noted repeatedly in the computer literature.
Floyd [1967] has provided a proof method for showing partial
correctness of iterative (flowchart) programs, that is, it
shows that if the program terminates, a given input -output

relation is satisfied. The method involves cutting each loop

g—-———_-__:_-__‘ﬂ

of the program, attaching to each cutpoint an “inductive
assertion” (which is a predicate in first-order predicate
calculus), and constructing verification conditions for each
path from one assertion to another (or back to itself). Tpe
program is partially correct if all the verification condi-
tions are valid. Elements of these techniques have been
shown amenable to mechanization. King [1969], for example,
has actually written a ‘verifier’ program which, given the
proper inductive assertions for programs written in a
simplified Algol-like language, can prove partial correct-
ness. Thus, it is fairly clear that the parts of this method
which involve generating verification conditions from induc-
tive assertions and then proving or disproving their validity
is a difficult but programmable problem. However, as King
puts it, finding a set of assertions to ‘cut’ each loop of
the program'depends on our deep understanding of the program’s
performance and requires some sophisticated intellectual

. endeavor”.

In this paper we show some general heuristic techniques
for automatically finding a set of inductive assertions which
will allow proving partial correctness of a given program.
More precisely, we are given a flowchart program with input
variables X (which are not changed during execution), program
variables Yy (used as temporary storage during the execution
of the program), and output variables z (which are assigned
values only at the end of the execution). In addition, we are

given “input predicate” ¢(x) , which puts restrictions on the

input variables, and “output predice" v(X,z), which
indicates the desired relation between the input and output
variables. Given a set of cutpoints which cut all the loops,
our task is to attach an appropriate inductive assertion Qi
to each cutpoint i

We distinguish between two general approaches:

(a) top-down approach in which we obtain the inductive asser-

tion inside a loop by analyzing the predicates which are known

to be true at the entrances and exits of the loop, and

(b) bottom-up approach in which we generate the inductive

assertion of a loop directly from the statements of the loop.

For '"toy'" examples, having only a single loop, it is generally
clear that the top-down approach is the natural method to use.
However, this is definitely not the case for real (non-trivial)
programs with more complex loop structure. [, this case som e
bottom-up techniques were found indispensible. pfost commonly
we have found it necessary to combine the two techniques, with

the bottom-up methods dominant.

Preliminary attempts to attack the problem of finding asser-
tions have been made by Floyd [private communication], and
Cooper [1971]. Heuristic rules basically similar to some of
our top-down rules have been discovered independently by

Wegbreit [1973]. Elspas, et.al. [1972], used “difference

equations” derived from the program’s statements which is,

in essence, a bottom-up approach.

We handle programs with arrays separately, since
generating assertions involving quantification over the indices
of arrays requires special treatment. Thus in Section II we
discuss heuristic techniques for flowchart programs without
arrays, while in Section III we extend the treatment to programs
with arrays. In Section IV (conclusion) we discuss open problems
and possible implications of our techniques. Related problems
where these approaches seem applicable include proving termination
of programs, and discovering the input and output assertions of

a program.

Our emphasis in this paper is on the exposition of the
rules themselves and we are purposely somewhat vague on other
problems, such as correctly locating the cutpoints or ordering
the application of the rules. Though we do not enter into
details, we assume that whenever possible we conduct immediate
tests on the consistency (with known information) of a new
component for an assertion as soon as it is generated, and that
algebraic simplifications and manipulations are done whenever

necessary.

IT. Heuristics for Programs without Arrays

A. Top-down approach. We begin by listing the top-down rules,

which may be divided into. two classes: entry rules and exit rules.

4

1. Entrv rules. These rules are intuitively obvious,

but provide valuable informat ion in a surprising number of cases.

rule Enl. Any conjunct* in the input predicate ¢ (X) may be
added to any Q . It need not be proven since the input variables

are not changed inside the program.

rule En2. Any predicate known to be true upon first reaching

a cutpoint i should be tried in Qi .

2. Exit rules. For simplicity in the statement of

these rules, w assume that a cutpoint is attached to the arc
immediately before an exit test of the loop. Thus we may consider

an exit from a loop to be of the form

where ty is the exit test, P; is some conjunct of a predicate
known to be true when the exit test first holds, i s the
cutpoint on the arc leading into the exit test, and Qi is the

assertion which we wish to discover. We attempt to extract

* If a predicate i1s expressed as a conjunction AIAAZA"'AAn’

then each Ai is a conjunct of the predicate.

information from P; and ty in order to find an assertion
for the cutpoint i. . The exit rules will lead to a

predicate R which is guaranteed only to satisfy

ti/\RDpi ;

we then must show that the R obtained is indeed a valid

assertion.

rule Ex] . If Py is not identical to ty let R be P;

itself .

rule ExZ2. (transitivity) Although this rule could be applicable

to a wider class of operators and relations, we restrict the

treatment to inequalities. Suppose P; has the form a Aa, and
t, has the form b,Bb,, where aj and bj are any terms and
A,B are equality or inequality relations. If one of the alj ‘s

is identical to one of the bj 's, try to find an appropriate

inequality or equality relation R so that ty A R o P; becomes
.2

true. For example, if ti is x <y, and p, 1is x < (y,*1)°,

then we let R be y, <« (y1+1)2 since Xx <y, A Yy, < (y1+l)2 o>

X < (y1+l)2 is true.

We may extend rule ExZ2 and use in our search for R any
conjunct attached to cutpointi which has somehow been
previously verified (i.e., it is true upon entry to the loop, and
is invariant going around the loop, but does not yet imply the

exit predicate pi). For example, if the conjunct y, =y, x,

r"—._

—

has been previously verified at cutpointi, and t, is the
test y,= 1 , while P; is y, <Xx, , then we may try R
being y, < y, , since y, = Yi'X, Ay, = 1 A Yy < ¥V, 2 ¥, <X, .

Another possible extension of rule Ex2 is to search for
additional information on the variables in the exit test. We
seek information which along with t. would imply stronger
restrictions on the exit values of those variables. For example,
suppose t; is y, »x, we know that 'y, < x upon first
reaching 1 (i.e., the loop is executed at least once), and Y,
is incremented by 1 at each pass through the loop. Then we
let t* be y, =X sinceylax/\yl-1<x:y1=xinthe
integers. Thus, rather than looking for R satisfying

Y, > XA RD P; > it suffices to find an R satisfying

}’I=XAR:>pi

rule Ex3. If rule ExI1 fails, a natural “weaker” attempt could
be tolet R be ti > pP; - This rule is sometimes of practical
use ; however, it says very little about the computation taking
place in the loop. Our strategy would give this rule a low
priority, trying other rules with stronger resultant claims

first.

It is possible to continue and design rules for obtaining

R for specific forms of P; » but since our aim is to explain

the general tone of these techniques, we will not go into

further details in this direction.

B. Bottom-up Approach.

Al T of the rules given abovehave in common that they
cxpect to be provided with some information on either what
conditions were true upon entering the loop or what conditions
were expected to hold upon completing the loop (or both).
However, it is possible to produce conjuncts of the assertion Q
without considering predicates already established elsewhere in
the program, In order to accomplish this goal we shall look
for a predicate which is an invariant of the loop L , i.e.,

it remains true upon repeated executions of the loop.

Clearly, any conjunct in the inductive assertion of a loop
must be an invariant of the loop. However, in the top-down rules
this is usually the last fact which is established about a
perspective assertion. In the pure bottom-up approach, assertions
which arise “naturally” from the computations in the loop are
directly generated -- and only afterward checked for relevance

to the overall proof.

. Most invariants may be traced back to the fact that at any
stage of the computation, those assignment statements which sr~
on the same paths through the loop have been executed an
identical number of times, and this is a ‘constant’ which may

be used to relate the variables iterated.

For an assignment statement yi+f()_<',§f'] we let ,Vi(n)

denote the value of Yi after n executions of the statement,

while y§0) indicates the “initial” value of y; upon first

reaching a given cutpoint of the loop.

Our technique for finding invariants involves constructing
an “operator table” in which we record useful information for
each operator. Among the entries for an operator are its
definition (using “weaker” operators), a description of a general
computation after n jterations, and other common identities
which facilitate simplications. For example, for + our
table will include the fact that for an assignment statement of

n .
the form yi <«y;+k ., in generaly}.{nJ = ngO) + Xk(J_l)
j=1

where k(J_l) is the value of k before the j-th iteration

of the assignment statement. Important identities are also noted
n
including that for a constant c |,) ¢ = cn, and that
i=1
n
. _ n(n+l) . . . L
}oi= —— Rules for producing invariants linking

i=1
variables which receive assignments on different paths through
the loop are presently being developed. Here we present rules

only for the simple case of variables changed only on the same

paths through the loop.

rule Il. (invariant) To construct an invariant, given a group

of assignments* (y, ,..., vy, <—(f1(f,)—"),...,f£(i,?)), we consider

* The above notation implies that the value of fi(i‘,‘y)i S

assigned to Y; for all 1 's simultaneously.

-

those variables Yi o 1 €3 <2 which are not changed

B

elsewhere in the loop. Using the operator table we express the

aer

value of each Y; after n iterations, i.e. (n) _ We then

attempt to find a factor common to two expressions in order to

obtain a usable relationship between yi(n) and ylsn) . The

relation obtained after substituting the initial values of

. 0 0
y; and Yy atcutpoint A for yi() and YIE) , respectively,

and removing the superscript (n) ¢ an invariant of the loop.

It also holds for the initial values of the variables at A

and thus may be alded to QA‘

For example, if ¥, and y, are changed only in the

assignments (y, sy, Vi*+xey, » Yp*5:y,) inside a loop, then

n® . n ,
y (™ . y(O * 7y (D g ym (0 v 5.7 y -1

]

i=1 i=1
(n)_ (0) (n) __(0)
Therefore, for x # 0 , l = Izl' ya(i'l) =)’2;)’2
X i=1 5

Assuming we know that the initial values of y

7, and Y, upon

. first reaching the cutpoint are Yl(o) - 1 and Yz(O) = 0 . we

obtain the invariant 5(y,-1) = x+y, If the assignments

0) 1
were (y, ,y,) + (Z-yl,y2/2) then yl(n) = yl()-'H 2 and

1=1
n
n 0 1 . e
Yz() - Y?_().' ;[(7) Simplifying | we obtain
i=
(n) _ _(0) .n
Y1 =Y, "+ 2" and Yz(n) = YO(OZ) ;1}1- , therefore

s

11.

y(n) y(0)

! = 2 = 2 Thus given that (0) _ 1 d (0) _
ST0Y ST s yio= 1oand y, 7= x
1 2

(x # 0) wegetthaty, @ y2=x s an invariant.

rule 12. Whenevery(n) may be expressed in terms of only

i
0 .
yl.() and n, i .e , yi(n) = f(yi(o) ,n) , and the value of

yi(o) at the cutpoint A is known to be m , then replacing

yi(o) by its value and removing superscript (n) , we may obtain

the invariant 3n[n> 0 A yi = f(m,n)] . Variables iterated
simultaneously may be quantified by the same n . Fqor example,
in the second example of 11, 3n[n> 0 A Yy, = 2™ A Y, = x/Zn]

is an invariant of the loop.

Our heuristic rules are all relevant to programs having an
arbitrary number of loops, and an arbitrary complex 'topology’
although, of course,they will yield valid inductive assertions

more often and more immediately in a simple program.

One of the problems in applying the rules is deciding
what order is preferable. In particular, it has been found
that many terms of the assertion may be obtained both by the
bottom-up rules and by repeated use of the top-down rules.
However, usually one method will yield the result immediately,
while considerable effort is expended if the other method is
applied first. Experience shows that there is a need for

interaction between the top-down and bottom-up approaches

For example, we may use established invariants to deduce the
relation R in the top-down rule Ex2, and on the other hand,
we may direct the search for particular invariants based on
variables or operators which appear in p,.

i
C. Examples. We demonstrate the rules listed so far on a

few examples.

Example 1: Integer square root. The program in Figure 1
computes z = |/X] for every natural number X . That is, the
final value of z is the largest integer k such that k <vVX .
We show partial correctness for ¢(x) : x >0 an d y¢(x,z):

z2 < x A x < (z+1)?% . Clearly, yZ < x A x < (y,;+1)%i s
required to be true after exit from the loop. Wwe first try the
top-down approach. By rule Exl we attempt adding the conjunct

2 o) .. 2)
y, € x to Q . The verification condition x>,03y1<x is,

in fact, true for the initial value of y, at the cutpoint,

i.e., y, = 0. For the moment we do not attempt to verify that
- it is an invariant of the loop. Considering the second conjunct
of the predicate, x <(y,+1)%, an attempt to apply ExI1 fails

because this relation is not true for the values of the variables
when the cutpoint is first reached. Since the exit test Y, X
and the predicate x < (yl+1)2 both contain x , we apply rule
Ex2. We find that Y2<(}’1+1)2 is the desired relation since

y, > X Ay,s (y1+1)2 > x < (y 1”1)2 is a valid statement.

2

‘_

12.

y <€ (yl+1)2 is satisfied for the initial values of the variables.

-
13.
C
(START)
) - — _ . (b(X) x 2 0
- (¥, 5Y,,y,) « (0,0,1) |
)’2“}’2+Y3 |
L - @
F
L | "
} b=yt exax <o
L (Y,,y3) < (Y1+1,y3+2)" R
-__: Y(x,z): 22 ¢ x A x < (z+1)2

)
‘ HALT)

Figure 1. Integer Square-Root Program.

However, an attempt to prove the validity of
Q : }’f £ X Ay, < ()’l"l)2 does not yet succeed.

At this point we try to use the bottom-up approach, i.e.
try to find invariants. We note that the assignments along one
pass of the loop may be combined into the single group of
assignments (yl’yz’ya) “(y, +1,y2+y3+2,y:2) . From the

operator table we obtain the equations

(1))’l(n) = y(o) + IZI' | = 0+n = n
! i=0
n) .
(2) y™ - y(7 B Dy s1en 4 ;oyG-D
' i=1 ° i=1 3
n
(3) yfn) = y50) + Y 2 = 1+2n
i=1

We may use equation (3) to substitute for y(i‘l) in
3
equation (2), and simplify to
11

(2" yz(n) = 1+2n + J [1+2(i-1)] = 1+2n+n + Z(nil)n -
i=1

= 1+2n+n? = (1+n)?2

In the simplification above known facts about the summation

operator (obtained from the operator table) are used.

Since yl(n) = n , we obtain

-vr”(""" -

15,

(n) _ (n) (n) n
y3 =]+2y1 A yz = (1"‘)’1())2
for every ! ’ e }; =1+2}1’A y2 = (1*'}’1)2 are invariants
of the loop and should be added to the trial Q Q becomes
2 - -
Y€ XAy, = 2y *1 A J =(y,*1)2 | which will prove the
partial correctness of the program.
Example 2: Division within tolerance. The program of Figure 2
divides x, by X, within tolerance x, We try first to
find invariants. Considering the assignments
(Y, »Y3)* (y,/2,y,/2) , we obtain the equationsygn) = yfo), 1
2 n
2
(n) (n)
and Y(n) = Y(O)' L Therefore -2 -1 Vs :
3 3 s ;’TZUT o }-,TD_T Since
0 T2 4 (01 . .
Y 7 M4 Y. '= » at the cutpoint, we obtain
(n) _ n)
2y, ~ = xz'yg(- Thus 2y, =Xx,-y_ is the first conjunct
in the trial Q . Next we consider the assignments
(yy, sy, = (y, *y, »Y,*Y,/2) . In order to be able to find a common
. . n
factor in the equations foryl() and an) we first eliminate
Y, by using the already established invariant
Y, = X,°y, /2, obtaining 0’1’3’4) “ (y1+x2.y3/2,¥k+¥3/2) . Now
(i-1) (i-1
(n) _ (0 noy, noy(i-D)
we get y, A T _Z_ i -~ and YEn) - YEU)) R
i=1 2 i=1 2
ygl—l)

Eliminating the common term , the result is

nes13

1 2

yy,y, Y3uY,) « (0,x2/2,1,0)

Xl < y1+y2 T

F

Viuy,) « (y,+y, Y, Y, /2)

0€x1<x2A O<x3

16

re

— r— [—

r

y (M, (0)
1 1 0 .
L yEn) yE) Since there are two possible paths

X
to initially reach the cutpoint, the pair (yfo),y(o)) may be
X 4
either (0,0) or (7; , %) . 1In either case, the simplified

expression becomes yEn) =y1(n)/x2, Therefore y, = y/x,

is added as a conjunct to the trial Q

Since no further information can be gained from the
invariant rules, we turn to the top-down rules. We have
Yy € Xy/X, A X, /X, - X, <y, true upon exit from the loop.
Trying Exl on 'y < XI/XZ , the conjunct can be seen to hold
initially at the cutpoint by cases, since ifx1<xz/2 then
y, 1is initially 0 at the cutpoint and by ¢ we have

0 < x,/x, , while if x > X /2 , then l/ngl/x2 and vy

1 4

is 1/2 at the cutpoint. Thus by Exl we may add yq<x1/x2
to Q . The second conjunct, xl/x2 - X, <y, , on the other
hand,does not hold initially so we try EX2Z. The necessary

'transitive' i i - ;
relation is found to be x, /X, Yy, < Yy, since

Y, < X, A xl/x2 -y, £y, > xl/x2 - X, <y, . We note that
Xl/X2 Y, <Y, holds for the initial values at the cutpoint
so we add it to Q . Q is now Yy, = xz-ys/ZAyk = yl/x2 A

Y, € XI/X2 A XI/X2 - Y, < Y. which will prove the program

partially correct.

Example 3. Hardware (integer) division. The program of

Figure 3 is a simulation of how integer division might be carried

17,

PV, Xy, A

In[nx0 A y,=X,: 2" a y3=2n] A

y,20Ay,>0 A

Yi & Y,

(YQ !Y3) « (2°Y2 ’Z'Y3)
|

re

- - - - -

Py iXy T VX, vy a0y, Ayl<i2‘>’7—_\

N

(z,,2,) « (y,,y,) (v,»¥,)« (r,32,y,+2)

vUX,2)0 XFZ,X 2+z{é)$z1/\zl<x2

k HALT)

¢ Figure 3. Hardware (Integer) Division Program.
(-
(_

19.

out by a computer. The 'division by 2'represents a
'shift-right,, and the 'multiplication by 2' a 'shift-left'.
Although the second loop of this example is similar to the
program of Example 2, we bring it in order to illustrate how
programs with more than one loop may be handled, and how
complications which could arise from integer division may be
solved with the aid of the invariant rule. Our strategy is to
obtain a maximum amount of information from the first loop,
which will be true upon entrance to the second loop. Then top-

down rules can be used conveniently for the second loop.

In the-first loop we attempt to link y, and y3 ,

obtaining yz(n) =)(2-2n and ygna) =1-2" which leads to the

invariant y, = X,y, by rule Il. By rule 12 we also have the
conjunct 3n[n > 0 A vy, = X, -Zn,\y3=2n]. We now consider
top-down rules. Since y, > 0 A y >0 holds initially, it is
added by rule En2 to Q,, which thus becomes the valid invariant
on

Y, = X, *y, A 3n[n > 0 Ay, =X Ay3=2n]/\y120/\y2>0.

2 2 °
All this information, as well as y, ¢ Y, is a predicate p,
true upon first reaching the second loop. Recall that for the
entrance rules we consider the predicates true upon first

reaching the cutpoint i . Thus the information in p; must be

'moved' along the paths to cutpoint 2 .

n n
y2>0/\y2=x-y3/\an[n20/\y2=x2-2 A}’3=2] are

2

unchanged by either path to 2 , while Y, might be changed

but y, 3 0 can be seen to remain true by inspection. If the

L —————————————

20.

right path is taken, 'y, <y, is strengthened toy, < vy, ,
while the left path may be used only if y, =y,. [In this case
y, s set to zero, and since 1y, > 0 is known, in either case
y, <y, atcutpoint 2. At this point, all the necessary
assertions for handling the second loop are already given
explicitly in the entry and exit predicates. Using rule En2

we obtain Q, :y, = X,*y,~3n[n20Ay, =)(z-ZnA)’3 = Zn]/\
Y, 2 0 A Yy, >0 Ay, <y, , while from Exl we add

X, = Y,"X,*y, to Q, . This Q, will be a good inductive

assertion.

The rule involving n , obtained by 12, is necessary here
in order to guarantee that the conjunct Y, = X,'Y, is valid,
because of the ‘shift-right’ division. We clearly could have

obtained some of the conjuncts in Q by other rules. For
example, ¥, <Y, could have been obtained by rule Ex2 (because
p, contains y <x , y = X,+y, is an invariant, and y,=1

is the exit test), or x, = Y, X,*y, by rule IL

——

IIT. Heuristics for Arrays

The problem of finding assertions involving arrays is
quite different from that of finding assertions for simple
variables because an array assertion generally will be an
entire family of claims. This is the reason most assertions
about arrays will involve quantifiers. All rules in Section II
continue, of course, to be applicable for those variables not

in arrays. In addition, rules Enl, En2, Exl and Ex3 may be

used for assertions with arrays.

Underlying the heuristics which follow is the assumption
that arrays in a program are used “properly,‘, i.e., to treat a
large number of variables in a uniform manner, and not just as
a collection of unrelated variables fulfilling different roles
in the program. The further assumption is usually made that an

assertion about an array will be of the form

vj [<j -index> o <j-array>] or 3j [<j-index> A <j-array>] ,

where <j -index> is a claim on the indices of the array and
<j -array> is the claim which is made about the array elements
themselves. We often separate the two problems of finding the

<j -index> and of finding the <j -array>

As in Section II, we distinguish between the top-down and
bottom-up approaches.
In order to apply some of the array rules it is convenient

to first determine the “one-pass” assertion, i.e., the claim

21.

r

—

—

which can be made about the effect on the arrays of one circuit
through the loop. This claim is often not difficult to
establish, in particular for loops which do not contain other
loops since then the circuit through the loop is a simple
sequence of statements. The assertion can be most easily
established by the known technique of “backward substitution”,

moving backwards around the loop past each assignment statement.

A. Top-down rules. As noted above, all previous top-down

rules, except for the transit ivity rule Ex2 (which involves
inequalities), are directly applicable for arrays. [In the rules
listed below, p denotes an assertion with quantification
concerning an array which is true after exit from the loop, while
P’ is an assertion like p , but true upon entrance to the
loop. Q denotes the desired loop assertion. Rules Al, A2, and

A4 attempt to either transform or create assertions p and

22.

p’° having a form which will facilitate generating Q by rule A3.

rule Al. Let p be a claim about a specific element of an

array, say S[c] (and thus not necessarily including

quantifiers). We rewrite it as 3j [c €j€c A <j-array>] ,
where <j-array> is p with j in place of ¢ . Similarly,
if a p' as above is true upon entrance to the loop, we rewrite

it as Vj[c<jgco <j-array>]

The underlying principle here is that a claim whose

<j-index> is made smaller by the loop probably has an existential

—-

quantifier (we are “looking for something”), while if the
<j-index> is extended to cover more elements by the loop, the
claim probably has a universal quantifier (we want something to
be true for a larger part of the array). Thus we may check the
feasibility of the resulting assertion by determining whether
the <j -array> is in fact expanded or contracted in the loop.

This principle is also used in the bottom-up rules.

rule AZ. Given a p , we examine the definitions of the
operators and relations in p and whatever information is known
about the array upon first reaching the loop. Using this infor-
mation we produce the <j -index> for a p' which must be true
upon entrance to the loop, and has a <j -array> identical to

P. For example, if p is 3j[l<jg 3 a A[j]=

max (A[1],...,A[n])], and we know only that A is defined upon
entrance to the loop, by the rule we require a <j -index> such
that A[j] = max(AJ1]},...,A[n]) must be true. By the definition

of max we can determine that the maximum element must belong

to the array. T hus 3j[1<j<n a A[j] = max(A[1],...,A[n])]

is the parallel assertion upon entrance to the loop.

In some cases of a predicate p with universal quantifiers
>

the corresponding initial claim may require a <j -index> which

23.

is empty (so that the overall claim is vacuously true). For example,

if p is Vj[l €j<n o>A[j}<A[j+1}] , and we have not

sorted A before the loop, p' might be

24.

Villej< 1 2A[jl< AfH]

Rule A2 is the only example in this paper of a rule which
enables us to project “backwards” to find the minimal condi -
tions which must hold upon entrance to a given loop. Such
rules should be useful not only to aid in discovering the
correct assertion for the loop in question, but also to carry
information backwards for loops earlier in the program. Thus

further investigation of this general technique is warranted.

rule A3. If =p contains a term r as a boundary of the
indices, and we have determined that for some term s , s — ¢
upon exit from the loop (by any of the rules in Section II) , we

let Q be the predicate obtained by substituting g for some

appearances of r in p

Similarly, if p' contains a term r , and s=r upon
entrance to the loop, let Q be the predicate obtained by

substituting s for some appearances of r in p'.

F or example, if p is vi[l<ig< m o A[i]<A[m]] , and
2 =m is the exit test of the loop, we could try letting Q
be- either Vvi[l < i <« & o A[i] < A[m]],

Vi[l € 1 ¢ m > A[i}] < A[&]] or Vvi[l < 1 < & > A[i]< A[2]]

Obviously, if information is known about both p and p',
the application of A3 can often be directed by matching the

results of various substitutions until the entrance and exit

claims are identical. Thus, if there are several possibilities

e —

25.

for substition, we may decide for which appearances of terms in

P or P' to substitute.

We would like to be able to also use the transitivity rule Ex2

for an array assertion with quantification (specifically, a p with

an inequality as its <j -array>). This requires establishing that
for each pair of terms compared, we may find a third term such that
there will be two new inequalities, true upon exit from the loop,

which will imply the original inequality (as in Ex2).

L rule A4. Given a p with universal quantifier and an inequality
including arrays as its <j -array> , we use the “one-pass” assertion

L to find a term which contains the two needed inequalities for a parti-
cular value of j (i.e., for a single pair of values from p). Then

- let each new inequality be the <j -array> for a claim having the

<j-index> of p . The other top-down rules may then be used separately

on each of the new inequality claims to obtain the loop assertion.

For example, given p:Vi[l<i< m 2> A[i]<B[i]] , we might
discover a C [k] such that A[k]J<C[k] A C[k] < B[k] for some k ,
and assume Vifl<ig< m > A[i]g C[i]] A Vifl €i < m > C[i] <B[i]]
is true upon exit from the loop. Then, if, for example, £ = m and
i = 1 upon exit from the loop, A3 used along with other information
could result in Vi[l < 1 ¢ & 2 A[i] < C[i]]A

Vi[jgcig m oC[i]<B[i]] as the loop assertion.

B. Bottom-up approach. 1In order to identify which heuristics to

use, we must differentiate between two methods of computation:
a) If the exit test has the variable i compared with a term

which is not changed inside L, and i is incremented

26.

monotonically inside L , then it is assumed to be a counter
controlling the loop in an “iterative going up'" computation.
(b) If the variable i is compared with a term which does
not change in the loop, and is decremented monotonically inside
L , then i is a counter controlling the loop in an

“iterative going down' computation.

In the rules below we assume all loops have the index i ,
and let i, denote the value of i when it first reaches the
cutpoint of the loop, while i;, denotes the value of i upon
exit from the loop. As in Section II, we assume that the

cutpoint is located immediately before the exit test.

We first list the rules for finding the <j-index>

rule XI1. If i is a counter (incremented by 1) in a
“going-up” iteration and is also the variable which appears in
the index of array elements receiving assignments, then try
assertions of the forms vj[i <j<io> <j-array>] or

3jli <jci;aA <j-array>] in the inductive assertion. These
will also be the form of the predicate p which is true after

exit from the loop.

If i, is known, say i, =c upon entrance to the loop,
then the ¢ should be substituted for i0 in Q and P
Similarly, if i, = d upon exit from the loop, d should

be substituted for i, .

27.

rule X2. If i is a counter (decremented by 1) in a
“going-down” iteration and is also the variable which appears
in the index of array elements. receiving assignments, try

assertions of the forms
vili<j<i o <j-array>] or 3j[i, €j<in <j-array>]

As in rule XlI, p will also have the above form and i, or

1, should be eliminated if possible.

rule X3. Discover whether XI and X2 fail only because i is
assigned a function f£(i) rather than merely incremented or
decremented by 1 in the loop. If so, try to find the set of
elements which 1 assumes during the loop (using rule 12).

The assertion will have the same form as in X1 or X2, except that
the <j -index> will include the 12 invariant. For example, if
i « i+7 in the loop, and i is initially zero, then the

assertion 1is
vi{0< j <ia3n[n> 0 Aj= 7-n] o <j-array>}

The following two conditions are used to decide which of
the bottom-up <j -array> rules to apply assuming that the

<j -index> has already been determined.

(a) All assignments in the loop are to array elements

with indices not specified by the <j-index> before executing

the loop. That is, once we have included an element of the array

28.

in the assertion after some circuit, we will make no more assign-

ments to that element in subsequent circuits around the loop.

.__1__ For example, the program segment

7]

- Q at left could be part of a

"bubble-sort" program. The '"one-

pass' assertion is clearly

CS[i—1]<S[i]> ! S[i-1] < S[i] , but if the form

F of the assertion before executing

)

]] -‘ the loop is
(S[i-11,S[i1)«(S[i],S[i-1])

- Q:Vvilzgj<in> <j-array>]
i

the loop violates condition (a)
1« i+l

because S[i-1] may receive an

assignment and i-1 is already

in the domain of the <j-index>

(b) The "one-pass" assertion can be written as a single
conjunct. Furthermore this conjunct is valid for all array
elements whose indices are added to the domain of the <j-index>
by one circuit through the loop. Thus if the "one-pass"
assertion is Sf{i] = S[i+1)A S[i+1] <«S[i+2] and i and i+1
are added to the <j-index> by the loop, the condition (b) is
not fulfilled because it cannot be expressed by an appropriate

single conjunct.

rule R1. If both (a) and (b) are true the “one-pass” agssertion
itself is taken as the <j -array> . Of course, the quantified
variable of the <j -index> must be substituted for the actual
array index which appears in the loop. For example, if we have
found the assertion to be Vj[lg<j<i> <j-array>] gand in

the loop we have only A[i]<+ O and then i <+i+1, the “one-pass”

assertion is Afi]= 0 , and (a) and (b) hold. Thus we obtain

Vi[l< j<i>A[j] = 0] as the loop assertion.

The following rule is based on the fact that we have already
established the desired form of the <j-index> part of the
assertion. We want to be able to write one conjunct, say
Vi[l<j<io> <j-array>] , where the <j -array> will be a
statement about (only) the array elements with indices 1 ¢ j < i

and not contain any additional restrictions on the indices.

rule R2., (generalization) If (a) is true, but (b) is not,
check whether (b) fails only because the assertion is not a
single conjunct. If so, the <j-array> parts of all the con-
juncts in the assertion are searched to find the strongest single
conjunct which is true for all array elements specified by the
known <j-index> . This conjunct becomes the <j-array> . For
example, given a one-pass assertion

Vi[l<j < n 2 A[j-1] < A[j]] A A[n-1] < A[n] and a required

Q of the form Vi[l<j< n+l ><j-array>], the correct

<j-array> by this rule is A[j-1]<A[j] .

29.

30.

rule R3. If (b) is true, but (a) is not, take the “one-pass”
assertion as the <j -array> and consider the effect of an
additional pass through the loop on this predicate. Then apply
the generalization rule R2 to the result. For example, for

the segment of the bubble-sort program introduced above, the

one-pass assertion yields

vil2< j <i>S[j-11<« S[l
One circuit will change this to:

vil2 < j < il = S[j-1]1 < S[j]] A S[i-2] < S[i] A S[i-1] < S[i] .

Generalizing this predicate by R2 is a relatively difficult
step, not yet completely investigated. The generalization
procedure would be expected to recognize that no predicate
comparing each element with its neighbor is possible, since no
information is available about the relation between S[i-2] and
S[i-1] . Then the transitivity of the inequality would yield
that vi[lgj<ioS[j]c« S[i]] is the strongest claim which

can be made about the entire segment.

31.

Example 4. Minimum of an Array. The program in Figure 4

will find the minimum of an array A using an array S in
an unusual way. (The upper half of the array is set to A ,
and the computation takes place in the lower half, using only
comparisons.) For the first loop, top-down rules give no
information, so we use bottom-up rules. By XI, we will try
the assertion Vj[lg¢j<k > <j-array>] (because k, =1,
and we have a "going-up" iteration). The "one-pass" assertion
is clearly S[n+k] = A[k], and conditions (a) and (b) are

fulfilled. Thus by rule Rl we obtain Q,:vi[lgj<k > Sh+j] =

A[j]}] . Since upon exit from the loop k = n+2, we have
P : vj[lgcj<n+los Sh+] = A[j]]. By rule En2, p is added
to Q, . We try rule ExI on ', but S{1] is undefined on

entrance to the loop, so the rule fails.

Using array top-down rules, we first rewrite ' as
3j[1<j<1 AS[jl=min(A[1],...,A[n])]) by rule Al. Using
AZ, we would like to retain the <j-array> part in an assertion
.true on entrance to the loop. By the definition of min we know
that one of the elements is the minimum, and the p we have
at the entrance to the loop states that A has been copied to
the upper half of S . Thus we obtain
3j[n+l ¢ j < 2n+1a S[j] = min(A[1],...,A[n])] as the initial
assertion which must be true. Since the assignment before the

loop implies that i = n wupon entrance to the loop, a possible

substitution by A3 is

(START)

C |

p:Vj[l<jsn+l > (\kzn_*'DT’I S[n+k]+A[k]
SIn+jl=A[j] 1~ - - - - - -LL J

i« n k<«k + 1

—

F—

—

L ¥':S[1] = min(A[1],.. ,A[n+1]) Q. . e

N

\r“"'ff“ i=0 %‘
l z <»S[1]J (/5[21] 55[21+1]>
T F

. N\
biz= min(A[1],...,A[n+1])

>N

S[i] < s[2i]
|

I - -

e

Figure 4. Program for Finding the Minimum of an Array

33.

q : 3j[i*l<j «2i+1 Ao S[j] = min(A[1],...,A[n])] .

Since i = 0 upon exit from the loop, this q becomes
identical to ¢'. (Any of the other possible substi-

tutions of i for n will fail to match $'.) Thus we let
Q, b eqap . The second conjunct is not needed to prove

' , but can be retained to provide the additional information
that the upper half of S is unchanged by the second loop, and

contains A

Example 5. Partition Program. The program of Figure 5,

due to Hoare, will. find a partition of the elements of a

real array S . We would like to show that it is partially
correct with respect to ¢ :n > 0 and

Y : vavb{0< a <i A j <b gno>sS[a] €S[b]} Aj<i.We
use the bottom-up approach, seeking a Q, for the large outer
loop. Thus we consider one pass through the loop. (It should
be noted that the invariants we will find at cutpoints 2 and 3
during the "linear" pass are not necessarily the desired Q,
or Q, for the overall execution of the program.) The first

inner loop yields immediately by rules Xl and Rl, the invariant

p; : vk[i, € k <1 >8S[k]l< r] . Thus upon exit from the first
inner loop p; A S[] > r is true. Similarly, after the second
inner loop, we obtain P, V&[j,22>joS[e]l>rlIAS[ils ¢

by X2 and Rl. There is no possibility that the second loop could

disturb the claim of p,, because there are no assignment

Y: Vavb {0sa<iaj<bsnoS[al]<S([b]}--

Q
Q,
HALT

Aj<i

Figure 5.

r<—S[n%2]
(i,j) + (0,n)]

(s{il, S(i1) « (S[j1,S[i])

'

(i,3) +« (i+1,3-1)

Partition Program

34,

35.

statements to the array in the loop. Moving P, A D, A
S[i] = v AS[j]« r through the two possibilities for the test
i< j, if we reach point A, the assertion is unchanged

while at point B we have
p, : vk[i, < k < i1 o Skl < r] AS[i-1]< r and

p, : V&[j, 22> j+I oS[&]l> r] A SGHI 3 r

Rules XI and X2 indicate that we require
pf : vk[i <k <i> <k-array>] and p: tvelj, 38 >3 >
<R-array>] . Thus by R2 we seek weaker array assertions about
the entire range of k and £ which will fulfill these forms.
The weakest assertion made about an element in p or P, is
that S[-1] <r . Thus we let p, be vk[i ck<io Sk < r]
Similarly p: is wv&lj, > 2 > j > S[&2] » r] . Since i, is
initially O , while j0 is initially n , we assume a Q,
assertion of the form Vvk[0< k <i > S[k] <€ r] a
ve[n > 2 > j o S[2] > r] . By rule En2, Q, and Q, will be
given the assertion of Q,, and verifying these assertions
will show the program partially correct. We clearly could have

used the transitivity rule here, but for this example, the amount

of work required is about the same.

IV. Conclusion

Clearly, the rules and examples given in this paper are
far from being a general system for finding inductive asser-
tions. More and better rules are needed, particularly,
for array assertions, which tend to be complex and unwieldy.

In addition, before the rules can be incorporated into a
practical framework, we must order their application. That
is, at each step we must provide more exact criteria for
deciding which rule to apply and on which cutpoint of the
program. The order in which the rules are presented in each
subclass does implicitly provide a partial specification. Thys
we presently would try to apply ExIl, and only if it failed try
ExZ2, etc. Moreover, we generally would try to gather infor-
mation on simple variables using the rules of Section II

before attempting to treat array assertions.

The more basic (and open) questions are (a) whether to

attempt top-down or bottom-up techniques first for a given loop,

36.

and (b) which loop of a program should be treated first. Although

we experimented with various orderings in the examples in this
paper, we have tentatively formulated a more fixed approach.
Our present inclination is to first use top-down rules from
the (physical) beginning of the program. (Since in general
there is more than one outer loop, usually only entrance rules

are applicable .) Then we use bottom-up rules for the same loop,

4____/

37.

to create a p true after exit from the first loop containing
as much information as possible. We continue with the next
outer loop in a similar manner. [f however, we are stymied and

unable to find a loop assertion, we start with top-down rules

from the end of the program, and try to work backwards towards
the beginning.

A more sophisticated approach would require a weighted
evaluation function capable of making a very cursory scan of
the program. This function would identify loops which seemed
'promising', i.e. likely to yield valuable information rapidly,

and apply selected rules first to these loops.

Since some of the rules could continue searching for a
possibly non-existent form of assertion almost indefinitely
(the transitivity rule, for example), such rules would have a
"weak" version and a "strong" version. The "weak" version
would be used in the initial attempt to find an assertion, and
would "give-up" rapidly if it did not provide an almost immediate
'solution. Then other, possibly more appropriate, rules may be
tried on the cutpoint. Only if all rules failed to add relevant
information, would the "strong" version be applied. Tpis
division is parallel to the human attempt to first find what is
"obviously" true in the loop, and only afterwards bring out

the fine points.

The overall strategy we have adopted in this paper has been

to find assertions strong enough to prove the partial correct-
ness in as few steps as possible. Thus, in general, we
attempt to directly produce a near-exact description of the
operation of a loop, without going through numerous inter-
mediate stages where we are unable to show either validity or
unsatisfiability. If our heuristic is wrong, this fact will
be revealed relatively rapidly by generating an unsatisfiable
verification condition. We then may try a weaker alternative
claim. We feel that this is the approach which should be taken
in order to construct a practical system which could be added

to a program verifier.

We believe that the bottom-up approach may also be used to
solve other problems. For example, in the partition program
(Example 5) , the inductive assertion was actually found without
using the y given by the programmer. In one single step ¥

may be generated from Q, , and thus we have 'discovered’

what the program does without the use of additional information.

This feature of the bottom-up approach can probably be most
useful for strengthening a too-weak assertion, i.e., revealing

that the program does more than is claimed in ¢ .

Another apparent application is for proving termination
using well-founded sets. For termination, predicates Qi and
functions u; are required, where Uy (a mapping to the well-
founded set) has its domain bounded by Qi and descends each

time the loop is executed. Here again the bottom-up approach

38.

r— r——

is useful since no ¢ is provided. We have already begun

investigating bottom-up methods for generating both the

Qi 's and the uj 's which will ensure termination.

The ultimate goal of automatic assertion generation is
almost certainly unattainable ; thus the optimal system would
involve man-machine interaction. Whenever it was unable to
generate the proper assertion, the machine would supply

detailed questions on problematic relations among variables

and possible failure points (incorrect loops) of the program.

Cl early, a partial specification of the assertions, provided

by the programmer, could shorten this entire process.

39.

""-

‘_____’

REFERENCES

COOPER [1971]. D. C. Cooper, "Programs for Mechanical Program

Verification", in Machine Intelligence 6, American

Elsevier, pp. 43-59 (1971).

ELSPAS et al. [1972]. B. Elspas, M.W. Green, K.N. Levitt and
R.J. Waldinger, "Research in Interactive Program-

Proving Techniques", SRI, Menlo Park, Cal. (May 1972).

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to Programs",

in Proc. of a Symposium in Applied Mathematics, Vol. 19

(J. T. Schwartz - editor), AMS, pp, 19-32 (1967) .

KING [1969]. J. King, "A Program Verifier", Ph.D. Thesis,

Carnegie-Mellon University, Pittsburgh, Pa. (1969).

WEGBREIT [1973]. B. Wegbreit, "Heuristic Methods for
Mechanically Deriving Inductive Assertions”, Unpublished
memo, Bolt, Beranek and Newman, Inc., Cambridge, Mass.,

(February 1973).

40.

