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COMPUTATION OF THE LIMITED INFORMATION MAXIMUM LIKELIHOOD ESTIMATOR

] Warren Dent and Gene H. Golub

» The University of Iowa and Stanford University

0. Abstract

Computation of the Limited Information Maximum Likelihood Estimator

- (LIMLE) of the set of coefficients in a single equation of a system of

interdependent relations is sufficiently complicated to detract from other

potentially interesting properties. Although for finite samples the

L LIMLE has no moments [18], asymptotically it remains normally distributed

| [2] and retains other properties associated with maximum likelihood. pe
| most extensive application of the estimator has been made in the Brookings

L studies [7]. We believe that current methods of estimation are clumsy,

and present a numerically stable estimation schema based on Householder

= transformations and the singular value decomposition. The analysis

permits a convenient demonstration of equivalence with the Two Stage

Least Squares Estimator (TSLSE) in the instance of just identification.

| lL. Introduction

In a system Of interdep&ndent relations, suppose a given structural

equation is denoted by

Yy + (X;5 UA = 0.0

The n x (L+1) matrix Y = (Y*, y) represents n observations on L endogenous

variables Y* and n observations on an endogenous variable y ejected as

subject of the equation. x, is the n x Ky matrix of n observations on

the Ky included exogenous variables, X, is the n x Ky matrix of n observatic



| on the K, excluded exogenous variables, and u is an n x 1 vector of
“

_ disturbances. X = (X5 X,) and is of order n x K, where K = Ky + K,

v and B are unknown coefficient vectors, save for the last element of

- v which is -1, whence y' = (y*', -1).
«

| Assuming Xy and X of full rank, define the two residual operators

M.=T - X (X!'X.) Ix!
1 111 1’

« -1
M =1- X(X'X) X'.

The LIMLE is then determined by solving the determinantal equation

“«_

| Y'MY - wY'MY| = 0

for the smallest value of uy, say u. The corresponding solution for vy,

“ with last element -1, in

(Y'M,Y-uY'MY) vy = 0

« is the LIMLE of y, with the LIMLE of B being

LC

3 = —(X'X.) IX!vy| : 1717 MY

C Derivation of this solution may be found, for example, in [3], [14, pp.

5 166-173], [6, pp. 335-344], [20, pp. 500-503, pp. 679-686], and [9, pp. 38-44].

: The LIMLE is sometimes identified with the Least Variance Ratio Estimator

ay (LVRE), and Least Generalized Residual Variance Estimator (LGRVE), or the

| Smallest Canonical Correlation Estimator (SCCE). Because of the simplicity

of its derivation the LVRE is usually presented in texts, for example

~ [16, pp. 384-387], [15, pp. 166-173], [6, p. 346], [10, p. 338], [17, pp.
567-571], [5, pp. 411-424, pp. 663-666}, and [9 , pp. 45, 46]. The LGRVE

K€
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is proposed in [3], and [10, pp. 338-341], while the SCCE is derived in

| [4] and [1]. The four estimators are not necessarily identical at all

| times, since under certain conditions (to be discussed below) on the

number of available observations, one may exist while another may not.

This confusion has led to some meaningless statements in certain texts,

especially with respect to the equivalence of the TSLSE and LIMLE in

. cases of just-identification.

In the following section we present the computational schema for the

LIMLE, while in section 3 we discuss the TSLSE and in section 4 present

- the determination of the asymptotic variance matrix of these estimators.

i 2, Algorithm for the LIMLE
There exists an orthogonal n Xx n matrix Q, the product of K <n

L Householder transformations [12] such that, for

where Qq is n x Ks 3 Q, n Xx Ks Qs n x (n-K), Q annihilates X as

Yo
Q'X = Ry Rq

0 R,

0 0

where R, 1s an upper~triangular non-singular Ky X K, matrix, R, is similarly

upper-triangular non-singular K, x Ks,» Ry is Ky xK,, and the zero matrices

have appropriate order. Clearly

X =
17 9®y

and

X = R%



=

where

a

R

| I  T
~ “lo |R,

Further, it is readily verified that

\ 1}
M=1- QQ,

= '

0305

-
and

My I Al

L = rt + !QQ; + Q30;.

" Suppose the transformation Q applied to Y yields

' *
. QY 21 2, 7

' = ! = = AVE ' = sQ'Y = qv Z, | = @'v%, Q'y) = | 75, 2,
j

Q;Y Z3 £3, Z4

such that matrices with subscript 1 have oN rows, while subscript 2 indicates
K, rows, and subscript 3 indicates (n-K) rows. An asterisk denotes a

matrix with L columns, and the partition of Zs Zs 24 corresponds to that
of Y = (Y*, y). Alternately,

3

Y= I Q.2,
i=1 © 1
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Y* = 7
E024,
1=1

and

\- ’ = !
YMY = 237,

' = Z'! ZZ.Y MY 2,2, + 343

L The determinanta] equation for u now becomes

202 +272 ~uztz. | =Ozz, 2324-232,|
L_

or

2,2,-(u-)z32.| = 0

: , Co K

L [tf the particular equation 1s over-identified, : Ther , > L+1 so that
Zs which is K, x (L+1), has full column rank with probability one, and

i ,= the inverse (232) exists with probability one. We therefore consider

. ' -1, 1 =
(252,07 232, = If=0

1 ei lue of (ZZ y 712and search for the largest eigenvalue 249 344:

Assuming Z, has full rank L+1 and since Ky2 IH, ere exists an

orthogonal K, x K,matrix H, the product of L+l Householder transformations,
such that

G
vy |H'z, o

= Gl _ G| _
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where G is an upper-triangular, non-singular L+1 by L+1 matrix, and 3
is K, x (L+1). Tt follows that

“

and

-1

(z32,) = G Leny™d
w

-1

The matrix G si Gis
= X may be readily computed Since upper-triangular, S€€¢ €.2.

(19 p.31,[8,p. 427]. If, now, n > K+L+1, consider the singular
-1

C value decomposition [13,14] of Z4G as

2.7L = ua yr
3

( where U is (n-K) x (L+1), A and V are (I+1) x(L+1),A is diagonal and
L

' U' = = ! = '

I U Li V'v = VVv',
Obviously

-1 -1 2
G ! f = 1(G 7) 24246 VATV

or

- -1 ~-1 2G ! 1 —(G 7) 232,G 7V = Va

2 2 2
- = (8 vy , 0,V eo . O_

1.17 72.22 i+ Via)

where 52 > 52s > Ne . )
12% ZZ ... 2 °%41 say, are the diagonal elements of A , and

Vv, is the column vector of V corresponding to 872. Since
~ 1

-1, ~1 ~1 2. ~1
G G rz! = §.G

(© T2346 Typ = 00,



| 52 is the eigenvalue sought, and we define
$C 1

ve ey

= The LIMLE of vy is given by
«

Y= oYVy

\. where Yi41 1S the last component of vy.

— Since

-1 -1t rr ?

~— (X1X) xy - Ry Q ’

q = ~(X'X y Ivy
— 11 1°.

1,3 - |
—- _n '

- = Ry QZ0420)
—_—

-1_ "

= -Ry Z1Y-
-

-1

Go When K < n < K+L+1 the singular value decomposition of (G ) 'Z, = UAV' is

= used with

— Y = ctu,
& ~

2 2

where uy is the eigenvector corresponding to the largest value Sq of 0.

i=l, ..., L+1l; and vy is y normalized appropriately. In either case

o -
: -2

u = +d, .

3. The LIMLE and TSLSE

- When the given structural equation is just-identified, K, = L. Consider
the difference

L
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. YM, Y-Y MY = ZoZ ye

Since Z, has less rows (K,) than columns (L+1), 252, is necessarily

— singular and

.

YIM, Y-Y'MY| = 0

implying 1 = 1, which provides the case of the TSLSE, [3], [20, p. 504],

In [5, p. 424] the equivalence of the TSLSE and LIMLE is claimed

by assuming YM, Y = Y'MY (W*=W), which obviously need not be true. jndeed

there seems to be general confusion as to the behavior of these two

. residual moment matrices. In [6, p. 339] YIM Y and Y'MY Wy and Wr) are
| claimed to be positive definite, while in [15,p. 172 ] Y'MY W is

claimed to be positive definite. gince Y'MY = ZZ, a necessary condition

L for non-singularity, with probability one, is that 2, have at least as
| many rows as columns, or that n > K+I+1. In the derivation so far we
~ have only required n > K. (This includes derivation of the classical

determinantal equation).

Clearly, when K < n < K+L+1 the LGRVE does not exist (since it is

derived through the minimization of a determinant involving (vy my) hy.

Hence equivalence with the TSLSE [10, p. 344] which exists for n > K,+L+1
may be impossible in certain instances. Even the LVRE is of spurious

interpretation in such instances since the denominator of the ratio being

minimized is positive semi-definite and hence may assume a zero value,
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For a range of n values (I+1 of them) the estimators LVRE, LGRVE,

and SCCE may not exist, while the LIMLE will. 1f the number of included

endogenous variables 1s large for a particular relation in an interdependent

= system, this will define an equivalent number of observation values over

which the LIMLE alone will exist.

_ 4. Asymptotic Covariance

The asymptotic variance-covariance matrix of (y*', 8") is given by the
two-stage least squares asymptotic covariance, or by

« Y*' (I-M)Y* Y*'X, ~
W = g°

X1Y* :
L 1 XX,

where
b

L

algo var ox By - Yhyk- X 8
| n -0 1507 YY Yo 15?

and 8 1s the two-stage least squares estimate of 8, while Y: consists of

I the first L components of the two-stage least squares estimate of y. The
normal equations for the two-stage least squares estimators are

. Y*' (I-M)Y% Yh! * *'(1-

(I-M) X, YX | ] Y*' (1 M)yXlyx ' !

1 XU 5 | Xyy
or

ZX'Z%k + Zk'7% A [yx *! *!
10%7%% ay YB | (Hatin

R'7Z% ' '

171 RR Zo R121
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We now apply Householder transformations as

T' Z%
18% =Isty
%

N 19 5 0 ty

reducing the first +E, columns to upper triangular form S, whence

Y *

C ~0 -1
. Sty
Po

C s? may now be computed from above and the asymptotic covariance matrix
found as

L
2 ES |

8 (S'S) .

L A FORTRAN program listing follows.
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IMPLICIT PEAL*8 (A=H,0-Z)

DIMENSION XY(25,25),5(25),U(25,25),Vv(25,25)
g PEAL*4 HEAD(20), FMT(20)

DIMENSION GINV(25,25)

DIMENSION GAMMA(25),RETA(25),23GINV(25,25)
DIMENSION XXY(625)| FQUIVALENCE (XY(1,1),XXY(1))

” DEAD 10, NPROR
g DO 500 NRUN=1,NPROB

PRINT 726

726 FORMAT (1H1)
C

READ 7776, HEAD
7776 FORMAT (20AlL)

C READ 10,M,K1,K2,L
10 FORMAT(16 15)

Cc ™~ IS HUMBER OF ROWS IN ALL MATRICES

C ¥1,kK2, L ARE THE NUMBERS OF COLUMNS INX1,X2,Y*, RESPECTIVELY
C

READ 11, FMT

C 11 FORMAT(20AL)
C

KSUM=K1+K2+1+1

8 C KSUM IS NUMBER OF COLUMNS IN FULL MATRIX XY
C THF MATRIX HAS THE FORM

4 C
L C

ND IM=25

i C MUMBEP OF ROWS DECLAPEDK=K1+K?2

LP1=L+1

KP1=K+1

| MMK1=N=-K1
C

C
~ C  PEAD THE XY MATPIX FROM CARDS, BY ROWS, [N THE OPDER

C

C ( X x2 Y )
_ C

PO 100 I=1,N

READ (5,FMT) (XY(1,J),J=1,KSUM)
100 CONTI NUE
C

C HEAD IS AN ALPHANUMER] C TITLE TO DESIGNATE THE GIVEN RUN

PRINT 7775,HEAD

777s FOPMAT(1H1, 20AL)
PRINT 7773. M, K1, K2, L

7773 FORMAT(1Ho, 'N=',15, 2X 'Kl=',6 15,2X,'K2="',152X 'L=' g
PRINT 7772

7772 FORMAT(1v0, 'XY MATRIX)
DO 602 f=1,N

PRINT 601, (XY(1,J),J=1,KSUM)
602 ~~ CONTINUE



IF(K1+L,EN,kK) GO TN 1091

IF(K1+L,6T.K) GN TO 1092
PRINT 640

»

C HCOMP1 PEDUCES THF FIRST K COLUMNS OF THF RECTANGULAR

C MATRIX XY TO UPPER TPIANGULAR FORM AND APPLIFS THE PESULTIMA
C HOUSEHOLDER TRANSFORMATIONS TO THE REMAINING COLUMNS,

CALL HCOMP1(NDIM,HN, K KSUM,XY,S)
601 FORMAT(1HO, 8D16.6)

N 640 FORMAT (1HO,/,/)
DO 667 1=1,k2

DO 667 J=1,LP1

667 XY (1+K1,J+K1)=XY(14K1,J+K)
C

— c

- C NOU COMPUTE MNUSEHOLDER REFLECTIONS TO REDUCE Z2,A K2 BY L+1
C MATRIX WHOSE FIRST LOCATION IS XY(K1+1,K+1), TO UPPEP
C TRI ANGULAR FQRM

CALL HCOMPI1(NDIM,K2,LP1,LP1,XY(K1+1,KP1),S)
C

C C CALL THE RESULTING SQUARE TRI ANGULAR MATRIXG,WHERECIS
~ Cc (L+1) BY (L+1). |

CALL TNVPT2( LP1,XY(K1+1,kP1),GINV,NDIM,
1 &220)

L C

C FORM PRODUCT OF Z3x GINVERSE
MMV= Mw

1 DO 200 ! =1,MMK
PO 200 J=1,LP1
SUM=0.0NnN

| . INDEX11S INDEX IN XY OF LOCATION PRECEDING FIRST ELEMENT PF 73
INDEX1= K*NDIM + K

DO 300 KK=1,LP1
[ ND1= INDEX] + (KK=1)*NDIM +1

. SUM= SUM + XXY(IND1)*GINV(KK,J)
C Z3(1,XK)*» GIMVERSE(KK,J)

- 300 CONTINUE

Z3GINV(I,J)=SUum
200 CONTI NUE

NW1=NMK

NW2=LP1

IFLAG=0

IF(N.GE.K+LP1) GO TO 700
IFLAG=1

no 701 1=1,LP1
Ii=1+1

NO 701 J=11,LP1
HTD=Z3GINV(I,Jd)
Z3CINV(L,d)=Z3GINV(J,|)

701 Z3GINV(J, 1)=WTD
[ END=NMK=-1P]

DO 702 1=1, IEND
NROW=LP1+|

NO 702 J=1,LP1

702 Z3GINV(MROW, J)=Z3G1NV(J, NROW)



:

| MW1=LP1
NW 2 =NMK

| C

C COMPUTE SINGULAR VALUE DECOMPOSITION OF Z3#*GINVERSE

700 CALL DSVD(Z3GINV,NDIM,NDIM,NWI, MW2. 0. .TPUF ThtRINT 3767 / y , 0, .TRUE,, .TRUE,,S,U,V)
7767 FORMAT(1HO, "MUHAT')

RMU=1,0D0+1.0D0/S(1)**?
PRINT 601, RMU

\ PRINT 640

PNU=RMU=-1,0NO
RNU2=1,0D0/S(2)#*x%2
RMU2=RMU2+1,0D0

IF(IFLAG.EN,0) GO TO 703
| DO 704 1=1,LP1

C 704 V(I,1)=U(1,1)
C

C SOLVE THE LINEAR SYSTEM NR*GAMMA=V, WHERE V |S THE SINGULAR VECTOR
C ASSOCIATED WITH THE LARGEST S INRULARVALUE
C

| C NOTE THAT GG IS ALPEADY UPPER TRIANGULAR
_- 703 CALL TSOLV2(LP1l, XY(KI1+1,KP1), NDIM, V(1,1),GAMMA, R220)

C

| C MORMALIZE GAMMA TOHAVELAST COMPONENT =1IF (GAMMA(LP1),E0,0,0n0) GO TO 220
C Gf IS (L+1) BY (L+1)

DO 350 I=1,1L
L GAMMA(1) == GAMMA( 1 )/GAMMA(LP1)

350 CONTI NUE
i C

C COMPUTE RESIDUAL VARIANCE

. SOUAR=RMU/ (RMU=-1.,0D0)/GAMMA(LP1)/GAMMA(CLPL) /DFI A !
i GAMMA(LP1)Y=-1,0D0 l )/D LOAT(N)

PRINT 7766

\ 7766 FORMAT(1H40, 'GAMMA')
PRINT 601, (GAMMA(1),1=1,LP1)
PRINT 640

C

INDEX 1=K*ND IM

C INDEX1 IS THE FIRST LOCATION OF 2Z1, WHICH IS INTHE FIRST
C ROW, AND THE (K+1)ST COLUMNOF XY
C Z1 IS K1PY (L+1)
C

C FORM PRODUCT OF THE MATR | X 21* GAMMA

NO 360 1=1,k1
SUM=0, ODO

DO 370 KK=1,LP1
INDI=INDEX1+ (KK=1)*NDIM + |

¢ INDEX OF Z1(1,KK)

SUM= SUM + XXY(IND1)*GAMMA(KK)
370 CONTINUF

BETA(!)=SUM
360 CONT| NUE
C

C SOLVE R1*RETA = =Z1 * GAMMA
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CALL TSOLV2(X1,XY,NDIM,BETA,BETA,&220)
DO 3870 I=1,K1
BETA(1)==BETA(])

380 CONT INUF
PRINT 7765

7765 FORMAT(1HO, 'BETA')
PRINT 601, (RETA(1),1=1,K1)
PRINT 640

PRINT 707, SNUAR

2 707 FORMAT(///,' RESIDUAL VARIANCE',D16.6)
C

C COMPUTE ASYMPTOTIC VARI ANCES

Nd=K1+L

NJd1l=NJd+1

DO 668 1=1,K2
L no 668 J=1,LP1

668 XYCI+K1, J+K)=XY(14K1, J+K1)
No 677 I=1, LP1

| DO 677 J=1, LP1
udl,Jd)=0,0n00
DO 677 M=1,NMK1

L 677 UCI, d)=UC, J)+XY(M+K1,1+K) #XY (M+K1, J+K)
NO B69 1=1,K1

| DO 669 J=1,K1669 GINV(I,Jd)=XY(1,J)
DO 670 J=1,L

f NO 670 1=1,K

L 670 XY(I,J)=XY(l,J+K)
DO 671 1=1,K1

: DO 671 J=1,K1

671 XY(I,Jd+L)=GINV(1L,J)
~ NO 672 J=1,K1

11 =J+1

i NO 672 I=11,K
Y 672 XY(1,Jd+L)=0.,0Dn0

DO 678 1=1,K

| 678 XY(1,NJ1)=XY(I,KSUM)
CALL HCOMPI1(NDIM,K,NJ,NJ1,XY,S)
CALL TNVRT2(NJ, XY,GINV,NDIM, 8220)
CALL TSOLV2(NJ, XY, NDIM, XY(1,NJ1),5,&220)
S(LP1)=-1,0D0
SAUAR=0,0DO

DO 680 1=1,LP1
SUM=0,0D0

DO 679 J=1,LP1

679 SUM=SUM+U(1,J)*S(J)
680 SOUAR=SNUAR+S(!)*SUM

SOUAR=SQUAR/DFLOAT(N)
DO 675 1=1,1L
S(1)=0,0D0
DO 674 J=],NJ

674 SCIY=SCI)+GINV(I,J)*BINV(T, J)
675 S(I1)=S(1)*SNUAR

DO 676 1=1,K1
Z3CINV(L,1)=0,0D0
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Fi=1+L

DO 676 J=11,NJ

676 Z3GINVCL, 1)=Z3GINVCI, 1)+GINV(IL,d)*GINV(IL, J)
PRINT 713

713 FORMAT(///' ASYMPTOTIC VARIANCES AMD Z VALUES FNR GAMMA'/)
PRINT 601, (S(1),1=1,L)
DO 714 1=1,L

— 714 GAMMA (1) =GAMMA(1)/DSNRT(S(1))
PRINT 601, (GAMMAC(1),1 =1,L)
no 715 1=1,Kk1

715 Z3GINVCL, 1)=Z3G6INV(I, 1)*SNUAR
PRINT 716

716 FORMAT (///"' ASYMPTOTIC VARIANCES AND Z VALUES FOR RETA'/)
PRINT 601, (Z3GINV(I,!),1=1,K1)
PO 717 1=1,K1

717 BETACI)=BETA(1)/DSQRT(Z3GINV(I,1))
PRINT 601, (BETA(!),1=1,K1)

— K=2+*(K2-1L+1)
KM=K2=L

AN=NDFLOAT(N)
C TEST1=AN#*RNU

TEST2=AN*DLOG(RMU)

PRINT 730,TEST1,TEST2,KM
I TEST1=TEST1+AN*RNU?2

TEST2=TEST2+AN*DLOG(RMU?2)
PRINT 731,TEST1,TEST2,KJ

9 TEST1=DFLOAT(N=-K)*RNU/DFLOAT(K?)TEST2=DFLOAT(N=K)*PNU2/DFLOAT(K?2)
PRINT 732,TEST1,TFST2,K2,NMK

730 FORMAT(////' N*x(MUHAT=-1) IS',F12,3,//," N*LOG(MUHAT) IS',F11.3,//,i I' CHI=-SOUARE D.F.',112)
731 FORMAT(////' N*(MUHAT(1)+MUHAT(2)=-2) IS',F12 3,7," N*LOG(MUHAT(1)

1+MUHAT(2)) I1S',F11.3,//," CHI-SQUARE.NF! ,J2X.,112)
| 732 FORMAT(////' (N=K)*(MUMAT(1)=1)/k2ASL. E12. 3. 47 ' (N=K)% (MUHAT(2)-

21)/k2 1S',F12,3//," F DISTRIBUTION D.F.',112,3%,',",3X,14)
_ GO TO 500

i 220 PRINT 221
1 221 FORMAT(1HO, 'SINGULAR UPPER TRIAMGULAR MATRIX)

20 TO 500

r 1091 PRINT 1093

1093 FORMAT(//' THIS FQUATION IS JUST IREMTIFIED AND TVWO=-STAGF'/' LEAST
1 SDUARES IS APPROPRI ATE')
GO TO 500

1092 PRINT 1094

1794 FORMAT (//' THIS EQUATIONIS NOT IDEMTIFIABLE'")
500 CONTI NUE

STOP

C

C
mn

FND



ee——————EEEEEE

i

3 SURROUTINE DSVD(A,MMAX,NMAX, M,N, P,ITHU,WITHY,S, U,V)
5 IMPLICIT REAL*8 (A=H,0-7)

DIMENS ON A(MMAX, NMAX) , U(MMAX, NMAX), V (NMAX, NMAX)
~ DIMENSION S(N),B(100),C(100),T(100)

C

C TH I S SURROUT I NE COMPUTES THE S | NGULAR VP LUE NECOMPRS IT T 1 ON

C OF A REAL MaM MATRIX A I . E, 1 T COMPUTES MATRT CCS U, S, AMD VY
. C SUCH THAT

C

) C A= %S *%» VI
| C WHERE )

C Ul S AN M*N MATR I X AND UT*U = I. (UT=TRANSPOSE

C OF U),
c V IS AN N¢N MATRIX AND VT#V = I, (VT=TRANSPOSE

a. c OF Vv),
c AND S IS AN N*N DIAGONAL MATRIX.
C

_ C DESCRIPTION OF PARAMETERS:

C

C A = REAL*8 ARRAY. A CONTAINS THE MATRIX TO BE DECOMPOSER,
-

“ c MMAX = INTEGER*4 VARIABLE. THE NUMBEP OF DECLARED ROWS | N THF
C ARRAYS A AND U

C

. C NMAX = INTEGER*L4 VARIABLE. THE NUMBER OF DECLARED ROUS IN THE
C ARRAY V.

' ¢
_ 0 M,N = INTEGER=L VARI ABLES. THE NUMBER OF ROWS AND COLUMNS

C IN THE MATRIX STORED IN A (N<¢=M<=100, IF IT IS

: C NECESSARY TO SOLVE A LARGER PROBLEM, THEN THF

i C AMDUNT OF STORAGE ALLOCATED TO THE ARRAYS B, C, AND
C T MUST BE INCREASED ACCORDINGLY. 1

C 0)
I NTEGEP P

- LOGI CAL WI THU,WI THY
C WITHU, WITHVY = LOGICAL*L VARIABLES. IF WITHU=,TRUE., THFN
C THE MATPI X U IS COMPUTED AND STORED IM THE APPAY U.

8 C SIMLARLY FOR V.
LC C

C S = REAL*8 ARRAY, S(1),. . . , S{MN) CONTAIN THE D!AGOMAL
c ELEMENTS OF THE MATRIX S ORDERED SO THAN S(1)>=S( 1+1),

= C I=1, . . . , N=1,

| C U,V = REAL*8 ARRAYS. VU VCONTA! N THF MATR I CESUAND V.

C C IF “1THU=, TRUE. AND WITHV=,FALSE., THEN THE ACTUAL
C PARAMETER CORRESPOND I NG TO A AMD U MAY BF THE SAME,

c SIMLARLY FOR V IF WITHV=.TRUE. AND WITHU=_FALSF..
C P = INTEGER*4 VARIABLE. IF P>0, THEN COLUMNS N+1, . . . ,
C N+P OF A ARF ASSUMED TO CONTAIN THE COLUMNSOFAN Mp

C MATRIX B, THI SMTRI XI S MLTI PL | ED RY UL, AMD UPON
- C EXIT T, ACONTA!INST N THESE SAME COLUMNS THE N#*P MATR I ¥

c UT*B, (P>=0)
C

i C THIS SUBROUTI NE I S A TRANSLATION OF AN ALGOL 60 PROACEDUPE
c DESCR | BED IN THE ARTI! CLE "S I MGULAR VALUE DECOMPNS [TI OM AMD

L



C LEAST SONUAPES SOLUTIONS: , “tM. MATH, 14 (1970), PP. L403-42n,
r THE TRANSLATION YAS DONE _RY.P | BUSINRERP AT RFLL TELEPHONE
C LABORATORIESWI TH SOME CHANGES AND EDITING DONERY R,
C UMDERWOON AT STANFORD UNI VERSITY,
R

DATA ETA /Z3410000000000000/
1 DATA TOL /Z0D10000000000ONNN/

C

C ETA AND TOL ARE MACHINE DEPENDENT CONSTANTS WHNSE
| C VALUES ARE 16%%(-13) AND 16*%x(=-52), RESPECTIVELY,~ C ON IBM SYSTEM/360 COMPUTERS,

C

C

NP=N +P

Ml=N+1
C

= C HOUSEHOLDER REDUCTION TO RIDIAGONAL FORM
C(1)=0,0D0

- K=1

10 Kl=K+1

C

C C ELIMINATION OF A(C1,K), I=K+1, . . . , M
Z=0, ONO

NO 20 1=K,M
| 20 Z=Z+A(],K)%x2
- B(K)=0,0DN0

IF (Z,LE.TOL) ROTO 70
X Z2=DSNRT(Z)
L R(K)=7Z

=DARS(A(K,K))
0=1,0D0

| IF (W.NE.O,0ND) O=A(K,K)/W
ACK, K)=nx(Z+W)
IF (K.EQ.NP) GOTO 70

DO 50 J=K1,NP
B 0=0,000

DO 30 1=K,M

30 O=N+A(1,KI*A(T,J)
- N=0/(Z*(Z+W))

DO 40 1=K,M

40 ACE, J)=AC1,J)=0%A(1,K)
50 CNTT NUT

C

C PHASE TRANSFORMATION

0==A(K,K)/DABS(A(K,K))
DO 60 J=K1,MP

60 ACK, J)=0xA(K, J)
C

c ELIMINATION OF A(K,J),J=K+2,...,N
70 IF (K.EN.N) GOTO 140

Z=0, ONO

PO 80 J=K1,HN
80 L=l+A(K,J) *%2

C(X1)=0,0n0
IF (Z.LE,. TOL) GOTO 130



BE

2=DSNRT(Z)
C(K1)=2

W=DARS (A(X, K1))
PN N=1,000
— IF (W,ME,0,0D0) 0=A(K,K1)/W

ACK,K1)=0%(Z+W)
DO 110 1=K1,M

i N=0,0D0

PO 90 J=K1,M

“~ 90 0=0+A(K,J)*A(1,d)
N=0/(Z*x(Z+}))
DO 100 J=K1,M

100 ACE, )=A(1,J)=0%A(K,J)
110 CONTINUE

_ C

¢ C PHASE TRANSFORMAT ION
N==-A(K,K1)/DABS(A(K,K1))

a DO 120 1=K1,M
120 ACL, K1)=A(I,K1)*0

| C

| 130 K=K1
- GOTO 10

C

| C TOLERANCE FOR NEGLIGIBLE ELEMENTS140 EPS=0,0D0

DO 150 K=1,M
! S(K)=R(K)

| T(K)=C(K)
150 EPS=DMAX1(EPS,S(K)+T(K))

. EPS=FPS*FTA
. C INITIALIZATION OF U AND V

IF ( NOT.UITHU) GNTO 180
PO 170 J=1,H

_ PO 160 1=1,M
160 ull, dJd)=0.0D0
170 Ud, Jd)=1.0D0

. C

‘ 180 IF (J NOT,WITHV) GOTO 210
PO 200 J=1,N

no 1901=1,N
190 V(l,Jd)=0.000
200 V(J,d)=1.0D0

C

C NR DIAGONALIZATION
210 DO 380 KK=1,N

K=N1=-KK
C

C TEST FOR SPLIT

220 DO 230 LL=1,K
L=K+1-LL

IF (DARS(T(L)).LE.EPS) GOTO 290
iF (DARS(S(L=~1)),LE,EPS) GOTN 240

230 CONT I NUE
r



iS

r CANCELLATION
240 CS=0.0D0C

SH=1.,0D0
Ll=1-~1

NO 280 I=L,K
F=SN*T(])

T(I)=CS*T(1!)
IF (DPABS(F),LE.FPS) OTC 290
H=S(])

~ H=NSORT(F*F+H=H)
s (I )=W

CS=H/!

| SN== F/I

IF (.MOT,WITHU) ROTO 260
DO 250 J=1,N

~ X=U(J,L1)
Y=U(J,1)

_ U(J, L1)=X*CS+Y*SN
250 UCJ, 1)=Y*CS~X*SN
260 IF (NP,EQ.NMN) GOTO 280

| DO 270 J=N1,NP
Lo N=A(L1, J)

| R=A(1,J)

A(LL,J)=0*CS+R*SN
L 270 ACI ,J)=PxCS=NxSM

280 CONTI NUE
a

tL C TEST FOR CONVERGENCE
290 W=S (XK)

i IF (L.EN.K) GOTO 360C

C ORIGIN SHIFT

| Y=S(K=1)
G=T(kK=1)
H=T (K)

FoCOY=1) x (YAU) + (G=H)* (64H) )/ (2. 0D0O*H*Y)i G=DSNRT(F*F+1,0D0)
IF (F,LT.0.0n0) G=-0

F((X=M)*(X+W) + (Y/(F4G) =H) %H) /¥X
C

~ c OR STEP

| CS=1.0D0

SN=1,0D0

- Lli=L+1

PO 350 I=L1,K
g G=T(1})

Y=S(1)
H=SN+0

R=CS=*C

W=NSOPT(H*xH+F*F)
T(1-1)=W

CS = F/

SN=H/U

F=X+*CS+G+SN



G=G*CS=-X*SN

a. H=Y *SN

a Y=Y*CS
I. IF ( NOT. WITHV) GOTO 310

| DO 300 J=1,N
X=V(J, 1-1)

| W=V(J,I)
V(J, 1=1)=X*CS+W=SN

= 300 V(J, 1)=W*xCS=-X*SN
“ 310 W=DSOPT(H+*H+F*F)

| S(1=-1)=W

+ CS=F/W

SN=H/W
F=CS*G+SN*Y

_ X=CS*Y=-SN=*C
~ IF (MOT. WITHU) GOTO 330

PO 320 J=1,N

— W=U (J, 1)
| U(J, 1=1)=Y*CS+W=xSN

320 U(J, 1 )=sWxCS=Y=*SN
—-—_ 330 IF (N,EOQO,MNP) GOTO 350

PO 340 J=N1,NP

0=A(1-1,J)

_ R=AC1,Jd)
ACl-1,J)=0*CS+R*SN

340 ACl,J)=RPxCS-0*SN
\ 350 CONTI NUE

— C

T(L)Y=0.0D0

T(K)=F

— S(K) =X

GOTO 220

« C
oo C CONVERGENCE
— 360 IF (W,GE.0,0D0) GOTO 380

| S(K)==W

IF (,NOT,.WITHV) GOTO 380

— DO 370 J=1,N
“ 370 V(J,K)==V(J,K)

| 380 CONTI NUE
— C

C SORT SINGULAR? VALUES

DO 450 kK=1,M
G==1,0D0

~ J=K

no 390 |=K,M
| IF (S(}).,LE,G) ROTO 390
— G=S(1)

J=1

390 CONTI NUE

oN IF (J.EO,.K) GOTO 450
S(J)=S(K)

S(K)=Q

IF (,MOT.WITHV) GOTO 410

— PO 400 |=1,HN

C



; N=v(l,Jd)
- —_— v(iil,Jd)=v(l],K)
- 4090 V(l,K)=0
Fo 410 IF (.NOT.WITHU) GOTO 430
y PO 420 1 =1,N

N=uU(1,d)

uet,Jd)=u(t,kK)
y 420 u(t,K)=0
— 430 IF (N.EN,NP) GOTO 450

“ no 440 I=N1,NP
B 0=A(J, 1)
- ACJ, 1)=A(K, 1)

| 440 A(K,1)=0Q
oo 450 CONTI NUE

C

‘oa c BACK TRANSFORMATION
IF ( NOT..WITHU) GOTO 510

DO 500 KK=1,M
— K=N1-KK

| IF (B(K).EN,0,0D0) GOTO 500
| N=-A(K,K)/DABS(A(K,K))
- DO 460 J=1,M

| 460 U(K,J)=0*U(K,J)
5 DO 490 J=1,HM
] n=0, ONO

PO 470 1=K,6M

470 Q=Q+A(1,K)*=U(1,Jd)
« 0=N/(DARS(A(K,K))*R(K))
— PO 480 I=K,!

480 udt,Jdl)=u(t,Jd)=-0*xA(1,K)
490 CONTI NUE

— 500 CONT1 NUE
| r

C 510 IF (,NOT.MITHV) GOTO 570
| IF (N,LT.2) GOTO 570

PO 560 KK=2,N
: K=N1=-XK

| Kl=K+1
— IF (C(K1).EN,0,.0N0) ROTN 560

N==A(K,K1)/DABS(A(K,K1))
PO 520 J=1,NM

_ 520 V(K1, J)=0=*V(K1,6J)
PO 550 J=1,N

| N=0.0N0

PO 530 I=K1,HN
CC 530 N=0+A(K,1)*V (I,J)
oo 0=N/(NDARS(A(K,K1))*C(K1))

| DO 540 1=K1,!
- 540 VOLE, d)=VOL,d)=0=ACK,1)

550 CONTI NUE

560 CONTI NUE

C

570 PETURN

END

C



i |

SUBROUTINE TNVRT2 (4, Ar AL, IDIM, a)
INTEGER MN, Inim

PEAL*8 ACIDIM, 1), ALCINIM, Ny)

| C THVRT2 5 A JODIEICATION OF 1nynT) TO INVERT Aw- © O”IGINAL MATRIX That 'S UPPER Toyanaupap.© CALLS T0 nECMPY Ap IMPRV2 ARE om) TTED.
A

EXTERNAL Tsnpys }INTEGER 1,
PEAL*8 E(100), x(100)

~ NO 3 |=1,n« EC1) = 0. opp
3 CONTINUE |

DO 1 f=],
EC) = 1,0n0

CALL TSOLv2 (Nn, a, IDIM, E, X, a1p). NO 2 y=1,N
ALCI,1) = x(y) |? CONTINUE

| EC) = 0,0pg
| 1 CONTINUE

PETURN4

| 10 RETURN 1

c AST CARD OF SUBROUTINE TNVPT?.- END



SURPOUTINE TSNLV2 (N, LU, IDIM, R, X, =)

INTEGER M, IDIM

REAL*8 LUC IDIM, NY, P(N), X(N)

C SOLVES LUxX = B, WHERE LUT S UPPER TP [AMGULAR,

C TSOLVZ2IS A MODIFI CATION OF THF USUAL SOLVE2, un) ey FOL LOS
.. C DECMP2,

C

CO r

INTEGER I, J,1 P, 1 P1, M1, HP1, I RACK
REAL*S SUM i}

LE CLUN,MH), EN, 0, 0D0) RETURN 1
he X(N) = R(N)/LU(N,N)

IF(M,EN,1) RETURN

C PACK SURSTITUTION

« NO 4 I RACK =2,H

C | GNES FROM (N=-1) TO 1 .

[PI = 1+1

no 3 J=1P1,N
SUM = SUM 4+ LUC, d)«X(J)

: 3 CONTI NUF

| IF (LUCE, 1),EN,0,0D0) RETUPN 1
XC) = (B(1)=SUM)/LUCT,1)

. b CONT I NUE

l RETURNC LAST CAR? OF SURROUT! NE TSOLV?2,
END



CC —————

SURROUT INF HCOMPI(MDIT M, M, MN, NTNTAL,A 1)
By

[ NTFAERMD IM, MN

DOUBLE PRECISION A(MDIM,HN), U(M)
C

C HOUSEHOLDER REDUCTION OF THE FIRST N COLUMNS OF A
TN UPPER TRANGULAP FORM,

Cc HCOMPL IS TAKEN FROM CLEVE MOLEP'S SUBRNUTINE HECOMP,
C WHICH PEDUCES ALL COLUMNS OF THE MATRIX TO TRIANGULAR FNPM,
C HCOMP1 WAS DESIGNED FOR A SPECIAL PURPOSE, TO MAKE THF F|IPST

| C MN COLUMNS UPPER TRIANGULAR, WHILE APPLYING THE TRANSFNARI'ATIONS
| c TN NTOTAL COLUMMS. Con | oor

C

C

\ Cc MDIM= DECLARED ROWD IMENS ION OF A

C M= NUMBER OF ROWS

| C N= NUMRED OF COLUMNS OF A HOSE UPPED POPTIOMS ARE Th

C PF REDUCED TO TRIANGULAR FORM, AFTER REDUCT | NN, THE
C MATRIX AW! LL CONTA I N AN M BY N UPPFP TR| ANGULAR MATP| ¥

| Cc IN ITS UPPEP LEFT CORNER,
. C MTOTAL= TOTAL NUMBER OF COLUMNS OF A, THE TRANSEORMAT | ONS

| C VILLBF APPLI ED TO ALL COLUMNS,

C FOR STANDARD LEAST=-SOUARES PROBLEMS, NTNTAL=N,
. C

A=1M BY NTOTAL MATRIX WITH M,0FE.NTOTAL
c [ NPUT, MATPIX TO RF REDUCED

{ rn AUTPUT, PEDUCED MATRI X AND | NEORMATION AROCUT REDUCT| ON
rn U= VECTNR OF LENGTH M

: C I NPUI, IGMORED
C OUT PUT, | NFORMAT | OM ABOUT REDUCT | ON

~ C

;

. DOUBLE PPECISION ALPHA,RETA,GAMMA, DSNPT
C

P O6K=1,N

C FIND REFLECTION THAT ZEROS A(I,K),1=K+1,,..,I
C

ALPHA=0,0

no 1 I=K,H

UCT )=AC I,K)
ALPHA=ALPHA+U( I) %%2

CONT INUF



ALPHA=NSADT (ALPIIAY
LECU(X)LT, 0,0) ALPHA==ALPHA
U(K)=U(K) +ALPHA
BETA=ALPHAU(K)
ACK XK) ==ALPRA

IF(RETALEN,0.0 NR. K,EN,NTOTAL) 60 TO 6
r

Lo C APPLY PEFLECTION TO REMAINING COLUMNS nF A. s

KP1=K+1

NO 4 J=KP1,NTOTAL
FAMMA=Q0
NO 2 |=K,*

CAMMA=CAMMA+U(1) *A (1, J)
« 2 CONT INUE

 CAMMA=GAMMA J RETA |
| NO 3 =k, 1

ACE,J) =A(1,d) = GAMMA = uct)
3 CONTINUE
] CONTINUE

\ G COMT IMUF || RETURN
c

NACI IL, uy, EyL C TRIANGULAR RESULT 1S STORED] , , oT AF AC VECTORS DEFINING REFLECTIONS ARE STORED I1MUANDRESTOF A
| c

L END


