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0. Abstract

Computation of the Limited Information Maximum Likelihood Estimator
(LIMLE) of the set of coefficients in a single equation of a system of
interdependent relations is sufficiently complicated to detract from other
potentially interesting properties. Although for finite samples the
LIMLE has no moments [13], asymptotically it remains normally distributed
[2] and retains other properties associated with maximum likelihood. The
most extensive application of the estimator has been made in the Brookings
studies [7]. We believe that current methods of estimation are clumsy,
and present a numerically stable estimation schema based on Householder
transformations and the singular value decomposition. The analysis
permits a convenient demonstration of equivalence with the Two Stage

Least Squares Estimator (TSLSE) in the instance of just identification.

1. Introduction

In a system Of interdependent relations, suppose a given structural
equation is denoted by
Yy + (X}, xz)[§J+ u = 0.
0
The n x (L+1) matrix Y = (Y*, y) represents n observations on L endogenous
variables Y* and n observations on an endogenous variable y elected as
subject of the equation. X. is the n x K, matrix of n observations on

1 1

the Kl included exogenous variables, X2 is the n x K2 matrix of n observatic
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on the K2 excluded exogenous variables, and u is an n x 1 vector of

disturbances. X = (Xl, XZ) and is of order n x K, where K = Kl + K2.

v and B are unknown coefficient vectors, save for the last element of
v which is -1, whence y' = (y*', -1).

Assuming X, and X of full rank, define the two residual operators

1

I - X (XX )_lx'

My 14815 %o

M 1 - x(x'x)'lx'.

The LIMLE is then determined by solving the determinantal equation

1
o

[Y'MY - HY "MY |

~ ~

for the smallest value of u, say u. The corresponding solution for v,

with last element -1, in

i}
o

(Y'M,Y-puY'MY) v

1

is the LIMLE of vy, with the LIMLE of B being
g = -(X'X )'lx'Y;
~ 11 1.

Derivation of this solution may be found, for example, in [3], [14, pp.
166-173], [6, pp. 335-344], [20, pp. 500-503, pp. 679-686], and [9, pp. 38-44].
The LIMLE is sometimes identified with the Least Variance Ratio Estimator
(LVRE), and Least Generalized Residual Variance Estimator (LGRVE), or the
Smallest Canonical Correlation Estimator (SCCE). Because of the simplicity
of its derivation the LVRE is usually presented in texts, for example
[16, pp. 384-3871, [15, pp. 166-1731, [6, p. 3461, [10, p. 3381, [L7, pp.

567-5711, [5, pp. 411-424, pp. 663-666], and [9 , pp. 45, 46]. The LGRVE
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is proposed in [3], and [10, pp. 338-341], while the SCCE is derived in
(4] and [1]. The four estimators are not necessarily identical at all
times, since under certain conditions (to be discussed below) on the
number of available observations, one may exist while another may not.
This confusion has led to some meaningless statements in certain texts,
especially with respect to the equivalence of the TSLSE and LIMLE in
cases of just-identification.

In the following section we present the computational schema for the
LIMLE, while in section 3 we discuss the TSLSE and in section 4 present

the determination of the asymptotic variance matrix of these estimators.

2. Algorithm for the LIMLE

There exists an orthogonal n x n matrix Q, the product of K < n

Householder transformations [12] such that, for

Q= (Ql’ QZ’ Q3),
where Ql is n x KI; Q, n x KQ; Q3 n x (n-K), Q annihilates X as

where Rl is an upper~triangular non-singular Kl X Kl matrix, R2 is similarly

upper-triangular non-singular K2 x K2, R3 is Kl }cKZ, and the zero matrices

have appropriate order. Clearly

and
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where

.
R, R
T
0
Ry

Further, it is readily verified that

=
I

=1- Q4Ql:_

Q304

and

= - '
MYy

QQp + Q303-

Suppose the transformation Q applied to Y yields

1
Q¥ Zy
Q'y = QéY = 22 = (Q'Y*, Q'y) =
1
QY Z3
—— - . —

such that matrices with subscript 1 have K
K, rows, and subscript 3 indicates (n-K) rows.
matrix with L columns, and the partition of z

of Y = (Y*, v). Alternately,

1 rows, while subscript 2 indicates
An asterisk denotes a

1> %,» Z5 corresponds to that
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Y* =
i

3
z

%
lQiZi”

and

Y'MY = Z!
323’

Y'M.Y = 2! !
1 ZZZZ + 2323.

A~

The determinanta] €quation for p now becomes

1 [} = O
[2222+2323-u2523;

or

lzézz‘(u—l)Z:;Z = 0 .

3 ,

If the particular equation is over-identified, K, > L or K

2 2 > L+1 so that

2y, which is K, x (L+1), has full column rank with probability one, and

2

; -1
the inverse (zizz) exists with probability one. We therefore consider

-1 1
z'z 'y = -
| ( ? 2) Z3Z3 =} I =0

and search for the largest eigenvalue of (2522)"lz§z3.

Assuming Z, has full rank L+l and since K, > L+1,

2 there exists an

orthogonal K2 X szatrix H, the product of L+l Householder transformations,

such that
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where G is an upper-triangular, non-singular L+l by L+1 matrix, .4 y

1
is K2 x (L+1). 1t follows that

and

1 -1

|—l— '
(2222)= G “(G")

-1 . .
The matrixG " may be readily computed since G is upper-triangular, S€e €.g.

(19 p.31,.B,p. 427]. 1, now, n > KHL+1, consider the singular

-1
value decompositionll13,14] of 23G as

z.¢7t - Uav

where U is (n-K) x (L+1), A and V are (I+1) x(L+1), A is diagonal and

U'u = IL+l =V'y = Vyv',

Obviously

(G‘l)'z'z ¢t = VA2V'

373
or
-1.,,, -1 _ 2
G ™) 2323G Y VA
2 2 2
= Sov.o ... . 82
(61v1 83 L+l Vi+1)
where 55_1.6223_. . 2-6£+l’ say, are the diagonal elements of AQ,

and
v, is the column vector of V corresponding to ¢72.
i

Since

-1, ~1.,., -1 _ 62G—lv
¢ C )26 Ty = 06 Ty,



8§, is the eigenvalue sought, and we define

The LIMLE of y is given by

A
~
~ A A

= ~Y/v 4

0=

~ ~

~

where is the last component of Y.

Y141
Since
=1 -1
1] r ]
(X)X) X = R7Q
B = —(X!X )—1X'Y;
171 !

1

43 )
- _ '
= ~Ry7Q (L1052,

-1~
= —R1 er.

-1 A
When K < n < K+L+l the singular value decomposition of (G )'Zé = UAV' is

used with

2 2
where ug is the eigenvector corresponding to the largest value 51 of Gi
i=1, ..., L+1l; and y is Y normalized appropriately. In either case

» -2
u o= l+cSl .

3. The LIMLE and TSLSE

When the given structural equation is just-identified, K, = L. Consider

the difference




YIM v - 1
1Y Y 'MY 2222.

Since 22 has less rows (K2) than columns (L+1), Zéz2 is necessarily

singular and

[Y'M Y-Y'MY| = 0
implying w = 1, which provides the case of the TSLSE, [3], [20, p. 504].

\
In [5, p. 424] the equivalence of the TSLSE and LIMLE is claimed

by assuming Y'MlY = Y'MY (W*=W), which obviously need not be true. Indeed

there seems to be general confusion as to the behavior of these two

L . .
residual moment matrices. 1In [6, p. 339] Y'MlY and Y'MY (Wll and Wil) are
L, claimed to be positive definite, while in [15, p. 172 ] Y'MY (W ) 4g
AA
claimed to be positive definite. gipnce Y'MY = Z§Z3, a necessary condition
L, for non-singularity, with probability one, is that 23 have at least as
‘ many rows as columns, or that n > K+L+l. 1 the derivation so far we
“

have only required n > K. (This includes derivation of the classical
determinantal equation).
Clearly, when K < n < K+L+1 the LGRVE does not exist (since it is

derived through the minimization of a determinant involving (Y'MY)-l

).
Hence equivalence with the TSLSE [10, p. 344] which exists for n > K1+L+l
may be impossible in certain instances. Even the LVRE is of spurious

interpretation in such instances since the denominator of the ratio being

minimized is positive semi-definite and hence may assume a zero value,




For a range of n values (L+1 of them) the estimators LVRE, LGRVE,

and SCCE may not exist, while the LIMLE will. 1f the number of included

endogenous variables is large for a particular relation in an interdependent
system, this will define an equivalent number of observation values over

which the LIMLE alone will exist.

4. Asymptotic Covariance

The asymptotic variance-covariance matrix of (y*', é!) is given by the

two-stage least squares asymptotic covariance, or by

YAU(I-M)Y* YA'X) =1

X'Y* !
1 X%

where

2 1 - - “ R
- — - Yhyh . s -
e R A RCr

A

and Bo is the two-stage least squares estimate of B, while y: consists of

the first L components of the two-stage least squares estimate of y. The

normal equations for the two-stage least squares estimators are

TRI-MYE YKL vA Y (1-M)y

L] * L} \ ]
XY S | A | Xy
or
Zx"72% 4 Zk'7% *! [ * *! *!
I T S TS S A I S BT .
1ok ' '
R 27 RiRr 1 18 Rz
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We now apply Householder transformations as

T' * -
zl R1 fl S fl
%
22 0 f2 0 52

reducing the first L+K1 columns to upper triangular form S, whence

*
Yo
- S-lt
- 21
~0

82 may now be computed from above and the asymptotic covariance matrix

found as
2 -
8" (8'S) 1.
A FORTRAN program listing follows.

Acknowledgement

We wish to thank Mrs. Margaret Wright, at Stanford, for programming

the algorithm described in this paper and performing the initial calculations

used for checking purposes.



— -

— o~

10.

11.

12,

13.

14,

11

REFERENCES

Anderson, T. W. "Estimating Linear Restrictions on Regression
Coefficients for Multivariate Normal Distributions,'" AMS, 1957,
Vol. 22, pp. 327-351.

Anderson, T. W. "An Asymptotic Expansion of the Distribution of the
Maximum Likelihood Estimate of a Coefficient in a Simultaneous
Equations System.'" Presented at the IMS meetings, Montreal,
August 1972,

Anderson, T. W. and Rubin, H. "Estimation of the Parameters of a Single
Equation in a Complete System of Stochastic Equations,' AMS,
1949, Vol. 20, pp. 46-63.

Bartlett, M. S. "A Note on the Statistical Estimation of Demand and

Supply Relationships From Time Series," Econometrica, 1948,
Vol. 16, pp. 323-329,

Christ, C. F. Econometric Models and Methods, John Wiley & Sons, Inc.,
New York, 1966,

Dhrymes, P. Econometrics, Harper & Row, New York, 1970.

Duesenberry, J. S., Fromm, G., Klein, L. R., and Kuh, E. (eds).
The Brookings Quarterly Econometric Model of the United States,
Rand McNally, Chicago, 1965,

Durbin, J. "An Altermnative to the Bounds Test for Testing for Serial
Correlation in Least-Squares Regression,' Econometrica, 1970,
Vol. 38, pp. 422-429,

Fisk, P. R. Stochastically Dependent Equations, Hafner, New York, 1967.

Goldberger, A. S. Econometric Theory, John Wiley & Sons, Inc., New York,
1964,

Goldberger, A. S. and Olkin, I. "A Minimum Distance Interpretation
of Limited-Information Estimation," Econometrica, 1971, Vol. 39,
pp. 635-639.

Golub, Gene H. "Numerical Methods for Solving Linear Least-Squares
Problems,'" Numer. Math.,, 1965, Vol. 7, pp. 206-216,

Golub, Gene H. and Kahan, W. "Calculating the Singular Values and
Pseudo-inverse of a Matrix," J. Siam Numer. Analys., Ser. B.
1965, Vol. 2. pp. 205-224,

Golub, Gene H. and Reinsch, C. "Singular Value Decomposition and
Least Squares Solutions.'" Numer. Math., 1970, Vol. 14, pp. 403-420.




12

15. Hood, W. C., Koopmans, T. C. (eds). gtudies in Econometric Methods,
Cowles Foundation Monograph No. 14, John Wiley & Sons, Inc’

New York, 1953.

b

16, Johnston, J. Econometric Methods, McGraw-Hill, New York, 2nd ed., 1972,

17. Kmenta, J. Elements of Econometrics, MacMillan, New York, 1971_

S~
18. Mariano, R. S., and Sawa, T. "Exact Finite-Sample Distribution Of
Limited-Information Maximum Likelihood Estimator for Two
Included Endogenous Variables," JASA, 1972, Vol. 67, pp 159~l6§.
19. Plackett, R. L. Principles of Regression Analysis, Oxford University
“ Press, 1960,
20. Theil, H. Principles of Econometrics, John Wiley & Soms, Inc., 1971
-



r

——

— o

IMPLICIT PEAL*8 (A-H,0-Z)
DIMENSION XY(25,25),S(25),U(25,25),V(25,25)
PEAL*4 HEAD(20),FMT(20)
DIMENSION GINV(25,25)
DI MENSION  GAMMA(25),RETA(25),Z3GINV(25, 25)
DIMENSION XXY(625)
FRUIVALENCE (XY(1,1),XXY(1))
PEAD 10, NPROR
DO 500 MRUN=1,NPROB
PRINT 726
726 FORMAT(1H1)

C
READ 7776, HEAD

7776 FOPMAT(20AL)
READ 10,M,K1,K2,L

10 FORMAT (16 15)

C ™ IS HUMBER OF ROWS IN ALL MATRICES

C ¥1,K2, L ARE THE NUMBERS OF COLUMNS IN X1,X2,Y+, PESPECTIVELY

C
READ 11, FMT

11 FORMAT(20AL)

C
KSUM=K1+K2+1+1
C KSUM IS NUMBER OF COLUMNS IN FULL MTIRIX XY
C THE MATRIX HAS THE FORM
C ( Xl x2 Y)
C
C
MDIM=25
C MUMBEP OF ROWS DECLARED
K=K1+K2
LP1=L+1
KP1=K+1

MMK1=N=-K1

READ THE XY MATP} X FROM CARDS, BY ROWS, [N THE OPDER

( x x2 Y )

Do OOMCNn o

PO 100 I=1,N
READ (5,FMT) (XY(1,d),J=1,KSUM)
100 CONTI NUE
C
C HEAD IS AN ALPHANUMER| C TITLE TO DFSIGNATE THE RIVEN RUN
PRINT 7775,HFAD
777s  FOPMAT(1H1, 20AL)
PRINT 7773, N, K1, K2, L o
7773 FORMAT(1Ho, 'N=',15, 2X 'Kl=', 15,2X,'K2=",15 2X "L=' |5)
PRINT 7772
7772 FORMAT(1%0, 'XY MATRIX )
DO 602 I=1,N
PRINT 601, (XY(1,d),J=1,KSUM)
602 CONTINUE



IF(K1+L,EN,K) GO TN 1091
IF(X1+L,6T.K) GN TO 1092
PRINT 640

c
¢ HCOMP1 PEDUCES THF FIRST K COLUMNS OF THEF RECTANGULAR
C MATRIX XY TN UPPER TPIANGULAR FORM AND APPLIFS THE PFSULTIMA
C HOUSEHOLDER TRANSFORMATINNS TO THE REMAINING COLUMNS.,
CALL HCOMP1(NDIM, N, K KSUM,XY,S)
601 FORMAT(1HO, 8D16.6)
640 FORMAT(1H0,/,/)
DO 667 1=1,K2
No 667 J=1,LP1
667 XY (I1+K1,J+X1)=XY(14K1,J+K)

c
C
C NOW COMPUTE HNUSEHOLDER REFLECTLONS TO REDUCE Z2 A K2 BY L+l
C MATRIX WHDSE FIRST LOCATION IS XY(K1+1,K+1), TO UPPER
C TRI ANGULAR FQRM

CALL HCOMP1(NDIM,K2,LP1,LP1,XY(K1+1,KP1),S)
C
C CALL THE RESULTING SQUARE TRI ANGULAR MATPIXG,WHEREGIS
c (L+1) BY (L+1).

CALL TNVPT2( LP1,XY(K1+1,KP1),GINV, NDIM,

1 2220)

c
C FORM PRODUCT OF Z3+ GINVERSE

MMV =N
DO 200 | =1,MMK
PO 200 J=1,LP1
SUtM=0.0NN
INDEX1 1S INDEX IN XY OF LOCATION PRECEDING FIRST FELEMENT OF 73

INDEX1= K*NDIM + K
DO 300 KK=1,LP1
I NDI= IMPEX1 + (KK=1)*NDIM +1
SUM= SUM 4+ XXYCIND1)*GINV(KK,J)

C Z3(1,KK)* GIMVERSE(KK,J)

300 CONTINUE
Z3GINV(1,J)=Sum

200 CONT 1 NUF
NW 1 =NMK
NW2=LP1
IFLAG=0
TF(N,GE.K+LP1) 60 TO 700
IFLAG=1
no 701 I=1,LP1
li=1t+1
nO 701 J=11,LP1
WTD=Z3GINV(I,J)
Z3CINV(L,d)=Z3GINV(J, ])

701 Z3GINV(J, ) )=WTD
[ END=NMK=-LP1
DO 702 t=1,1END
NROW=LP1+ |
no 702 J=1,LP1
702 Z3GIMVINROW, J)=Z3G1NV(J, NROW)



MW1=LP1
NW2 =NMK

C
C COMPUTE SINGULAR VALUE DECOMPOSITION OF Z3*GINVERSE

700 CALL DSVD(Z3GINV,NDIM,NDIM,NW1, W2, 0, TRUE. , . TRUE., S, 11, V)

PRINT 7767

7767 FORMAT(1HO, '"MUHAT'")
RMU=1,0D041,0D0/5(1)»*2
PRINT 601, RMU
PRINT 640
PNU=RMU=1, 000
RNU2=1,0D0/S(2)*%2
RMU2=RMUI2+1,0D0
IFC(IFLAG.EN,0) GO TO 703
DO 704 1=1,LP1

704 VCI,1)=U(1,1)

; SOLVE THE LINEAR SYSTEM R*GAMMA=V, WHERE V |S THE SINGULAR VECTOR

r

C

C ASSOCIATED WITH THE LARGEST S INGULARVALUE
C

C

NOTE THAT G IS ALPEADY UPPER TRIANGULAR
703 CALL TSOLV2(LP1, XY(K1+1,KP1),NDIM, V(1,1),GAMMA,&220)

MORMALIZE GAMMA TOHAVELAST COMPONENT -1
IF (GAMMA(LP1),E0,0,0n0) GO TD 220
C 6 1S (L+1) BY (L+1)
DO 350 I=1,L
GAMMA (1) == GAMMA( T )/GAMMA(LP1)
350  CONT I NUE
c
C COMPUTE RESIDUAL VARIANCE
SOUAR=RMU/ (RMU=1,0D0) /GAMMA(LP1) /GAMMA(LP1) /DFLOAT(N)
SAMMA(LP1)==1,0D0
PRINT 7766
7766 FORMAT(1H0, ' GAMMA' )
PRINT 601, (GAMMAC(1), =1, LP1)

PRINT 640
C
INDEX1=K*NDIM
€ INPEX1 IS THE FIRST LOCATION OF Z1, WHICH IS IN THE FIRST
C ROW, AND THE (K+1)ST COLUMWN OF XY
C Z1 IS KIRBY (L+1)
¢
C FORM PRODUCT OF THE MATR | X Z1 * GAMMVA

no 360 1=1,k1
SUM=0, ODO
DO 370 KK=1,LP1
INDI=INDEX1+ (KK=1)«NDIM + |
¢ INDEX OF Z1(1,KK)
SUM= SUM + XXY(IND1)*GAMMA(KK)
370 CONTINUF
BETA(!)=SUM
360 CONT | NUE

c
C SOLVE PI*RETA = -Z1 * CAMMA
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CALL TSOLV2(X1,XY,NDIM,BETA,BETA,&220)
DO 3870 1=1,K1
BETA(1)==BETA(])

380 CONT INUF
PRINT 7765

7765 FORMAT(1H0, 'BETA'")
PRINT 601, (BETA(1),1=1,K1)
PRINT 640
PRINT 707,SNUAR

707 FORMAT(///,' RESIDUAL VAPIANCE',D16.6)

C

C COMPUTE ASYMPTOTIC  VARI ANCES
NJ=K1+L
NJ1=NJ+1

DO 668 1=1,K2
no 668 J=1,LP1
668 XY(I+K1, J+K)=XY (14K1, J+K1)
N0 677 I1=1, LP1
DO 677 J=1,LP1
udl,d)=0,0n0
DO 677 M=1,NMK1
677 U(l,d)=U(l,d)+XY(M+K1,l+K)*XY(M+K1,d+K)
DO %89 1=1,K1
DO 669 J=1,K1
669 GINV(1,Jd)=XY(1,J)
DO 670 J=1, L
DO 670 1=1,K
670 XY (1,Jd)=XY(1,J+K)
DO 671 1=1,K1
PO 671 dJ=1,K1
671 XY(1,J+L)=GINV(I,J)
DO 672 J=1,K1
I1=J+1
DO 672 I=11,K
672 XY(1,J+L)=0,0D0
DO 678 1=1,K
678 XY (1,NJ1)=XY(I,KSUM)
CALL HCOMPI(NDIM,K,NJ,MJ1,XY,S)
CALL TNVRT2(NJ,XY,GINV,NDIM, £220)
CALL TSOLV2(NJ,XY,NDIM,XY(1,NJ1),S,&220)
S(LP1)==1,0D0
SQUAR=0.0DO
DO 680 !=1,LP1
SUM=0,0D0
DO 679 J=1,LP1
679 SUM=SUM+U( 1, J)*S(J)
680 SOUAR=SOUAR+S (! )*SUM
SOUAR=SQUAR/DFLOAT(N)
D0 675 1=1,L
S(1)=0.000
DO 674 J=1I,NJ
674 SCI)=SC1)+GINV(I,J)*BINV(], )
675 SC1)=S(1)*SNUAR
DO 676 1=1,K1
Z3GINV(],1)=0,0D0
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676

713

714

715

716

717

730

731

Il=1+L

DO 676 J=t1,NJ

Z3GINVCL, 1)=Z3GINVCI, 1)+RINVCIT, J)*GINV(LT, J)

PRINT 713

FORMAT(///' ASYMPTOTIC VARIANCES AMD Z VALUES FNR GAMMA'/)
PRINT 601, (S(1),1=1,L)

DO 714 1=1,L

CAMMA (1) =GAMMA(1)/DSNRT(S(1))

PRINT 601, (GAMMA(1),1=1,L)

no 715 1=1,x1

Z3GINV(L, 1)=Z361INV(I, 1)*SNUAR

PRINT 716

FORMAT(///"' ASYMPTOTIC VARIANCES AND Z VALUES FNOR RETA'/)
PRINT 601, (Z3GINV(I,1),1=1,K1)

DO 717 1=1,K1

BETA(I) = BETA(I)/DSQRT(ZSPINV(! ))

PRINT 601, (BETA(!),1=1,K1)

Ku=2#*(K2-L+1)

KM=K2=-L

AN=DFLOAT(N)

TEST1=AN* RNU

TEST2=AN*DLOG(RMU)

PRINT 730,TEST1,TEST2,KM

TEST1= TFST1+AN*RNU2

TEST2=TEST2+AN*DLOG(RMU2)

PRINT 731, TEST1,TEST2,KJ

TEST1= DFLOAT(N K)*RNU/DFLOAT(KZ)
TEST2=DFLOAT(N=K)*PNU2/DFLOAT(K?2)

PRINT 732,TEST1,TFST2,K2,NMK

FOPMAT(////' N* (MUHAT=1) IS',F12.3,//," N*LOG(MUMHAT) IS',F11.3,//,
1' CHI=-SOUARE D.F,.',112)

FORMAT(////" N*(MUHAT(1)+MUHAT(2)=2) IS',F12 3 ,//, " N*LOG(MUHAT(1)

1+MUHAT(2)) IS',F11.3,//,"' CHI-SOUARE-NLF .' 10X, ,112)

732 FORMAT(///7' (N- K)*(MUHAT(I) -1)/K2 1S"'. Flﬂ,s,cc' (M=K)% (MUHAT(2) -

220
221

1091
1093

1092
1n9y
500

bl oRe]

21)/k2 18',F12,3//," F DISTRIBUTION D.F, ', 112,3%x,',",3X,1L)
GO TO 500

PRINT 221

FORMAT(1HO, 'SINGULAR UPPER TRIAMGULAR MATRIX )

R0 TO 500

PRINT 1093

FORMAT(//' THIS EQUATION IS JUST INRENTIFIED AND TWO-STAGF'/' LEAST
1 SOUARES IS APPROPRI ATE' )

GO TO 500

PRINT 1094

FORMAT(//' THIS EQUATION IS NOT IDEMTIFIARLE"')

CONTI NUE

STOP

END
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SURROUT INE DSVD(A,MMAX, NMAX, M, N, P, I THU, WITHY,S, U, V)
IMPLICIT PREAL*8 (A-H,0-2)

DIMENS 10N A(MMAX,NMAX), U(MMAX, NMAX), V (NMAX, NMAX)
DIMENSION S(N),R(100),C(100),T(100)

TH 1 S SUBROUT I NE COMPUTES THE S | NGULAR VP LUE DECOMPRS T T 1 ON
OF A REAL M#M MATRIX A I . E, I T COWUIES MATR T FCS U, S, AMD Y
SUCH THAT

WHERE )
U1lS AN M«N MATR I X AND UT#U = I, (UT=TRANSPOSE
OF U),
V IS AN N¢#N MATRIX AND VT#V = I, (VT=TRANSPOSE
0F V),

AND S IS AN NxN DI AGONAL MATRI X,
DESCRIPTION OF PARAMETERS:
A = REAL*8 ARRAY. A CONTAINS THE MATRIX TO BE DECOMPOSER,

MMAX = INTEGER*L4 VARI ABLE. THE NUMBEPR OF DECLARED ROUS | N THE
ARRAYS A AND U

NMAX = INTEGER=*L VARI ABLE. THE NUMBER OF DECLARED ROUS IN THE
ARRAY V.

M, M= INTEGER*L VARI ABLES. THE NUMBER OF ROWS AND COLUMHS
IN THE MATRIX STORED IN A (N¢=M<=100, IF IT IS
NECESSARY TO SOLVE A LARGER PROBLEM, THEN THF
AMDUNT OF STORAGE ALLOCATED TO THE ARRAYS B, C, AND
T MIST BE INCREASED ACCORDINGLY. 1

I NTEGER P

LOGI CAL WITHU,WITHV

WITHU, WITHV = LOGICAL*L4 VARI ABLES. IF WITHU=,TRUE,, THEN
THE MATPI X U IS COMUTED AND STNORED IN THE APRPAY U,
SIMLARLY FOR V,

S = REAL*8 ARRAY, S(1), . . . , S{N) CONTAIM THE DIAGOMAL
ELEMENTS OF THE MATRIX S ORDERED SO THANM S(1)>=S( 1+1),
=1, . . . , N=1,

U,V = REAL*8 ARRAYS. U, VCONTAI N THF MATR I CESUAND V,
IF “11THU=,TRUE, AND WITHV=,FALSE,, THEN THE ACTUAL
PARAMETER CORRESPOND I NG TO A AMD U MAY BF THE SAME,
SIMLARLY FOR V IF WITHV=_TRUE., AND MITHU=_FALSF..

P = INTEGER*4  VARI ABLE. IF P>0, THEN COLUMNS N+1, . . . ,
N+P OF A ARE ASSUMED TO CONTAIN THE COLUMNSOFAN Mxp
MATRIX B, THI SMTRI XI S MILLTI PL | ED RY UT, AMD UPON
EXT T, ACONTAINST N THESE SAME COLUMNS THE N*P MATR I X
UT*8, (P>=0)

THIS SUBROUTI NE I S A TRAMSLATION OF AN ALGOL 60 PROCEDUPE
NESCR | BED IN THE ART! CLE "S I MGULAR VALUE DECOMPNS [T OM AND
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LEAST SOUAPES SOLUITONSC , M. MATH, 14 (1970), PP. L03-n2n,
THE TRAMSLATION YAS DNONE_RYP . BUSIMAERP AT RFLL TELEPHOME
LARORATNRIES W1 TH SOME CHANRES ANDFPITING DONERY R,
UMDERYOOD AT STANFORD UNI VERSITY,

DATA ETA /Z3410000000000000/
DATA TOL /Z0D100000000O0ONND/

ETA AND TOL ARE MACHINE DEPENDEMT CONSTANTS LMNSE
VALUFES ARE 16**(-13) AND 16*x(=-52), PESPECTIVFLY,
oM IBM SYSTEM/360 COMPUTE®RS,

NP=N+P
Ml=N+1

HOUSEHOLDER REDUCTION TO BIDIAGONAL FNRM
C(1)=0,0n0

K=1

Kl=K+1

ELIMINATION OF A(1,K), I=K+1, . . . , M
Z=0, 0NO
N0 20 1=K,M
Z=Z+A(], ) *%2
R(K)=0,0n0
IF (Z,LE,TOL) BOTO 70
Z=DSNRT(Z)
B(K)=7Z
H=DABS(A(K,K))
N=1,0Nn0
IF (W.NE.O,0N0) O=A(K,K)/W
ACK,K)=N*x(Z+1)
IF (K.EN.MNP) GOTO 70
DO 50 J=K1,NP
0=0,000
DO 30 I=K,M
O=N+A(1,K)*A(T,J)
N=0/(Z*(Z+W))
DO 40 1=K,M
ACL,J)=AC1,d)-0%A(1,K)
CONTT NUF

PHASE TRANSFORMAT |ON
N=~A(K,K)/DABS(A(K,K))
DO 60 J=K1,MP

ACK, J)=0%A(K, J)

ELI MI NATI ON OF A(K,J),J=K+2,...,N
IF (K.EQ.N) 6GOTO 140
Z=0, 0DO
PO 80 J=K1, M
Z=Z+A(K, J)**2
C(K1)=0,0n0
IF (Z.LF.TOL) GOTO 130
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Z=DSORT(Z)
C(K1)=2Z
=DABS (A(X,K1))
N=1,000
IF (W.ME.0,0D0) 0=A(K,K1)/W
ACK, K1) =0*(Z+W)
DO 110 1=K1,M
N=0,0Dn0
PO 90 J=K1,M
0=N+A(K, J)*ACT, J)
N=0/(Z*(Z+%))
DO 100 J=KI1,M
ACE,J)=AC1,d)=0%ACK, )
CONT INUE

PHASE TRANSFORMAT ION

N=-A(K,K1)/DABS(A(K,K1))

DO 120 1=K1,M
ACI,K1)=A(1,K1)*0

K=K1
GOTO 10

TOLERANCE FOR NEGLIGIBLE ELEMENTS
EPS=0,000
DO 150 X=1,M
S(K)=RB(K)
T(K)=C(K)
EPS=DMAX1(FPS,S(K)+T(K))
EPS=EPS+*ETA

INITIALIZATION OF U AND V
IF (.NOT.UITHU) GNTO 180
PO 170 J=1,M
PO 160 I=1,M
uCl,Jd)=0,0D0
UJ,Jd)=1,000

IF (JLNOT,WITHV) GOTO 210
PO 200 J=1,N
no 1901!=1,N
V(1,J)=0.0D0
V(J,d)=1,0Dn0

NR DIAGONALIZATION
DO 380 KK=1,NM
K=N1=-KK

TEST FOR SPLIT
DO 230 LL=1,K
L=K+1-LL
IF (DARS(T(L)).LE,EPS) GOTO 290
ir (DARS(S(L~1)),LE.EPS) GOTN 240
CONT T NUE
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CANCELLATION

€S=0,0D0
SM=1,0D0
L1=L-1
no 280 I=L,K
F=SN*T(])
T(1)=CS*T(1)
IF (DABS(F),LE.EPS) £OTO 290
H=S(1)
H=NSORT(FxF+HaH)
s (1) =l
CS=H/V!
Sh=- F/u
IF (. MOT.WITHU) GOTN 260
DO 250 J=1,N
X=U(J,L1)
Y=U(J, 1)
U(J, L1)=X*CS+Y*SN
UCJ, 1)=Y*CS=X*SN
IF (NP.EN.N) GOTO 280
DO 270 J=N1,NP
N=A(L1,J)
R=ACI,J)
A(LL, J)=N*CS+R*SN
AC1,J)=P*xCS=N*SN
CONT T NUE

TEST FOPR CONVERGENCE

W=S(K)
IF (L.EN.K) GOTO 360

ORIGIN SHIFT

NR

X=S(L)

Y=S(K=-1)

G=T(K=-1)

Y=T(K)
F=((Y-H)*(Y+W)+(G-H)*(G+H))/(2.0DO*H*Y)
G=DSORT(F*F+1.0D0)

IF (F,LT.0.0D0) G=-0
F=((X-W)*(X+W)+(Y/(F4G)-H)*“)/X

STEP

CS=1,0D0

SN=1,0D0

Li=L+1

PO 350 I=L1,kK
G=T(1)
Y=S(1)
H=G§HN*0
R=CS*»n
W=DSOPT(H*H+F*F)
T(1=-1)=W
CS = F/t!
SN=H/Y
F=X*(CS+G*SN
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390

G=G*CS=X#*SN
H=Y *SN
Y=Y*CS
IF (,NOT,WITHV) GOTO 310
DO 300 J=1,N
X=V(J,1-1)
W=v(J, 1)
V(J, 1=1)=X*CS+W*SN
V(J, 1)=W*CS-X*SN
W=DSOPT(H*H+F*F)
S(1-1)=W
CS=F/W
SN=H/W
F=CS*G+SN*Y
X=CS*Y=SN*C
IF (,NOT.WITHU) GOTO 330
PO 320 J=1,N
Y=U(J,I1-1)
M=U (J, 1)
UCJ, 1=1)=Y*CS+W=SN
UCJ, 1)=W*CS=Y*SN
IF (N.EO.MP) GOTO 350
PO 340 J=N1,NP
0=A(1-1,J)
P=A(1,d)
ACI=-1,J)=0*CS+R*SN
AC1,J)=P*CS=-O*SN
CONTI NUE

T(L)=0,0D0
T(K)=F
S(K)=X
GOTO 220

CONVERGENCE

IF (W,GE.0.0D0) GOTO 380

S(K)==-W

IF ( NOT,WITHV) GOTO 380

DO 370 J=1,N
V(J,K)==V(J,K)

CONTI NUE

SORT SINGULAP VALUES
DO 450 K=1,M

G==1,0D0
J=K
no 390 I=K,M
IF (S(1),LE.G) GOTO 390
G=S(1)
J=1
CONTI NUE
IF (J.EO.K) GOTO 450
S(J)=S(K)
S(K)=aG
IF (,NOT.WITHV) GOTO 410
PO 400 I=1,N



n=v(l,J)
v(i1,d)=v(l,K)

400 v(il,K)=0
410 IF (.NOT.WITHU) GOTO 430
PO 420 I =1,N
n=u(t,d)
uct,Jd)=u(l,K)
420 uU(t,K)=0
430 IF (N,EN,NP) GOTO 450
no 440 I=N1,MNP
0=ACJd, 1)
ACJ, 1)=A(K, 1)
440 A(K,1)=0
450 CONTI NUE
C
C BACK TRANSFORMATI ON
IF (,NOT,WITHU) GOTO 510
DO 500 KK=1,M
K=N1-KK
IF (R(K).EN.0,0D0) GOTO 500
N==-A(K,K)/DABS(A(K,K))
DO 460 dJ=1,HM
460 UCK,J)=0*U(K,J)
DO 490 J=1,M
Nn=0, ONO
PO 470 I1=K,M
470 O=Q+AC1,K)*U(1,J)
0=0/(DARS(A(K,K))*R(K))
PO 480 I=K,M
480 uCr,Jd)=uCt,Jd)=-0xA(1,K)
490 CONTI NUE
500 CONT I NUE
C

510 IF ( ,NOT.WITHV) GOTO 570

IF (N,LT.2) GOTO 570

PO 560 Kk=2,N
K=N1=-KK
Kl=K+1
IF (C(K1).EN,0,0N0) ROTO 560
N==A(K,K1)/DABS(A(K,XK1))
PO 520 J=1,NM

520 V(K1, J)=0*V(K1,J)
PO 550 J=1,N
n=0.0n0
no 530 I1=K1,*t
530 N=0+A(K, 1)*V(l,J)
0=N/(NDABS(A(K,K1))*C(K1))
DO 540 1=K1,H
540 VL, Jd)=v(l,J)=-0=ACK, 1)
550 CONTI NUE
560 CONT I MNUE

570 PETURN
END
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SUBROUT INE TNVRT? (N,

A,

INTEGFR N, IDIM
PEAL=8 A(ID!M,N),

Af, IDIM,

ALCInIm, N)

THVRT2 |5 A MODIFICATION oF INVRT?2 Tp
ORIGINAL MATR|Y THAT IS uppER TP IANGUL
CALLS To necmpo AND IMPRV2 Apg OMITTED

EXTERNAL Tsopya
INTEGER |,
PEAL*8 E(100), X(100)
PO 3 1=1,n
ECL) = 0, 0pp
3 CONTIN
PO 1 1=1,N
ECI) = 1,0np
CALL TSoLy?2 (N, A, Inm, E, X,
No 2 y=1,n
ALCJ, 1) = x(y)
2 CONTINUE
EC1) = 0,0pg
1 CONT INUE
PETURN
10 RETURM 1
LAST carp of SUBROUTINE TNVPTZ,
END

*)

INVERT AN
AP,

.

&10)



r— r—w—*’ v -

DI

SURPOUTINE TSOLV2 (N, LU, IDIM, R, X, *)

INTEGEP M, IDIM
REAL*8 LUC IDIM,N), B(N), X(M)

SOLVES LU*X = B WHERE LU I S UPPER TP [AMGULAR,
TSOLV2 IS A MODI FI CATION OF THF USUAL SOLVE2, wiyoey oy (ove

NnECHP2,

INTEGER |, J, 1 P, | P1, 1M1, NP1, T RACK
DEAL*S SUM -
HP1 =N+ 1

FEO(LU(N, M), EN, 0, 0DP0)  RETUNN 1
X(N) = B(N)/LU(N,N)
IF(M,EN,1) RETURN

PACK SUBSTITUTIOM

PO 4 1T RACK =2,HN
I = NP1 - IBACK

| GNES FROM (N-1) TO 1

[Pl = 1+1
SUM = 0,000
no 3 J=1P1,N
SUM = SUM 4+ LU( 1, J)*X(J)
3 CONT I NU F
IF (LUCT, 1).EN,0,0D0) PRETUPN 1
XC1) = (BC1)=SUM)/LUCT, T)
CONT T NUE
PETURN
LAST CAR? OF SURROUT| NE TSOLV?2.
END

n
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SURROUT INF HCOMPI(MD I M, M, M, NTNTAL, A 1)

[ NTFRER MDIM, M, N
DOUBLE PRECISION A(MDIM,N),U(M)

HOUSEHOLDER RENUCTION OF THE FIRST N COLUMNS OF A

TH UPPER TRANGULAP FORM,

HCOMP1 IS TAKEN FROM CLEVE MOLEP'S SUBROUTINE HECOMP,

WITICH PENDUCES ALL COLUMNS OF THE MATRIX TO TRTANGULAR FNOp,
HCOMPL WAS DESIGNED FOR A SPECIAL PURPDSE, TO MAKE THE FIPST

N COLUMHS UPPER TRIANGULAR, WHILE APPLYING THE TRANSFNRI'ATIONS
TD NTOTAL COLUMMS, ST

MNIM= DECLARED ROW D IMENS TON OF A
M= MUMBER OF ROWS

N= NUMRED OF COLIMNS OF A WHOSE UPPED POPTIOMS ARE T0

RF PEDUCED TO TRIANGULAR FORM, AFTER REDUCT | NN, THE
MATRIX A Wl LL CONTAT N AN M BY N UPPEP TR | ANGULAR MATP | ¥

Il ITS UPPEP LEFT CORNER,

MTOTAL= TOTAL NUMBER OF COLUMNS OF A, THE TRANSFORMAT | ONS
WILLBF APPL T ED TO ALL COLUMMS.

FOR STANDARD LEAST-SNUARES PROBLEMS, NTNTAL=N,

A= M BY NTOTAL MATRIX WITH M,0F.NTOTAL

[ NPUT, MATPIX TO RF REDUCED

OUTPUT, REDUCED MATR I X AND | NFORMATI ON ABOUT REDUCT | NN
U= VECTNR OF LENGIH M

[ NPUI, /GNORED

OUT PUT, | NFORMAT | OM ABOUT REDUCT | ON

DOUBLE PPECISION ALPHA,BETA, RAMMA, NSNDT
P O6K=1,N
FIND REFLECTION THAT ZERDS ACI,K), 1=K+1,...,!"

ALPHA=0,0
PO 1 1=K, M
UCT )=A( 1,K)
ALPHA=ALPHA+U( | )x%2
CONT | NUF
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ALPHA=NSAPT(ALPHA)
PECU(X) . LT, 0,0) ALPHA=-ALPHA
U(K)=U(K) +ALPHA
PETA=ALPHA*U(K)

AK, ) ==ALPHA
IF(RETALEN.0.0 .NR. K,EN, MTOTAL) 6N TO 6

APPLY PEFLECTION Tn REMAINING COLUMNS nr A

KP1l=K+1
N0 & J=KP1,ITOTAL
CAMMA=Q, 0
NO 2 1=k,
GAMMA=CAMMA+U (1) *A( T, J)
CONT INUE
CAMMA=GAMMA / RETA
N0 3 f=K, M
ACLU)=AC1,0) - GAMMA = U(])
CONTINUE
COMT INUE
COMT INUF
RETURN

NACII L, oy, ey
TRIANGULAR RESULT 1SSTNREDINA(IJ\, . coT AE A
VECTOPS DEFINING REFLFCTINONS ARE STORED INUANDREST OF A

END



