
STANFORD ARTIFICIAL INTELLIGENCE N
~~ MEMO AIM-185

~ STAN-CS-73-333

ON THE POWER OF PROGRAMMING FEATURES

ASHOK K. CHANDRA

| ~ ZOHAR MANNA

SUPPORTED BY

NASA CONTRACT NSR 05-020-500

AND

* ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

JANUARY 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

Co i$£3)

= STANFORD ARTIFICIAL INTELLIGENCE LABORATORY January 1973
MEMO AIM-185

COMPUTER SCIENCE DEPARTMENT

| _ REPORT STAN-CS-73-333

]
ON THE POWER OF PROGRAMMING FEATURES

by

« Ashok K. Chandra
Zohar Manna

C ~.
ABSTRACT: We consider the power of several programming features such

as counters, pushdown stacks, queues, arrays, recursion and

L equality. In this study program schemas are used as the model
for computation. The relations between the powers of these
features 1s completely described by a comparison diagram.

This research was supported 1n part by the Advanced Research Projects

Agency of the Office of the Secretary of Defense under Contract No.

SD-18%, and by NASA contract NSR 05-020-500.

The views and conclusions contalned in this document are those of the

author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information

Service, Springfield, Virginia 22151.

..
— Introduction

“ In this paper we consider the problem of comparing the power of

several features used in programming languages. For example, it is

intuitively obvious to any programmer that recursion cannot, 1n general,

“ be replaced by iteration with variables alone, but recursion can always

. be replaced by a pushdown stack. This indicates that a pushdown stack

1s at least as powerful as recursion, and that recursion is more powerful

© than iteration. Thus, from the iteration-vs-recursion standpoint we

would say that ALGOLand PL/1 are more powerful than FORTRAN. The

question 1s whether an intuitive notion of this kind can be understood

L. in a formal-way, and possibly elaborated upon to obtain a better under-

standing of programming features and to enable us to compare their power.

Unfortunately, the problem 1s not so simple. Consider, for example,

\ the programming language of flowcharts, which contain ideal integer

variables, 1.e., their values can be arbitrarily large. .The operations

allowed 1n the flowchart are incrementing and decrementing variables by

> one, and testing to see 1f the value of a variable 1s zero. Such a

simple language with just three variables can calculate all the "computable"

i functions, that 1s, all the partial recursive functions over the natural

| numbers. Thus 1f we add recursion or a pushdown stack to such a language,
j

. the power of the language will not be increased.

This suggests that in order to carry out such a study, we must

= isolate in some way the effect of the programming features, whose power

L we wish to compare, from the values being computed by the program. For
this purpose we consider for each programming language a class of program

- schemas; a program schema may use the control features of the language

2

_ but the basic operations (constants, functioms,and predicates) are

used only as symbols without being specified.
\

— Related work has been done previously, among others, by Paterson and

Hewitt [1970], Garland and Luckham [1971], Constable and Gries [1972],

a Plaisted[1972] and Chandra and Manna [1972]. The classes of schemas
considered in these papers are not 1dentical to ours, but the differences

are not significant. Details of the results presented in this paper

CT can be found in Chandrat's thesis [1973].

Part TIT. The Class of Program ochemas

- A program schema 1s a program in which the data domain 1s not

specified. In addition, the constants are indicated simply by the

symbols 8qs8p «ee , the functions by £555... , and the predicates

« by P,P. 9 . Thus a program schema may be thought of as representing

] a family of real programs. A real program of the family is obtained by

providing an interpretation for the symbols of the program schema, 1.e.,

« specifying a data domain and specifying data elements, functions and

predicates over the domain for the symbols a, / f and IN , respectively.

. In our program schemas we use two kinds of variables: data

o variables, denoted by YsVos eee and boolean variables, denoted by

Z1s%5s . . . Boolean variables can have value either true or false.

Data variables, on the other hand, have values from the data domain

« that 1s specified along with an interpretation for the schema. Corres-

pondingly, we distinguish between two types of terms: data terms and

boolean terms. A data term7 can be built up using the data variables

. Vs of the schema and the individual constants a. and applying the

B
| function symbols t to them. The value of a data term for a given
_ interpretation 1s always a data element. np poolean term & is an

atomic formula or a negated atomic formula, where an atomic formula

1s a boolean value (true or false), a boolean variable or a
—- — 1’

i“ predicate test of the form p(T; + +57.) . Under any interpretation J

the value of & 1s a boolean value, +tyye or false.

-

1. Simple Algol-like Schemas

.. The first class of schemas we consider 1s the class of Algol-like

{ schemas which--can be constructed from statements of the following form
-

(we use standard Algol-like notations):

| (1) start statement START (a)
(11) halt statement HALT (7)

|

(111) loop statement LOOP

-

(iv) assignment statements Vv. ~1
\ i

| Or zZ, «=
i

(v) test statement if othen goto L; else goto IL, .

L, and L, here are labels. In addition we may use begin. . . end

for grouping statements.

4

B The start statement, START (a) , initializes all data variables Y,

to the value a and all boolean variables to true. The halt statement,
~

— HALT(T) , outputs the data value of the term t . The loop statement,

LOOP , causes the schema to loop forever.

u We use &{)to denote the class of all simple Algol-like schemas.

2. Augmented Algol-like Schemas

Co We will also consider Algol-like schemas augmented with features

designed to make the schemas more powerful.

(a) Counters

-_. A counter is a variable whose value is always a non-negative integer.

Counters are denoted by CysChyeve All counters used by a schema are

initialized to zero by the start statement. The statements allowed

L on an arbitrary counter c are:

(1) cc « ctl

(2) if c¢ = 0 then goto L, else begin c¢ « c-1; gotoL, end.
L

We use ec) to denote the class of Algol-like schemas with

counters (it includes the subclass of schemas with no counters),

(lc)to denote the class of schemas with at most 1 counter, and

" ¢(2c) to denote the class with at most 2 counters.

(b) Pushdown Stack

a A pushdown stack 1s a last-i1n first-out store in which a pair of

values of both types (data, boolean) can be stacked. Pushdown stacks
-

are denoted by S1s855 +0 All pushdown stacks used by a schema are

\ initialized to be empty by the start statement. A schema with a stack

»

L p

|

C

can "push" a data value and a boolean value into the stack, and it

can "pop" them (if the stack isnon-empty).

— The statements allowed on an arbitrary pushdown stack s are:

(1) push(s,y, Z) |

_ (2) if s = A then goto L,
5 else begin pop(s,y,z); goto L, end

Here, vy denotes an arbitrary data variable, z a boolean variable,

.« and A the empty stack. The statement " push(s,y,z)" adds the current

values of the variables y,z on top of the stack s . The statement

- " pop(s,y,z) " does the opposite: the one data and one boolean value
— at the top-of the stack s are assigned to the variables y and z ,

respectively, and these two values are removed (popped) from the stack.

~~ We use ~(s) to denote the class of Algol-like schemas with

. pushdown stacks, and similarly for C(1ls) and C(2s) .

(c) Queues

| A queue 1s a first-in first-out store. Queues are denoted by

to PELPYREE . All queues used by a schema are initialized to be empty
by the start statement. A schema with a queue can "add" values at one

end, and "remove" them from the other. The statements allowed on an

= arbitrary queue gq are:
N (1) add(a,y, 2)

o - (2) if g = A then goto I,
else begin remove (q,y, 2) j _goto L, end .

oT The statement " add(q,y,z) " adds the current values of the variable

« ysz at one end of the queue. The statement " remove(q,y,z) '" does the

6

“

| 3 following: the one data and one boolean value at the end of the queue
- | are assigned to the variables y and z , respectively, and these two

| ~ values are removed from the queue.We use C(q)to denote the class of Algol-like schemas with queues.

L (d) Arrays

An array 1s a semi-infinite sequence of "locations" (numbered

0,1,2,...), each of which can take on a pair of values: one data value

Lo and one boolean value. Arrays are denoted by Ayshoy ee . The start
_ statement, START (a) , 1nitilializes all locations 1n arrays to the data

value a and the boolean value true. A location can be accessed by

N-- subscripting the array with a counter. The statements allowed on an

L arbitrary array A are:
(1) Alc] « (y, 2)

" (2) (v,2) « Ale] .

We use @(A) to denote the class of schemas with arrays. Note

] that the use of an array implies the use of counters, that 1s, schemas

in @(A) do have an arbitrary number of counters.

. The class of Algol-like schemas with any or all these features

(counters, stacks, queues, arrays) is denoted by Cs,q,A) .

3. Recursive Schemas

A recursive schema consists of a set of recursivedefinitionsof

the following form:

F,(asa,...true, true, ...) where

Fi (y52q) <= if (vy ZT) then 7, (y,,2,F) else 1 (vy 7. ,F)

Py (yr 2g) <= if 0 (3,05, F) then 7 (7,2 ,F) else 7) (¥,,2,,F))

|

ee———— I ——
: |

“ where Y; represents a vector of data variables, Z a vec tor of boolean
N variables, and F = (Fpse0pl) 1s a vector of "defined function::".

B Each defined function F. may take both data values and boolean values

- as arguments but, for simplicity, we assume that it always returns just

i. one data value. a, (v5 z,,F) is a boolean term and 7. (¥5,2;5F) and

71 (v;,2,,F) are data terms that may use the variables in ys and 2. and
C the defined functions F along with the constant symbols 815855 +++ 1 the

) function symbols £15. . + and the predicate symbols PisPoseee
The value of the schema for any given interpretation 1s the value

of Ey withall its data arguments set to the value of the individual

constant a , and all its boolean arguments set to true. During

- computation, all arguments are passed by value, i.e., the innermost

\ function calls are evaluated first. Note that there are no "global"
variables, and function calls cannot have any side effects, they simply

< return values.

. We use G(R) to denote the class of all recursive schemas.
L

l) 4, Equality
J We also consider schemas in which every boolean term @ may have

L ~~ the form Ty = T, Or TF Ts in addition to the earlier possibilities.
| When equality is allowed in a class &...) , we denote the
= augmented class by &{...,=) . Thus, we use C(=) to denote the class

. of Algol-like schemas with equality, ¢{c,=)to denote the class of

Algol-like schemas with counters and equality, ¢&{R,=) to denote the

- class of recursive schemas with equality, etc.

” :

«_

5. Example

Any two schemas S and S' are said to be equivalent if for every
" Sdve- ee

— interpretation of S and &' , either both schemas diverge (1.e.,

loop forever), or both halt with the same output.

“ Consider the following recursive schema

So F(a) where

F(y) <= if p(v) then v else f(y, F(e(y))) .

“ Note that if we have an interpretation of So for which

n

_ p(g (a))= true for some n >0, and

1
p(g (a)) = false for all i < n ,

-._ -.
then

2, n-1 n

_ F(a) = f(a,f(g(a),f(g (a),...,f(g" “(a),g (a))..-)))

. | Below we exhibit some Algol-like schemas that are equivalent to So .
- To simplify the programs we use an extended Algol-like language, using

regular while . ..do . . . statements, goto statements and if. . . then. . . else...

. statements. All these statements can be expressed easily in terms of

~- our primitive statements. We allow also the statement c¢,« c¢, which

. can be replaced by legal statements for counters by adding one additional

o counter.

For clarity, we add a few comments in the schemas below. Since

boolean variables play no role in this example, we 1gnore their presence

oc — in the comments.

= * - 1 1 1]
—/ 1.e., the interpretation includes an assignment to all constant,

function and predicate symbols occurring in 8 or 1n S'.
-

(a) A simple schema

C S,: START (a);

- while 1 p(y) do vy; «= &(¥y);

[comment: yy, = g(a))

« L: if p(y)) then HALT(y,)

_ else begin y, = a; J), « (yy) V3 © Vy end;

{comment: in the 1-th loop (1 < 1 < n)

0 i i

Co Yo = g (a), V5 = & (a) yy, = & (a)}

while = p(x) do begin J, © g(y,) 5 Yz = &(y) end;
” {comment: in the i-th loop (1 <1 < n)

n-i n 1

“ _ Yo = 8 (a), Iz = g (2),y),=8 (a) }

yy © £30599) 5

— gotO0 L .

‘ (b) A schema with counters

S,: START (a) ;

~- while — p(y) do begin y, + g(yy)s c, = ¢,*1 end;
n

| (comment: y; = g (a), c, = n}
L: if ¢; = 0 then HALT (y,)

. else begin Yo © @j cq - cq -1; Cry © Cy end. ;
‘ while ¢, # 0 do begin y, « g(y,); ¢, « c.-1 end;= ER ol Co 7 pth CLG

— {comment: in the i-th loop (1 <i < n)

n-1

Yo = 8 "(a), Cy = n-i]

vy © T(¥o¥q)

. gotO0 L .

‘
or

10

(c) A schema with a pushdown stack

s,: START (a) ;

while — p(y;) do begin push(s,y;,z); yl «~ &(y;) end;
| n n-1

(comment: y,=g (a), s=(a,g(a),...,g ~(a))}

~~ L: if s = A then HALT (y,) else pop(8,¥,52) 5
.

[comment : in the i-th loop (1 <1 < n)

n-1i n-i-1
y,=6 (a), s = (aga), . . (2)

Yi «= T(v,vy)
— 1 2°71

“

goto L .

(d) A schema with an array

“_. Sy: START (a);

while 1 p(y) do_begin Alc 1 «= (yy,2z);c—ctl;y, —a(y)end;

[comment : yy = g" (a), AIO] =a, All] =g(a), . . .

« Aln-1] =g""1(a), ¢ = n)

L: if ¢ = 0 then HALT (y,)

else begin c¢ « c-1; (Ys 2) « Alc] end;

LN (comment: in the i-th loop (1 < i < n)

- n-i .

. gotO0 L .

“

N 11

L

| (e) A schema with equality
So: 9S :

. 5 TART (a) ;

| while p(y) doy,~ ely),

C [comment : yy = V, = g(a) }

L:ify, _ a then HALT (y,) else y; « aj
whi

ile &(y3) # vp doy, ays) 3
- Yo 7 V3

(@omment: in the i-th loop (1 < i < n)

L os oT-1

: Yo =¥5=8 (a)]

i goto L

- Part II. On the Power of Classes of Schemas

Let Cq and C, be two classes of schemas. We say that

(a) C 1s more powerfyl than ¢& :
1 powerful —29 (notation* Cq 2C,) if for every
schema in <s there is an equivalent s ¢ h e m a

y

(b) C4 and are equally powerful (notation: Cc =) if— RE 1 2

| Cy >C, and C, > Cy » and

(ec) Cy yis strictl pore powerful than ;
p) (notation Cy > Cy) ,

if & > 7

1. The Comparison Diagram

We now consider the interrelations between the classes of schemas

we have defined.

12

CE —————————

Intuitively, anything that can be done iteratively can also be

| done recursively. In other words, we would expect that ¢(R) >¢c() , and
~ C{R,=)> C(=) .That these are indeed true was shown by McCarthy [1962].

Also, as mentioned earlier, one expects that recursion is strictly more

powerful than iteration. Paterson and Hewitt [1970] showed that there

- are certain recursive schemas for which there are no equivalent simple
) Algal-like schemas, i.e., ¢&(R) >¢() , and also &(R,=) >=) .

C- Another intuitive notion 1s that recursion can always be replaced
by a pushdown stack. Thus, if our schemas in G(R) and (ls) do

jae capture the intuitive power of recursion and of a pushdown stack, we

1 would expect that C(R)< (1s) , and similarly, &(R,=) < &(1s,=) . These
) were shown to be true by Hewitt [1970] and by Constable and Cries [1972]. (pe

{ should also ask whether a pushdown stack has power strictly greater than

recursion, or whether they are equally powerful. To state this in

. another way, we observe that recursion involves the use of an implicit

| stacking mechanism. The question is whether or not this implicit stack
really utilizes the full power of a pushdown stack. Chandra [1973]

| answered this by showing that ¢(R)= ¢(ls) , and that &(R,=) = (1s,=) .2/

| J Paterson [unpublished memorandwn] and Garland and Luckham[| 1971] showed
. that CG(c) > (le) . Plaisted| 1979 | proved the surpricing recull that the

addition of just one counter to simple Algol-like schemas adds no power,

: i.e., (lc) = ¢() . However, the addition of a second counter adds

power, i.e., (2c) > (lc) ; and after that, the addition of a third,

fourth, fifth counter, etc., does not increase the power.

4 WJ It can be shown that the power of recursive schemas 1s not affected
by the addition of features such as: (a) recursive definitions

| which consist of simple Algol-like programs with global variablesand local variables as well as recursive calls, or (b) defined
functions which return-not just one data value, but a vector of data
and boolean values.

13

= Constable and Gries [1972] introduced schemas with arrays and

; used a problem suggested by Paterson and Hewitt to show that Q@(A) >2(R).

| Chandra and Manna [1972] observed that the use of equality increases the

power of schemas.

The interrelationships between the various classes of schemas 1s

- shown in Figure 1. In the figure (and all following figures), if there

1s an ascending arc (or a chain of such arcs) leading from a class Cy

C: to a class Co , and Cy 1s above Cy in the figure, 1t means that
" Co is a strictly more powerful class than Cy ", If two classes,

— Cy and Cry » nre not linkedby an ascending chain of arcs, Lhen the

| classes are unrelated, i.e., cy 2 ¢, and C, tC, For example,
~ =) p C(A) , and @(a) ® C(=) . In other words, there is at least
| one schema in (=) for which there is no equivalent schema in @(A) ,

and vice versa. Details of all the results suggested by Figure 1 can

- be found in Chandra's thesis [1973].

From Figure 1 it 1s apparent that schemas with arrays and equality

act as a "maximal" class. In fact, any arbitrary schema with

| equality, counters, stacks, queues and arrays can be effectively
) translated into an equi valent schema WithegualiLy and one array.

Also, one pushdown stack has the same power as recursion, but two glace ko

are strictly more powerful -- they are together as powerful as arrays.

Even the seemingly "weaker" class with one pushdown stack and one counter

has the same power as arrays. Observe that a queue is a more powerful

feature than a stack; actually, a queue 1s as powerful as two stacks

(addition of more stacks or queues adds no power).

14

I | C(A, =)

« cle,=) | | C(A) : C(R, =)

C d . s ee R

b-

{
| A)

L e() = (le)
| cfc) = ¢{2¢c)

C(R) = (C(1s)

_ (A) (1s, le) = Clg) Clq) A) el s,q,0)
N . and similarly, when we add cqualily Go coc elao:

C=) = C(lc,=)

| Cc, =) = (2c, =) |
| C(R,=) = C(1s, =)

@(A,=) = C(is,1lc,=) = C(2s,=) = (C(1q,=) = C(14,=) = C(s,q,4,=) |

Figure 1

15

_ It is inleresling to labe L Lhe vertices ol'lMigure Hinanolbhor way,

« as shown in Figure 2. (Note that Figures 1 and 2 are isomorphic; that,

= 1s, they represent the same relationships). This figure can be treated

as a unlit cube where the axes are_labeled:
Mae

C x-axls: "add a stack and delete a counter",

y-axis: "add a counter", and

z-axis: "add equality tests".

J “7 Aegon)
6 ps »

ale, +) (1s,)

j—

. yd S
| yd (le, =) aN

yd NN

_ cl2c) (1s)
|

Nr=

(he)

Figure 2

|N_—

C—

2. Some Proofs

~ To 1llustrate how the results of Figure 1 are proved, we give an

C intuitive idea of the proofs for the results indicated in Figure J.

16

«

| (A)

¢

~ cle) C(R)

_ i}

§

| ()

Figure 3

<

— In the following we use the result that for any classes Cq , Cy ,

. Cs of schemas, if Cy < Cj, tC, and Cy <Cs_ then C4 <C4.This
follows from the fact that if ¢; < Cs » Cs then there is a schema S

in Cs for which there 1s no equivalent schema in ¢. , and hence no— 2

equivalent schema in (C4 . This implies that Cs LC + Since Cy < Cs /
|

. it follows that Cy <C; . Similarly we have that if ¢ > C, £ Cs

and C, > Cs then ¢; > Cy . Thus, to show that @ (A) >¢(R) >¢() ,
A

@a) > Cc) > ¢c() , and that ¢(R) and c(c) are unrelated, it suffices
C

| to prove that C(A) >C(R) >¢() , @(a) >c(c) >¢() , and that C(R)

and ((c) are unrelated, i.e., (0, (R) pc) and C&(R) £ ¢(c). This

— follows because

¢

e() <c(c) fp C(R) and ¢&() <c(R) imply ¢&() <cC(R) ,

c() < ¢(R) g cle) and ¢()< ¢(c) imply &() < ¢&(c) ,

C(A) > cle) £ ¢(R) and C(R) < @(a) imply C(R) < @(A) , and
C

C(a) > C(R) £ C(c) and Cc) < (A) imply Cle) < @(a) .

It is trivial that @ (A)> C(c) >C() since every schema in ¢()

C is in @{c) , and every schema in ¢{(c) is in @(A) . We also have

17

.

_ &(R) > ¢() since every simple Algol-like schema can be translated

C into an equivalent recursive schema by associating a defined function
~~ with each statement in the Algol-like schema. (A) > C(R) can be

shown by simulating a pushdown stack with arrays using standard

C call-by-value AIGOL compilation (booleans are used to represent the
return address).

—

The interesting part is to show that C(R) and @(c) are

unrelated, i.e., to exhibit a schema S41 in &(R) for which there

is no equivalent schema in ¢(c¢) , and a schema Ss in ¢(c) for

which there is no equivalent schema in (R) .

.“_ (a) Consider the following recursive schema (in G(R)):

SPE F(a) where
—

F(y) <= if p(y)_then y_else £(F(g(y)),F(h(y)))

. There is no schema in ¢(c) equivalent to this. The reason is that

the computation requires storing an arbitrarily large number of

— temporary data values, whereas every schema in ¢(c) has a fixed

. number of data variables.

Consider a class of interpretations tI, } having the following

_ property: for every I , n> 0,

“ (1) distinct terms yield distinct data elements under I, r and

— (ii) p is true only for the terms that contain n occurrences

of the functions g and h applied to a .

C —

The schema 54 on the interpretation I computes the term z, (a) where

-“ TY) — vy , and

x 7,3) = 2x (e)7, (a(x)

18

.

“

For example, Sq under I, and I, computes the terms f(g(a),h(a))

. and £(£(g(g(a)),h(g(a))),t(g(h(a)),h(n(a)))) , respectively. These
ar terms can also be represented as binary trees as shown below:

v (a): f£(g(a),h(a)) is
—

8 f and

g(a) h(a)

«

g (a)1 £(£(g(a(a)),h(e(a))),£(s(h(2)),h(n(a)))) is

| f

f f

« g(g(a)) h(g(a)) g(h(a)) h(h(a))
|

Suppose there is a schema S from C(c) that is equivalent to S, -

~ Without loss of generality we assume that S has no symbols other than

¢ a , ff, g, h and 7p, that the only assignments that use f have the
(_-

form yi © £(y 5533) , and that halt statements have the form HALT(y,) .

i- Consider the computation of S under the interpretation 1 . Since H

1s assumed to be equivalent to Sq it computes the term z, (a) which

~ can be represented as a perfectly balanced binary tree of height n .

Now we consider the computation of arbitrary binary trees 1n which each

&
node corresponds to a distinct value and where in a single step at most

“ one binary function can be applied. It 1s well known, and can be proved

readily by induction, that the number of variables #(T) required to

C

«

p—

.
| compute the term corresponding to such a binary tree 71 jg given by

#(ec) = 1 , and

| # 3 = if (#(T) =#(T,)) then #(T,)+1
else max(4#(T;),#(T,)).

\

This tells us that ntl variables are required for computing the term

7 (a) . For example, three variables are required to compute z, (a) :

¢ vy; <= gle(a)) 5 v2 < hgla)) 5 y; = flypy,)

u vo = eh(a)) 5 yg = h(b(a)) 5 v, = £(ypys) i

.

Now, 1f the schema S has, say, m data variables, then for the

L computation of Te under Io S must have at least mtl data
variables -- a contradiction. Thus no schema in 2(c) is equivalent

he

to Sq

~ (b) Consider the following problem: "given a consuant a , unary

functions f,9 , and a predicate p , find an element x of the form

: i, 3 _
£°(g“(a)) » 1,3 > 0 , such that p(x) 1s false. If no such x exists

then the schema loops forever". In the following we refer to this

problem as the witch-hunt problem.

It is easy to see that schemas in @(c) can solve this problem.

The following 1s one such schema:

20

Co —————————————————_

ol

S,: START (a);

n Ly: Ch = Cy5¥y «© a;
Co Lyiegecys Io - Yq

while ¢; £ 0 do begin c; = c,-1; y, « f(y,) end;

Co if 1 P(¥,) then HALI(y,);
vy © 8(yq);

if , #_0 then begin Cy - c m1; goto12 end;

Co 1 ots

got0 L,.

ee The idea 1s that for a given Cy cy = 0,1,2,3, ...(L,~1oop) , we
LL check the value of p for all possible terms of the form

| Y2 = £ 20g 1 2(a)) in the following order: c, = cc-L O io0w-loop
= However, no schema in @(R) can solve the witch-hunt problem.

U Intuitively, the reason is that no schema in @(R) can compute all

terms of the form £1(gd(a)) , in any order. For suppose there is a

L schema S in @(R) that solves the witch-hunt problem. Then, without
| loss of generality we can assume that S has no predicate other than p ,

and that defined functions in § have no boolean arguments. Tet n

_ be the largest number of arguments of any defined function in S.

Consider an interpretation liye fOr which the predicate p is true

. for all terms. We also require that distinct terms yield distinct data

elements under Li rue y and we claim that S cannot generate all the

terms on the n+l columns described in Figure &4.

| The j-th column, 0 <j <n , consists of all terms £1 (g(a) for
all 1 > 0 . To show this, we divide all terms into 2n+3 sets pp ¢

J J

21

g
oo A

| 0 Ay Ay A) ¢

- | a] g(a) g (a) SEI g (a) all other
” terms

ae 5 By B,
“ |

2 n

f(a) r(g(a)) £(g=(a)) «wo [f(g (a))

2 2 2, 2 2, n
f7(a)) | (e(a))] [ee E)] --- [f(g (a)

- b 5 2 n
‘ 2) 1) [PEE] «oo [2 @)

I L L 2 4
Ea) |e) fee] |e EeNE)

L

Figure Lh

- for O<J<n. The set A, consists of the single term gj(a) ,
the se- onsi Lod
le se-t Bs ¢onsists of the entire column of terms *(gd(q))

) for 1 > 0 , and the set C is the "catch all" consisting

| of all other terms. Now, as the schema S must loop on the interpreta-
tion I. .o , and there are only finitely many sets, there must be some

defined function Fk that calls itself recursively such that each one

of its argmments 1s 1n the same set as in the earlier call. Then, as

the predicate tests are always true, the defined functions called

between such two calls of Fk are repeated in the same order, and with

the arguments from the same sets as before. Hence, there is at least

one column, say J such that no argument of these calls of Fo is

from it. Therefore only finitely many terms from column Jy can be

22

| reached during the computation, 1.e., there 1s at least one term say

| f “(g “(a)) , that is never tested.

Now we change the interpretation I, slightly to ;
| | rue not so true

| i, J
: : 1 “1
in which p applied to all terms is true except that p(f “(g ~(a)))

2 1s false. Then the computation of S on the interpretation
| not sotrue

1s the same as the computation on Ire , 1.e., S will loop on

Lot so true But as S 1s assumed to solve the witch-hunt problem,

4 Ja
C it must halt with output f£ “(g “(a)) -- a contradiction. This proves

_ that no schema in @(R) can solve the witch-hunt problem.

; It 1s interesting to note, however, that the witch-hunt problem

he can 1ndeed by solved by some Algal-like schemas with equality and no

| counters, i.e., by schemas in @(=) (see Chandra [1973]).

_ 3, Number of Variables and Depth of Data Terms

One can investigate further the effect of the number of data

. variables on the power of schemas. It can be shown, for example, that
| w

! for every n, n >0 2

(a) C(R, n var) > ¢(n var)

(b) C(R, 1 var) £ ¢(n var)

(¢) C(R, n var) # c(n+tl var) .

This 1mplies the relations shown in Figure 5. Recall that if there 1s

an ascending arc leading from any class Cc, to another class Cs

it means that Cq <C, :

EN—
Here, " n var " indicates that the schema has at most pn data
variables (in Algol-like schemas) or at most , data arguments
for defined functions (in, recursive schemas).

25

In
«

L

5

i. Simple Algol-like 5 Recursive
«

(no. of variables) > (no. of variables)

2

— 1
CC

1

C_ 0 var

C Figure 5

L

- (a) The result that G(R, n var) >¢(n var) follows by the standard

| process of translating a simple Algol-like schema 1nto an equivalent

.

recursive schema. (b) The recursive schema Sy above 1s 1n
[S

L C(R, 1 var) , but there is no schema in (n var) , for any n > 0 ,
which 1s equivalent to § (c) To show that there ig uo schema in

L ¢(n+tl var) which is not equivalent to any schema in G(R, n var) we
J

| consider the following problem.
"Find an element x of the form £1 (g?(x)) ry 1 >0 and j <n,

| such that p(x) 1s false." We refer to this problem as the restricted

witch-hunt problem. The following schema 53 in (n+l var) solves the
L problem.

[-—

2h

EE

35: START (a);

. Vp = ys v5 = elyy)s + os vp <8);

Co Li ¥2 = ply) then HALI(y)) else y; «= f(y);

- if - 2(y,) then HALT (y,,) else y, = £(y,) 5
L

if - p(v,, 4) then HALT (y, , 4) else y ,, © FV, 01) 3
gotO0 L .

C Our earlier proof shows, however, that there is no schema in ¢(R,n var)

. which solves the problem, and therefore there is no schema in @(R,n var)

which 1s equivalent to 5
- There is no need to investigate how the number of boolean variables

L affects the power of the schemas, since it can be shown that boolean
variables do not add any inherent power to Algol-like schemas or to

*/
L | recursive schemas (with or without equality).

We can further consider how the depth of data terms affects the

power of schemas. The depth |7| of a data term 7 is defined as

’ follows: az =0, y.1 = 0, and [£5(ms -oor | = Temax{fe |, fe |]
Co Ht

| Trivially, =/ ¢(0 var, 0 depth) = ¢(n var, 0 depth) < (0 var, 1 depth)
for all n . It can be shown that for every n > 0 and d > 0 , we

have:

(a) C(n var, a+1 depth) # C(n+l var, 1 depth) , and

(b) ¢{n+*l var, d depth) p C(0 var, d&+1 depth) .

seVW mW mW mmm
Note, however, that owing to the particular way we introduce

pushdown stacks, queues and arrays, at least one boolean variable

1s required to make use of these features.

wi

x*/ Here " d depth " indicates that the schemas use data terms of depth
at most d .

25

-| _ These results imply the relations described in Figure 6. Note that the

figure indicates, for example, that (3 Var= 5 depth) and

oo (2 var, 3 depth) are unrelated.

(a) The first result can be proved by using the restricted witch-hunt

% problem.

(b) The second result can be proved by observing that the following

schema S), in (0 var, d+1 depth) is not equivalent to any

OC schema in ¢(n+l var, d depth) :

8): START(a);
— d, \ .d d

HALT(£(£0(a),5(a),.. »10,,(2)))
rv dl . .

~— where f(a) means I. applied d times to the constant a .

XX 5
| ’ CXS

n var ANCS d depth
0OY1l

> 0 depth

Figure ©

26

LL 4, Discussion

Co It 1s reasonable to ask what it 1s about the various features

we have discussed that makes one class of schemas more powerful than

another. An observation of the arguments involved in proving the

_ interrelationships shown in Figures 1 and 2 suggest three intuitive
factors that determine the power of the various features.

(a) The amount of data space (x-axis of Figure 2 -- "add a stack

‘ and delete a counter"). Simple Algol-like schemas, and even those

with counters and equality, have a fixed amount of data space. This

limitation 1s shown by the fact that these schemas just cannot compute

“ certain terms which are too large. The additions of a data variable

to simple Algol-like schemas increases the power, as may be expected.

. Recursive schemas act as 1f they had an unbounded amount of data space

bo available to them, as do schemas with stacks, queues or arrays.

(b) The control capability (y-axis of Figure 2 -- "add a counter").

The control capability of a schema signifies the ability of the schema

1 | to decide what to do next. Boolean variables and counters are examples
of features that help in making such decisions. Boolean variables

L however add no inherent power, while two counters add as much control

| power as one might want. A pushdown stack provides, in addition to an
unlimited amount of data space, some control capability because a stack

| can simulate a counter, but 1t does not have as much control capability
| as two counters. A queue, on the other hand, provides in addition to

. unlimited data space, as much control capability as two counters.

27

| One can also consider other programming features that provide

control capability. One such example is the boolean stack which is a

: pushdown stack consisting entirely of boolean values (see also Green,

Elspas and Levitt [1971]).

“ (c) The structure of terms (z-axis of Figure 2 - "add equality").

In our discussion we observed that the addition of terms containing

equality increases the power of schemas. This illustrates that if we

(enrich the structure of terms allowed we may increase the power of

schemas. On the other hand, 1f we restrict the structure of terms,

such as by limiting the depth of data terms, we may decrease the power.

-

*/
A boolean stack 1s strictly more powerful than one counter but

strictly less powerful than a pushdown stack or two counters. Two

boolean stacks, however, are just as powerful as two counters (as
1s also one boolean queue).

28

| References

| CHANDRA [1973]. A. K. Chandra, "On the properties and applications
.

of program schemas," Ph.D. Thesis, Computer Science Dept.,

Stanford University, Report No. C8-336, AI-188 (February 1373).

_ CHANDRA and MANNA [1972]. A. K. Chandra and Z. Manna, "Program schemas

~ with equality," in Proceedings of the Fourth Annual ACM Symposium

on the Theory of Computing, Denver, Colorado, (May 1972), pp. 52-64.

CONSTABLE and GRIES [1972]. R. L. Constable and D. Gries, "On classes

of program schemata," SIAM Journal on Computing, Vol. 1, No. 1

L (March 1972), pp. 66-118.

a GARLAND and LUCKHAM [1971]. S. J. Garland and D. C. ILuckham, "Program

schemes, recursion schemes, and formal languages," UCLA report,

C No. ENG-715k, (June 1971).

GREEN, ELSPAS and LEVITT | 1971]. M. W. Green, B. Elspas and K. N. Levitt,

C "Translation of recursive schemas into label-stack flowchart schemas,"
preliminary draft, Stanford Research Institute, Menlo Park, California,

b (June 1971).
{_

HEWITT [1970]. C. Hewitt, "More comparative schematology," Artificial

| Intelligence Memo No. 207, Project Mac, M.I.T., Cambridge, Mass.,
(August 1970).

3

| LUCKHAM, PARK and PATERSON [1970]. D. C. Luckham, D. M. R. Park and
M. 5. Paterson, "On formalized computer programs," Journal of

|) Computer and Systems Science, Vol. 4, No. 3, (June 1970), pp. 220-249.
McCARTHY [1962]. J McCarthy, "Towards a mathematical science of

| computation," Proc. IFIP, 1962, pp. 21-34.
PATERSON and HEWITT [1970]. M. S. Paterson and C. E. Hewitt, "Comparative

_ schematology," in Record of Project MAC Conference on concurrent
systems and parallel computation, ACM, New York, (December 1970),

pp. 119-128.

PLAISTED [1972]. D. Plaisted, "Program schemas with counters,"

Proceedings of the Fourth Annual ACM Symposium on the Theory of

Computing, Denver, Colorado (May 1972), pp. 44-51.

STRONG [1971]. H.R. Strong, Jr., "Translating recursion equations into

flowcharts," Journal of Computer and System Sciences, Vol. 5, No. 3,

(June 1971), pp. 254-285.
2Q

