STANFORD ARTIFICI AL INTELL|GENCE LABORATORY
MEMO AIM-184

STAN-CS-73-330

AXIOMS AND THEOREMS
FOR INTEGERS, LISTS AND FINITE SETS
{ IN LCF

4

BY

MALCOLM NEWEY

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

JANUARY 1973
COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UN IVERS ITY

STANFORD ARTIFICIAL INTELLIGENCE LABGRATURY JANUARY 1872
MENMO AlM-184

COMPUTER SCIENCE DEPARTMENT
REPORT CS-330

Axioms and Theorems
for Integers, Lists and Finite Sets
in LCF.

by

Malcolm Neuey

ABSTRACT:

LCF (Logic for Computable Functions) is being promoted as a
formal | anguage suitable for the discussion of various problems in
the Mathematical Theory of Computation (NTC}. To this end, several
examp les of MTC problems have been formal i sed and proofs have been
exhibited using the LCF proof-checker.Houever, in these examp | es,
there has been a certain amount of ad-hoc-ery in the proofs: namely,
many mat hematical theorems have been assumed without proof and no
axioniatisation of the mathematical domains involved was given. This
paper describes a suitable mathematical environment for future LCF
experiments and its axiomatic basis, The env i ronment deve | oped,
deemed appropriate for such experiments, consists of a large body of
theorems from the areas of integer arithmetic, list manipulation and :
finite set theory.

This research was supported in part by the Advanced Research Projects
Agency of the Off ice of the Secretary of Defence under Contract S0-183 and in
part by the National Aeronautics and Space Administration under Contract
NSR _85-0828-588.

The vieus and conclusions contained in this document are those of the
author and should not be interpretedasnescessarily representing the official
pol icies, ei ther expressed or implied, of the Advanced Research Projects Agency,
the National Aeronautics and Space Administration, or the U.S. Government.

Reproduced in the USA. Available from the National Technical
Information Service, Springfield, Virginia 22151. Price: full size cobu
$3.00; microfiche copy X0.95.

-
.
-
..
1
2.
.
. 3.
4.
5
.
6.
7
8.
[.
18
-

Axiom and Theorems
for Integers, Lists and Finite Sets
in LCF.
by

Malcolm Newey

CONTENTS

. Introduction

Theorems from NO Axioms and a
Propositional Logic

Individual Equality and Definedness
Natural Numbers

. Integers and Arithmetic

Lists and S-Expressions

. Finite Sets

Conclusions,

References

. Append i ces.

PAGE

12
16

18

24

1. INTRODUCTION

By LCF, I mean the Milner version of a logic proposed by Dana Scott in
1969, mechanized by Milner in 1971, anddescribed by Milner in (1,2}, [1] is
actually the user’s manual for the LCF proof-checker which has been the vehicle
for generating formal proofs in the logic.

Since the development of the proof-checker, LCF has been successful Iy
applied to various traditional problem areas of the Mathematical Theory of
Computation, The principal experiments have involved program semantics,
correctness of programs, termination of programs and compi ler correctness
[2,3,4].

In each of the examples reported a machine checked proof was generated
ithich increased the reliabi | ity of the solution enormously. However, each proof
al o made a | arge number of assumptions in the forms of unproved theorems anci
redundant axioms. Although it can be demonstrated that the particular
assumptions involved do not invalidate those experiments, it is clear that ths
proofs would be considerably more reliable if a solid axiomatic theory was
already avai table to give all the required background results.

The three part i cu | ar areas of nathematicalknow | edge whicharedeve loped
in this paper, namely integer arithmatic, list manipulation and a theory of
finite sets, are very important in computation, Moreover, in proving
assertions about programs, these thecries provide most of the mathemat ica |
material uhichuould be classified as background results.

The current project has been to develop a very large theorem bank wuh i ch
wil | act as an appropriate mathematicaienvironment for future applications of
LCF. So far over 328 theorems have heen proved (with the aid of the LCF
proof-checker, of course) from the axioms given in this paper,

Although there is no distinction possible (in the LCF system) be tueen
axioms and definitions (both are declared as AXICMs), effort was made in the
axiomatisation to introduce neu functions as terms of the logic, This strategy
makes it easier to demonstrate consistency for the sets of axioms presented.
Simi lar lu, in the presentation of AXI(Ols a contrast is effected by label | ing
them either axioms {AX) or definitions (DEF).

The large body of theorems, alluded to above, is organissd as a sequence
of appendices. Al | the theorems of any agpendix depend on the same group of
axioms or definitions and &ppear in an order which is appropriate for efficient
proof of the whole group (by makinguse of the theorem-using facili ty of LCF).
Note that the indentation of theorems is only to make the page layout a | i ttle
prettier.

2. THEOREI'S FROM NO AXIOMS AND A PROPOSITIONAL LOGIC

— A= - e il

Appendix 1 gives a number of theorems that require no axioms (strictly -
no nonlogical axioms) for their proof in LCF. Al | can be proved in a feu | ines
but it shortens and so helps to clarify later proofs if they are available.

The theorems
Yo p-TT,FF=p
vp . p=UU, Ul=UU
[Ax.UUT =UU

are important as pernianen t members of the simpliiication set of the LCF proof
checker. It is also worth mentioning that the block of results exempt if ied by

p-TT,UU=FF |} TT=FF

are designed to make use of the proof by contradiction facility in LCF which
‘knows’ that TTsFF (and a few similar wffs) is a contradiction.

A function from and to the domain of truth values which represents the
logical NOT operation is readily defined in LCF as

wDEF 2.1 = = [DAx.xaFF,TT]

Appendix 2shows that i t behaves according to the truth table

x | =X
_____ +___.__
|
TT | FF
\

FF | TT
uu | uu

Unfortunately there is no such definition possible to give a suitab |e
mean ing to the logical AND or the logical OR operators, The truth table we ‘ould
| ike for OR, say, is given as-

(A8]

We therefore axiomatize the relation as below and note that each axiom
is trivially faithful to the above truth table. Moreover the theorems of
Appendix 2 show the whole truth table is derivable,

xiekAX 2.2 VP, PuTT=TT
KkWAX 2.3 YP. PVFF=P
JakAX 2.4 VP. PvUU=s (P-TT, UU)

An appropr i ate definition for logical AND is nou possible (see below)
in terms of the OR operation. We also give an explicit definition of
eyuivalence. The results of appendix 2 give the truth tables for these
operators shown belou.

s DEF 2.5 As Dx Y= ({=x)vi=y))]
xxDEF 2. 6 = = [Ax y.xay, (y=FF, T7)]

Y y
xny | TT FF W x=y | TT FF W
______ $ommmmm oo e —m e
TT | 1T FF W T || T FF WU
x FF : FFFF FF x FF |] FF 1T W
uu I‘ uu FF WU uu I‘ uu uu uu

3. INDIVIDUALECUAL ITY AN5 DEF | NECNESS

== =ZT=SS=S=S=SSS SSE=ZSX®SE OEES SEZ=SSESSS=SS=S

In the domain of individuals of the logic, weuwant (very often in
practice) to utter sentences which contain terms such as *x is the same as y’.
For example we could require a function

f = [\, (is-the-same-asix.al-b,g(x)}]
or wuemightuant a sentence such as

~(is-the-same-as(x,yl):: glx,y)=hix,y)

The =" connective of LCF is the most obvious candidate but it cannot be
represented by an LCF term since it is not monotonic. What we want is a two
p | ace predicate *=" which

i) is undefined exactly uhen one (or both)
of i ts arguments is undefined,
and otherui se
ii) has the value TT ifandon |y if the two
arguments are the same elemnent (not UU).

Such a predicate, obviously monotonic, is possible nith appropriate domains of
individuals (s e e below hut aswiththe logical operators AND and OR, this
‘caomputable equal i ty cannot be defined butnust be axiomatised. The fol lowing
capture the desired predicate:

sekAX 3.1 vV X. ((><=x)-a>x,UU)sx

ek AX 3.2 vV X y. {x=yl:: x=y

AxkAX 3.3 Vx y. {x=x)={{y=y)~>TT, U0} ,UU= (x=y) >TT, TT
%I AX 3.4 (UU=UU) =uU

First note that this equality predicate for the dormain of individuals
and the logical equivalence predicate defined in the last section are of
different types (in the technical sense) and are only given the same nane
because of shortage of symbols, Asuith the symbol UU (which denotes an
individual, a truth value and an infinite number 0 f functions of different
types) the particular predicate intended by = can be determined by context.

The role that the first three axions play is quite straightforuard: -

3.1 says that the ="relationis reflexive on al | individuals

except UU;Tteausnotningabout Ud=UU;
.2 says that the relation is cniy true in the reflexive case;
.3 interpreted in the | ight of 2.4, this axiom Gives us that

if neither x,y are LU thern x=y is either TT or FF; It

also gives that if x=yis T7T or FF then neither x or y is

the undefined element.

3
3

The axiom 3.4 is not really necessary in that if there is any clement
in the domain of individuals (distinguishable frem UU) then 3.4 fo Ilous from
3.1-3.3 . For, supposing X to be distinguishable fromUU , X=UU is =
contradict ion andsoue argue by cases on UU=UU: [f UU=UU=TT then X=UUsTT by
monotonicity and XsUU by axiom 3.2 ;IfUU=UU=FF then X=X=FF by monotonici ty
and X=UU by axiom 3.1 ; Since the TT and FF cases lead to contradictions we
have UU=UU=UU.

Although we are indeed only interested in nontrivial domains ue want to
be able to prove a body of useful theorems about equality without mentioning
any particular elements, 3.4 is needed to prove several of the theorems of
appendix 3 and this forces us to add it. For example, the theorem

vx. X=UU= uu
can not fol low from the first three a&xions since in the trivial domain of just

UU, e can have UU=UU=TT and the ax i omz are sat i sf i ed.

X=Y can always be deduced frcmA=Y=TT as prescribed by the axioms, but
we a | so eas i | y get theorems for go i ng theotheruay

X=Y, X=X=TT } K=V=TT
X=Y, Y=Y=TT f X=Y=TT
and 2 versions of the commutativeiau for =’
VX Y, X=Y = V=X
X=Y=TV } Y=X=TV

The fact that every element except UU is equal (=) to itself, gives us
the definedness predicate for individuals by definition,

s#xDEF 3. & a = [Ax. x=x]
uhereduwil lbe TT on allindividualsexcent UU and I UU wi |1 be UU.
Appendix 3alsogives useful th:orens about t h e dpredicate. Note

especially the fo | louingtheorems whichare extreme | yimportant whenarguing
by cases on the definedness of someindividual:-

d{X)=FF } TT=FF d{x) =UU } X=UU ,

It was inferred above, tha t the axicns for =" dictate some structure
for the domain of individuals. This structure is sinply flatness or
discreteness {(uhich means that for anyeiement X, if YeX then Y is either UU or
X itself). The fol lowingtheorens show that this is so and it is asserted that
flatness isn’t a high price to paufor thenot ions of equal i ty and definedness.
in fact, Scott, in his original pronosail suggested that this was a reasonable
assunipt ion.

X=Y=FF, X<Y b TT=FF
30X =TT, Xe¥ b =Y

5

4. NATURAL NUMBERS

The natural numbers can be axiomatized by the following four axioms and
four def ini t ions:

sDEF 4.1 Z = D x=08]

Wt AX 6.2 2@ =177

wxlEF 4.3 isnat = [oF.[Dx. Zix) »TT, F {precdix)}]]
wxnAX G4 VX.isnat(X)::Z(X)-0, succipred(X)) =
Tk AX 4.5 VX.isnat{X)::Z{succ(X))= FF

wxAX 4.6 VX. isnat(X)::predl{succi{X))= X

wxDEF 6.7 1 = succi(B)

vexDEF 4.8 2 = succll)

where the axiomatised quantities are the individual 8", the function ‘“succ’
and the f unc t i on ‘pred’ .

A glance at appendix 4 shous that many ususal properties of the natura |
numbers are provable. In particular, the following ones:~

i snat (B)= TT

isnat(X)=TT |} Z(succ(x})=FF

i snat (X)=TT } isnat(succ(x))=TT

isnat (X) =TT, isnat{Y)=TT,succ{X)=succlY) F X=Y

g(@)=TT, V¥x, isnat(x)::ig(x)iiglsucc(x))=TT F Vx.isnat (x)::g(x)=TT

which approximate PEANO Axioms for natural numbers,] use the word
‘approximate’ since the free variable *g” in the induction theorem can only be
instantiated to a continuous function. Houwever , because domain of individuals
we use is discrete, if F is any function on just the natural numbers, it can be
extended to a continuous function by definingF(UJ) to be UU. Hence theorems
which fol fou from the Peano postulates in usual logicsuil | be valid (perhaps
withrelativisation) in this LCF environment,

See al so appendix 5 where a proof of the induct ion theorem i s given as
an exanip | e of a technique of using Scott induction to prove relativised

assert ions. It should also be noted that this induction theorem can be applied
to prove assertions of the form

Vx. i snat {x):: h{x)=k(x)
by instantiating g with the term [Ax.h{x}=k{xJ] and proving
hi{B)=k (B)=TT, ¥x. isnat(x):: hix)=k(x):: h{succ(x))=k{succ(x})=TT
Note that this doesn’t mean that the following sentence is a theorem:
h(B)=k(8), Vx.isnat{x)::h{x)=k{x)::h{succ(x))=k(succ(x))
F ¥x. isnat{x)::h(x)=k({x]

for consider the functions h = [Ax,UU] and k = [x.Z(x)-UU,B],
B

— o [

————%

Similarly, the instantiation ge[Xx.h{x}=FF,TT] means that the theorem can be
applied to attack goals of the form

V¥x, ienati{x):: hix}sFF

We would now like to argue (informally) that there are no non-standard
models satisfying the axioms. le already have that succ”{B) behaves as the
integer n so we need only prove that the set {succ"(8)} exhausts the set of
things for whichisnat” is true.

Reasoning outside LCF we can say

pred (x)=y, isnat (y)=TT, i snat (x)=TT} x=succly) is provable:
Hence, for any integer n,

pred"(X)=8, isnat{X)=TT | Xssucch (8) is provable;

But we know from the recursive definition of isnat
if isnat(X)=TT then pred”(X}=3 for some n;
o) i snat (X} impl ies X=succ™{B) for some n.

It is clear from the various preceding comments that the set of axioms
given is consistent and a faithful representation of the natural numbers, le
now cons i der redundancy i n the ax i oms and note

4,2 is terse and basic: Without it is is not possible to derive,
isnat(B)=TT or even that there exist any natural numbers;
4,4 may not be condensed to Yx. Z(x}-8,succlpred(x})=x a s

there may be elements in the domain of individuals on which
*pred is undefined and so (noting that succ (UU)sUU will be
derivable) ue get a condradiction.
4.4 cannot be weakened to either of the sentences
Vx, succ(pred(x))ex ; Vx, i snat (x)::succ(pred(x))=x
Wi thout making a commitment to the existence of an element
given by pred(8), If the axioms are to be used as a base for
the integers this is OK but if the only numbers are to be the
na tura | numbers then we wou | dwant pred (8) =UU to be true,
4.5 is needed to get the distinctness of succ™(8) and succ"(8);
Without the axiom at all, it is not possible to show that @
and 1 are not the same element. With only Z(1)})=FF in its
place, it cannot even be reasoned that 0 and succ{succ(8))
are distinct;
4.8 is a basic property which cannot be derived from the other
axioms.

It should be noted that the functions “succ” and ‘pred’ are only
partially specified in the natural number axioms since we want them to be
defined appropriately when we axiomatize the set of integers (both positive and
negative).

Care has been taken in assembling the appendix of theorems to exh i bi t

the role that equality plays in the axiomatisation, The first group of
theorems depends only on axioms 4.2 to 4.8 which do not mention equality or
def i nedness. The later theorems require the equality axioms and 4.1 as well

for their demonstration.

5. INTEGERS AND ARITHMETIC

dektAX 5.1 ¥x. isnati{x):: posix)sZ{x)-FF,TT
stk AX 5.2 VX, posix)isisnatuasr
JdeichX 5.3 ¥x. posimns(x)) = pos(x)-FF,Z{x)-FF,TT
wkAX 5,4 V x, DOS(X)*TT,TT =isint(x)=TT,UU
sxnAX 5.5 Vx. isint (x)=mns{mns{x)},nns{x)=isint (x)-x,UU
sxrAX 5.6 Vx. succ{x)zmns{predimns(x)))
*kAX 5.7 Vx. pred (x)=zmns(succmns(x)))”
e AX 5.8 Ax. isint{x)=TT,T7] = d
The interpretation intended here is that a positive integer *n” , say,
is represented by succ”(8) and that a negative integer “-n’, say, is

represented by pred™(8).0bvious i y'wns” is the unary minus operator and “pos”
i s the greater-than-zero predicate. Appendix six gives a large cot lection of
basic, but useful, theorems provavle from the axioms of sections 3,4,5. Note

that the functions “isnat”, *pos”, *nns”, “succ” and ‘pred’ are all undefined
where ‘i sint’ i sn’ t true.
Just about al | that Wi | | be claimed about the above axioms for integers

in LCF is that they are consistent ({since each is true in the standard
intepretation of the integers) and the usual theorems can be proved using then;,
Because they are just a bunch of suitable properties which together do the job,
no individual deserves comment.

It isreadily demonstrated that {succ"(@}U{pred™(@) } is the
same set as{x|isint{x}=TT}as fo | lous:
Suppose isint (X)=TT;
From AX5.4 we get that pos{X) must be TT or FF:
If pos (X)=TT then isnat(X)=TT and co X=succ"(B) for some n>0;
I f pos (X)=FF then isnatinns (Xi}=TT and so nins (X)=succ™(@) for
some n2@ giving Xsmns(succ™(B)}:
But [Ax.mns(succ(x}) 1=0x. pred (rns{x))] so nwegat Xzpred™(8);
Hence isint (X)=TTimplies X=succ® () v Xzpred” (B) for some n>8.

Also we see that isint (succ™{8))=TT for al im28 from the theorem
isint(X)=TT F isintisucciX))=TT
and isint {(pred™(8))=TT for al | w23 {romthe correspond i ng theorem

isint(X)=TT F isint{pred(X)i=TT

Al though none of the theorems of appendix 6 are deep, one can see hou
many important simple relations there are between the objects axiomatised in
this section.

The main induction theorem for integers is simply stated thus:-
g(B) =TT, ¥x, isint{x)siglsuccix)i=gix) F VYx.isint(x)::ig(x)=TT

To prevent confusion arising fromtaz sinilaritybetueen this theorem and
the induction principle for natural rusters, note the fol lowing NON-theorem: -

g(B)=TT, Vx. isintOadsigixdiigisuccixi)=TT | ¥x.isint{x)::g(x)=TT

3

~—

—

r—

The discussion of thecorrespending induction principle for natural
numbers introduced a technique uhich is appropriate, in this section alsa ,for
attacking goals of the form V¥x.hix)=kix) using such a rule. That wasta
instantiate the “g” of the theorem with the term [hx.h({(x}=k{x}]. Practice
shows, however, that it is economical to restate the theorem so as to
incorporate the idea :-

h(B)=k (8},
Vx.isinti{x)::3{h{x})=TT,
Vx. isint{x):: 3k (x])=TT, -~

Vx.oisint(x)i: (hix)=ki{x)):h{succ (x)) =k (succ(x)),
Vx. isint{x)ss (hix)=k(x)J::hipredix)) =k {predix)),
Fowx isint(x):: hix)sk(x);

Although this is considerably more cumbersome, each notion expressed by ipe
antecedents must be proved any either case and so the economy lies in not
having to prove by nested cases arguments

Vx. isint{x):: (h{x)=k(x})=(h{succ{x))=k(succix)))

With the integers axiomatised satisfactorily, we proceed to definition
of the basic arithmetic functions and gredicates: -

Functions:
w»xDEF 5.9 + = [of, [Dx y, Z{y)=isint (x)ax,UU,
pos {y)-C (succ (xJ, pred {y)), G (pred(x),succly))]
wx0EF 5.18 - 5 [Ax y.x+mns{y)]
#xDEF 8,11 % = [ab. Dix y. Z{y)sisint (x)=8,UU,
pos (y)aG{x,prediy))+x, Gix,succlyl))-x]]
wnDEF 5.12 /= laGy [Xx yo Z{y)=aUL,Z (x) = (isint (y)=8,UU),
pos (x)-pos(yl~ pos{y-x)-2,succ (G (x-y, y)),
mns (G (x,mns{y))), mns(G{mns(x), ylil]
wxDEF 5,13 ® = [Axy.x-({x/ylwy) 3
%[DEF 5.14 Fac = [oG. (x. z (x) =1, pas (x)+xxG{x-1),UU1)
w%DEF 5.15 Look = {aG. [Ax f j. plx)=x,G{f(x), f,)]}
Predicates:
+:DEF 5,18 > = [Ax y. posix-y) 3
wx0EF 5,17 2 = [Mxy, Z(x-y)=TT, pos Ix-y) |
*%0EF 5,18 <= [Ax y. yox]
%%UEF 5.19 < = [Ax y. y2x]
#%x0EF 5.28 even = [Dx. z (xe2) |
wxDEF 5,2 odd =[X\x, Z(x@Q)-)FF,TT]
sx0EF 5,22 bug = [oG. Dix y p. oyl =TT, p(x) =G (x+1,y,p) ,FFI]
*%0EF 5,23 beq = [ab. Ax y p. (x>u) =FF, 5 (x)-TT,G(x+1, 4, p) 1)
xx0EF 5.24 Pr= [Ax., [Ay.{y>1)-bugiZ, y-1, Dz lyez) =8-FF, TT1),

FFl {x28 -x,mns ix) }]

3

Most of these definitions are self explanatory and the others become
obvious with a few points of explanation:-

i) Y/ i s integer division, of course, and ‘e’ is the ‘mod”
operator which gives remainder on division. These are
defined in the norma | manner for posit ive integers and
are extended (to operations involving negative integers)
in such a way that thesign of x/y is a | ways appropriate
algebraically and the signof xey is the same as the
sign of x. This choice enables the reconstruction of a
number from it squotientandremai nder iwi th respect to
a given divisor },

ii) ‘Fac’ is the factorial function and is only defined for
non-negative integer arguments.

iii) Lock{x, f,p) yields the first integer y (if any) in the
sequence {x, fx, ffx, fffix,} which satisfies the
predicate p (provided no previous member of the sequence
caused p to yield UUj.

iv) ‘buq’ stands for Bounded Universal Quantifer and ‘beg”
denotes Bounded Existential Quanti f ier and are meant to
take the place of regular quantifiers in numeric proofs.
The importance of bug comes from the pair of theorems:

=TT

bugiX,Y,pl=TT F VYz.zaX:i:Y2z =
(=TT

iplz)
Vz.z2XesY2zeip(2) =TT b bug(X,Y

X, Y. p)

A similar result for *beq” is expressable as the meta-
theorem that (Provided p is total on the range <X,Y>)
beqg(X,Y,p)=TT IFF 3 integer in <X,Y> that satisfies p.

The totality proviso in thisresultisessential,forif
p (n)=UU and p (n+1)=TT then beq(n, ntl , p)=UU even though
there does exist an integer in the range which satisfies
the given predicate.

Although the predicate uhich gives TT exactly uhen there
is an appropriate element in the range is definable as

[xG. Dy puxsy=TT, 5 (xIvG (x+1,y,p) 1],

DEF 5.23 is preferred because of the useful relationship
between that version of beq and the Look function.

v) Prix) is TT if either x ornmnns(x)i s a naturalnumber
which is prime in the usua! sense (not 1). Pr is a total
predicate over the integers.

vi) Note that all the functions and predicates take at least
one argument which is of tupe “indi vi dua I, Al | these
functions (except Look)kecone undefined when appl ied to
individuals which are not integers.

13

-

— r"

r~——1

Appendix 7 contains a rather large collection of results that foliow
from the results on integers and thedctinitionslisted above. There are basic

theorems about all of the functionsanu predicates except <ands< If &
problem contains these predicates thentine definitions 5.18 and 5.19 should be
app | i ed to transf orm the goals to ones containing>and2,

We have already introduced 2mathematical induction theorems whickh
require, for their applicat ion, steps of the forus: -

glx}) b glsuccix)) ¢(x) F glpredix))
Such statements are often as inconvenient to prepare as the resul t ue wish to
establish. A ct u a | ly, we want io nodel, in LCF, that form of mathematical
induction given (in predicate calculus) by:-
¥x. vy, lysx A y23) 2 ply)) o plx) } > [¥x. x28 2 p(x)]
The obvious problem about what to do iiith this in LCF, is uhat to do uith the

nested quantifiers. Fortunately, the nested quantifier is bounded and so we get
the LCF version of the theorem as:-

vx. x20:: buq(@,x-1,P)::P(x)=TT F V x . x2B:: P(x}=TT

Actual ly a more primitive form of the theorem was needed to prove certain
resul ts about divisionwuhichpreceded the work on re | at i ons and “bug”,

Two more functions whichuwil lbesinitar ly treated are the sum and
product of a finite sequence - the bigSIGHA and big Pl notation of analysis.

#xDEF 5,2 Sum = [aG. [Ax y f. y<x = 8, f {x)+6(x+1,y, f}1]
%»0EF 5.26 Prod = [aG. Ak y foy<x = 1, f (x)xG{x+l,y,)11

il

6. LISTS and S-EXPRESS IONS

= mmE o= S=SSTISEE==X

Sincelists are a specia | case ¢fS-expressions, We proceed uwith an
axiomatisation of the more general object.

%ikAX B.1 i ssexp(UU)= UU
SeekAX 6.2 issexp(NILY= TT
wxDEF 6.3 nul | =[x x=NIL]
wxDEF 6.4 atom =[Ax. issexp(x)=null{x), TTI
deekAX 6.5 ¥X. a tom (X) : : head (X)=UU
snexAX 6.6 V X. atom(X):: tai | (X)=UU
wkkAX 6.7 VX Y. head(CONS(X,Y))ES(‘)‘)*X,UU
JxiAX 6.8 VX Y. tai | {cons{X,Y)}=a{X)=Y,UU
xxxAX 6.9 ¥X. cons (head (X) . tail(x)i=zatom(X)-UU, X
KhekAX 6.18 d = [oG. [wx. atomix)-TT,Glhezdi{x))-G{ta I(x)),UUI]
Note first that AXB.1 is valid for a lldomains wh i ch t-rave def i ned
individuals other than S-express ions - the most common circumstance. In

si tuat ions wuwhere all individuais are S-expressions it uould be consistent to
say that issexp (UU)=TT but it would he unlikely to give any advantage over
postulating issexp (UUJ)=UU. Hence, fcr the sake of proving some handy theorems
about S-express i ons {uh i ch must be true whenever NIL is not the only atom) we
assert 6.1 instead of leaving issexp{UU) unspecified.

The purpose of axiom £.18 is to elimnate { from models) any
structures which are infinite. This aisomeans that circularity (uhichis
possible in LISP, for example) is ruled out, As an i llustration of the
implications of this axiom, a theoremis proved in appendix 8 which gi ves that
if head(X)=X then XsUU. A moreconslete result about circularity is discussed
below using the notion of subexpression.

There is one other debatabIe point about these ax i oms. T ti s that we
have, as you may have anticipated frcm the earlier discussion o f equality
between individuals, adopted. the doctrine of discreteness for the domain of
S-exyressi ons. The opposing point of viei is that a term such as cons(UU,X)
(uhich clearly must be ‘under’ both the terms cons{A,X) and cons(B,X) for arty
individuals A &B) i s not the same as LUand, moreover, tai | (cons (UJ,X})=X. As
far as the relative pouwers of the oppesing systemns are concerned, it seens that
most theorems are identical, but there are a some notions expressab le nlre
simpty in one system than the otrer. Thebig argument in favor of the above
set of axioms is that with discreteress c3rnes the notion of equal ityas
expounded earlier. T he only tricky partapout amend i ng the above ax i oms to
al low for the case where cons{UU,X}=UU is the problem of excluding the infinite
S-express i ons.

Append i x 8 con tainstheorensatoutthe functions issexp, head, tai l,
cons, atom and null. We mention here only an induction theorem for

S-express i ons: -

V xy., g(x):: g(y):: glconsix,y)) =TT,
Vxyoatom(x)::gxdeTTh Ve 30 gld=TT

Fol lowing LISP, a list is a special case of an S-expression, namely one
which transforms to NIL after some number of applications of the tai | operator.
As such, lists are easily defined.

#x*%DEF 6.11 islist = [&G.Dwx. nul | (x)-TT,atom(x)-FF,G(tail(x})}]]

As usual, a number of theorems form an append i x (39} but we give an
induction theorem locally.

Yxy . dx)irislistlyli: g(y):: alconsix,yl)=TT,
gNIL) =TT k vx. islistix)es gi{x)eTT

A number of usual orerations on lists and S-expressions are given with
some others that foreshadcuw the treatment of sets in the next section of this
report.

%xDEF B.12 rev = [DX.revz (X,NIL) I
#*xDEF 6.13 rev2 = [«f. [Axy. nul | (x)-y,G{tail(x),cons{head(x),y))]]
%%0EF B.14 & = [&G.[Axy. nul | {x}-y,cons(head(x),G(tail(x),y))l]

%xDEF 6,15 ANDmap= [&G. [Dx p. isli st (x)=
(nuII() =TT, plhead(x))-G(tail(x),p),FF),UUI]
(oG Ax peislistix}=
(nul 1 (x)=FF,p(head(x))-TT,G(tail(x),p}),UU]]
%%0EF 6. 17 FNmap = [aG. [Ax f.
(nul 1 (x)=NIL, cons(fthead(x)),G(tail{x),f)))]]
w&DEF 6.18 FRUNE = [aG, D ponul | (x)-NIL, plheadi{x))-G(tail (x),p),
cons(head(x),G{tail(x),p))]]
Dx ys S(x)-0Rmap (y, [Az.x=2]), UU]
Dix y. isTist{y)-ANDmap(x,[Nz.memiz,y)]), U]
[Ax y. memb (x,y)=mesl{y,x), FFI
[(Axy. PRUNE ix, [Zz.y=z1)]
[Ax y.PRUNE ix, [Az.mem{z,y)) |
(aG. Dy (x=y)=TT, atom(y)-FF,G(x, head (y})-TT,
i Gix, tai 1{y})]]
#%DEF 6.25 assoc slaG. [xy.dix}=islistl{yl> nul T {y)-NIL,
x=head (head(y))shead(y),C Ix, tai ({y)), UU, UUI1
xxDEF 6. 26 forL = [&G. (AL f #NIL. nu! I (L)=fNIL,
f (head (L),G{tail (L), £, INIL))]]
7 nodes = [oG. [AX. atom (X) =8, succ(Glhead (X) J+G(tait (X)})1]
8 lengthr [aG. (AWX.nul 1 (X} -8, succ(G(tail(X)))]1]

wx[EF 6. 16 DRmap

wxDEF 6.13 mem
%xDEF 6,28 memb
#xDEF 6,21 memEQ
wxDEF B6.22 memS
wxDEF 6.23 memSL
*xDEF 6.24 subexp

13

-

-~

r— r— r

The function ‘rev’ is the function uhich produces a | ist which is the
reverse of the argument list and is defined in the traditional way {using an
auxi | iary function “rev2’).’", the appendfunctionis de fined as the fixpoint
of the appropriate couputation. It is proved (see appendix 18) that Y& could
have been defined by :

& = Dixy. rev2 (rev (x),yll.

Various basic properties of these tioinportantfunciions are to be found jp
appendix 18. Note that the second argument of *&” need not be a | ist for the
function to be defined. However, the foliowing result is readily proved (and
a simi lar remark applies to ‘revZ’) :

VX.islist{X):: islist(X&Y)=islist (Y}

The predicate ANDmap i s used to describe situations in which al | the
elements of a list satisfy some predicate. The computat ion i s per formed by
applying the predicate to each listelenent in turn unti | the end of the | ist
icreached (and the resul tis TT) or unti | an element is encountered which coes
not sat’isfy the predicate. This method of computation means that, for example,
ANDmap (X, p) may be undefinedbecause plyl=Ul for some Object y. Because 0 f
this fact, many of the basic theorems about ANDmap are based on the assumpti on
that the predicate is total. The predicate ORmap is the disjunctive analogue of
ANDmap. The motivation for developing these predicates uas to aid in the
development of some of the later !ist operations. There are many t heorens
proved (see appendix 18} which describe the the interaction between these two
maps and ‘rev’ (or &),

FNmap is simply a function on lists which applies a function to each
member of the argument | ist. PRUNEisafunction, also just defined for lists,
which removes from the arutent Ilist those eleents which satisfy some
predicate. As examples, Fhmap{(X,[Ay.ys2]1) would double every element of a
(numeric)list X and PRUNE (Y,[Axx.x<8]) woul dremove every negative el enent
from a (numeric) list Y.

The group of operations 6.15 tcG.23 are concerned wi th nembershipin
lists and are crucial to the theory of sets given in the next section.
mem(x,LIwi |l | be true whenever x- is one of the elements of | i st L,] t is showun
in the theorems that the following is an alternate definition of “men”:-

mem = [&G. [Ax y. islist{yls null {y)- a{x)-FF,UU
{x=head (y))-TT,C(x, tailly)), UUIl.
meml {(X,Y) will be TT whenever ALL the elements of | ist X are members of {ist Y
also, The fol lowing is an alternate definition for “memL”:-

memk = [xG. [Ax y. islist{y)- islist(x)-
nul | (x)->TT,mem(head(x),yt-G(tai | {x),y},FF, U, UUIT.

menEQ(X,Y} simply indicates uhether tuo! ists, X and Y, have the same e 1 ements
(independent of the order or muftiplicity of those elements). memS{L,X) deletes
al | elements of | ist L which are occurrences of the object X whi [ememSL (L, M)

14

deletes al | elements of list L which are also elements of list tl.

The function ‘subexp’” is principally used to indicate the imbedding of
one S-express i on i n another . subexp (.Y} is TT exact | yuhensone sequence
(possibly nul 1) of head and tai loperations take object Y into object X. Thus
i f Y is an S-expression then subexpiX,Y) indicates that X is imbedded in Y
(at least once) but if Y is an atom then subexp(X,Y)indicates that X is the
same atom. We are now able, wusingthisnswnotion, to prove in LCF the non-
existence of certain infinite S-expressions. ™

subexp (X,Y) ¢ subexp(Y,X):: XsY

The infinite lists forbidden by this thecrem are the ones which in LISP could
be represented using circularity.

The function ‘assoc’ is purelyliSP-inspired and could be useful vhere
some association technique is appropriateto a proof. An al ternateway of
defining ‘assoc’ would be as:-

assoc = [Axy. ookl (y,[Az. head (z)=x])]
where
lookL = [aG. [XL p.isl ist{L)=nul 1 (L)-NIL,
plhead{l))-head(L),G(tai | (L},p), UUI]
is, ingeneral, a more useful function. However, such a function which looked

for the first element of a list to satisfy a given predicate could be more
suitably defined since with this definition lookL (X,p)=NIL could mean EITHER
p(NIL)=TT and NIL is a member of X OR that no element of X satisfied P.

The function *forl” is a devicefor simplifying definitions of other
functions which take aliztas their onltyarqgumen t and uhi ch compute f rom the
tai | of the list to the head. As an exampie, the sum of the elements of =
numeric | ist X is given by forL(X,+.,8)whi le the product is given by
forL(X,%,1). One could also give slightly more compact ciefini tions of ‘PRUNE’
and >“FNmap” (and predicates whichare similar to “ANDmap” and “ORmap”) using
“Maorl”.

The funct ion ‘nodes’ counts the subexpressions of an S-exprn. wh i ch are
not atomic or the number of nodes in a tree representation of the S-exprn.
‘length’ is simply the number of elements inaiist and cou | d have been def i ned
(to further i | lustrate “forL”}:-

length = [Ax. forl (x, [(Ay z.z+1],8}1.
These last two functions (which are the only ones to refer to the notions
developed for arithmetic) are nct expounded in the appendix but the usual

properties clearly fol low from the definitions and the arithmetic environment
already constructed and described.

15

7. FINITE SETS

Sets turn out to be quite hard to categorise in LCF, even finite ones.
The difficulty arises from the lack of existential quantifiers or the lack of
nested guantification, depending how you look at it, The problem occurs even as
soon as you try to define the empty set and give its properties. We can easi |y
express that nothing is in this set {(calliiNS) by the wff Vx.d{x):: x¢NS=FF
but when we come to say that the nul | set is the ONLY set in crhich there is
nothing, we find no simple way to express the sentence

Vx.xcAsFF } A=NS as a well-formed formula of LCF,
Recal | that the form of an axiom in LCF is a WFF - not a sentence.

The solutions we discovered to the above problem al | involved
axiomatising a choice function for sets which would pick some element from any
set it was applied to. Houever, using this notion, several developmentsof the
theory are possible. Because of the enormous economy involved, ne have based
our set theory on transformations betueen sets and lists. The choice function
involved is the taking of the head of the list that a given set maps into (see
the function ‘select’” defined below).

The transformation functions are “listof’ and ‘setof’ and are
axiomatised as fol lows; note that finiteness is automatic since | sts were
axiomatised to be finite.

SxXAX 7 1 [(Ax, i sset (x)-TT, TTI =3
SdAX 7 .2 VX, isset(setof{x))=(islist(x) —‘TT,UU]
wxxAX 7 . 3 Vx,islist(listof(x))=(isset{x)-TT,UU)
SkAX 7. 4 Vx,setof{listof(x))=(isset(x)-x,UU)
X% KkAX 7 . 5 V x y. memEQ(x, y} =setofix) =setof (y)

Note that these axioms do not imply that sets are disjoint from | ists,
S-express i ons or any other data type that may be part of individuals. In fact
it is not inconceivable to identify sets with the lists to wuhich they map by
“Mistof’. However, all that is needed to ensure disjointness is an axiom like’

vx. issetix):: issexp{x)=FF
With these notions, we easily DEFINE all the usual operations on sets

in terms of the list membership functions and predicates defined in the last
sect ion. We start with some basic ones: -

%+0EF 7.6 NS =setof (NIL)

wxDEF 7, 7 ¢ =[x y.memix, | istof (y))]

%x0EF 7, 8 subset s[Axy. mam.{1i stof (x}, | i stof (y))]
wxDEF 7. 3 U = [Ax y.setofliistof{x)&listof(y))]

»xDEF 7. 18 \' 3 [\xy.setof (memSL(listofix),listof(yl))]
*%0DEF 7. 11 N2 [Axy.setof(menSL{Ii stof (x),li stof (x\y)) I
*xDEF 7.12 select = [Ax. head(listof(x))]

y*xDEF 7.13 singtn = {Ax. setof(cons(x,NIL))]

-

lb

With regard to these definitions, it will suffice to note :-

i) NS is to be taken to be the nul | {or empty) set;

ii) ¢’ is the set membership predicate;

iii) XUY denotes the union of the sets X and Y;

iv)XnY denotes the intersect ion of the sets X and VY;

v) *\ is the set subtraction operation;

vi) ‘select’” is the choice function for picking elements

from non-empty sets;
vi i)singtn(X) denotes the set with% “as it”s$ only element.

The definitions just given aethe basic set operations for which
theorems have been proved in LCF (for this project). Appendix twelve contains
theorems relevent to these operations.

There are many theorems di splayed in appendix 12 but consider how
similar the fol lowing short collection of provable results is to the usual
predicate calculus axioms for set theory. In fact, it is possible to prove all
the other results of appendix 12(except those that mention the functions
‘| istof’ or ‘setof’) just from these theorems. Can, therefore, these sentences
be taken as an alternate basis for a set theory in LCF? No! Two of these
theorems have universal quantifiers in the assumptions and as noted earlier,
only sentences Wi th no assumptions are admi ssable as axioms, Note another
disadvantage: none of the set operations are introduced by explicit

definition.

[Xx. isset(x)-TT,TTi=3

VX Y. XeY-TT,TT= a(X)=+{isset(Y)-TT,UU) ,UU

isset (Y)=TT, VW . UcX=sWeYE X =Y

alX) =TT } XeNS= FF

VX Y. subset{X,Y)-TT,TT=.isset(X)-(isset(Y)-TT,UU),UU

i sset (X) =TT, isset (Y)=TT, VW. UeX: : WeY=TT |k subset(X,Y)=TT
subset (X,Y)=TT F VW. WeX:i: WeY=TT

VW x Y.We(XuY)= (WeX)» isset (Y)-TT,UU, (HeY)-TT,FF

VW x Y. He (X\Y)= (WeX)» (WeY)-FF,TT, isset(Y)-FF,UU

VW x Y. He(XnY) = (WeX)+ (WeY)TT,FF, isset (Y)-FF,UU

VW X. Wesingtn(X)= 3l isset{X)-{l=X),UU),UU

17

There are some other very important set operations which have been
defined appropriately (sesbelonw) b u t (mainly because of lack of time) no
rigorous deve | opment of their proper t i es has been done.

wxDEF 7.14 forSs [xG. [AS f NS, (x=NS)2fNS, f {se | ect (x),
Gix\singtn(select(x)), f, fNS)})]]

»xDEF 7.15 Un = D, forSix, Ay z.4Uz] ,NS)]

s%x0EF 7.16 In = D, forSix, Dy z.ynzl ,x)]

xxDEF 7,17 reducez [Ax p. forS(x, [Ay z. ply)=singtn{yluz,z] ,NS)]

wxDEF 7.18 seq =[xp. (reduce (x,p)=NS}-FF,TT]

%xDEF 7,19 sug =[Ax p. reduce (x,p)=x]

»xDEF 7.20 PS = [«G. [Ax. forSix,[A\y z.G(x\ylUzl,singtni{x}}]1]

%xDEF 7.21 Cards [\x. forS(x, [\y z.z+11,8)]

where, in words,
i) forS is just an important auxi liary function;
i i) Un{X} is the n-way union of all the sets that are in X;
iii)In(X}is the n-way intersection of the elements of X;

iv) reduce (X,p) is used to denote the set which in normal
notation is written {z]zeX A plz) g

v) *seq” denotes Set Existential Quantifier &seg(X,p)=TT
when there is a member of X which satifies predicate “p”
and “p” is defined on the rest of the set;

vi) ‘suq” denotes Set Universal Quantifier and seq(X,p)=TT
iff predicate *p” is TT on ai | elements of set X;

vii) PS is the power set function;

i ix) Card is the cardinal ity function for sets.

18

8. CONCLUSION

AXIOMATISATION TECHNIQUES.

In this work certain techniques were used in axiomatising various
mathematical not ions, To illustrate these we take an abstract examp | e:
"Axiomatise boops using the previously axiomatised notion of beeps !"

We start working with the assumption that there will be things in the
domain of individuals that are not boops , not beeps (which may overlap with
the set of boops) and are not anything that is mentioned in the axioms that
the “bhoop axioms” wil |l depend on. Thisassump t i on means that many theorems
about boops will have to be relativised but it also guarantees that we will
be able combine such groups of axioms without fear of inconsistency.
Relativisation is only possible if there is a predicate ‘isboop’ which will
be true oniy on boops, We wi | | probably want

a = [\, isboop (x)-TT,TT]

to be true and if this is not provable from the other ‘boop axioms’ then
thought should be given to making it an axiom. In the preceding sections this
result was provable for issexp, isiist, introduced as an axiom for isint,isset
but not even true for isnat.

Then the various functions and predicates which are peculiar to boops
are axiomatised paying special cat-e to do so by means of explicit definitioris
wherever possible.

DISJOINTNESS OF DOMAINS

In the development of the environment so far, nothing has been said
about disjointness of lists and integers, say. Before the theories here
developed as modules can be used usefully as a unified whole, another axiom
must be supplied to insure that any appropriate disjointness is provable.

As an example of what is required in general, we give now an axiom
that guarantees the disjointness of integers, S-expressions, sets and beeps:-

- Vx. isint(x)= i ssexp {(x)-UU, isset(x)-UU, isbeeplx)-UU,x
i ssexp (x}=~ i sset {x)-UU, isbeep(x)-UU,x
isset{x)~ isbeep(x)-UU,x
i sbeep (x)+x,UU E X

18

PROJECT STATISTICS.

The tota | | ine count for the proots of the 1800 (approx.) t heorens
given in the append i cesstandsatabout 23,838 using on |y those fea tures of
‘version 1’ LCF (that is the proof checker that is decribed in the 1372
manua l[11. The to ta | cpu t i me used wzs about 53 hours and the human effort

involved was about 8 man-nonths (al 1 of which wuas spent at a
time-sharing-system console). The figures for man and computer effort should
be interpreted in | ight of the fact that much of the proving had to be

re-done because of a revision of the axions { After about 15,888 lines of
pr00f some improvements in the axioms were deemed essent i a | and so about 6
man ueeks of effort vias expencled to al ter the proofs).

These statistics provide, | belieave, a valuable benchmark against
uh i ch to measure the ef fect i veness of fogics and aids for proof generation.
It is proposed in the near future to use at least some of these proofs to
gauge some proposed amnendmen ts to the input language of the proof checker.

INCOMPLETENESS.

Inspection of the theorems concerning the concept of integer
Primeness immediately reveals that the the ones given are only the trivial
proper t i es of *Pr’. It uas also noted in sections 6 and 7 that no properties
. are given for some of the qui teimportant operations that are defined on
| ists and sets. There are also, undoubtably, many pouerful and useful
theorems for the other areas whichremain unstated. Although this
incompleteness dictates that a user may in certain circumstances be obliged
to prove further results, ® Ljork on expanding the theorem base (for its owun
sake) has been stopped because the point of diminishing returns has been
reached, The future development of this mathematical environment uill be
accomplished by individuals enunciating theorems as required and supplying
the proofs.

Another important reason for on |y adding (proved) theorems as they
are needed is that a, new version of the LCF checker will appear { sooner or
later) and wi |l | incorporate featuresuhichui I | make the task of generating a
proof more automatic and so much shorter. There is also the possiii | i ty that
the typed logic will be replaced by ttie type free theory proposed by Scott
and so the whole treatment would have to be redone (aside: this would take
much less than the 8 man- months quoted here because the proof out | ines are
al |l done and the proof checker would be better -3 months is an upper limit).

TO USE THE ENV] EONMENT.

Inevitably some readers uilluant to make use of theorems from the
append i ces of t h i s report i r the Stanford Al project POP18 system. The axioms
are located in a file cal led AXIA en [TH,MAL] and the theorems appear in a
form which LCF can read in the f i | e THRI'S on (TH,MAL. . Note that a large
proportion of theorems wi thoutassunpt ions are sui table for immediate
inclusioninthe SI UPSET (for examp l e VA. X+UU= UU) a | though some { such
as the various commutative rules)ui |l | cause non-termination of the
simplification process. There are actually more theorems in this file than
will fit, withLCF, in the 38K of core currently available to jobs in the
PDP18 system at Stanford, so the user may have to prune a copy of THRMS to
meet hi s needs. There wi |l shortly beavailable a core image wi th a large
selection of the most important theorens a | ready read in (and moved to binary
program space to reduce garbage col lectiontime).

THEOREM NAMES.

LCF requires a name for every theorem (arbitrary alphanumeric
identifier) but provides only one handie for access to a result - its name,
Experience immediately suggests to the user that mnemonics wi | | be an
important ingredient in the organization of the environment and this is so as
examples indicate: -

PUSB - pos{@)=FF
PLUSUX - VX, UU+X=UU
TIMESBX -~ i sint (X)=sTT | BxX=8

ELTXNS 3 (X)eTT b XcNSsFF

However, for the many objects we have, mnemonic tags help only for a small
fraction of the cases. Most theorems are not results which have words already
associated with them (like associativityl and most have a good number of
tokens in the assumptions and conclusion (combined). The author relied on a
fairly complex system of mnemonic notions but names tended to be long and
absolutely unintel | igible to anyone else. What can one do about theorems such
as :-

isint) =TT F W+X)2(d+Y) = XzY
XeY=8, isint =TT F (Xald)eY=0
istist(X8Y) =TT } isiist(Y)=TT
isset (X)=TT, V W . WeXsleY b X=Y

to provide mnemonic significance without being so long that typing errors are
encouraged undu ly? It is apparent that proof generation should be written
with more faci |li ties to address theorems by their content and ta> have
appropriate goal-directed procedures to search for the right theorem to

apply.

21

I

ALGEBRAIC MANIPULATION.

Another eituat ion where proof generat ion seemed unreasonablytedi ous
vuas where an expression involvingoperatorsuhichhad special properties -
commutativity and associat ivi ty in particular. A good example of this sort
of painful proof ocurred in trying to prove the theorem

(X+Y) % (X=Y) = (Xs:X) = (YY)

I gnore the prob | em of wha t happzns when Xor Y are e it her undef i ned or simply
not integers and suppose isint(X)=TT,isint(Y}=TT, The steps in the proof
are: -

1) isint (XeX)=TT

2) {(XxX) +B=XxX

3) isint(YeX)=TT

4} (Y%X) - (YX) =0 .

5) VX Y Z.{X+Y)-Z=X+(Y-2)

B) vX Y Z.(X+Y)wed= (AaZ) t (YaZ)

7) VX Y Z.X=-(Y+Z)=(X-Y])+2

8) VX Y Z X+ (Y+Z) = (X+Y) +2

3) COXHY) 2 X) = (XY) Y) = CRaeX) = (YY) (BY 2.4,5:8)
18) VXY Z X (Y=2) = (XaY) - (XeeZ)

11) {(X4Y) % (X=Y) = (XweX) - (YY) (BY 3,18)

FUTURE WORK

This research has given birth to a lot of suggestions about possible
improvements to LCF. Before this mathematical environment is expanded,
therefore, a new, more-automatic proof generator should be developed. When a
new one i s produced, the body of theorems should be reviewed and expanded.

The same sor t of experimentispleannedto g i ve the same sort of a
rigorous theory for a programming language, A suitable language (such as
LISP, ALGOL) or a subset of a languageui | | be taken and the semantics
axiomatisedusing LCF. Thenimportant theorems wil | be formulated and proved
as time and imagination permit.

ACKNOWLEDGEMENTS

This work was born out of Richard Weyhrauch”s experiments on program
correctness and credit is due Robin Mi Iner for getting the LCF project going.
| am extremely grateful for the conversations that [had with both of these
people throughout the work.

22

(“.

9. REFERENCES

MILNER. R., "Logic for Computable Functions -Description of a
Machine Implementation", Art i ficial Intel | igence Memo #1683,
Computer Science Dept., Stanford University, May 1972.

—
[}

2 - MILNER, R., “Implementation and Applications of Scott’s Logic
for Computable Functions”, Proc. ACM Conference on Proving
Assert ions about Programs, New Mexico State University, Las
Cruces, New Mexico, Jan 6-7, 1972.

3 - MILNER, R.& WEYHRAUCH, R., ‘Proving Compiler Correctness in a
Mechanised Logic", Machine Intel | igence 7, ed. D. Michie,
Edinburgh University Fress, 1372.

4 - WEYHRAUCH, R., & MILNER, R., "ProgramSemant i cs and Correctness
in a Mechanised Logic”, Proc. USA-Japan Computer Conference

Tokyo, Oct 1972.

APPENDI X 1 - Theorems depending on NO axioms.

F [AX . UUJ= uu

F VP. (P-TT.FF) = P

FowP . (P-UULUUY = WU
AcX., BeX F YP . (P-A,B) < X
P-TT, UWU=TT | P =TT
P-TT, FFeTT ¢ P=TT
P-FF, UUsFF ¢ P=TT
P-FF, TT=FF . P = T7
P-UU, TT=FF t P =FF
P-FF, TT7=TT F P =FF
P-UU, FF=FF t P =FF
P-TT,FF=FF } P =FF
P-TT, 77=U0 F P = UU
P-FF, FF=UU F P = wu
P-TT,FF=UU F P =W
P-FF, TT=UU F P = WU
P-FF,FF=TT } 17 = FF
P-FF, UU=TT } 717 = FF
P-UJ, FF=TT |} TT = FF
P-TT, TT=FF F TT7 = FF
P-TT, UWU=sFF 7T = FF
P-UU, TT=FF } TT = FF
PUUUY =TT F P =[x . TT]
P =FF F P = Dx FF]

APPEND | X2 - Theorems that fol loufrom the proposi tional axioms.

=zaz==a = = EETSSEES E=SS= S==I=SS O

TTrTtTrtrTYTTTrUrT v 1 TrTrrrrreeTr TTrvrTrrrTrroTrTr T v T r v TTTrTTTYTrrTtTrTTrT T v T T

—“c
—C T

LuvUu
UUVFF
FFVIT
FFWUU
FFVFF

BOowWowoW oW owowm owom

YP., TTWP
VP, FFWP
YP, PVIT
VP, PvFF

TT
7
T
7
w
w
T
Uy
FF

"

N n wMowom

mom om

=
FF
P
F

YP. PAUU ¢ FF

TT=TT
TT=UU
TT=FF
=TT
Uu=LU
UU=FF
FF=TT
FF=LU
FF=FF

mowm o omomomowmomomoy

I8l
w
FF
w
w
w
FF
w
T

F
YP. UUAP < FF

25

APPENDIY 2 (cont inued).

F YP. UUsP w Ul
b VP, PeUU u W

PG = TT b P = Q

F VP. -(-P} = P

F PVQ = QWP

F VP Q R, (PVQ)WR = Pv(QWR)

b PAQ = QAP

F VP Q R. (PAQ)AR = PA{QAR)

F P=Q = Q=P

F vP Q R. (P=Q)=R = P=(Q=R)
PAQsFF |} PoX, (Cl-»Y Z) a Q4Y, (P-X,2)
PvQ=FF

|..
PvQ=FF F
PAQsTT }

'.

P
P
Q
P
PAQeTT Q

—“—amm
— 4

APPEND I X3 - Theorems that fol lowfrom the equality axioms ailone.

Fauu s uu
F VX. UU=X = UU
FV¥X. X=UU = UU

3MX)sUUF X = UU
dX)eFF F TT = FF
F wx , 8(X)-X,X=e x

(X=Y)sTT pa)= TT
(X=Y)sFF k3= TT
I =TT F X=X = TT

F ovx . x=x =3(X)

(X=Y)=TT FoX=Y
3X)=TT, X s Y} XYETT
X=Y=TT, Y=Z=TT } X=Z=TT
X)) =TT, X=¥=UU F Y = uu
{X=Y)=sTV F YX=TV
F XsY = Y=X
(X=Y}=FF, X<Y |} TT=FF
3 (X)=TT, XY F X=Y

27

APPENDIX 4 - Theorems about Natural Numbers(see sect ion &),

=E=;I=E=s=S== o= = SEDEES=SE BSESE SE=SEZSSxT =SSS===ss

a) Theorems which follow from axioms 4.2 to 4.8 alone:

b)

FZ@) a TT
Fisnat{@8)s TT
F succ(@) = 1

b pred(l) = 8

f succ(l) = 2
FZ(1)s FF
fFisnat(l)s TT
F predi(2) = 1
FZ(2)s FF
Fisnat(2s TT
FZUUl= uu

b isnat{Ull= UU

Z(X)=TT F X=28

isnat(X)=TT | Z(succ(X)) = F F
isnat(X)=TT | isnat(succ(X}) =T T
isnat(X)=FFp TT = FF

isnat (X)eTT, Z(X)sFF | isnat(pred(X})) a T T

isnat (X)eTT b pred{succ(X)) & X

isnat (X)=TT, Z(X)sFF b succ(pred(X)) s X

isnat (X)=TT, isnat(Y)aTT, succX)=succlY) b X = Y

g(@eTT, V X .isnat{X)::g(X):: glsucc(X))aTT |
YX. isnat(X)::g(X)sTT

Theorem that use 4.1 to 4.8 and the equal ity axioms,
isnat(X) =TT p 3(X) ¢ TT
Z{(X)sFF FoX)s TT
Z(X)alU F X = W
F 0@ =77
Fally=s TT
Fot2)= TT

F succ(UU}z=u u
FpredUl)=U U

F (1=8) = FF
F{(2=B)EF F

F (2=1) = FF

28

APPENDIX § - Proof of an Induction Theorem for Natural Numbers.

EoEETZSR = = W= PE ZE RBISTSEST[ST OESXSSSR PFDE EREIEET RIDSERIT

[The proof is as supplied TOthe proof checker.]
[material in square brackets iscommentary.]

(theorem THl i s 2(x)aTT | X«B
theorem TH2 is F 28)sT7
theorenl TH3 is isnat (x)aTT,Z(x)eFF | isnat(pred(x)}eTT
theorem TH4 is isnat(x)&TT,Z(x) aFF |} succ(pred(x))sx 1
LABEL L1;

ASSUME g (B)=TT;

ASSUME VX, isnat(X):: g(X):: glsucc (X)) =TT
GOAL VX. isnat{X)::isnat(X)::g(X)=TT;
TRY INDUCT {step no. of DEF 4.3) OCC 1,3;

TRY 1 SIMPL:
LABEL L2;)
TRY 2 ABSTR: [Step .L2 is YX. FX):: isnat{X):: g(X)=TT
TRY 1 CASES Z (X} ;
TRY 1 SIMPL; [ZX) =TT

USE THL, -3 USE THZ;
TRY SIMPL BY =-,--,.L1;

TRY 2 SIMPL; [Z(X)=W
LABEL L3;

TRY 3 CASES F (pred(X)); [2ZX)sFF
TRY 2 SIMPL; [Flpred(X)) =sUU
TRY 3 SIMPL; [Fipred{X))aFF
TRY 1 CASES isnat(X) [Flpred(X) 1eTT

TRY 1 SIMPL; (isnat (X)sTT
USE TH3, -, .L3; [isnat{pred(X))=TT
APPL.L2,pred(X}); SIMPL - BY --; [glpred(X))=TT
USE TH4, -=---,.L3;
APPL .L1+1,pred(X); SIMPL - BY --,---,=-==-- H [gX)=TT
TRY SIMPL BY -;
TRY 2 SIMPL: { isnat (X}=UU
TRY 3 SIMPL; [isnat(X)=FF
GOAL VX. isnat(X)::g{X)=TT;
TRY ABSTR;
TRY 1 CASES isnat(X);
TRY 1 SIMPL; { isnat (X) =TT

APPL --,X: SIMPL -3
TRY 1 SIMPL BY -3
TRY 2 SIMPL; { isnat (X} =UU
TRY 3 SIMPL; { isnat (X)sFF
THEOREMMATHIND: -3

[The theorenl MATHIND is
g(8)=TT, V x , isnati{x}:: g{x):: glsucc(x))=TT
F ¥x. isnatix):: gix)=TT [

23

APPENDIX 6 - Theorems that follow from axioms 5.1 to 5.8

sEZsS==S=E = = EEWESTSSSE OSSSS ESSSIT OEE ZNITSSSE E =S SRS

(together with axioms of sections 3 and 4).

b pos{B) =z FF
Fpos(ll=e TT
Fpos(2y= TT
F pos(UU) & u u

F isintU) = UU
isint(X)=UU F X = WU
isint(X)sTT FaXie TT
pos (X)=TT FoisintX)s TT
pos (X)=FF FisintX)=T T
i snat (X)=TT ki smt()()=T T

isint(mns(X)})=sTT b isint(X) =T T
isint(X)sTT Foisint (ans(X))=. TT

Fisint@ =T T

P oisint(l}=TT

F isint(2)sTT

Fmns (@)= 0
isintX)=TT F mnsi{mns(X)} & X

Fmns(UU)s U U
isint(X)sFF pmns(X) s U U

isint(X)=FF FZ(X)=s FF
pos{X) sFF, pos(mns(X))wFF F X = 0

pos (X)aTT FZ2(X)s FF
pos (mns(X))sTT FZ(X)s FF

isnat (X)=TT, pos(X)=FF F X=28
FVvsS. Zimns (X})=isint (X)-Z{(X},UU

"

isnat(X)eTT, Z(X)aFF FposiXi=s TT

i snat (mns(X))=TT F pos(X) = FF
pos (nns (X)) =TT F pos(X) = FF
pos(mns(X))eFF, Z(X)=FF Fpos(X) = T T
pos (Xi =TT F posimnsiX))=F F
pos (X)=FF, Z(X)aFF “FposmnsX))= T T
isint (X)=FF Fpos(X)= uwu

Zimns(X) =TTk X = 0
pos (X)=TT bFisnat(X)e TT
pos (X)=FF Fisnat(mns(X))= T T

30

APPENDIX 6 (continued).

isint (X)sFF Fsuce(X)=u u

isint (X)=FF l-pred()()z u u
isint(X)=TT F pred(succ(X)) = X
isint (X)=TT F succlpredix)) s X
pos (X)=TT F posisucc(X))=eT J
pos (X)=FF F posipred(X)) = F F
isint(X)=TT Fisint{succe))e T T
isint(X)=TT FisintinrediXiia TT

isint(succ(X))=TT b isint(X) = TT
isint(pred(X))sTT F isint(X) & 77T
F YX . succluns(X))s mns (pred(X))
F YX . pred(ms (X)] & mns (suce (X))

pos(X)eUU, isint(X)sTT } TT= FF
mns (X)=UU, isint(X)«TT } JJ = FF
pred(X)aUU, isint(X)sTT F TT = FF
succ (X} =UU, isint(X)aTT } TT = FF

g(B)=TT, Vx. isint(x)::gix)=glsucc(x)) F V X . isint(X):: 9 (X) L7

g(B)=h(8), VX.isint(X): aig()()) =TT, WX.isint{X): a(h(X))eTT
YX. isint(X):: (g(X)-h(X)) 9(=wc(XH & h(suce (X))
VX. isint(X):: ({g (X)-h()()) : glpred(X)) = h(pred(XH

V X .isint{X}:: g(X) = hi(X)

31

APPENDIX 7 =~ Theorems about the operations of arithmetic,

BE=TZRXR B L EEEIEZISE SIESEE ZREF SIS CSIWISD D REEURSEEISSS

{ uses the axioms of sections 3, 4 and 5).

a) Consider first the arithmetic of + and -.

F VX, xiuu = uu
Fovx. UU+X = WU
F VX, x-uu & uu
F vx. uu-x s uu
isint{(X)=sFF F VY, X+Y = WU
isint(Y)sFF F VX, X+¢Y=zu u
isint(X)=sFF F VY. X-Y =UU
isint{(Y)sFF F VX, X-Y = uu
isint{X)eTT F x+0 = x
isintX)=TT f x0 =X
Fowx. X+l = succ(X)
F VX, X =pred(X)
isint(Xj=TT F X+mns{X)= 0
isint(X)=TT | nins (XJ+X=0

isint(X)eTTF X - X= 0

FV X Y . succX)+predlY) = X+¥
PV XY, pred(X)+succ(Y) & X+4Y
B WYX Y. suce(X)+Y e H+succ(Y)
FV XY.pred(X)+Y & X+pred(y)
P VX Y. sucec (X+Y) 3 X+sucely)
Fov x Y . suce(X+Y) = suce (K) +Y
FV X Y. predX+Y) = X+preclY)
FV X Y . predX+Y) = pred(X)+Y

isint(X)eTT, isint(Y)=TT } isintX+Y)=TT
isint (X+Y) =TT Foisint(X)a TT
isint(X+Y) =TT FoisintVs TT

Fow Y Z. (X+Y)4Z s X+(Y+2)

isint (X+W) =TT, X+H=Y+d F X =3
isint(X)eTT |} B+X= x
F YX. 0-X mns (X)
oo 14X = succ(X)
FVA. 1 - X=mnnsiprediX))
F X+Y & Y+X

FV X Y . mns(X+Y) & mns{X)+nns (Y)

)
f

APPENDIX 7 (continued).

V X Y . succ(X)-Y s X-pred(Y)
V. XY, pred(X)-Y a X-succ(Y)
v x Y. succ(X)-succlY)a X - Y
V X Y. pred(X)-pred(Y)a X - Y
VX Y.mns{X-Y)s Y-X
Y z. X-{Y-Z) = (X-Y)+Z
VX Y Z X-{Y+Z) s (X-Y)-Z
v Y Z. X+{Y-Z) 8 (X+VY)-Z
X Y. suce{X-Y) & X-pred(Y)
vx Y.suce (X-Y) =succ(X) -
V. XY, pred(X-Y) = X-succ(Y)
FV X Y .pred(X-Y)a pred(X)-Y

TrTTrTTTTrrrTrTrTvrTrT
<
<
X

isint(X)aTT, isint(V)aTT F i sint(X-Y) & TT
isint (X-Y)uTT FooisinteTT
isint (X-Y)eTT FooisintMaTT

XYE0O F x =Y

b) Nouw theorems from the defn. of multiplication.

F WX, XsUU = WU

I' ¥X. UUxX = WU
isint(X)sFF F VY. X%Y = u u
F uu
|.
|.

isint(Y)sFF VX, XxY

. isint(X)sTT

X«Be 0
isint (X)aTT 1

Xxl & x
isint(X)sTT, isint(Y)aTT |} isint(XxY) & T7T
isint (XxY)aTT Foisinti(X) a 1T
isint(X«xY)sTT Foisint)sTT

FOVX Y. XxY s (Xepred(Y)) +X

Fv o x Y. Xxsucc(Y) 2 (XxY)+X

FV XY, Xxpred(Y) = (XxY)-X
isintX)=TT } @xX= 0

FV X Y. XY = (pred(X)xY)+Y

F o ovx Y. suce (X)xY s (XxY)+Y
FV XY, predX)xY = (XxY)-Y
|.

XxY = YaX
isint(X)=TT } 1aX= x
FV X Y. nns(X)%Y = mns (XxY)
FV o XY, Xxmns(Y) & mns (XxY)
FV X Y. nns{X)xmns(Y) = XY

33

APPENDIX 7 (continued),

FoovxX Yy Zo XelY+Z) = (XxY) + (Xn2)

I‘ VXY 2. X (Y-Z) = (XxY)- (XieZ)

FV X Y ZoX4Y) el & (XeeZ) + ((2Z)

Foovx Y Zo(X-Y)%xZ a (XxZ) - (YZ)

Foovx Y Zo(XaY)%Z = Xu (YoZ)

Fv x Y . (X#Y)%(X=Y) 5 (X&X) - (YY)
isnat (X)=TT, isnatiY)=TT FooisnatiX+Y)=TT
pos(X) =TT, pos(Y)=TT F opos(X+Y) = TT
pos {X) =FF, pos(Y)=FF F pos(X+Y) = FF
pos (X) =TT, pos(Y)sFF F posi(X-Y}) = TT
pos (X)=FF, pos(Y)=TT F pos(X-Y) = FF
isnat (X)=TT, isnat(Y)=TT t isnatiXxY)=TT
pos{X) =TT, pos(Y)=TT F pos(X«Y) = TT
pos{X) =TT, pos(Y)=FF F posiXxY) = FF
pos (mns (X)) =TT, posinns(Y))aTT | pos(X«kY) a TT
pos(1-X) =TT, isnat(X)=TT F x30

c) Now add the division operator.

F ovx. X/UU = uu

F vx . X/8 = uu

F ovx. W/X = uu
isint(X)=FF F VY. X/Y =

lsmt(Y) sFF F vx. X/Y = UU

isint(X)=TT, Z(X)=FF FB8/X= 0
isint(X)=TT, Z(X)=FF Foxx = 1
pos(Y-X)eTT, isnat(X)=TT } X/¥ =2

Yy. isnat(y):: [ah. D, Z W) =TT,g(pred(W))-h(pred(u)),UU)] (y)s: gly)sTT
F Yz, isnat(z):i:ig(zla T T

pos (X) =TT, [ah. . Z(W) =TT, f (pred ())=h(pred(u)),UU)] (X)s T

F VY. isnat(Y)::pos(X-Y)::f(Y) e T

ienat (X) =TT, pos(Y)=TT. t isnat(X/Y) = TT
isint{X)=TT, isint(Y)=TT, Z(Y)sFF F isint(X/Y) & TT

FVX Y.nns(X)/Y a mns(X/Y}
FV XY, X/nnglY) = mns{X/Y)
FVX Y. mns(X)/mns(Y)= X/Y

isint (X/Y)&TT b icint{X)=

isint(X/Y =TT |} Z(Y) = FF

isint(X/Y)sTT F isint(Y) & 17

isnat {X)=TT, pos{Y)=TT, isnat (W)=TT } (XYY +HW) /Y = x4+ (W/Y)
isint(X)sTT, isint(Y)=TT, Z(Y)sFF B(XxY)/Y = x

34

APPENDIX 7 {continued).

d}) The mod operator (¢) is remainder on division,

FYX., xouu & uu
F ¥YX., XeB = WU

FoVX. UUeX = WU
isint(X)=sFF F VY. XeY=u u
isint(Y)sFF } VX.XeY= u u

isint(X)=TT, Z(X)=FF F 8X= 0
isint(X)=TT, Z{X)aFF F xsx = 0
isnat (X)=TT, pos(Y-X)&TT | XoY =& X

FV XY.nns(X)eY s mns(XsY)
F VX Y. Xemns(Y) & XeY
F VvV X Y.nns (X)emns (Y) & nns (XeY)

isint(X)2TT, isint(Y)aTT, Z(Y)=FF } isint(XeY)s TT
isint(X}) s TT

isint (XoY) =TT t
isint (XeY)sTT t ZWisFF
isint{XeY)aTT t disint{Y) = TT

isint(X)=TT, isint(Y)=TT, Z(Y)=sFF F (XxYleY = O
isnat (X)=TT, pos(Y)=TT, isnat()=TT F ({Xa¥) +l) oY = oY

FV X Y. Xo¥Y = Z(Y}aUU, Z(X)=(isint(Y)aB,UU), (pos(X)> (pos(Y)}~
{(pos(Y-X)=X, (X-Y}eY), Xenns(Y)), wns{mns{X)eY))

Fowx Y. (XeY)eY = XeY

Fvx Y . (X/Y)nY = X-(XeY)

isnat(X) =TT, isint(Y)=TT, Z(Y)=FF | isnatXeY)=e T T

isint(X)=TT, isint(Y)sTT, Z{Y)=FF } ((X7Y)xY)+(XeY) =2 X
isnat(X)eTT, isnat(Y)sTT oYU, (X+Y)el w ((XelW)+(Yel)) ol
F

(X/W) - (Y/W) w8, (Xel)-(Yel) =8 XeV

isint (W =TT, isint(Y)sTT, Z(Y)=FF, WoYs(W+X)eY } XeYs O
XeYe8, isint(W)sTT . (XudleY = O
XoYeB, isint()=TT F (UxXleY= O

e) Relational operators (>, 2).

F VX . X2UU= UU
F VX .U:X= UU
F VX . XsUU= UU
F VX . UUsX= UU

35

T

T YT

APPEND | X7 (continued).

isint{X)eFF F VY, X2Y= uu
isint(Y)sFF F wx . X2Ye UU
isint(X)sFF F VY . X>Y=zuu
isint{Y)aFF F wvx , X>Y= uu
X2Y B TT FooisintX)=eTT
X2Ye TT FooisintY)=sTT
X>Y = FF F isintX)=TT
XsY = FF F isint(Y)=TT
X>Y= TT }F XY= TT

XzY E FF F XsY =FF

XsX & TT F TT = FF

X2X = FF } 1T s FF
X>Y=TT, Y>X=TT } TT = FF

X2YeFF, Y2XsFF | TT =FF

isint(X)a T T, isintlY)= ,
isint{X}a TT, isint{Y)= TT AzY= U U F

)YBLIUI’

X>0

Y, (X-Y) 28 = X2Y

TT

X2Y=TT, Y2X=TT b x =Y
Y>X= FF FXeys TT
Y2X a FF FX>Y a TT
Y>X ETT FX2Y= FF
Y2Xe TT F XsY = FF
W>XeTT, XsYsTT | W>Y = TT
W2X=TT, XoV=TT P WY = T T
WsX=TT, X2Y=TT F WsY=TT
W2X=TT, XY= TT F WY =T T
isintX)=T FX2X= TT
isint()()sTT FX>X= FF
Fovx . posiX)
pos(X)= TT FXs8= TT
X>B8=TT b pos(X) TT
Foowx
isnat (XY) =TT F XeYeTT
isnatX)e TT F X28 = 77
isnatimns (X)) =TTk X>B= FF
X2Y=TT { ienat (X-¥) =
XK2BETT ¢ isnatX)=TT

VX . pos (X)=

B2X=TT F pos(X) = FF
F VX . X>B=8>nns (X)
F VX . X28 3 B2nns (X}
FoVX Y . nns (X) >mns (Y) = Y>X
F¥YX Y . mns(X)2mns (Y) = Y2X
F v Y |, XesucclY) =z K>Y
F VX Y . Xspred(Y) = X2Y
F VX Y . pred{X)2Y = X>Y
F VX Y . succ(X)>Y = X2V

(23]

(s3]

@>mns (X)

TT = FF
TT = FF

APPENDIX 7 (continued).

f) The relational operators and arithmetic,

isint(X) 8 TT b VY . (X+Y)2X = Y20
isint(Y)s TT F VX . (X+Y)2Ye X20

- isint(X) & TT b VY . (X+Y)>X = Y>B
isint (Y) & TT b VX . (X+Y)>Y = X>B
isint(X) = TT b vv . (X=Y)2X = B2Y
isint(X) = TT f VY . (X-YI>X = 3Y
X>8 = 17 oYY o (XxYi2X = Y2l

- Y>g = TT b vx (X#Y) 2Y = X2l
~ X>8 = TT oYY o (XaY)sX = Ysl
Y>g = TT b vx (X£Y) >Y = X>1
X>B=TT, Y21=TT } X2(X/Y)e TT
X>B=TT, Y>1=TT b X>(X/Y) = TT _

Y2B=TT, X>B=TT b Xo(YeX) & T T

~- isint() & TT B WX Y . (X+H)> (Y+H) = X>Y
isintd) & TT F WX Y . (HeX)>{U+Y) = XY
isintWls T TF w Y. X&)z (Y4ld) = X2Y
isint(l) = TT b VX Y . (HeX)2 (W+Y) = X2Y
isintt)s T Tk w Y. (X-WH)>(Y-W) & X>Y

isint) 8 TT F VX Y . (W-X)>(W-Y) = Y>X
L isint) & TT b WYX Y . (X=W) 2(Y-W) = X2¥
- isint() = TT b WX Y. (W=X)2(-Y) = Y2X
W>8 = TT FooOoVX Y o (X)) > (Yald) & X>Y
WsB = TT Fovxy. (u‘,v.‘><)>(u,|v) = X>Y
WsB = TT Foovxy o () 2 () = X2
W>B = TT Fovxy., (ww(u v)stv

- X2Y=TT, WsB=TT F (X/W)2(Y/W)=
(X/W)>(Y/W) ETT, WsB= TT |~><>v s 1T

W>Bs TT, X>Bu. TT,Y2Xa T T FUWX)z2W/Y)e T T
(W/X)>(W/Y) =TT, W2BeTT, Y28=TT f Y>X & TT

(X+Y) 28 =
(X+Y) >0 =
(X+Y) >B8 =

X28=TT, Y28=TT
-~ X>P=TT, Y>B=TT
X>P=TT, Y208=TT
- X28=TT, Y>B=TT
X2B=TT, Y28=TT
X>@=FF, Y>B8sFF

Y>8sTT

-~ Y>B=TT

F TT
F 7T
F 1T
F o (X+Y)i>B8s TT
FoXeY)28=TT
F o XaY)28=TT
FOYX . (XxY)2B= x20
Fowx, (XxY1>8 E X8
B>X=TT, B>Y=TT } (XxY}>Bs TT
X20sTT, Y>8=TT (X/Y)2B=TT
— Y>B=TT Fo¥X . (X/Y)>8 = XzY
X28sTT, isint(Y)aTT, Z(Y)sFF F (XeY)28 s TT
(XeY)>Be TT FX>BET T

37

APPENDIX 7 (continued).

g) The factorial operator.

P Fac (LU} = UU
isint (X)=FF F Fac(X) = UU

x20 = FF PFac(X)e UU

P Fac(@) =1

F Fac(l) = 1

F Fac(2) =2
x20 = TT FFacX)>B8= TT
d{Fac (X)) =TT | X208 = TT
X28 = TT b Fac (X+1) = (X+1) «Fac (X)
X>8 = TT b Faciek = 0
Y>@=TT, X2¥=TT b Fac(X)aVY =
Y>8=TT, X2Y=TT } Fac(X)s Fac(Y): 0
Y>BaTT, X>YsTT F Fac(X)>Fac(Y)s TT

h) The oddness and evenness predicates.

F even (LU)=WU
F odd (UU)sUU
isint(X)# F F} even(X)s UU
isint(X)2 F FF oddX) =
F even =[A\x. (odd(x)=FF,TT)1
F odd =[x . (even (x)-FF,TT)]
even(X) = TT F isint(X) = 77
even(X) = FF }F isint(X}) = T7
odd{X) = TT F isintiX)=TT
odd (X)& FF FooisintX)=TT
i

even(X) = UU, isint(X)= TT TT =FF
odd(X) = UU , isint(X)=TTF TT = FF
isintXX)=sT TF even¥x2)=TT
isint(X)aT TF even(2x¥X) =TT
F ¥X . evenlins(Xi)= even (X)
P VX . odd (mnsiX))= odd (X)
even(X) = TT F even (X+l)= FF

even (B8)= TT
odd(B) =

even(l)= FF
odd{1)=TT
even(2)s TT
odd(2)= FF

T TrTr v

[A8]
(o8]

PX)eTT b VF

PUD=WEF VF &
P{X)=FF }F Look(X,UU,P) = U U
“ F VX F .

APPENDIX 7 (continued).

i} The ‘Look’ operat ion,

. Look (UJ,F,P}=e U U

Look {X,F,UU)e UU

Look (X,F,P) = X

YX. P (X) cFF F VX F . Look(X,FiP)& UU
P(X)eFF, F(X)sX }F Look(X,F,P)a UU
o j)} The bounded quantifiers - “bug” and ‘beq”.
VY P . buglUU,Y,P) = W
F VYXP . bugtX,UU,P) = UU
X>Ys FF F bug(X,Y,00) = WU
isintiX)s FF } YP . bug(X,Y,P) = W
. isint{Y)s FF I-VP bug(X,Y,P) = uu
X>Ye TT F VP . bug(X,Y,P}= TT
isint(X)s TT F VP . buq(X‘(P)sP(X)
bug(X,Y,P}=TT F isint{X)=
bug (X,Y,P)=TT } isint(Y}= TT
bug(X,Y.P}esFF F isint(X)aTT
bug(X,Y,P)eFF F isintX)sTT
VY P . beq(UU,Y,P)= UU
F YX P . beq{X,UU,P)= uu
X>Y=FF F beq(X,Y,UU}=U U
isint(X)s F FF VP . beylX,Y,Pl= UU
“ isint{Y)aF F}F VP beg(X.Y,P)s uu
XY= TT F VP . beq(X,Y,P)E FF
isint (X)a TT } VP beq (X, X.P} & P(X)
beq(X,Y,P)2TT }F isint(X})=TT
beg(X,Y,P)=TT |} isint)=TT
beq (X,Y,PleFF F isint(X)=TT
N beg{X,Y,P)=FF } isintX)=TT
k) The primeness predicate for integers.
FPrilU) = uu
o isint(XJe F FE Pr (X)=UY
F Pr(B) = FF
F Pr{l) =FF
F Pr{2)= TT
r Xi=s TT FoisintX)=TT
Pr(X) = FF mmt()()_ TT
PV . Prinns (X)) = Pr(X)

33

APPEND | X8 - Basic Theorems about S-expressions.

k =E=m==FS T = BEISS SEESSSSEESS SIS ET O SoSSSoaoSSTsS===

{ depends on the equality axioms plus 6.1 - 6.18).

F issexp(UU)e UU
F a tom (UU)elU
Foonu T UUT=eUU
L F head (LU)e UU
F otail{U) = UU

atomX)e TT F head(X} = UU
aton{X)s TT b tai 1{X})= UU
issexpX}= U U} x= u

L atom (X)=UU F X=W
nulI{X)3 UU FoX =W

mou

F issexp(NIL)=
P ogiNIL) =TT
Fonul INIL) =TT
FoatomNILI=TT
F head(NIL) = U U
b tai 1 INIL)s UU

- issexp(X)=e T TF 300 =TT

i ssexpX)z FF F oX)eTT

. atom(X) & TT FalX)s TT
atom(X) s FF FdiXla TT

nul 1 0= TT F X = NIL

issexp(X)=F FF null{X)= FF

atom (X)= TT , i ssexp (X)= TTF nullX)=TT
1 atom(X) = FF F nullX)= FF

i ssexpX)= F FF atom(X)=
issexp (X} = TT, null(X) = FF F atom(X)= FF
atom{X) = FF [|ssexo()()z TT
atomX) = TT ,null(X)=FF}F issexpX)=FF
F
F

d(head (X)) =TT } . atom(X) = F
8(tail(X))=TT}F atom(X)=F

oYX . CONSixW=Uuu
F VX. cons(UU,X)= UU

3{Y)sTT F VX . head(cons(X,Y})1= X
afX) =TT F VY . tai I{cons(X,¥))=Y

atom(X)s FF Fdlhead(X))= TT
atom(X}a F F Fattail(X))=eT T

48

APPENDIX 8 (continued).

head(X) s UU } atom(X) ¢ TT

tail{X) =« UU } atomiX) ¢ TT

ai) =TT, 8{Y) =TT } issexplcons(X,Y))sTT
alX) =TT, 38(Y) =TT F nulllcons(X,Y))=FF
X)) =TT ,3) =T T | atom{cons(X,Y))=s F F
d (cons (X,Y))a TT FaX)=e TT
dlcons(X,Y))= TT F 3ly) = 1T

F VX, dlhead(X)} = d(tail (X))

head(X)e X } X & W

tail(X) = X b x= uu

null (cons(X,Y)) « TT b TT = FF

4

APPENDIX 3 - Basic Theorems for Lists.

= ERWEBR SESESSRSE FEEE === E

SIE=T=3I== 0= =

(axioms used were the equality axioms witn 6.1 - GO).

FoodslistWIL)e T
Fooislist(l) s WU

islist(X)= F FF nui 100= FF

i ssexpiX)= FF } islistiXl=FF

islist()=T TF 300 =TT

islist{(X) = FF F aX) = T7T

islist(X)=T TF issexpll=TT

islist(X)= TT , nul(X) = FF } atomn{X)= FF

alX) =TT F oYY . islist(cons{X,Y)) = islist(Y)
islist(X)= UU } X 3 UU -

islist{tail (X)) T TF ististX}s TT

islistX)=e TT , nul | (X)s FF ¢ islist(tailX))aTT

g(NIL) = TT |
VX Y ,aX)iristist{Yl o g(¥) :: glecons(X,Y))a TT
t Vaoislist(X) o g(X) s TT

VX. atoem(X) ::qgiX)le TT ,
YXY , gX) =oglY) oogleons (X, YD) w TT
FYX L aik) o gX)a TT

APPENDIX18 - Theorems about the list operations of section B.

SEEoEENE W L] BESSSNERE 0 MMM BMer wemd GIEWUMNEYFER 2 M 6 MMMWW- me

(rely on the axioms of section 3 (equality) also).

a) Concerning ‘rev’ and the auxiliary function ‘“rev2”.

¥X . rev2(UU,X)= UU
revidll=s UU
YX . rev2 (X,UU)= UU
YX . rev2(NIL,X}= X

vx. revZ2(X,NIL}=rev (X)
rev(NIL)= NIL
islistiX)s FF F oYY . rev2(X,Y)= UU

islist(X) = FF F rev(X) = UU .

islistX)a TT , 3(Y)s TT F 3(rev2(X,Y)=sTT

islistX) e TT FdlreviX)) e TT
dlrev2X,Y))s TTF islist(X) = T7
3(rev2(X,Y)) & TT Fa(vis TT
dlreviX)) s TT F islist(MaTT

ielist(X) e T T | islist(Y) & 1T} revirev2(X,Y)) = rev2(Y,X)
islist(X)a TT } revireviX))s x

islist(X}) ¢« TT F VY . islist(rev2(X,Y)) a islist(Y)
islist(X) s TT |} islistlrev(X})a TT

F vx. revicons{X,NIL)) & cons(X,NIL)

F oYX Y . revicons{X,cons(Y,NiL)}) = cons(Y,cons(X,NIL))
islist(X) = TT F nul | (rev(X)}a nul | (X)

— T T —

b) Concerning the ‘& (append) f unction,

F VX, UU8X = UU

F VX . X8UU= UU
islist(X)=FF} VY . X&Y = UU

F VX . NIL&X = X
islist(X)sTT F X&NIL= X

FoVX Y . X&Y= rev2 (rev (X},VY)
islistX)alT, 3(Y)=TT | J(&Y)=TT
isl ist(X)&TT F VY-.islist(XaY) aislist(Y)
VXY . consiX,NIL)&Y a cons(X,Y)
FoVX Y . reviXdY) = rev(Y)drev(X)
F YN Y . rev(¥&cons(Y,NIL)) =cons(Y, rev (X))
islist(X)=TT, 3(Y)=TT |k heacd(X8Y)s nul | (X)=head(Y) , head (X)
islistX) =TT P tai X&) =nuli{X)atail (Y), (tail (X)&Y)
aX&yy= TT P islistX)=eTT
diX&y)= TT F d(Y) =TT
islist(X)=TT, nul | (X)sFF,3(Y)=TT}F null (X&Y)=FF

VXY Z . (X&Y)&Z = X&(Y&Z)

islist(X)=TT, nul I (Y)=FF t nul I (X&) = FF
X&Y = NIL F X = NIL
X&Y = NIL F Y= NIL

'.

43

APPENDIX 10 icontinued).

c)Propert i es of “ANDnap’ &l *ORuap”

t VYp . ANDwap (LU, p)a UU
islist(X)«FF}F Vp , ANDmap (X,ple UU

t VYp . OFmapUU.pla. .
islistiX)=FF}F Vp . ORmap(X,pl= UU
p(X)e uu F VY . ANDmap (cons (X,Y),pl= UU
p(X)} = UU F VY . ORmap(cons(X,Y),plz UU

t * ANDmap(NIL,p)= TT

F Vp , ORmapiNIL.p)= FF
3(X) =TT FV p . ANDmap(cons (X,NIL),p) = p(X)
alX) =TT t vP* ORman{cons{X, NIL), p)=p(X)
ANDmap (X, p)»TT,TT = 1T | islist™ =TT
ORmap (X,p) =TT, TT = TT F isiist(X}= TT
ANOmap (X,pl= F F t null(Xd= FF
ORmap (X, pl= TT FonullX)=e FF
ANDmap (X,p)= TT, p(X)= TT, d(X)a TT p ANDmap(cons(X,Y),p)=TT
pX) = FF, islist{consX,Y))= TT F ANDwap (cons (X,Y), p)=FF
ADmap (Y,p) = F F, p(X)2d(X),d(X)a T Tk ANDmap(cons(X,Y),p)=FF
ORmap(Y,ple FF, pX)a FF, dXl= T T |} ORnaplcons(X,Y),p) =FF
pX)e TT, islistlcons(X.V))}=TT F ORmap{cons(X,Y),p)=TT
ORmap(Y,p) = TT, p(X)=3{(X),dXle TT F ORmap(cons(X,Y),pl=T1T
YX. I (X)e:p(X)-TT,TT=TT, islist(Y)=TT F ANDmap(Y,p)-T7,TT=TT
VXA XD s epX)-TT, TT=TT, islistiY)=TT |- ORmap (Y, p)-T7,TT7=TT
ANDmap (Y, p)=TT,TT= TT, p(X)-3(X).3(X) =

k ANDmap(cons(X Y),p)-TT7,17=
ORmap (Y, p)=TT.TT = TT, p(X)=-3{X),d(X) =
b DRmap cms(,\.Y).p)aTT,TT =T T

ANBmap (X,p)= T T, null (X)=FF F plhead(X)) = TT
ANDmap (X, pY= TT, null (X} =FF F o ANDmap(tai 1 {X),p)=TT
ORmap (X, p) = FF, nul | (X)=FF L oplheadXM)=FF
ORmap (X,p) = FF, null (X)=FF F ORmap(tail (X}, p)- FF

ANDmap (X, p)»T7,TT=TT, nul!

X)_TF |- plhead (X)) -TT,TT =

T

ORmap (X, p) =TT, TT TT, nul | (X)=FF F nilhead(X))-TT, TT TT
ANDrap (X, p) =TT, ANDmap (Y, p) =TT} ANOmap (rev2(X,Y) p)
ORmap (X, p)=FF, ORmap(Y,p)=FF F Rmap rev2(X,Y),p) = F
ANDnap (X, p) =TT, ANDnap (Y, p) =TT F ANDmap (X8Y, p)- TT
ORmap(,\,p) =FF, ORmap(Y.p)=FF F ORmap(X&Y,p)=

AMDman (revX),pl=s TT
ORmap (rev (X) ,p) = FF
ANDnan (X, pi =

AMDmap (W, ple TT

F F

F F

AMNDmap{(X,p)=T T F
ORmap(X.p)= FF }
ANDmap (X&Y,p) =TT }F
ANDmap (X8Y,p) =TT F
ORmap (X&Y,p)=FF } ORmap (X.pj
ORmap (X&Y,p)=FF } ORmap(Y,p}

W

APPENDI X 18(continued).

ANDnap (rev X ,p) = TT b AlDuap (A, p) = T7
ORmap (rev(X),p) = FF } ORwap(X,p) = FF

ANDmap (X, p) =FF, islist(Y)=TT.¥X. 3(X) s p(X)-TT,TTa T T
[ANDmap (X&8Y,p)= FF

ANDmap (Y,p)=FF, istist (X)=TT, YK, a(X) s p(X)-TT,TT=T T
b AlDinap (X8Y,p) = F F

ORmap (X,p) =TT, islist(V)=TT, ¥X. dX) s p(-TT,TT=T T
FoCRmap(X8Y,p)=TT

ORmap (Y,p) =TT, islist(X)=TT, ¥, d(X) s p(X)-TT,TT=T T
FooCrnap (X&Y. . p)=TT

ANDmap (X,p) =FF, VX. 3(X)::p) =TT, TT = TT
 ANDmaplreviX),pl= F F

ORmap (X, p) =TT, VX, 3(X): : p(X}-TT, 7T T T
F CRmap(reviX),p)e TT

d) Theorems concerning the ‘FNmap” func t i on.

F Vi FNmap(UU, f) = UU
islist(X)sFF R Vf |, FNaap(¥,fl=U U
b Vf . FNmap(NIL,f)= NIL
a(X) =TT F FNmap{cons{X,NIL), f) = cons(f (X) ,NIL)
d (FNmap (X, f))=TT PooislistX)=TT
nu | I{FNmap(X,f))=FFF nul |(X)= FF
nut 1{FNmap (X, £))=TTF null(X)=sTT
V X . 9X)es 3(fX))=TT, islist(X)=TTF O (FNmap(X,f))=TT

PV X f.islist(FNmap(X, f)i=d{FNmap(X, f))
FVX Y f . FNmap(X&Y, f) = FNnap (X, f) &FNmap (Y, f)
F VX f . FNmap(rev(X),f} = rev (FNmap(X,f))

e) Properties of the ‘PRUNE’ function,

F Vp . PRUNE(WU.pl= UU

islist(X)aFFF Vp ,PRUNECK,pls U U
Vp . PRUNE(MIL,n)e NIL

p(X)=TT, 3(X)=TT p PRUNE (cons (X,NIL),p)s NIL
p(X)=FF, 3(X)=TT F PRUNE (cons(X,NIL),p) = cons(X,NIL)
J(PRUNE(X,p))=TT b iclistX)=TT
nut I{PRUNE(X,p))= FF}F nut I(X)s FF
VX, 3X}s:pX)-TT, 7T TT, isl ist(X=TT } S(PRUNE(X,p))=TT

o ¥X p . islist(PRUNE(X,p)) = d(PRUNE(X,p))

F VX Y p , PRUNE(X&Y,p) = PRUNE (X, p) §PRUNE (Y, p)
F YX p . PRUNE (rev(X),p) =rev (PRUNE (X,p))

45

APPENDIX 10 (continued].

f) The *mem” predicate.

F vx. mem (UU,X)= UU

VX . mem(X,UU)= UU
islist(Y)sFFF V X .mem(X,YJ=2U U
islist(YI=TT, mem(X,Y)sUU X s W
mem(X,Y)=TT fFaX)=) TT
mem{X,Y)=FF FaXys) TT

men (X, Y} =TT } islist{Y) = 7T
mem(X,Y)eFF } islict{Y)=TT
mem (X,Y)=TT F null(Y) = FF

aixy = 17 F o mem(X,NIL)= FF

dX)=TT, i s list(Y)=TT F nmem(X,cons(X,¥))=TT

men (X,cons(Y,NIL})=sTT b X =Y

(X=head(Y))= FF t mem (X, tai | (Y)) 3 mem(X,Y)

vx. d{X):: mem(X,Y)=FF}F Y =HIL

mem(X,Y)=TT, 3U=TT | nmem{X,cons(U,Y)=TT

islist(tailX) =TT } memihead(X),X) =TT

nem (X,Y)=FF,nut 1 {Y)=FF } (X=head(Y))= FF

mem (X, Y)=FF,nul 1 (Y)sFF | mem(X, tai | (Y))= FF
VX Y . mem(X,rev(Y)) = mem(X,Y)

mem (X, Y1)=TT, i s | ist(Y2)=TT } mem (X, (Y1&Y2))=T T

mem (X,Y2)&TT, isl ist(YL)=TT F mem (X,(Y1&Y2))= TT

mem (X, (Y1&Y2))= F F t men(X,Yll= FF

mem (X, (Y1&Y2))& F F t mem(X,Y2)& FF

mem (X, Y1) eFF, mem(X,Y2)=FF F mem(X,(Y1&Y2))= F F

F omems[aG. [Axy . (islist{yl-
(null{y)=(a(x)=FF,UU), ((x=head{y)}-TT,G(x, tail(y)))),UU)]]

g) The “menL” predicate.

F VX . meml(UU,X)lz UU
F vx. membL (X,UU)=s UU
islist{X}= FF F VY . menlL(X,Y}= UU
isl ist(Y)s FF F VX . menL{¥,Y}= UU

memk (X,Y)=T Tk islistX)=TT

menL (X,Y)= F FF islistiX)=TT

memL (X,Y)= TT F islist(Y)=TT

memL(X,Y)=F F}F islist(V=TT

islistX)eT TPk menb(NIL,LX)=TT

islistX)eTT ,islist(Y)=TT ,memL(X,Y)sU U} TT =FF

F oYX Y . meml{cons(X,NIL},Y) = mem(X,Y)

46

APPENDIX 18 (continued).

h)

meil (X, Y) o mem(heac (X),Y)
mem (head (4) ,Y)e TT
meml (tail(X),Y) « TT

meml (tai 1 (X),Y)e T T t
memL (X, Y)&TT, nul | (X)&FF }

meml (X, Y)&TT, nul | (X)=FF }
memb (tail(X),Y)a F F F
memL IX, Y) =TT, mem (A, X)&TT}

menl(X,Y)=s FF
mem{A,Y) s TT

F meml = [oG.Ixxy . (islistiyl-(islisti{x)~

(nul 1 {x)=TT, (mem{head(x),y)=G(tail(x),y),FF}},UU),UU)]]
menl (X,Y)s TT
meml (X, tai {Y))s FF
memL (X, X)s TT

memb (X, tai ({(Y})s TT F
nul | {Y) =FF, memL (X, Y)=FF }
islistX)eTT k

islist{X)=TT, isl ist (Y)sTT, VA . mem{A,X):smem{A,Y)= T T
Foomenl (X, Y¥}s TT

VX. islist{X):: memL(X,Y)=null{X}

memL (X, NIL) = TT F o nul

memL (W, X) =TT, meml. (X, Y) =TT}
Fo¥X
FovX

memL (X,L1) =TT, is|ist{l2)=TT }
memL (X,L2) =TT, islist(Ll)=TT
memL (X1,Y)=TT, memL{X2,Y)&TT}
memL (X18x2,Y)=s TT F
memL (X18X2,Y)= TT F
memL (X, Y18Y2) = FF F
memb (X, Y18Y2)s FF k
menl (X1,Y)=FF, isl ist(X2)=TT }
memL (X2, Y)=sF, islist (X1)aTT}

F Y = NIL
(X} TT

meml (W,¥)s TT
Y . menL (rev (X),Y) =membL (X, Y)
Y . memb (X, rev (Y)) = memlL (X, Y)

meml (X,L18L2)= TT
meml (X, L1&L2)=e TT
meml (X18X2,Y)= TT
meml (X1,Y)e TT
menl. (X2,Y)= TT
memL (¥,Yl)= FF
meml (X,Y2)= F F
memL (X18X2,Y)= FF
memL (X18X2, Y j= FF

*‘memEQ” - Equality with respect to (list) membership,

F VX . memEQ(UU,X)= UU
F VX . memEQ(X,UU)s UU

islist(X)=s FF F VY , memEG(X,Y)= UU
isl ist (Y& FF b VX . memEQ{X,¥)= UU
memEQ(X, Y= TTF islistX)=TT
memEQ(X,Y)= F F} islistX)=TT
memEQX,Y)=e TTF islist{(Y}=TT
memEQ{X,Y)s F FF islist(Y)=sTT

islist{X)=TT,

memEQ (X, Y)=UU }

TT = FF

T
AN=TT

i
memEQ(X,Y)s T TF menl(X,Y)e TT
memEQ(X,Y)= TTF imeml(Y,X)=TT
memL (X.Y)=F F}F memEQ(X,Y)= FF
memL (Y,X)= F FF memEQ(X,Y)= FF
ististX)=s T TPk menEQX,X)=T
islistX)=T Tk men&Q (X,revl

47

FV X Y |, memEQ(X,Y) & nemEQ(Y,X)
memEQ W, X) =TT, memEQ(X,Y)2TT nemEQWU,Y)eT T
memEQ (W, X) =TT, memEQ(X,Y)=eFF } menEQW,Y)s FF
memEQ(X,Y)= TT FoomemEQX&Y,X) =TT
memEQ(X,Y)= TT o omemEQ(X&Y,Y)= TT
memEQ(X,Y)= TT F ¥z, menm(z,X) =memlz,Y)
islist(X)=TT, V z . mem(z,X)zmen{z,Y) b memEQX,Y)=TT

i) The “memS” operation (de | e t i ng an e | ement from a | i st}

FoW¥X . memS(UU,X)= UU
FOvX . memS(X,UU)= UU
islist(X)s FF P YY . men6(X,Y)s UU
J(memS{X,¥Y))sTT b islistX}=TT
AlmemS{X, Y eTT F 3(Y) eTT
islistXeTT, d(Y)&TT b islist (memS{X,¥Y))a T T
3X)s TT t memS(NIL,X)= NIL
YX Y . menS{cons(Y,X),Y) & memS(X,Y)

iatist(X)eTT, 3(Y)aTT | mem{Y,menS{X,Y)} e F F
ist ist(X)=TT, d(Y)8TT b menl (memS,Y),X) = T T
mem(Y,X) 8 FF F memS(X,Y) = X

FoovxX Y o (menS (X, Y)=X) = (mem(Y,X)-FF,TT)

FovX Y . menl (K, memS(X,Y)) & (mem(Y,X)=FF,TT)
FV XY . memEQ{memS(X,Y),X) = (mem(Y,X)-FF,TT)

j} The “memSL” operation.

P YX . memSLUU,X)= UU

FOYX . memSL(X.UU)e UU
islist(X)e FF |k VY . nenSL(X,Y) aUU
islist(Y)e FF F VX ., menSL(X,Y)a UU
3(memSL (X, Y))&TTp islistX)seTT
d (memSL (X, Y)) =TT | islist{Y}=TT
islist(X)=TT, islist(Y)aTT F islist(memSL(X,Y))=eTT
islist(X)= TT P memSLINIL,X}= NIL
ististX) = TT P memSL (X,NiL)= X

islistX)=TT FV WY.nen(d,nemSLX,Y))=(men(ld, Y)=FF, men (W, X))
mem(W,Y) =TT, islist(X}=TT }F mem(l,memSL(X,Y)) =FF
mem (W, X)=FF, is! ist(Y)=sTT } men(l,menSL{X,Y)) = FF

mem (W, X) =TT, mem(W,Y)=FF F wem (W4, memSL(X,¥))= TT
mem (W, menSL{X,Y))=TT t meald,X)eTT

mem (W, memSL(X,Y))= TT Foonenld,Y)= FF
islistX)=TT FomenSLX,X)= Ni L

48

APPENDIX 10 (continued).

k) Properties of 'subexp’,

F VX. subexp (X,U0)= uu
VX . subexp (UU,X)= UU
subexp (X,Y)= TT FaiX)= TT
subexp(X,Yle TT t dy) =17
subexp (X,Y)= FF FoX)= TT
subexp(X,Y)= FF oY) TT
A(X) =TT, a(Y)=TT, subexp(X,Y)=UU } TT=FF

alX) =TT t subexp (X,X)=TT

atom(X) = FF { subexp (head (X},X)=TT
atom{X)= FF t subexp(tail(X),X)=TT

atom(Y) = TT F VX . subexp (X, Y)a(XaY)

3(X) =TT F VY . subexp(X,cons(X,Y)) s 3(Y)
alX) sTT VY . subexp(Y,cons(X,Y)) = d(Y)

subexp (X,head(Y))} =TT b subexp(X,Y}=TT
subexp (X, tai 1 (Y))sTT}F subexp(X,Y)= TT
subexp (W, X)&TT, subexp(X,Y)eTT [} subexpW,Y)ae TT
subexp (head (X),Y)eFF[F subexp(X,Y)s FF
subexp (tai | (X),Y)=FF } subexp (X,Y)= FF

subexp (X,Y)sFF, atom(Y)=FF t subexp {X, head (Y))= FF
subexp (X, Y)sFF, atom(Y)=sFF t subexpiX, tai 1 (Y))= FF
subexp (X,Y)aTT, subexp (Y,X)aTT F X sY

atom(X)s FF t subexp (X, head (X))= FF

atom(X) = FF t subexp (X, tai I (X)) e FF

I) Properties of ‘assoc’.

b VX, assoc(X,UUl= UU
vx. assoc{UU,X) s u u

b
islist(Y)a FF } WX ., assoc(X,Ylzuu
atom(X) = TT YWY . associld,cons(X,Y))e UU
dlassocX,Y))=TT } dX)e TT
dlassoc(X,YIsTT F 3MM)s TT
alX) =TT t assoc{X,NILl= NIL
l.

islict(Y)e TT V W X.assoc (W, cons{cons(l,X),Y)}econs (W, X)

m) The “forl’ function.

F Vf fNIL . forL(UU,f,fNIL)= UU
VX . XU sUU, istist(X)=FF F YENIL . forl (X, f, fNIL)= UU
JforL (X, f,fNIL)) =TTE 3(X) =TT

F Vv ffNIL. forlL (NIL, f, fNIL)} = fNIL

alX) =TT PV ffNIL. forL{cons(X,NIL), f, fNIL)=f (X, fNIL)

J{X)eTT, a(Y)=TT

F Vi fNIL. forL(cons(X,cons(Y,NIL}), f, fNIL)=f (X, f (Y, fNIL))

49

APPENDIX 11 -Basic Theorems for Finite Sets

FarrxE2== *3 =8 asssz ssssszes (W: Wiz=xs ssaxa

{uses the axioms of sections 3,6 and 7.1 to 7.5}

e F ieset(UU)ls UU
i sset (X)sUUF X=UU
i sset (X)eTTF 3(X) =TT
isset(X)sFF F 3(X) =TT

b setof{UUl= UU
o F listof (Wi= UU
isl istX)=FF } setof (X) = UU
i sset (X)=FF F 1 istof (X) 3 W
- isl istiX)=TT } issetlsetof{X))=TT
i sset (X)=TT F o oislist(listof X})=TT
isset(X)=TT b setofllistof{X)}=z X
C dlsetof (X))=TT P islist(X)=TT
d(listef(X})=TTF isset{(X)=TT
menEQ(X,Y)=TT |} setof(X) = setof(Y)
- F VX . setof(listof(setof(X))) = setof(X)
o vx. listofisetof(listof(X))) = listof(X)
« isl istX)sTT F memEQ(X, listof(setof(X)))=TT
_ F VXL . mem(X, | istof (setof (L))} =mem(X,L)
<
<
L
C

APPENDIX 12

- Theorems About the Basic Set Operations,

(relies on the axioms of sections 3,6,7}.

a) Theorems

involving the null set,

t isset(NS)= TT Coa
FaiNS)= TT

Flistof(NS) = N | L

setof(X)s NS F X = NIL

listof (X)= NIL F X = NS

isset (X) =TT, (XaNS)=FF } nuli(listof(X)) e F F

b) Properties of the membership relation.

FVX.XCUU =UU
F VX . W= Uu

isset(Y}sFF F v . XY= uu
isset(Y)aTT,XeYsUUF x= wu
XeYeTT PotXys TT
XeY=FF FaoXy= TT
XeYeTT t issetM=TT
XecY=FF t isset(Y)a TT
3X)s TT F XeNS = FF

YX. d(X):s: XeYaFF F Y = NS
isset(Y)=TT, VX, XeY2sXeY F Y2=2Y

c) Introducing the 'subset' relation,

isset(X)e F F
isset(Y)s F F
T

F VX. subset (X,UU)a UU
F VX . subset(UU,X}s UU
F VY . subset (X,Y)= UU
F vx.subset ix, Y)= uu
|.

i.

|..

subset(X,Y)=T isset(X)= TT
subset (X,Y)=TT isset(Y) = T7
subset (X, Y)=FF isget{X) = TT
subset (X,Y)sFF b isset(Y) = TT

isset(X)eTT, isset(Y)eTT, subset(X,Y)sUU b TT & FF
isset (X} alT F subset(NS,X}=TT

subset (X,
subset (X,
subset (X,

NSI=TTF x = NS
Y)eTT, WcXeTT b Weys TT
Y)=TT, WeYzFF b WeX = FF

isset(X)e T TF subset(X,X)=TT
isset (X) =TT, isset(Y)=TT, VW . WeX::leY=TTF subset(X,Y)=TT

subset (X,
subset (X,
subset (W,

Y)=TT F VW. HeX mWeYs TT
NS)=TTk X= NS
X) =TT, subset(X,Y)=TT t subsetM,Y)=TT

51

d) The usual union operation - ‘U7 ,

F vx . xuuu = WU

Fovx . UUUX = WU

- isset(X)s F FF VYY.XuY= wuu
isset(Y)m F FP vx . XuY& uu

diXuY) s TT F issetX)=TT

diXuY) =z TT } jeset(Y)=TT
isset(X)s T T,isset(Y)=eT T} isset(Xuy)s TT
isset(X)e TT,isset{Y)=TT , AUY =UU } 1T s FF

L WeXs TT, isset(Y)s TT pWc (Xuy) = TT
WeY= TT, isset(X)= TT fUWc {(Xuy) = TT
WeX = FF, WeYs FF F W XuY) = FF

We(XuY)= FF F WeX = FF
Wc{XuY) a FF P UWeY = SF
isset{X)s T T, isseti{Yi=T
L isset(X)s T T, isset(Y)=T
isset(X}=s T TF XUNS = X
isset(X)=e T TP NSUX = X

TE subset(X,Xuy)s TT
TF subset(Y,XuY)=eTT

isset(X)=T TF xux =x
subset (X,Y)=TT }F Xuy =Y
F o Xuy = YuX
h Fovx YZ . (XuY)uZ s Xu(yuz)

r

e) The set subtraction (\) operation.

r—"-q

Fowx , XN\WW=uu
Fowx .UU\X 3 wu
isset{X)s F FF VY.X\Y= uu
F
b

isset(Y)s F vx . X\Y= uu

SiX\Y) s TT isset(X)=TT

dX\Y)s TT } isset(Y}=TT

- isset(X)e TT, isset{Y)=T T t isset(X\Y)e TT

isset(X)aTT, isset(Y)sTT, X\YsWU T T=F F

WeX = FF, isset(Y)s T T F WelX\Y) e FF
WeY =TT, isset(X)e T T P WelX\Y)s FF
WeX's TT, WeY = FF FUc(X\Y) 5 TT

We(X\Y} = TT FMWeX= TT

We (X\Y) = TT F UWeY= FF

isset{X)=TT, isset(Y)=T T t subset (X\Y,X)a T T
isset{X)= T TF X\X= NS

issetX)=T Tk X\WS= X

isset(X) = TT |} NS\X = NS

52

APPENDIX 12 {continued).

f) Properties of usual intersection operation -’ .

F VX, XnlUU = uu

F vx , UWUnX= uu
isset(X}a FF f VY . Xn¥Ys WU
isset(Y)s FF F WX , XnY =UU
diXn¥) = TT P issetX)=T T
a{XnY) = TT F isset(Y)e TT
isset(X) a TT,isset(¥)s T T o oissetXnY)sT T
isset(X)aTT, isset(Y)=TT, XnY=UU b TT s FF
WeXe FF , isset(Y)sT T F WeXnY) = FF
WeY s FF, i sset{X)eTT F Wwe(XnY) & FF
WeX s TT , WeY = TT F We(XnY) = TT
We(XnY) = TT P WeX = TT ’
W (XnY) = TT p WeY = TT
isset{X) sTT,isset{¥)sT T F subset(XnY,X) = TT
isset (X)&aT T ,isset(Y)=TT P subsetXnY,Y)aT T
isset(X)s TT F XANS=NS
isset (X) 8 TT b NSAXs NS
issetX)sT TP XnX = X

F XaY = ¥YnX

FVX Y Z . (XnYInZ = Xn(¥YnZ)

g) The ‘select’ function.

' select (WU)=U U
select(NS)=U U
isset (X)8 FF b selectX}z=U U
d(select (XN=TTF issetX)sT T
d(select(X))=TTP (XsNS)eF F
isset (X)s TT, (X=NS}= FF | G(select (X)) & TT
isset(X)® TT, (X«NS)= FF } selectX)eXaT T

h) The ‘singtn’ function.

F singtnlUll=u U

alX) =TT b issetl(singtn(X))=aT T
dlsingtn{X)) =TT alX) = 17T

alX) =TT F XesingtnXd =T T
Xesingtn(Y)=TT b X =2 Y

alX) = TT F (singtn(Xi=NS} = F F
dX)sT T F select(singtn(X))= X

