
STANFORD ARTI FI CI AL INTELLIGENCE LABORATORY

| MEMO AIM-184

| STAN-CS-73-330

| AXIOMS AND THEOREMS

| FOR INTEGERS, LISTS AND FINITE SETS

{ IN LCF

| BY |

| MALCOLM NEWEY

SUPPORTED BY

| NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

8 | AND

| ADVANCED RESEARCH PROJECTS AGENCY

| ARPA ORDER NO. 457
|

JANUARY 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

| Fa
AEE Jf

un STANFORD ARTIFICIAL INTELLIGENCE LABGRATORY JANUARY 1972

4 MEMO AIM-18&4

- COMPUTER SCIENCE DEPARTMENT

REPORT CS-330

: ” Axioms and Theorems
: for Integers, Lists and Finite Sets

| in LCF.

| ~ by

| Malcolm Neuey

Ras ABSTRACT:

LCF (Logic for Computable Functions) is being promoted as a
L formal | anguage suitable for the discussion of various problems in

the Mathematical Theory of Computation (MTC). To this end, several
| examples of MIC problems have been formal i sed and proofs have been
~ exhibited using the LCF proof-checker, However, in these exanp | es,

there has been a certain amount of ad-hoc-ery in the proofs: namely,
: many mat hematical theorems have been assumed without proof and no
| axioniatisation of the mathematical domains involved was given. This
- paper describes a suitable mathematical environment for future LCF

experiments and its axiomatic basis, The env i ronment deve| oped,
(~~ deemed appropriate for such experiments, consists of a large body of

theorems from the areas of integer arithmetic, list manipulation and
finite set theory.

| _

| This research was supported in part by the Advanced Research Projects

Agency of the Off ice of the Secretary of Defence under Contract S0-183 and in
~~ part by the National Aeronautics and Space Administration under Contract

NSR _05-820-583.

— The views and conclusions contained in this document are those of the

author and should not be interpreted asnecessarily representing the official
pol icies, ei ther expressed or implied, of the Advanced Research Projects Agency,
the National Aeronautics and Space Administration, or the U.S. Government.

Reproduced in the USA. Available from the National Technical
- Information Service, Springfield, Virginia 22151. Price: full size cobu

$3.00; microfiche copy X0.95.

“

Axiom and Theorems

for Integers, Lists and Finite Sets
in LCF.

. by

Malcolm Newey

Co

CONTENTS

.~ _ PAGE

1. Introduction

h 2. Theorems from NO Axioms and a
Propositional Logic 2

“

3. Individual Equality and Definedness A

4. Natural Numbers 6

5. Integers and Arithmetic 8
.

6. Lists and S-Expressions 12

7. Finite Sets 16

8. Conclusions, 19
“

9. References 22

) 18. Append i ces. 24

-

-

w

1. INTRODUCTION

By LCF, I mean the Milner version of a logic proposed by Dana Scott in
] 1969, mechani zed by Milner in 1371, and described by Milner in (1,2). [1] is

actually the user's manual for the LCF proof-checker which has been the vehicle

| for generating formal proofs in the logic.

| Since the development of the proof-checker, LCF has been successful Iyapplied to various traditional problem areas of the Mathematical Theory of
Computation, The principal experiments have involved program semantics,
correctness of programs, termination of programs and compi ler correctness

wo (2,3,4].

In each of the examples reported a machine checked proof nas generated

ithich increased the reliabi | ity of the solution enormously. However, each proof
al co made a | arge number of assumptions in the forms of unproved theorems an

L redundant axioms. Although it can be demonstrated that the particular
assumptions involved do not invalidate those experiments, it is clear that ths

proofs would be considerably more reliable if a solid axiomatic theory was

g already avai iable to give all the required background results.

The three part i cu | ar areas of mathematica l know | edge wh i charedeve l oped
bv in this paper, namely integer arithmetic, list manipulation and a theory of

finite sets, are very important in computation, Moreover, in proving
assertions about programs, these thecries provide most of the mathemat ica |

| material uwhichuould be classified as background results.

] The current project has been to develop a very large theorem bank wh i ch
- wil | act as an appropriate mathematicalenvironment for future applications of

LCF. So far over 33d theorems have heen proved (with the aid of the LCF

proof-checker, of course) from the axioms given in this paper,

| Although there is no distinction possible (in the LCF system) be tusen
axioms and definitions (both are declared as AXI(OMs), effort was made in the

axiomatisation to introduce new functions as terms of the logic, This strategy
makes it easier to demonstrate consistency for the sets of axioms presented.

Simi lar ly, in the presentation of AXI(lls a contrast is effected by label | ing
them either axioms (AX) or definitions (DEF).

The large body of theorems, alluded to above, is organissd as a sequence
of appendices. Al | the theorems of any apgpendix depend on the same group of
axioms or definitions and appear in an order which is appropriate for efficient

proof of the whole group (by making use of the theorem-using facili ty of LCF}.
Note that the indentation of theorems is only to make the page layout a | i ttle
prettier.

1

oo 2. THEOREI1S FROM NO AXIOMS AND A PROPOSITIONAL LOGIC
== EEmsSSSR ZZ == ZS==D=o= A= = —rrrmrmenenna-A TIC

No

“ Appendix 1 gives a number of theorems that require no axioms (strictly -

no nonlogical axioms) for their proof in LCF. Al | can be proved in a few | ines
but it shortens and so helps to clarify later proofs if they are available.

B The theorems
~ Vo.p-TT,FF=p

vp . h-UU, UU=UU
R [Ax UU] =UU

are important as pernianen t members of the simpliiication set of the LCF proof
oo checker. It is also worth mentioning that the block of results exempt if ied by

p-TT,UU=FF | TTsFF

3 are designed to make use of the proof by contradiction facility in LCF which
‘knows’ that TTsFF (and a few similar ffs) is a contradiction.

A function from and to the domain of truth values which represents the
logical NOT operation is readily defined in LCF as

wxDEF 2.1 = = Dx. xoFF, TT]

- Appendix Zshous that i t behaves according to the truth table

x | =X

—_——— tm ————

TT | FF
. |

BN FF | TT
|

uu | uu

x Unfortunately there is no such definition possible to give a suitab |e
- mean ing to the logical AND or the logical OR operators, The truth table we culd

| ike for OR, say, is given as"

xy | TT FF UU
—— mmmma —

~ |
TT | TT TT TT

|
_ x FF | TT FF UU

|

uu | TT uu uu

L

_ 2

« We therefore axiomatize the relation as below and note that each axiom
is trivially faithful to the above truth table. Moreover the theorems of

Appendix 2 show the whole truth table is derivable,

wiekAX 2.2 VP, PuvTT=TT

« sedkskAX 2.3 VP. PuFF=P
JiAX 2.4 VP. PvUld=s (P-TT, UU)

An appropr i ate definition for logical AND is now possible (see below)
in terms of the OR operation. We also give an explicit definition of

o eyuivalence. The results of appendix 2 give the truth tables for these
operators shown below.

JEFF 2.5 As Dx yo=({=x)vi=yl)]

swxDEF 2. 6 = 8 [Ax y.xay, (y-FF, TT)]

bo. Y Y

xny | TT FF UU x=y | TT FF UU
LS

———eer crm ————————— —————— ———_——————— =

| |
IT | TT FF UU IT | TT FF UU

| |
LL - X FF | FF FF FF X FF | FF TT UU

| |
~ uu | uu FF W uu | UU UU uu

|.

; - 3

: 3. INDIVIDUAL EQUAL ITY ANS DEF | HEDRESS

In the domain of individuals of the logic, weuant (very often in

! practice) to utter sentences which contain terms such as “x is the same as y’.
For example we could require a function

en f = [Ax. (is-the-same-as(x.a)-b,g(x))]

| or uemightuant a sentence such as

~{is-the-same-asix,yl):i: glx,yl=hix,y) :

The Y=” connective of LCF is the most obvious candidate but it cannot be

represented by an LCF term since it is not monotonic. What we want is a two

- p | ace predicate “=” which

i) is undefined exactly when one (or both)
Lo of i ts arguments is undefined,

and otherui se

ii) has the value TT ifandon ly if the two

i arguments are the same element (not UU).

Such a predicate, obviously monotonic, is possible vith appropriate domains of
CL individuals (se e below) but aswiththe logical operators AND and OR, this

. ‘computable equal i ty cannot be defined butmust be éaxiomatised. The fol lowing
capture the desired predicate:

a sk AX 3.1 V X. { {x=x)-x,UlU) =x
E | Jk kAX 3.2 V X 4. (x=y)s: XE

Sk AX 3.3 Vx y. {x=x)=({y=y)TT, UU) ,UU= (x=y) >TT, TT
eiAX 3.4 (UU=UU) =U

| First note that this equality predicate for the domain of individuals
lL and the logical equivalence predicate defined in the last section are of

o different types (in the technical sense) and are only given the same name
| because of shortage of symbols, Aswith the symbol UU (which denotes an

individual, a truth value and an infinite number 0 f functions of different

a types) the particular predicate intended by =" can be determined by context.

~ . The role that the first three axioms play is quite straightforuard:-
3.1 says that the *="relationis reflexive on al | individuals

except UU;It says notning about UU=UU;
3.2 says that the relation is cniy true in the reflexive case;

3.3 interpreted in the | ight of 2.4, this axiom Gives us that
if neitherx,y are UU then x=y is either TT or FF; It
also gives that if x=yis IT or FF then neither x or y is

| ha. the undefined eiement.
| ; —~ 4
oo

|

The axiom 3.4 is not really necessary in that if there is any clement
“ in the domain of individuals (distinguishable from UU) then 3.4 fo Ilous from

} 3.1-3.3 . For, supposing X to be distinguishable fremlUU , AsUd is a
contradict ion andsouwe argue by cases on UU=UU: If UU=UU=TT then X=UU=TT by
monotonicity and XsUU by axiom 3.2 ;IfUU=UU=sFF then X=X=FF by monotonici ty
and Xs=UU by axiom 3.1 ; Since the TT and FF cases lead to contradictions we

. have UU=UU=UU.

\
Although we are indeed only interested in nontrivial domains we want to

be able to prove a body of useful theorems about equality without mentioning

any particular elements, 3.4 is needed to prove several of the theorems of
appendix 3 and this forces us to add it. For example, the theorem

o vx. X=UU= uu

can not fol low from the first three axions since in the trivial domain of just
- UU, we can have UU=UU=zTT and the ax i omz are sat i sf i ed.

o X=Y can always be deduced fromA=Y=TT as prescribed by the axioms, but
we a | so eas i | y get theorems for go i ng the other uay

X=Y, X=X=TT } K=¥V=TT
- XzY, Y=Y=TT } X=Y=TT

and 2 versions of the commutativeiau for “= .

. VX Y, X=Y = Y=X
: X=Y=TV } Y=X=TV

The fact that every element except UU is equal (=) to itself, gives us
TT the definedness predicate for individuals by definition,

\

sx0EF 3. 5 a = [Ax. x=x]

there dui l lhe TT on al lindividua lsexcent UU and J (UU wi 11 he UU,

BN Appendix 3a lsogives useful theorens about t h e d predicate. Nate
« especially the fo | louingtheoremse whichare extreme | yinportant whenargu ing

by cases on the definedness of some individual:-

d{X)=FF } TT=FF d {xX} =UU F x=UU ,

It was inferred above, tha t the ax icms for =" dictate some structure

CL for the domain of individuals. This structure is simply flatness or
he discreteness {(nhich means that for anyeiement X, if YcX then Y is either UU or

X itself). The fol lowing theorens show that this is so and it is asserted that
flatness isn’t a high price to pau for thenot ions of equal i ty and def inedness.

= in fact, Scott, in his original proposal suggested that this was a reasonable

assunipt ion.

-~ X=Y=FF, X<Y } T7=FF
3(X) =TT, XcY F X=Y

5

3 4. NATURAL NUMBERS

The natural numbers can be axiomatized by the following four axioms and
four def ini t ions:

] 2xDEF 4.1 Z = [Dx., x=8]

A SAX 4,2 (8) = TT

wklEF 4.3 isnat = [oF .[Ax. Zix) =TT, F (predix))]]
| wkAX 4.4 YX.isnat(X)::Z(X)-0, succ(pred(X)) =X

Yk AX 4.5 VX.isnat{X)::Z{succ(X}))= FF

i ek AX 4.6 VX. ienat(X)::pred(succ{X}}= X
! sxDEF &¢.7 i = succ(B)
KE J%xDEF 4.8 2 = succll)

| where the axiomatised quantities are the individual 8”, the function ‘“succ’
and the f unc ti on ‘pred’ .

\ A glance at appendix 4 shows that many ususal properties of the natura |
numbers are provable. In particular, the following ones:-

| i snat (B8)= TT
isnat(X)=TT |} Z(succ(x))=FF
i snat (X)=TT } isnat(succ(x))=TT

LC \ isnat (X)=TT, isnat{Y)=TT, succ(X)=succlY) F X=Y

g(B)=TT, Vx, isnat(x)::ig(x)iiglsucc(x})=TT pb Vx. isnat (x)::g(x)eTT

which approximate PEANO Axioms for natural numbers, I use the word
‘approximate’ since the free variable *¢” in the induction theorem can only be
instantiated to a continuous function. However , because domain of individuals

 « we use is discrete, if F is any function on just the natural numbers, it can be

extended to a continuous function by definingF(UU) to be UU. Hence theorems
| which fol fou from the Peano postulates in usual [ogicsuil | be valid (perhaps

withrelativisation) in this LCF environment,

See al so appendix 5 where a proof of the induct ion theorem i s given as

“ an exanip | e ofa technique of using Scott induction to prove relativised
| assert ions. It should also be noted that this induction theorem can be applied

| to prove assertions of the form

| Vx. i snat (x): : h {x)=k (x)

aN by instantiating g with the term [Ax.h{x)=k{x}] and proving

| h{B)=k (B)=TT, Vx. isnat{x):: hi{xi=k{x):: hisucc(x))=k{succ(x}}=TT .

Note that this doesn’t mean that the following sentence is a theorem:

. h{B)=k(8), Vx. isnati{x)::hi{x)=k{x)::hi{sucec(x))sk{succix))
Fo Vx. isnat(x)::hix)=k{x)

| for consider the functions h = (Ax, UU] and k = [x.Z(x)-UU,8].

x Similarly, the instantiation ge«[dx,h{x}=FF,TT) means that the theorem can be
. applied to attack goals of the form

Vx, ienatix):: hix}sfFF

We would now like to argue (informally) that there are no non-standard
< models satisfying the axioms. lle already have that succ™{B) behaves as the

integer n so we need only prove that the set {succ"(B)} exhausts the set of
things for which isnat” is true.
Reasoning outside LCF we can say

pred (x)=y, isnat (yl =TT,isnat(x)=TTf x=sucecly) is provable:
Hence, for any integer n,

« pred (X)=8, isnat(X)=TT |} Xssucch (8) is provable;
But we know from the recursive definition of isnat

if isnat{X)=TT then pred" (X}=8 for some n;
— SO i snat (X} impl ies X=succ™{8} for some n.

Wu It is clear from the various preceding comments that the set of axioms
given is consistent and a faithful representation of the natural numbers, le

: now cons i der redundancy i n the ax i oms and note

| 4.2 is terse and basic: Without it is is not possible to derive,
isnat(B)=TT or even that there exist any natural numbers;

4.4 may not be condensed to Vx, Z{(x}-8,succi{predix})=x a s
f there may be elements in the domain of individuals on which
L ‘bred’ is undefined and so (noting that succ (UU)sUU will be

derivable) ue get a condradiction.
4.4 cannot be weakened to either of the sentences

| Vx, succlpredi(x))ex 1; Vx. i snat (x): :succ(predix))=x
Wi thout making a commitment to the existence of an element

. given by pred(8). If the axioms are to be used as a base for

; the integers this is OK but if the only numbers are to be the
- na tura | numbers then we wou | duant pred (B)=UU to be true,

4.5 is needed to get the distinctness of succ™(8} and succ" (8);
f Without the axiom at all, it is not possible to show that 8

and 1 are not the same element. With only Z{1)=FF in its
place, it cannot even be reasoned that 0 and succ{succ(8))
are distinct;

4.6 is a basic property which cannot be derived from the other
axioms.

It should be noted that the functions ‘succ” and ‘pred’ are only
partially specified in the natural number axioms since we want them to be

defined appropriately when we axiomatize the set of integers (both positive and

negative).

Care has been taken in assembling the appendix of theorems to exh i bi t

the role that equality plays in the axiomatisation, The first group of
theorems depends only on axioms 4.2 to 4.8 which do not mention equality or
def i nedness. The later theorems require the equality axioms and 4.1 as well
for their demonstration.

5

- 5. INTEGERS AND ARITHMETIC

| Jee AX 5. 1 Vx, isnatix):: nos (x) =Z{x)-FF, TT

fee AX 5.2 Vv X, pos (x) ssienatixssll

i JeddAX 5.3 Vx. posimns{x)) = pos(x)=FF,Z{x)-FF,TT
| | we AX 5.4 V x ; nos (x)-TT7,TT = ieint (x)=TT,UU
 ~ skAX 5.5 Vx. isint (x)-mns{mns{x)},mns{x)zisint (x) =x, UU

| TXkAX 5.6 VX. succ (x) =mns {pred (ns (x}))
sesekAX 5.7 Vx. pred (x)=zmns{stcc (mns(x)))”
Ld AX 5.8 Ax, isint(x)=TT,TT] = d

| The interpretation intended here is that a positive integer *n” , say,

F~ is represented by succ”(8) and that a negative integer ‘-n", say, is
i represented by pred™(3).0bvi ous i y wns” is the unary minus operator and “pos”

i s the greater-than-zero predicate. Appendix six gives a large cot lection of
SE basic, but useful, theorems provable from the axioms of sections 3,4,5. Note

that the functions Yisnat”, “pos”, ‘ins’, “succ” and ‘pred’ are all undefined
where ‘i sint’ i sn’ t true.

Just about al | that wi | | be claimed about the above axioms for integers

in LCF is that they are consistent {since each is true in the standard
intepretation of the integers) and the usual theorems can be proved using then;,

Because they are just a bunch of suitable properties which together do the job,
no individual deserves comment.

. It isreadily demonstrated that {succ"(@}u{pred™(@) } is the
same set as{x|isint{x)=sTT}as fo | lous:
Suppose isint (X)=TT;

FE From AX5.4 we get that pos{X) must be TT or FF:
| |f pos (X)=TT then isnatiX)=TT and so Xssucc"(8) for some n>B:
Lo |f pos (X)=FF then isnat{nmns (Xil=TT and so nins (X)=succ(8) for

some n2@ giving Xsmns(succ™(B)}:
FT But [Ax.mns(succ(x)) =x. pred (nns{x))] so weget Xzpred™ (3);

| Hence isint (X)=TT implies X=zsucc” (3) v Xzpred" (8) for some n>.
| Also we see that isint{(succ™(8))=TT fo~ al Im2B from the theorem

isint{X)=eTT }F isintisucc{X))=1T
~ and isint {pred™{(8))=TT for al | m2d fromthe correspond i ng theorem

isint(X)=TT F isintipred(X)isTT

| Al though none of the theorems of appendix 6 are deep, one can see hou
many important simple relations there are between the objects axiomatised in
this section.

Nn

The main induction theorem for integers is simply stated thus:-

g(@)=TT,¥x. isint{x)s:glsuccixii=alx) |} VYx.isint{x)sig(x)=TT .

To prevent confusion arising fromtnz sinitaritybetueen this theorem and
the induction principle for natural numhers, note the fol lowing NON-t heorem: -

g(B)eTT, Vx. isintxigix)isgisuccixi)=TT b ¥x.isinti{x)iigix)=TT

- 5

= The discussion of the corresponding induction principle for natural
CL numbers introduced a technique which is appropriate, in this section alsa. for

attacking goals of the form Vx.hix)ski{x) using such a rule. That uastc
instantiate the Yg” of the theorem with the term Dx.h(x)=k{x)], Practice
shows, however, that it is economical to restate the theorem so as to

incorporate the idea :-

« h{B)=k(8},
Vx.isinti{x)::3{h{x})=TT,

) VX. isint{x)::3k(x}}=1T7, Ea

Vx. isint (x): (hix)=k{x}):ih{suce(x)) =k (succ(x}},
VX. isintix)ss tnx) =k {x))::hipredix))zk {predix)),
Fox. isint{x):: hix)skix);

Although this is considerably more cumbersome, each notion expressed by ine
antecedents must be proved any either case and so the economy lies in not

“ having to prove by nested cases arguments

Vx. isint{x):: (hix)=k(x))=s(h{succi{x))=k {succix)))

-

With the integers axiomatised satisfactorily, we proceed to definition
of the basic arithmetic functions and predicates:-

L

Functions:

\ wxDEF 5.9 + = [ob, [Ax yy, Z{yl~isint (x)=x, UU,
pos {y}-C {succ (x, pred (yl), GC (pred(x),succ(y)

%xDEF 5.18 ~ = [Ax y.x+ins(y)]

| +xDEF G.11 % = lab. Dixy. Z{ylaisint (x)-8,UU,
pos yl) =Gix,prediy})+x, G{x,succly))-x]]

wxDEF 5.12 / = [ob [Xx y. Z{y)-UL, Z (x)= (isint (y)-8,U0),
| pos (x) -=pos{yl = posly-x}-3,succ(G (xy, yl},

me(G(x,ms (yl), mns(G{mns (x), ylil]
wrx0EF 6.13 ® g [Ax y.x-({x/ylwy) 3

s%[EF G.14 Fac = [oG. Dixy Zz (x)=1, pos (x) »xxG(x=1),UU]

wxDEF 5.15 Look = [al. [Ax f ju. pdx, Gfx), f,p)])

| Predicates:
%DEF 5,16 > = [Ax y. posix-y) 3

| wxlcF 5,17 2 = [Axy., Z(x-y}=T7, pos Ixy) |
s#DEF 5.18 < = [Ax yo y>x]
JEFF 5.183 <= [x y. yzx]

wxDeF 5,28 even = [Ax. z (xe2) |

wxDEF 5.21 odd =[A\x, z(xe2)-FF,T7]

wxlck 5,22 bug = [obG. Ax y po oy) =TT, p(x) =G(x+1,y,p) FFI]
%%0DEF 5.23 beq = [aG. [IMx y po (x>y) =FF p(x) -TT,G(x+1,4,0) 1)
wk0cF 5.24 Pr= [Dx. [y.{y>l)-bug(Z, y=-1, hz. (yez}) =B-FF, TT1),

FFI {x28 -x,mns ix) }]

J

Most of these definitions are self explanatory and the others become

obvious with a few points of expianation:-

i) 7 is integer division, of course, and ‘@° is the “mod”
operator which gives remainder on division, These are

defined in the norma | manner for posit ive integers and

are extended (to operations involving negative integers)
« in such a way that thesign of x/y is a | ways appropriate

algebraically and the signof xay is the same as the

sign of x. This choice enables the reconstruction of a
number from itsquotientandremai nder iwi th respect to
a given divisor }.

« ii) “Fac” is the factorial function and is only defined for
non-negative integer arguments.

iii) Look{x, f,p} yields the first integer y (if any) in the
sequence {x, fx, ffx, fffx,} which satisfies the
predicate p (provided no previous member of the sequence

._ caused p to yield UU}.

iv) ‘bug’ stands for Bounded Universal Uuantifer and ‘heq”
denotes Bounded Existential (Quanti f ier and are meant to

~ take the place of regular quantifiers in numeric proofs.

The importance of bug comes from the pair of theorems:
.

_ bug (X,Y,p)=TT Fb Vz.zxXs:Yeziip(z)=TT
Vz.z2XssY2zeipl(2)=TT F bug(X,Y,p)sTT

A similar result for “heq” is expressable as the meta-
oo theorem that (Provided p is total on the range <X,Y>)

« beg(X,Y,p)=TT IFF 3 integer in <X,Y> that satisfies p.

- The totality proviso in thisresultisessential,forif
p(n)=UU and p {(n+1}=TT then beq(n, ntl, p)=UU even though
there does exist an integer in the range which satisfies

the given predicate.

. Although the predicate which gives TT exactly uhen there
IS an appropriate element in the range is definable as

[aG. Ax y poxoy=TT,5 (xIvG(x+1,y,p)]],
DEF 5.23 is preferred because of the useful relationship

between that version of beq and the Look function.

“ v) Prix) is TT if either x ormns(x})i s a natural number
whichis prime in the usual! sense (not 1). Pr is a total
predicate over the integers.

= vi) Note that all the functions and predicates take at least
one argument which is of tupe “indi vi dua I, Al | these

C functions (except Look)keconz undefined when appl ied to
individuals which are not integers,

13

«

B Appendix 7 contains a rather large collection of results that folio
from the results on integers and thedetfinitionstisted above. There are basic

| theorems about all of the functions anu wredicates except <andg If &
: problem contains these predicates thentne definitions 5.18 and 5.19 should be

app | 1 ed to transf orm the goals to ones containing>and2,

We have already introduced 2mnathematical induction theorems which
require, for their applicat ion, steps of the forns:-

g(x} F glsuccix)) g(x) F glpredi{x})

Such statements are often as inconvenient to prepare as the resul t ve wish to
. establish. A ctu ally, we want io model, in LCF, that form of mathematical

induction given (in predicate calculus) ry:-

- Vx. (vy. ly<x A y28l 2 ply))opix)} o> l¥x., x28 > P(X)]

L_ The obvious problem about what to do iiith this in LCF, is what to do with the
nested quantifiers. Fortunately, the nested quantifier is bounded and so we get
the LCF version of the theorem as:-

\

4 vx. x20: bug(@,x-1,P)::P(x)=TT FV x . x2B:: P(x)aTT

4 Actual ly a more primitive form of the theorem was needed to prove certain
1 resul ts about division uhichpreceded the ork on re | at i ons and “bug”,

Two more functions whichuwillbecinilar ly treated are the sum and

[product of a finite sequence ~- the bhigSIGiA and big PI notation of analysis.
. swx0EF 6,25 Sum = [aG. [Ax yf. yx =» 8, f (x) +6 {x+1,y,f)1]
| %x2DEF 5.28 Prod = [aG. Dx y foy<x =» 1, f (x)aGi{x+l,y,£11]
a

y

il

G. LISTS and S-EXPRESS IONS

Ng mz mm-wme === =czcszscs==c==

Sincelis ts are a specia | case afS-expressions, We proceed with an

axiomatisation of the more general object.

Jes AX BL i ssexp (UU)= UU
wkAX 6.2 issexp (NIL) = TT
wx0EF 6.3 nul | = [Dx x=N]L]

wxDEF B.4 atom =[Ax. issexp{x)-nullix),TTI
wi AX B.5 YX. a tom (X) : : head (X) =U

snnAX B06 VX. atom (X):: tai | (X)=UU

o wkskAX 6,7 YX Y., head {cons (X,Y))=3(Y)=X,UU
Jed kAX B.8 VX Y. tai | {cons{X,Y)}=ca¢{x)=Y,UU

wkAX 6.9 YX. cons (head (X) tail (x)izatom{X)-UU,X
seAX 6.10 Jd = [aG. [Ax. atomi{x)-TT,G(head{x}}-G{ta TI(x)),UU]]

«. Note first that AX b.l is valid for a lldomains wh i ch t-rave def i ned

individuals other than S-express ions - the most common circumstance. In
si tuat ions where all individuals are S-expressions it would be consistent to

say that issexp (UU)=TT but it would be unlikely to give any advantage over
) postulating issexp (UU)=UU. Hence, fcr the sake of proving some handy theorems

about S-express i ons {uh i ch must be true whenever NIL is not the only atom) we
\ assert 6.1 instead of leaving issexp{Ud)! unspecified.

The purpose of axiom 6.18 is to eliminate { from models } any
structures which are infinite. This aisomeans that circularity (whichis
possible in LISP, for example) is ruled out, As an i llustration of the

“ implications of this axiom, a theoremis proved in appendix 8 which gi ves that
if head(X)=X then XsUU, A moreconyzlete result about circularity is discussed
below using the notion of subexpression.

There is one other debatable point about these ax i oms, 1 ti s that we

“ have, as you may have anticipated frcm the earlier discussion o f equality
between individuals, adopted. the doctrine of discreteness for the domain of

S-exyressi ons. The opposing point of vieii is that a term such as cons {UU,X)
(hich clearly must be ‘under foth the terms cons{A,X) and cons (B,X) for arty
individual s A&B) i s not the same as UUand, moreover, tai | (cons (UU, X})=X. As
far as the relative powers of the cnpesing systems are concerned, it seens that

“ most theorems are identical, but there are a some notions expressable n0lre
simpty in one system than the otner. Tihebig argument in favor of the above
set of axioms is that with discrefenzss c3ues the notion of equal ityas
expounded earlier. The only tricky partapout amend i ng the above ax | omg to

~ al low for the case where cons{lU,X}=UL is the problem of excluding the infinite
S-express i ons,

Append i x 8 con tainstheorensakboutthe functions issexp, head, tai l,
cons, atom and null. We mention here only an induction theorem for

S-express i ons: -

V xy, g(x):: g(y):: gleconsix,ul}=TT,
V xy. atom (x):: gx)slT} Vx. dix): gx) =TT

w

Fol lowing LISP, a list is a special case of an S-expression, namely one

which transforms to NIL after some number of applications of the tai | operator.

As such, lists are easily defined.

sxDEF 6.11 islist = [xG.[Ax. nul | (x)-TT7,atom(x)-FF,G{tail(x))}]]
L

As usual, a number of theorems form an append i x (3) but we give an
Induction theorem locally.

Vx y .dix)ssislistlylis g(y):: alconsix,y))=TT,
“. g (NIL) =TT F vx. islistix)s: gix)=TT

A number of usual operations on!ists and S-expressions are given with
some others that foreshadcuw the treatment of sets in the next section of this

report.
1.

sx0EF 6.172 rev = [DMX.reve(X, NIL}

wxDEF 6.13 rev2 = [«G. [Dx y. nul | (x)-y,G{tail{x),cons{head(x),yl))]]
%nDEF B.14 & = [&B. [Ax y. nul | {x}~y,cons(head{x),G{tail(x),y)1l]
%xDEF 6.15 ANDmapz (6G. [Ax p. i sii st (x)=

(nuII(x)-TT,plhead(x})-G{tail(x),p),FF},UU]]
sx0EF 6. 16 ORmap = [oG. xp. isl istix)=

(nul | (x) -FF,plhead(x})-TT,G(tail{x),p)),UU]]
#%0DEF 6. 17 FNmap = [aG. [Ax f.

(nul | (x}=NIL,cons(flhead(x)) G(taill{x),f)))]]

wkOEF 6.18 FRUNE = [«G. Dx ponul | (x) =NIL, plhead(x))-G(tail (x),pl,
cons{nead{x) ,G(tail (x},p))]]

wxDEF 6.183 mem = [Ax y. 3(x)-0Rmaply, (hz.x=2]), UU]
v2xDEF 6.28 meml = [Dx y. isTistiy)-ANDmap(ix,[Az.memiz,y)l),UU]
wxDEF 6.21 memkQ = [Ax y. menb (x,yl-=menl{y,x),FFI
w%0EF 6.22 memS = [Axy. PRUNE ix, [Dz.y=zl)]
wDEF 6.23 memSL = [Ax y.PRUNE ix, [Az.mem{z.yd) |

. s%x0EF 6.24 subexp= [al. Dix y. (x=yl-TT, atomn(y)-FF,G(x, head (y})~TT,
] GCix,tai | {y})]]

wxDEF 6.25 assoc slab. xy. dix)=islistlul> nul I (y)aNIL,

} x=head (head(y))-heazd(yl),C Ix, tai I{y)), UU, UU
- x%DEF 6. 26 forl = [a«G. [AL f NIL. nul T (LY=fNIL,

f (head (L),G{tail(L), Ff, {NIL} 1]

« xx0EF 6.27 nodes = [of. [NX atom (x) 8. succ(Glhead (X)) +6 (tai | (X)))]]
+xDEF 6.28 lengthr [aG. (MX. nul | (X1-8, succ(G{tail(X)))]]

13

«

3 | The function ‘rev’ is the function which produces a | ist which is the
| reverse of the argument list and is defined in the traditional way (using an
| auxi | iary function “rev2’). 8, the appendfunctionis de fined asthe fixpoint

of the appropriate couputation. It is proved (see appendix 18) that *&’ could
have been defined by :

& = Dixy. rev2 (rev {x),yll.

a Various basic properties of these tuioinportant functions are to be found jn
appendix 18. Note that the second argument of *& need not be a | ist for the
function to be defined. However, the following result is readily proved (and
a simi lar remark applies to ‘rev2’) :

C VX.islist{X):: islist{X&Y)=islist(Y)

The predicate ANDmap i s used to describe situations in which al | the

elements of a list satisfy some predicate. The computat ion i s per formed by
applying the predicate to each listelament in turn unti | the end of the | ist
iesreached (and the resul tis TT) or until an element is encountered which cioes

I - not sat'isfy the predicate. This method of computation means that, for example,
ANDmap (X,p) may be unde finedbecause plyl=UJ for some Object y. Because 0 f
this fact, many of the basic theorems anout ANDmap are based on the assumpti on

L that the predicate is total. The predicate ORmap is the disjunctive analogue of
ANDmap. The motivation for developing these predicates uas to aid in the

: development of scme of the later ist operations. There are many t heorens

. proved (see appendix 18) which describe the the interaction between these two
maps and ‘rev’ (or ‘&7).

| FNmap is simply a function on lists uhich applies a function to eachmember of the argument | ist. PRUNEisafunction, also just defined for lists,
which removes from the arument list those eleients which satisfy some

| predicate. As examples, FNmap(X,[Ay.ys2l) would double every element of a
| (numeric)list X and PRUNE (Y,[Ax.x<3J) woul d remove every negative el enent

from a (numeric) list Y.

| The group of operations 6.15 tct6.23 are concerned wi th nembershipin
| ists and are crucial to the theory of sets given in the next section.
memi{x,L}uil | be true whenever x: is onc of the elements of | i st L,] t iS shoun

in the theorems that the following is an alternate definition of “men”:-
[SY

mem = [«G., [Ax y. isl ist{yls null {y}= 3d{x)-FF,UU
(x=head (y))=TT7,G(x, tailly)), UU,

memL {X,Y} Will be TT whenever ALL the eiements of | ist X are members of | ist Y

also, The fol lowing is an alternate definition for “meml”:-

memkl = [xG. [Ax y. islist{ul= islist(x)-
nul | {x)aTT,mem(head(x},yt-G(tai | (x},y),FF, UU, UUI].

menEQ (X,Y) simply indicates whether tiio! ists, X and Y, have the same e 1 ements

(independent of the order or muitiplicity of those elements). memS(L,X) deletes
al | elements of | ist L which are occurrences of the object X whi |e memSL (L,M)

14

:

: deletes al | elements of list L which are also elements of list tl.

©

| The function ‘subexp” is principally used to indicate the imbedding of
| one S-express i on i n another . subexp(x.Y! is TT exact | yuhensone sequence

(possibly null} of head and tai operations take object Y into object X. Thus
i f Y is an S-expression then subexp(X,Y) indicates that X is imbedded in Y
(at least once) but if Y is an atom then subexp(X,Y) indicates thatX is the

same atom. We are now able, usingthisnsw notion, to prove in LCF the non-
| existence of certain infinite S-expressions. =

subexp (X,Y): subexp(Y,X):: XsY

The infinite lists forbidden by this tnhecrem are the ones which in LISP could

be represented using circularity.

The function ‘assoc’ is purelylLiSP-inspired and could be useful tihere
some association technique is gppropriatetoa proof. An al ternate way of
defining ‘assoc’ would be as:-

| assoc = [Axy. lookl (y,[N\z. head (z)=x])]
where

lookL = [aBG. [XL p. isl ist{L)=nul I {L}=NIL,
: p {head (L))-head(L),G{tai | (L},p), LUI]

is, ingeneral, a more useful function. However, such a function which looked
for the first element of a list 10 satisfy a given predicate could be more

suitably defined since with this definition lookL{X,p)=NIL could mean EITHER
p(NIL)=TT and NIL is a member of X OR that no element of X satisfied P.

« The function “orl” is a devicefor simplifying definitions of other
functions which take alist as their onlyargumen t and whi ch compute from the
tai | of the list to the head. As an exampie, the sum of the elements of =

numeric | ist X is given by forL(X,+,8)uhi le the product is given by
forl (X,%,1). One could also give slightly more compact ciefini tions of ‘PRUNE’
and “FNmap” (and predicates whichare similar to *ANDmap” and “ORmap”) using
“orl”.

\.

The funct ion ‘nodes’ counts the subexpressions of an S-exprn. uh i ch are
not atomic or the number of nodes in a tree representation of the S-exprn.

‘length’ is simply the number of elements inaiist and cou | d have been def i ned
(to further i | lustrate “forl”):-

~ length = [Ax forl (x, [Ny z.2+11,8)1.

These last two functions (which are the only ones to refer to the notions
~ developed for arithmetic) are nct expounded in the appendix but the usual

properties clearly fol low from the definitions and the arithmetic environment
already constructed and described.

\.

i 15

X
7. FINITE SETS

«

Sets turn out to be quite hard to categorise in LCF, even finite ones.

The difficulty arises from the lack of existential quantifiers or the lack of

nested quantification, depending how you [00K at it, The problem occurs even as
soon as you try to define the empty set and give its properties. We can easi ly
express that nothing is in this set {calli NS) by the wif ¥x.d{x}:: xe¢NS=FF

\ but when we come to say that the null set is the ONLY set in crhich there is
nothing, ue find no simple way to express the sentence

Vx. xcAsFF } A=NS as a well-formed formula of LCF.

Recal | that the form of an axiom in LCF is a WFF - not a sentence.

“

The solutions we discovered to the above problem al | involved

axiomatising a choice function for sets which ould pick some element from any
set it was applied to. However, using this notion, several developmentsof the
theory are possible. Because of the enormous economy involved, ue have based

our set theory on transformations between sets and lists. The choice function

o involved is the taking of the head of the list that a given set maps into (see
the function ‘select’ defined below).

The transformation functions are ‘listof’ and ‘setof’ and are

axiomatised as fol lows; note that finiteness is automatic since | sts were
axiomatised to be finite.

\

. SAX 7 U1 (Ax. i sset (x})-TT, TTI =3

Sede:AX 7. 2 Vx, isset(setofix)i={islist(x)-TT,UU)
WkkAX 7 . 3 ¥x.islist(listof({x))slisset(x)-TT,UU)

we VAX 7. 4 Vx,setof{listof(x))=(isset(x)-x,UU)

X%KAX7. 5 V x y. mend {x,y} =setof(x) =setof (y)
\

Note that these axioms do not iaply that sets are disjoint from | ists,

S-express i ons or any other data type that may be part of individuals, In fact

it is not inconceivable to identify sets uith the lists to which they map by
“listof’. However, all that is needed to ensure disjointness is an axiom like’

“ vx. issetix)i: issexpix)=FF

With these notions, ue easily DEFINE all the usual operations on sets
in terms of the list membership functions and predicates defined in the last
sect ion. We start with some basic ones:-

«

%xDEF 7.6 NS =setof (NIL)
xxDEF 7. 7 € = [Ax y. memix, | istof (y})]
DEF 7, 8 subset s[Axy. memu{ |i stof (x), |i stof (y)}]
DEF 7. 3 U = [Dx y.setofliistof{x)&listof({u))]
wxDEF 7. 18 \ 3 [x y.setof(memSL{listof(x),listof(yl))]

N %%0DEF 7. 11 Nn 2 [xy.setof(menSL{II stof (x),!i stof (x\y)) |
xxDEF 7.12 select = [Ax. head{listof{x})]

yxDEF 7.13 singtn ={Ax. setof(cons{x,NIL))]

1b

With regard to these definitions, it will suffice to note :-

i) NS is to be taken to be the nul | {or empty) set;
i ii} Ye is the set membership predicate;

iii) XUY denotes the union of the sets X and Y;
iv) XnY denotes the intersect ion of the sets X and VY;

| Vv) *\' is the set subtraction operation;
vi) ‘select’ is the choice function for picking elements

1 from non-empty sets;
J vi i}singtn{X) denotes the set with% “as it’s only element.

| The definitions just given are the basic set operations for which
1 theorems have been proved in LCF (for this project). Appendix twelve contains
] theorems relevent to these operations.

There are many theorems di splayed in appendix 12° but consider how
similar the fol lowing short collection of provable results is to the usual
predicate calculus axioms for set theory. In fact, it is possible to prove all

1 the other results of appendix 12(except those that mention the functions
‘| istof’ or ‘setof’) just from these theorems. Can, therefore, these sentences
be taken as an alternate basis for a set theory in LCF? No! Two of these

| theorems have universal quantifiers in the assumptions and as noted earlier,
| only sentences wi th no assumptions are admi ssable as axioms, Note another

disadvantage: none of the set operations are introduced by explicit
definition.

[Xx. isset{x)-TT,TT)=3

| VX Y. XeYTT,TT = 3(X)=(isset(Y)TT,UU) UU

| isset (Y)eTT, VW . UcX=HeY EX =

alX) = TT |} XeNS= FF

| VX Y. subset (X,Y)=TT,TT =. isset (X)=(isset(Y)TT,UU),UU

i sset (X) =TT, i sset (Y)=TT, VW. WeX: + WeY=TT | subset(X,Y)=TT

subset (X,Y)=TT JF VW. WeX:: WeY=TT

| VW x Y.We(XuY)= (WeX)= isset (Y)TT,UU, (HeY)oTT,FF

| VW x Y. He (X\Y)= (UeX)= (WeY)oFF,TT, isset(Y)-FF,UU

: VW x Y.We(XnY) = (WeX)= (WeY)TT,FF, isset (Y)oFF,UU

VW X. Wesingtn{X)s a{l)-(isset(X)-{lN=X),UU),UU

17

| There are some other very important set operations which have been

- defined appropriately {ses below) b ut (mainly because of lack of time) no
rigorous deve | opment of their proper t i es has been done.

| wx0EF 7.14 forS= [aG., [AS f NS. (x=NS}-fNS, f {se | ect (x),
a. Cix\singtn(select(x}),f, fNS) } 1]

“ wxDEF 7.15 Un = [x forS{x, [Ay =z.yuzl ,NS)]
%%DEF 7.16 In = Dx. forS{x, [Dy z.ynzl ,x)]

_ wxDEF 7.17 reduces [Ax p, forS(x, (Ay z. plyl=singtnlyluz,z] ,NS)]
DEF 7.18 seq =[xp. (reduce {x,p)=NS)-FF,TT]
wxDEF 7.189 sug =[Ax p. reduce {(x,p)=x]
wxDEF 7.20 PS = [aG. (Ax. forS{x,[Ay z.G(x\yluzl,singtnix})]]

- JaDEF 7.21 Cards (Dx. forS(x, [Ay z.z+11,8)]

- where, in words,

i) forS is just an important auxiliary function;
~_.

i i) Un{X} is the n-way union of all the sets that are in X;

iii) In{X}is the n-way intersection of the elements of X;

iv) reduce (X,p) is used to denote the set which in normal
o notation is written {z]|zeX A plz) i};

| v) ‘seq’ denotes Set Existential Quantifier &seg(X,p)=TT
when there is a member of X which satifies predicate “p’

N and p’ is defined on the rest of the set;

« vi) “sug” denotes Set Universal Quantifier and seq (X,p)=TT
iff predicate *p” is TT on ai | elements of set X;

vii) PS is the power set function;

| | ix) Card is the cardinal ity function for sets.

-

-.

..

oo 18

N

| 8. CONCLUSION

LN == bf —F FEF

AXTOMATISATION TECHNIQUES.

- In this work certain techniques were used in axiomatising various

« mathematical not ions, To illustrate these we take an abstract examp | e:
"Axiomatise boops using the previously axiomatised notion of beeps !*

We start working with the assumption that there wii! be things in the
domain of individuals that are not boops , not beeps (which may overlap with

“ the set of boops) and are not anything that is mentioned in the axioms that
the “hoop axioms” will depend on. Thisassump ti on means that many theorems
about boops will have to be relativised but it also guarantees that we will

- be able combine such groups of axioms without fear of inconsistency.

Relativisation is only possible if there is a predicate ‘isboop’ which will
be true only on boops, We wi | | probably want

a = [Ax. isboop (x)-TT,TT]

to be true and if this is not provable from the other ‘boop axioms’ then

— thought should be given to making it an axiom. In the preceding sections this
result was provable for issexp, isi ist, introduced as an axiom for isint,isset

L but not even true for isnat.

} Then the various functions and predicates which are peculiar to boops
are axiomatised paying special cat-e to do so by means of explicit def initioris
wherever possible.

<

. DISJOINTNESS OF DOMAINS

In the development of the environment so far, nothing has been said

about disjointness of lists and integers, say. Before the theories here
developed as modules can be used usefully as a unified whole, another axiom

must be supplied to insure that any appropriate disjointness is provable.

As an example of what is required in general, we give now an axiom

that guarantees the disjointness of integers, S-expressions, sets and beeps:-

“

- Vx. isint{x)- i ssexp (x)-UU, isset(x)-UU, isbeepix)-UU,x
i ssexp (x)= isset (x)}-UU, isbeep(x)-UU,x

~~ | isset(x)~ isbeep(x)-UU,x
i sheep (x) -x,UU gE X

” 13

\

C PROJECT STATISTICS.
The tota | | ine count for the proots of the 1888 (approx.) t heorens

given in the append i cesstandsatabout 23,838 using on |y those fea tures of
‘version 1°’ LCF (that is the proof checker that is decribed in the 1372
manual [1]. The to ta | cpu t i me used was about 53 hours and the human effort
involved was about 8 man-nonths (al 1 of which was spent at a

~ time-sharing-system console). The figures for man and computer effort should

be interpreted in | ight of the fact that much of the proving had to be
re-done because of a revision of the axioms (After about 15,8228 lines of

pr00f some improvements In the axioms were deemed essent i a | and so about 6
man reeks of effort vias expencled to al ter the proofs).

L-

These statistics provide, | beliave, a valuable benchmark against
1th i ch to measure the ef fect i veness of logics and aids for proof generation.

It is proposed in the near future to use at least some of these proofs to
gauge some proposed amendmen ts to the input language of the proof checker.

.

INCOMPLETENESS.

B Inspection of the theorems concerning the concept of integer
Primeness immediately reveals that the the ones given are only the trivial

proper t i es of Fr”. It was also noted in sections b and 7 that no properties
. are given for some of the qui teimportant operations that are defined on

| ists and sets. There are also, undoubtably, many pouerful and useful
theorems for the other areas whichremain unstated. Although this
incompleteness dictates that a user may in certain circumstances be obliged
to prove further results, ® Ljork on expanding the theorem base (for its oun

“ sake) has been stopped because the point of diminishing returns has been
reached, The future development of this mathematical environment will be

= accomplished by individuals enunciating theorems as required and supplying
the proofs.

“ Another important reason for on | y adding (proved) theorems as they
are needed is that a naw version of the LCF checker will appear (sooner or
later) and wil | incorporate fea turesihichui | | make the task of generating a
proof more automatic and so much shorter. There is also the possini | i ty that
the typed logic will be replaced by tte type free theory proposed by Scott
and so the whole treatment would have to be redone (aside: this would take

much less than the 8 man- months quoted here because the proof out | ines are
all done and the proof checker would be better -3 months is an upper limit).

28

iN TO USE THE ENVI EONMENT.

| nevitab ly some readers il luant to make use of theorems from the
i append i ces of t h i s report i r the Stanford Al project POP18 system. The axioms

are located in a file cal led AXIA en [TH,MAL] and the theorems appear in a
form which LCF can read in the fi | e THRI'S on (TH, MAL. . Note that a large

2 proportion of theorems wi thoutassumpt ions are sui table for immediate
| inc lusioninthe SI UPSET (for examn le VA. X+UU= UU) a | though some { such
PF as the various commutative rules)ui| | cause non-termination of the

simplification process. There are actually more theorems in this file than
| will fit, with LCF, in the 98K of core currently available to jobs in the

POP18 system at Stanford, so the user may have to prune a copy of THRMS to

a. meet hi s needs. There will shortly beavailabie a core image wi th a large
; selection of the most important theorems a | ready read in (and moved to binary

! program space to reduce garbage col lection time),

Tu THEOREM NAMES.

: LCF requires a name for every theorem (arbitrary alphanumeric
: identifier) but provides only one handle for access to a result - its name,
A Experience immediately suggests to the user that mnemonics wi | | be an

important ingredient in the organization of the environment and this is so as

[o examples indicate:-

PUSE - pos {B)=FF
PLUSUX - VX. UU+X=UU

| TIMESBX - i sint (X)=TT F BuX=0
Sa ELTXNS - J (X)®TT | XcNS=FF

EL

1 However, for the many objects we have, mnemonic tags help only for a small
Fo fraction of the cases. Most theorems are not results which have words already

associated with them (like associativity) and most have a good number of
| | tokens in the assumptions and conclusion (combined). The author relied on a

| . fairly complex system of mnemonic notions but names tended to be long and. absolutely unintel | igible to anyone else. What can one do about theorems such

SRE isint(W=TT F (WX)2 (d+Y) = Xv
XeY=B,isint(WaTT fF (Xxl)aY=0

| islist(X&Y)=TT Pp islist(Y)=TT

LL isset (X)=TT, V W . WUeXsleY Fb X=Y

to provide mnemonic significance without being so long that typing errors are

encouraged unduly? It is apparent that proof generation should be written
with more faci li ties to address theorems by their content and ta have
appropriate goal-directed procedures to search for the right theorem to

. apply.

-)) 2

\

| ALGEBRAIC MANIPULATION.

Another situat ion where proof generat ion seemed unreasonably tedi ous

| uas where an expression involvingoperatorsuhichhad special properties -
commutativity and associat ivi ty in particular. A good example of this sort
of painful proof ocurred in trying to prove the theorem

| . (K+) (X=Y) = (XX) — (VaY)
| I gnore the prob | em of wha t happens when Xor Y are e it her undef i ned or simply

not integers and suppose isint{(X)=TT,isint{Y}=TT, The steps in the proof
are. -

1) is int (XeX)=TT

| 2) (X2eX)+B=X
3) isint(YsX)=TT

| 4) (YX) = (YsX) =8
5) VX Y Z.(X+Y)=Za¥+(Y-Z]

| 7) VX Y Z.X=-{Y+Z)= (K-Y} +2
8) vX Y Z.X+(Y+Z)= (X+Y) +7

J) ((X4+Y) xX) = ((X+Y) eV) = (KX) = (Ye) (BY 2.4,5:8)
18) VXY Z Xu (Y=Z)=(XY) - (XZ)

11) (X4Y}% (X=Y) = (XweX) - (YaY) (BY 3,108)

FUTURE WORK

| NB This research has given birth to a lot of suggestions about possible
| improvements to LCF. Before this mathematical environment is expanded,
~ therefore, a new, more-automatic proof generator should be developed. When a

new one i s produced, the body of theorems should be reviewed and expanded.

The same sor t of experimentisplannedtogi ve the same sort of a

| rigorous theory for a programming language, A suitable language (such as
LISP, ALGOL) or a subset of a language | | be taken and the semantics
axiomatisedusing LCF. Then.important thecrems will be formulated and proved
as time and imagination permit.

]
ACKNOWLEDGEMENTS

This work was born out of Richard Weyhrauch”s experiments on program
correctness and credit is due Robin Mi Iner for getting the LCF project going.

| am extremely grateful for the conversations that I had with both of these
people throughout the work.

f _ —

3 22

|
|

9. REFERENCES

-“ 3 fff —

i - MILNER. R., "Logic for Computable Functions -Description of a
Machine Implementation", Arti ficial Intel | igence Memo #1863,
Computer Science Dept., Stanford University, May 1972.

“-

2 - MILNER, R., “Implementation and Applications of Scott's Logic
for Computable Functions”, Proc. ACM Conference on Proving
Assert ions about Programs, New Mexico State University, Las
Cruces, New Mexico, Jan 6-7, 1972.

“ 3 - MILNER, R.& WEYHRAUCH,R., ‘Proving Compiler Correctness in a
Mechanised Logic”, Machine Intel | igence 7, ed. DU. Michie,
Edinburgh University Fress, 1372.

4 - WEYHRAUCH, R., &§ MILNER, R., "ProgramSemant i cs and Correctness
in a Mechanised Logic”, Proc. USA-Japan Computer Conference

“_ Tokyo, Oct 1972.

“

“

“-

“-

23

“

| APPEND] X 1 - Theorems depending on NO axioms.
a. momo = = ESSE RBSRSCSSDSS EOS Enasm=o

Fo ODX. Us uu

= F VP. (P-TT.FF) = P
N FOYP . (P-ULLUUY = UU

AcX, BeX + VP . (P=A,B) ¢ X

PATT, UU=TT FP =TT
P-TT, FF=TT t P=TT

| PoFF, WsFF ¢ P= TT
~ PoFF, TTsFF | P = TT

P-UU, TT=FF t P =FF
P-FF, TT=TT } P =FF

- PsUU, FFsFF t P = FF
P-TT,FFzFF FP = FF

| P-TT, TT=U0 Fk P = UU
~ P-FF, FF=UU J} P = uu

P-TT,FF=UU }F P =U
P-FF, TTsUU F P = UU

- P-FF,FF=TT } TT = FF
| PsFF, UU=TT } TT = FF
. Pall, FFTT } TT = FF
- PLTT, TT=FF } TT = FF

P-TT, UUsFF Fk TT = FF
P-UU, TT=FF |} TT = FF

PLU) =TT bP = Dix. TTI

| PU FF FP = Dx LFF)
_

N

|) -

|

= APPENDI X2 ~- Theorems that fol lou fromthe propositionalaxioms.

LL F -TT = FF
3 F -UU = W
i FFF = TT

CL FOTTVIT = 77
i FooTTWUU = TT
: Co FOTTVFF = 17 om

FOUUVIT = 77
3 FoOUUVUU = WU
1 Fb UUVFF = UU

= F FFVTT = TT
- F FFVUU = UU
1 F FFVFF = FF

! F YP, TTWP = TT
3 b VP. FFWP = P

=n F VP, PIT = TT
b VP. PUFF = P

| EVP. UUWP < TT
F VP. PVWUU ¢ TT

1 Fo TTATT = 17
- F TTAUU = UU
Fo F TTAFF = FF

F UUATT = WY
F UUAUU = UU
F UUAFF = FF
fb FFEATT = FF

= b FFAUU = FF
a F FFAFF = FF

L VP, TTAP = P
: F YP. FFAP = FF

LE VP. PATT = P
F VP. PAFF = FF
F YP. UUAP < FF

| EVP. PAUU < FF

FoT77=TT = TT
F TT=UU = UU

= F TT=FF = FF
E UU=TT = UU
F UU=UU = WU

| b UU=FF = UU
he F FF=TT = FF

| F FF=UU = UU
p FF=FF = TT

B

|

| 25

APPENDIX 2 (continued).

F YP. UUsP w UU
F VP, PeUU wu UU

P=Q = TT pp P = Q

F VP. -(-P} = P
F Pv = QWP
F VP Q R., (PVvQ)VR = Pv(QWR)
I PAQ = QAP
F YP OQ R. (PAQ}AR s PA (QAR)
F P=0 = Q=P
F YP Q R., (P=Q)=R = P=(Q=R)

PAQsFF pb P-X, (Q-Y,Z2) a Q-Y, (P-X,Z)
PvQsFF | P = FF

i PvisFF F Q = FF
PAQsTT Fb P = TT
PAQeTT p Q = TT

\

9

oo 26

2 APPENDI X3 =~ Theorems that fol iowfrom the equality axioms alone.

Faull = UU
F VX. UU=X= UU

| F YX. XsUU = UU

| - JX)sUUk X = UU
d(X)eFFpF TT = FF

Fovx , 8(X)aX,X= x

| (X=Y)=TT pas TT
I (X=Y)=FF FolX)e TT

d{X)=TT F X=X = TT
PF ovx . x=x = 3({X)

lL (X=Y)=TT F X=
d(X}&TT, X sYp XYETT)

] X=Y=zTT, VY=Z=TT } X=Z=TT
= d(X)=TT, X=¥=UU } VY = uu

(X=Y)=TV F YX=TV

| F XsY = Y=X
(X=Y)=FF, X<Y J} TT =FF

Jd (X)=TT, XY F Xs Y

| oo 27

3 APPENDIX 4 ~- Theorems about Natural Numbers (see sect ion 4).

| | a) Theorems which follow from axioms 4.2 to 4.8 alone:

3 FZ@) a TT
Fisnat(@)=s TT

RB b succ(@) = 1

{ IF pred(l) = ©
fb succil) = 2
FZ2(1)s FF

| Fisnat(l)s TT
1 F opred(2) = 1
B= FZ{(2)s FF

bFisnat(2)s TT
FZ(UU}e uu
E isnat(UU)= UU

Z(X)=TT F X= 8
LC isnat(X)=TT fp Z(succ(X)) = F F
| isnat(X)=TT fF isnat(succ(X)) = T T

i snat (X)=FFF TT = FF

= isnat (X)eTT, Z(X)eFF | isnat(predX)) a T T
| isnat (X)=TT F pred(succ{X)) & X

| isnat (X)=TT, Z(X)aFF F succ(pred(X)) s X

| isnat(X)=1T, isnat(Y)aTT, succ(X)=succlY) b X = Y

| g(B)eTT, V X .isnat(X)::ig(X):: glsucc(X))aTT|
VX. isnat(X)::g(X)sTT

oo b) Theorem that use 4.1 to 4.8 and the equal ity axioms,

isnat{X)=TT fp SX) e TT
Z (X)sFF FolX)e TT

IN Z(X) all F X = UU

F 0B) = TT

oo alls TT
F32)= TT
fF succ(UU) =u u

. Fpred(UU)= U U
Fo {1=8) = FF
F(2=B) EF F
Fo (2=1) = FF

28

. APPENDIX § - Proof of an Induction Theorem for Natural Numbers.

[The proof is as supplied TO the proof checker.] |
[material in square brackets is commentary.)

| (theorem TH i s 2(x)eTT | Xe
| theorem TH2 is F Z(8)sTT

. | theorenl TH3 is isnat(x)aTT,Z(x)eFF F isnat(pred(x))eTT
theorem TH4 is isnat (x) &TT,Z(x) &FF | succ(pred(x))sx 1

LABEL LI;

ASSUME g(B)=TT;
ASSUME WX. isnat{X):: g(X):: glsucc(X))sTT;

C GOAL VX. isnat{X):tisnat(X)::g(X)=TT;
TRY INDUCT {step no. of DEF 4.3) OCC 1,3;
TRY 1 SIMPL: |

LABEL L2;

TRY 2 ABSTR: [Step .LZ is VX. FOXos isnat(X)ss gX)=TT 1] |
TRY1 CASES Z(X); |

.. TRY 1 SIMPL; [ZX)=TT 1] |
USE THI,-; USE TH2; |
TRY SIMPL BY -,--,.L1; |
TRY2 SIMPL; [Z(X)eUU)

LABEL L3;

TRY3CASESF (pred (X) }; [2Z(X)sFF
¢ TRY2 SIMPL; [Flpred(X)} =UU |

TRY 3 SIMPL; [Fprecd(X))aFF |
TRY 1 CASES isnat(X) [Fipred(X))=TT]
TRY 1 SIMPL; (isnat (X)=TT] |
USE TH3,-, .L3; [isnat(pred(X}))=TT]
APPL .L2,pred(X); SIMPL - BY --; [glpred(X))sTT |

C USE TH4,----,.L3; |
APPL .L1+1,pred(X); SIMPL - BY --, ===, =-===-} [g(X)=TT |
TRY SIMPL BY -;

TRY 2 SIMPL. [isnat (X}=UU I
TRY 3 SIMPL; [isnat(X)=FF |

L GOAL VX. isnat(X)::g(X)=TT;
TRY ABSTR;

TRY 1 CASES isnat(X);

| TRY 1 SIMPL; [isnat(X)=TT
APPL --,X: SIMPL -;

TRY 1 SIMPL BY -;

C TRY2 SIMPL; (isnat (X}=UU
TRY 3 SIMPL; [isnat (X)sFF]

THEOREM MATHIND:=;

C [The theorenl MATHIND is
g(@)=TT, V x ,isnatix):: gix)s: glsucc(x))=TT

Fo Vx. isnatix):: gix)=TT I

29

.

APPENDIX 6 =- Theorems that follow from axioms 5.1 to 5.8

(together with axioms of sections 3 and 4).

 pos(8) =z FF
kb pos{l)le TT
Fpos(2)= TT
F pos(UU) = u wu

F isint(UU) = WU
isint(X)=UU FX = UU
isint(X)=sTT FaXie TT
pos (X)=TT F oisintX)s TT

“ pos (X}=FF FisintX)=T T
i snat (X)=TT FisintiX) =e T T

isint(mns{X})=TT fF isint(X) = T T
isint(X)sTT boisint (ans{(X))= TT

Fisint(@=T T
F oisint{li= TT

. F oisint(2)sTT

Fmns (8) 0
isint{X)=TT F mnsimns(X)} = X

Fons(UWs U U
isint(X)=sFF pb mns(X) es U U

-

isint (X)=FF FZ(X)= FF
pos (X) sFF, pos(mns(X))aFF | X = 0
pos (X)=TT PZ(X)a FF

. pos (mns(X))sTT FZ(X)a FF
isnat{X)=TT, pos(X)=FF F X= 8

« F VS. Z{mns (X))&isint (X}=Z(X),UU

a isnat(X)=eTT, Z(X)aFF Fpos(Xi= TT
i snat (mns(X))=TT F pos(X) = FF
pos (mns(X)}=TT F pos{X)= FF
posi{mns(X) }eFF, Z(X)eFF F pos(X}=T T

\ pos (Xi =TT F pos{mnsiX)) =F F

pos (X)=FF, Zz (X)aFF bposlmneX))=s T T
isint (X)=FF F pos(X) = uu

Zimns{X))=TTF X = 0

pos (X)=TT Fisnat{X)e TT
&“ pos (X)=FF Fisnatimns(X))s T T

‘

30

a APPENDIX 6 (continued).

isint (X)}=sFF fsuce(X) =u u
isint (X)=FF Fpred{X)= U U

| isint(X)=TT F predisucc(X) }) = X
~ isint (X)=TT F succlpred(X)) s X

pos (X)}=TT F poslsucc(X))=T J
pos {X)=FF F pos(pred(X)) =F F
isint(X)=TT Fisint{succ(X))eT T
lsint(X)=TT PisintlnrediXita TT
isint (succ(X))=TT F isint{X) = TT

C isint(pred(X))=TT F isint(X) a TT
F YX . succluns(X))s mns (pred(X))
P YX . predinns (X)) a mns (suce (X))

pos (X)=UU, isint(X)sTT } TIs FF
mns (X)=UU, isint(X)eTT } JJ = FF

hb pred (X)aUU, isint{X)sTT |b TT = pr
succ(X)=UU, isint(X)&TT } TT a FF

1 g{8)=TT, Vx. isintix)::g(x)=glsuccix)) FV X . isint(X)es g (X) ETT
g(B)=h(8), VX.isint (X)::3{g{X))=TT, YX. isint{X)::3(h{X))eTT,1 VX. isint(X):: (gtX)=h(X)):: gleucc(X)) ® hlsucc(Xl}),

VX. isint(X):: ({g(X)=mh(X)):: glpred(X)) = hipred(X)) k
V X .isint{X}::g(X} = h(X)

{

31

3 APPENDIX 7 - Theorems about the operations of arithmetic,
(uses the axioms of sections 3, 4 and 5),

: a) Consider first the arithmetic of + and -.

| F VX. xiuu = uu
| Fovx. UU+X = UU

| F VX. x-uu =® uu
F vx. uu-x ® uu

jp ~ isint{(X)=FF Fk VY, X+Y = UU
isint(Y)=sFF Pb VX. X¢Y =u u

| isint(X)=FF F WY. X-Y =UU
| isint(Y)=sFF F WX. X-Y= uu

| isint{X)sTT F x+0 = x
~ isint{X)=TT J} x0 =X

Fw. X41 = succ(X)
VX. XI =pred(X)

isint(X)=TT + X+mns(X}z 0
isint(X)=TT F nins (X)+X=0

| isint(X)eTTFX - X= 0

| FV X Y .succ(X)+pred(Y) = X+V
FV XY. pred(X)+succ(Y) & X+Y
F VX Y. succ(X)+Y EE X+succ(Y)
FV XY.pred(X)+Y & X+pred(y)
Fo VX Y. succ (X+Y) 3 A+succ iY)

~~ Fv x Y . succ{X+Y)5 suce (KX) +Y
FV X Y .pred(X+Y) s X+precdlY)
FV X Y |. predX+Y) m pred(X}+Y

isint (X)eTT, isint(Y)=TT fF isintX+Y)= TT
isint (X+Y)=TT Fo oisint(X) a TT

| ~ ieint (X+Y)sTT FoisintYls TT

Eowx YZ. (X+Y)+Z = X+(Y+Z)

isint (X+W) =TT, X+l=Y+d + X= 13
isint(X)eTT fF B+X= Xx

~ F YX. 0-X = nns(X)
vx. 1+X = succ(X)
FYA. 1 - X=mnnslpred(X))
PF X+Y ®& VY+X

FV XY | mns(X+Y) & mns (X)+mns(Y)

32

w

APPENDIX 7 (continued).

FV X Y.succlX)-Y = X-pred(Y]
FV XY. pred(X)-Y a X-succ(Y)
bv x Y.succ(X)-succiY)a X - Y
FV XY.pred(X)-pred(Y)a X - Y
F VX Y.mns{X-Y)s Y-X
Fw Y z X-(Y-Z) = (X-Y)+Z N
F VX YZ X-(Y+Z) s (X-Y)-Z
Fovx YZ. X+{Y-2Z) 8 (X+Y)-Z
FV XY. succ(X-Y) a X-pred(Y)

| vx Y.succ (X-Y) asucc(X) -Y
~ FV XY. pred(X-Y) = X-succ(Y)

FV X Y | pred(X-Y)apred(X)-Y

isint(X}alT, isint(Y)a&TT fF i sint(X-Y)s TT

isint (X-Y)=sTT FooisintX)e TT
isint(X-Y)eTT Fo oisint(V)=s TT

X-YEO PF x = Y

b) Nou theorems from the defn. of multiplication. |
.

FOVX, XsUU = LU
= ¥X. UUxX = UU

isint(X)=FF fF VY. XxY =u u
isint(Y)sFF |} VX. XxY= u u

. isint{X)sTT F X«Be O
isint(X)alTT JF Xxl = x

isint(X)sTT, isint(Y)aTT J} isint(XxY) & JT
isint {(XxY)aTT Foisint{X) a TT
isint (XY) eTT PF isint(Y)s TT

Fo VX Y. XY s (Xapred(Y))+X
Fv x VY. Xxsucc(Y) 2 (XxY) +X
FV XY. Xapred(Y) = (X&Y)-X

isintX}=TT } QvX= 0
F Vv X Ye XY = (pred (X) xY)+Y

N F vx Y. succ (X)xY = (XaY)+Y
FV XY. pred(X)%Y = (XxY)-Y

FoXxY = YaX
isint(X)=TT F 1aX= Xx
FV X Y.nns(X)%Y = mns (XxY)
FV XY. Xenns(Y) = mns (XY)
k V X Y . onns{X)xmns(Y) = X&Y

33

APPENDIX 7 (continued),

Fo YX Y Zo Kx (Y+Z) 8 (Xx) + (KZ)
FOXY Zo XalY=-2) = (XxY)- (Xd)
FV XY Zo X+Y)Iwd 8 (Xd)+ (10:2)
Fo vx Y Zo (X-YIxZ a (XxZ) = (YZ)
Fo ovx Y Zo XY) wd = Xa (Yul)
Fv x YY . (X+Y)Iw(X=Y) a (XX) (YY)

isnat (X)=TT, isnatlY)=TT Fo oisnatiX+Y)= TT
pos (X)=TT, pos(Y)=TT k pos (X+Y) = TT
pos (X) =FF, pos(Y)=FF F pos(X+Y) = FF
pos (X)=TT, pos(Y)sFF F pos(X-Y) = TT
pos(X) =FF, pos(Y)=TT F pos{X-Y) = FF
isnat (X)=TT, isnat(Y)=TT t isnatXeY)z= TT
pos (X)=TT, pos(Y)=TT b posX«Y) = TT

pos {X)=TT, pos(Y)=FF F pos{X«Y) = FF
pos{mns(X))aTT, pos(mns(Y) }alT |} pos(XxY) a TT
pos (1-X)=TT, isnat(X)=T1 I x30

c) Now add the division operator.

F vx. X/UU = uu
EF vx . X/B = uu
F ovx. UU/X = uu

isint(X)=FF |} V¥Y. X/Y = uu
isint(Y)sFF F vx. X/Y sUU

isint(X)=TT, Z(X)=FF F 8/X= 0
isint(X)=TT, Z(X)=FF Foxx = 1
pos (Y-X)eTT, isnat(X)=TT }b XY = 8

Vy. isnatly)e: (eh. ZW) =TT,glpred(u))sh(pred(u))UU] (ys: gly) sTT
F Vz. isnat(z):i:ig(zla TT

pos (X)=TT, lah, AN. ZW) =TT, f{pred(u})=h(pred(u)),UU1] (X)=TT
FYY. isnat(Y)::pos(X-Y)e:f(Y) eT T

ienat (X)=TT, pos(Y)sTT. t isnat(X/Y) & TT
isint(X)=TT, isint{Y)=TT, Z({Y)=sFF F isint{X/Y)} & TT

LE VX Y.nns(X)/Y a tins (X/Y)
FV XY, X/uns(Y) = nns(X/Y)
FVX Y.mnne(X)/mns(Y}= X/Y

teint (X/Y)&TT pb ieintX)= TT
isint(X/Y)eTT F ZY) =FF
isint(X/Y)sTT Fk isintiY) = TT

isnat (X)=TT, pos{Y)=TT, isnat (W)=TT F (XY)+)ZY = x+ (W/Y)
isint(X)=sTT, isint(Y)=TT, Z(Y)sFF F (XxY)/Y = x

34

APPENDIX 7 (continued).

oo d}) The mod operator (e) is remainder on division,

F YX. xouu & uu
F VX. XeB = UU

isint(XlsFF | YY. XeY =u u
isint(Y)asFF } VX. XeY=z=u u

isint{X)=TT, Z(X)=FF F BX = 0
isint(X)=TT, Z(X)sFF F xsx = 0

~ isnat (X)=TT, pos(Y-X)&TT } XoY = X

FV XY.mns(X)eY s mns(XeY)
VX Y. Xemns(Y) 2 XoY
FV X Y.mns (X)emns(Y) & nns (XeY)

isint(X)eTT, isint(Y)aTT, Z(Y)eFF } isintXeY)s TT
isint (XeY)=TT t isintX)sTT
isint (XeY)aTT t Z)s FF
isint(XeY)alT t isint{Y) = TT

isintX)=TT, isint(Y)=TT, Z(Y)=FF F (XxY)eY = 0
isnat(X)=TT, pos(Y)=TT, isnat()=TT } ((XxY) +l) oY 5 UeY

FV XY. XoY = Z(Y)aUU, Z(X)=(isint(Y)-8,UU), (pos(X)~> (pos(Y)-
(pos (Y-X)=X, (X-Y}eY), Xemns(Y)), mns(mns(X)eY))

Fw YY. (XoYleY = XeY
Fv x Y .(X/Y)xY = X-(XaY)

isnat (X)=TT, isint(Y)eTT, Z(Y)=FF } isnatXeY}l= TT
isint(X)=TT, isint(Y)}&TT, Z(Y)sFF F ((X/Y)xY)+(XeY)= x
isnat (X)=TT, isnat(Y)sTT FoYW, (X+Y)el u ({Xel)+(Yel))ol
(X/W)-(Y/U)el, (Xel}-(Yel)=0 F Xe VY

isint(W=TT, isint(Y)=sTT, Z(Y)=FF, UoYa(U+X)oY } XeYs O
XeYeB, isint()=TT fF. (XulleY =O
XoYeB, isint(W=TT } (HxXleYa O

e) Relational operators (>, 2).

F VX . XzUU= UU
F VX .UU2X= UU
F VX. X>UUs UU
F VX . UUsX= UU

35

APPEND | X7 (continued).

isint{X)=eFF F VY, X2Y= uu
isint(Y)sFF F vx , X2Ye UU
isintX)aFF F V¥YY . X>Y= uu
isint{(Y)eFF }b wx , X>Y= uu

. X2Y e TTF isintX)=e TT
| X2Ye TT Fooisint(Y)=TT

X>Y= FF }F isintX}=sTT
X>Y= FF fF isintY})=TT

| XsY = TT PF X2X=TT

| X2Y E FF} X>Y =FF
aN X>X8 TT F TT =FF

X2X= FF } TT sFF
| X>YeTT, Y>X=TT } TT = FF

: X2Y=FF, Y2XsFF | TT =Fr

: isint(X)a TT ,isint{Y)=TT , X>YalU} TT= FF
CL isint(X}a TT, isint{Y)s TT, 2Y=s UUF TTeFF

X2Y=TT, Y2X=TT Fb x =
| Y>X= FF FXey= TT
i Y2X a FF FX>Y a TT

| Y>X ETT F X2Y = FF
Y2Xe TT F XY = FF

- UsXeTT, XsYsTT bp WoY = TT
I W2X=TT, Xo¥=TT WY =T T

WsX=TT, X2Y=TT Fb UWsYs= TT
WaeX=TT, XaY=TT fp W2Y = T T

| isintX)=TT kX2X= TT
| isint(X)sTT FXsX= FF

Fo Fovx . pos) = X>@
| pos{Xls TT FX>8= TTX>@=TT b pos(X) = TT

Fowx Y, (X-Y)2B = X2Y
isnat (X-Y) = TT } Kee TT
isnat(X)e TT p X28 = 17
isnat{mns(X))=TTF X>B= FF
X2Y= TT { fenat{X-¥)=TT
AR2BETT { isnat{X)= TT

VX . pos (X)=8>mns(X)
B2X=TT F pos(X} = FF
VX |. X>8=8>mns (X)
Fo VX | X28 3 B2nns (X)

| EF VX Y . nns (X) >mns {Y) = Y>X
Fo OYX Y . mns (X) 2mns(Y) = Y2X

A F owx Y , X2succ(Y) = X>Y
EF VX Y . Xopred(Y) = X2Y
F VX YY | pred(X)2Y = X>Y
Fo OVX Y . succ(X)>Y = X2Y

36

. APPENDIX 7 (continued).

f} The relational operators and arithmetic,

isint(X) 3 TT pb VY . (X+Y)2X = VY20

| isint(Y)e TT pk VX . (X+Y)2Ye X20
~ isint(X) 8 TT fF VY , (X+Yi>X = Y>8

isint (Y) & TT fF WX . (X+Y)>Y = X>08
isint(X) = TT pb VY , (X-Y)2X = B2Y
isint(X) s TT F YY . (X-Y)>X = @>Y
X>B = TT BFoVY . (XxYi2K = Y2l

Ce Y>0 = TT BOVX LL (XY) 2Y = X21
~ X>B = TT EOYY oo (XxY)>X = Y>l

Y>8 = TT FOVX (XY) >Y 2 X>l
X>B=TT, Y21=TT X2(X/YIe TT
X>8=TT, Ys1=TT fp X>(X/Y} = TT _
Y28=TT, X>B8=TT fF X>(YeX) a T T

“-- isint(W{) 8 TT F ¥X Y . X+Wd)> (Y+d) = X>Y
isint{W}) a TT fb YX Y . (HeX)>H+Y) 3 XY
isintWls T TF wY. (Xed)2 (Ys) = X2V
isint(W) = TT Fb YX VY. (UX)2 (W+Y) = X2Y
isintll)s T TF wY. (X-W>{Y-W) s X>Y
isint) = TT F WX Y . (W-X)>{W=Y) = Y>X

. isint(W) & TT pb WX Y . (X-W) 2(Y-W) = X2v
” isint(W) = TT F VW¥XY. (W-XI2{WH-Y) = Y2X

W>8 = 17 FOVX Yo (Xa) > (Yad) a Xo
Ws = TT FOYX Yo (WaeX)>(UwY) 5 XY
W>B = TT l YX Yo (Xe) 2 (Yul) = X2Y
WoB = TT + VX Y . (KeX) 2 (HY) s X2Y

- X2Y=TT, WxB8=TT F (X/W2(Y/W}=TT

_ (X/W)>(Y/W) ETT, W-B= TT FXsY = TT
WsBas TT, X>B8w TT, Y2Xa T T FO/X)2W/Y)=e TT
(W/X)>(W/Y)Y=TT, W2B=TT, Y28=TT fF Y>X = TT

X28=TT, Y28=TT } (X4¥Y) 28 = TT
“ X>0=TT, Y>B=TT pb (X+Y)>8 = 77

X>P=TT, Y20=TT } (X+Y)>B = TT
— X2B=TT, Y>B=TT | (X+Y)>8s TT

X2B8=TT, Y20=TT } (X«Y)28=TT
X>B=FF, Y>8=FF J} (Xa¥Y)28=TT
YsB=s TT Fo OVX . (XxY)2B8= x20

~- Y>8= TT PF ovx , (KxY)>8 E X>8
@>X=TT, B>Y=TT pb (X«aY)}sB= TT
X20sTT, Y>8=TT (X/Y)2B=TT

— Y>B= TT Fo OVX . (X/Y)>B = X2Y
X2B=TT, isint(Y)=sTT, Z(Y)sFF k (XeY)2B8 ss TT
(XeY)>Ba TT PXoBET T

“

37

| | APPENDIX 7 (continued).

g) The factorial operator.

P Fac (UU) = UU
isint (X)=FF Bb Fac(X) = UU

« x20 = FF FFac(X)e UU
I Fac(@) sl
F Fac(l) = 1
F Fac(Z) = 2

x20 = TT LFac(X)>B= TT
d{Fac(X))=TT | X20 = TT

~ X28 = TT FF Fac (X41) = (X+1) «Fac (X)
X>8 = TT F Fac(X)eX = 0
Y>8=TT, X2Y=TT F Fac{X)aY = 2

| Y>8=TT, X2Y=TT } FacX)eFaciYl=z O
Y>BsTT, X>YsTT pb Fac(X)>Fac(¥Y)=e TT

“.

h) The oddness and evenness predicates.

even (LU) =UU
N odd (UU)=s UU

| isintiX)eF FF even(X)s UU
\. isintiX)2 F F} odd(X) = WU

F even =[Ax. (odd {x})=FF,TT)1
F odd =[Xx . (even (x)=FF,TT)]

even(X) = TT Ff isint(X}) = 77
even{X)s FF fF isint{X) = TT
odd{X) = TT F isintiX)=TT

“ odd (X)& FF Fo oisintX)= TT
even (X) = UU, isint{X)= TT } TT= FF

” odd(X) = UU , isintX)=TTF TT = FF
isintX)=sT T F even(Xx2l= TT
isint(X)aT TF eveni(Zxx) =TT

Fo VX . evenliuns(Xi)z even (X)
- Fo YX . odd (mns{X))= odd (X)

even{X) = TT F even (X+l)= FF

even (B)= TT
F odd(B)s FF
 even(l)= FF

“ Fo oodd(1)=TT
Fo oeven(2)s TT
FF odd(2)= FF

\

- 28

| APPENDIX 7 (continued).

i) The ‘Look’ operat ion,

| | PUN=UUF VF .Look(UJ,F.P)leU U
| | P{X)=FF } Look (X,UU,P} = U U

« F VX F . Look (X,F,UU}Js UU
P(X)eTTFb VF . Look(X,F,P)= X
YX. P (X) cFF F VX F . Look(X,F,P}a UU

| P(X eFF, F(X)sX Pp Look(X,F,P}a UU

L j} The bounded quantifiers - “bug” and ‘beq’.

F VY P . bug(UU,Y,P) = WU
Fo VX Po bugiX,UU,P} = UU

X>Ys FF F bug(X,Y,UU) = UU
isint{X)a FF } VP . bugl{X,Y,P) = UU

I. isint{Y)e FF | VP, bugq(X,Y,P)= uu
XsYe TT F VP . bug(X,Y,P)= TT
isintiX)s TT F VP . bug(X, X,P)= P(X)
bug(X,Y,Pl=TT F isintX}=TT
bug (X,Y,PY=TT F isint(Y}=TT
bug(X,Y,PlsFF F isint{X)s TT

i. bug(X,Y,PleFF Fk isintX)s TT

VY P . beq(UU,Y,P)= UU
F YX P . beq(X,UU,PY= uu

X>Y= FF F beg(X,Y,UUl=U U
isint(X)esF FF VP. heg(X,Y,PleUU

© isint{Y)aF FF VP .beq(X.Y,P)s uu
XsYs TT I VP . beql(X,Y,P)e FF
isint (Xa TT F VP . beg(X.X,P}s P(X)
beq(X,Y,P)eTT JF isint(X})=TT
beg (X,Y,P)=TT PF isint(Y)= TT
beq (X,Y,PleFF F isint(X)=TT

nN beg(X,Y,P)=FF }F isintX}=TT

k} The primeness predicate for integers.

F Pr (UU) = uu

C isint(XJ=F Fp Pr (X}slU
F Pr(8) = FF
F Pr(l) = FF
F Pr (Z)= TT

Pr (X}= TT Po isint(X)=TT
Pr(X) = FFF ieintX)s TT

FV X .Primns{X)) = PrX)

33

APPENDI X8 - Basic Theorems about S-expressions.
\ =sE=m==== = = BESTS SESESESSE SSSR CONSE oSoSE==

\ depends on the equality axioms plus 6.1 - 6.18 }.

FF issexp(UUle UU
Fa tom (UU)eUU
Fooonu UU) = UU

C F head (UW)e UU
Footail (UU) = UU

atom{X)e TT b head(X) = UU
atom{X)s TT E tai {x)= UU

i ssexp(X}= U UF x= uu
L atom (X)=UU FX = UU

null {X)3 UU F X= W

Fb oissexpNIL)= TT
PF JiNIL) = TT
Fo nul INIL)= TT

. Fo oatom{NIL)e TT
F head(NIL) = U U
b tai | (NIL)s UU

- issexp(X)=e T TF 3X) =TT
i ssexp(X)= FF pF dX) TT

4 atom(X) a TT FA3(Kls TT
atom(X) s FF FalX)e TT

nul | (X)= TT F X = NIL
issexp(X)= F FF null(X)= FF
atom (X)= TT , i ssexp (X)=2 TT + nulli{X)=TT

. atom(X) s FF null{X)= FF

i ssexp{X)=F FF atomX)=TT
issexp(X}) = TT, null(X) = FF F atomi{X)= FF
aton(X) = FF | issexp(X)=TT
atom{(X) = TT , null (X)=FF} issexpXl=s FF

“~

d (head (X)) = TT} . atom(X) = FF
d{tail(X))=T TF atom (X)= FF

YX. CONS{X,ul)= UU
F VX. cons(UU,X}= UU

~

3{Y)s TT FE VX . head(cons(X,Y})}= X
alX) =TT FVY . tai | {cons(X,Y))=Y

Bh atom(X)s FF F3lhead(X))= TT
atom(X)a FF Fa(tail{(X))aT T

“

48

Co

APPENDIX8 (continued).
« meee =

head{X) 8 UU } atom(X) ¢ TT
tai1 (X) = UU } atomi{X) ¢ TT

. aX) = TT, a(Y) = TT + issexplcons(X,Y))=s TT
alX) = TT, 8(Y}) = TT Fb nulllcons(X,Y))= FF
dX) = TT , 3(Y) =T T | atom{cons(X,Y))s F F
d (cons (X,Y)}=s TT FaX)= TT
dlcons(X,Y))s TT L dlY) s TT

. F VX. 3lhead(X)) s altail (X))

head(X)e X } X= UW
: tail(X)=X bP x= uu

nut | (cons(X,Y)) « TT |} TT = FF
-

41

3 APPENDIX 3 - Basic Theorems for Lists.

(axioms used were the equality axioms with Bol - Goll).

Fo oislist(NIL)w IT
a Fo oislist(Ul) s UU

| ielistX)=2 F FF nui I(Xi= FF)
i ssexp{X}z FF } islistiXlz FF
islistX)=sT Tk dX) =TT
islist(X) = FF } 3X) = TT

. islist(X)=eT TPF issexplX)=TT
| islist(X)= TT , null(X) = FF} aton(X)=FF

alX) TT Fo YY . islist(cons{X,Y)) = islist(Y)
istist(X)= UU pF X 3 UU -
islist{tail(X})eT TF ististiX)s TT
ielist(X)e TT , nul | (X)s FF } islist(tail{X))aTT

| g(NIL) = TT ,
3 VX Y ,alX)rististiY) io gl¥Y) io glecons(X,Y))a TT
SL tt Yao, dslist(X) :: gX) ws TT

: VX. atom{X) ::qiX)e TT ,
VXY , gx) gly) = gleonsX,Y})u TT

oT FYX Lai) zm ogXds TT

|

_

42

“_

| APPENDIX18 - Theorems about the list operations of section B.
“ [3 1-8 0 | me [J] L132 BR 0 BR B J ® mmmm BREr mame BDUWMNEYESDRoO MN [J MMMWW- mmm

y | (rely on the axioms of section 3 (equality) also).

| a) Concerning ‘rev’ and the auxiliary function ‘rev’.

“ Fo VX. rev2(UU,X)= UU

t reviUlls UU
. Fo VX. rev2 (X,UU)= UU ~

Fo VX. rev2(NIL,X}= X
k vx. revZ(X,NIL}=s rev (X)
t revI(NIL)= NIL

“ islist{X)=s FF FVY . rev2(X,Y}= UU
islist(X)= FF JF rev(X) = UU.
islist(X)s TT , aY)s TT F 3lrev2(X,Y)=TT

- islist(X)e TT F dlreviX))= TT
dlrev2ZX,Y))sTTF islisti{X) = T7
3(rev2(X,Y)) = TT Fava TT

“ direviX))es TT F islistX)aTT
islist(X)«eT T | islistY}eTTF revirevZ(X,Y)) = rev2(Y,X)
islist(X)wa TT |} revireviX))as x
islist(X) ¢ TT F YY © delist(rev2(X,Y)) a islist(Y)

) islist(X)s TT pb islistl{rev(X})})a TT

F vx. revicons(X,NIL)}) & cons {X,NIL)
\ Eb YX Y . revicons(X,cons(Y,NIL))) = cons(Y,cons(X,NIL))

islistX) = TT F null (reviX}}a nul | (X)

b) Concerning the “8” (append)f uncti on,

F VX, UUSX = UU
F VX . XéUU= UU

islist{X}sFFF VY. X&Y = UU

P VX . NIL&X = X
islist(X)=TT F X&NIL=X

Fo VX Y . X&Y= rev2 (rev (X),Y)
“ is 1ist(X)alT, a(Y)=TT} J(X&Y)=s TT

isl istX)&TT F VY-.islist(AaY)aislist(Y)
Po YXY . consiX,NIL)&Y a cons(X,VY)
Fo VXY . revixdY) = rev(Y)drev(X)
FYXY . rev(#&cons(Y,NIL)) =cons(Y, rev {X))

islist(X)=sTT, 3(Y)=TT | head (X&Y)= nul | (X)=+head(Y) , head (X)

« is ist(X)=TTF tai H{X&Y) =nuli{X)atail (Y), (tail (X)I&Y)
, diX&¥)= TT } islistX)=e TT

diX&¥) = TT FE dlY) =TT

. islist(X)=TT,nul | (X)=FF, o(Y)=TT F null (X&Y)=FF
islist(X)=TT, nul | (Y)=FF t nul | (X&)= FF
X&Y = NIL F X = NIL
X&Y = NIL FY = NIL

FOVX YZ. (X&Y)&Z = X&(Y&Z)

43

APPENDIX 10 icontinued).
“" -—a— ae —

c)Propert i es of “*ANDnap’ awl MORwap”

t Vp . ANDwap (11, p) a UU
is list(X)aFFfF Vp , ANDmap(4, pla UU

“ t Vp. ORwapWUU.ple.
islistX)=FF} Vp . ORmap(X,pl= UU
p(X)= u u EF VY . ANDwap (cons (X,Y), pls UU
p(X) = UU EL VY . ORmap(cons(X,Y),pl= UU

t vP* ANDmap(NIL,p)= TT
I F Vp , ORmapi(NIL.pl= FF

3X) TT FV p . ANDmap(cons (X,NIL),p) = p(X)
alX) TT t vP* ORnman{cons{X, NIL), p)=pX)

AMDmap (X,p)»TT,TT = TT |} islist{l=TT
ORmap (X,p)=TT, TT = TT F istiet(X}s TT

w ANOmap (X,pl= FF t nullXy= FF
ORmeap (X,pl=e TT Fo null (Xe FF
ANOmap (X,p)= TT, p(X)e TT, d(X)a TT fF ANDmap(cons(X,Y),p)=TT
piX) = FF, islist(cons(X,Y)}a TT FF ANDmap (cons (X,Y), pl)=FF
AlDmap (Y,p) = FF, p(X)=a(X),8X) a T TF ANDmap(cons (X,Y), p)=FF
ORmap(Y,ple FF, pX)a FF, d= T T |} ORwmaplcons(X,Y),p)=FF

. p(X)e TT, islistlcons(X,¥))= TT ORmap({cons(X,Y},p)=TT
ORmap(Y,p) = TT, p(X)=3(X),dX)e TT F ORmap(cons(X,Y),p)=TT

VX. IX) ep (X)-TT, TT=TT, islist(¥Y)=TT FF ANDmap(Y,p)-TT,TT7=TT
VX. AX) sap (X)LTT,TT=TT, islict{¥)=TT F ORmap(Y,p)-TT7,T7=TT
ANDmap (Y,p)=TT,TT= TT, p(X)23X).3X) =TT

w Lo ANDmap (cons {X,Y),p)-T1,T7= TT
ORmap (Y,p)-TT. TT = TT, p()=-d(x), dX} TT

Lk ORmap {cons (X,Y) ,pi=2TT,TT =T TT
ANCmap (X,p)= TT, null (X)=FF F plhead(X) } = TT
ANDRap(X, pl = TT, null (X)=FF LI ANDmap (tail (X),pl=TT
ORmap (X, p) = FF, nul | (X)=FF Lo plheadXll= FF
ORmap (X.p) = FF, null (X}=FF L ORmap (tail (X),ple FF
ANDmap (X,p) TT, TT=TT, null (X)=FF Fk plhead(XN)LTT,TT =T T
ORmapOX, p)=TT,TT=TT, nul | (X)=FF F »(head(X))}-TT,77=TT

AtDmap (X, p) =TT, ANDmap (Y, p) =TT F ANOmap (rev2 {X,Y}, pl= TT
ORmap(X, pl) =FF, ORmap(Y,p)=FF Lb ORmap{rev2(X,Y),p) =F F

“ AlDBnap (X, p) =TT, ANDmap (Y, p) =TT Lo ANOmap (X&Y,pl= TT
ORmap (X,pl=FF, ORmep(Y.pi=FF pF ORmap(X&Y,pl= FF
ANDnap(X,pl = T TF AlDoaolrevX),pl= TT

_ ORmap(X.p)=s FF} ORmap (rev iX),p) = FF
ANOmap (X&8Y,p) =TT Fb ANDman(X,pi= TT
ANDmap (X&Y,pn) =TT AMNDmap(Y,0i= TT
ORmap (X&Y,p)=FF Fk ORnmap(X,u1 =F F
ORmap (X&Y,pl=rF Fk CRmapiY,pt=F F

G4

APPENDIX 18(continued).
L mee

ANDmap (rev(X),p) = TT F Alun (Kp) = TY
ORmap (rev(X),p) = FF} ORnap(X,p) = FF

ANDmap(X, pl =FF, islist(Y)=TT. YX. dX) ts pX)>TT,TT aT T
L F ANDmap (X&Y,p)s FF

ANDmap (Y,p) FF, ist ist OO =TT, YX. aX) se p(X)-TT,TT=T T
Lb ANDinap (X8Y,p) =F F

ORmap (X,p)=TT, islistiY)=TT, VX. dX): plA)-TT,TT=T T
Fo CRmap (X&Y,pl= TT

ORmap (Y,pl=TT, isl ist(X}=TT, VA. dX) ss p()-TT, TTT T
L Fo CRnap (X&Y. p= TT

ANDmap (X,p) =FF, VX. aX)::p)=-TT, TT = TT
- ANDmanirev(X),pls F F

ORmap (X,p)=TT, VX, 3X): : p(X}-TT,TT T T
F ORmapirevX),pl= TT

«

d) Theorems concerning the ‘FNmap” func ti on.

F Vi. FNmap (UU, f) = UU
B islist(X)sFF fF Vf |, FNmap(¥,f) =U U

bY . FNmap(NIL,f)= NIL

1 8 alX) =TT FF FNmap {cons (X,NIL), f) = cons(f (X) ,NIL)
- d (FNnap(X,f))=TT BF oislistXI= TT

nu | I{FNmap(X,f))=FF} nul {X= FF
nut I {(FNmap(X, f))=TTk null (Xs TT

_ V X dX): (Ff {X))=TT, islist(X)=TTf d(FNmap(X,f))= TT

. EV X f.islist(FNmap(X, f))=d(FNmap(X, f})
EV X Y ff . FNmap(X&Y,f) = FNmap (X, f) & Nmap (Y, {)

" Fo VX f . FNmap(rev(X),f) = rev (FNnap(X, f)]

e) Properties of the ‘PRUNE’ function,
.

F Vp . PRUNE (UU,pl= UU

_ islist{(X)aFFFp Vp , PRUNE. pls U U
F Vp . PRUNE (MIL, ple NIL

pX)=TT, 3(X)=TT |p PRUNE (cons (X,NIL),p)s NIL
p(X)=FF, 30X)=TT } PRUNE (cons(X,NIL),p) = cons (X,NIL)

a“ (PRUNE (X,p))=TT kb islistX}=TT
nut I{PRUNE(X,p}i= FFF nut i(X)s FF
VX. 3Xe:pX)=TT,TT= TT, isl i1st{X)=TT } S(PRUNE(X,p))=TT

” I YX p. islist(PRUNE(X,p]) = (PRUNE (X,p))
FF VX Y p , PRUNE (X&Y,p) = PRUNE (X, p) &PRUNE (Y, p)

% 3 YX p . PRUNE (rev(X),p) =rev (PRUNE (X,p))

45

{

APPENDIX 10 (continued).

« ST TTTTTTTT mem

tf} The men” predicate.

I vx. mem (UU, X)= UU
i Fo VX. mem(X,UUl= UU

islist(YJesFF FV X .nmem{X,Y)2U U
_- islist(Y)=TT, mem(X,Y)sUU } X ss UW

mem(X,Y)=TT pF aX}=s) TT
mem(X,Yl=sFF pF 3X) =) TT
men (X,Y) =TT JF islist{Y) = TT

a mem(X,YleFF } islict{Y)=e TT
mem (X,Y)=TT fF null(Y) = FF
dX) = TT EF mem(X,NIL)= FF

JX)=TT,i s Iist(Y)=TT } nmemiX,cons(X,¥))=TT
mem (X,cons(YNIL} J=TT }b X =Y

“ (X=head(Y))= FF t mealX, tai 1 (Y)) 3 mem(X,Y)
vx. d{X}:: mem (X,Y)=sFF FY =HIL
mem(X,Y)=TT, JWMI=TT fF memX,consd,Y))=TT
islist(tailXM)=TT J} nemihead(X),X) TT
mem (X,Y)=FF,nul 1 {Y)=FF} (X=head(Y))= FF
men (X,Y)=FF, nul 1 (Y)sFFF rem(X, tai 1 (Y))= FF

« FVX Yo mem(X,rev(Y}) = mem(X,Y)
mem (X,Y1)=TT,i s | ist(¥Y2)=TT | mem (X, (YI&Y2))=TT
mem (X,Y2)&TT, isl ist(Y1})=TT F mem (X,(Y18Y2))= TT
mem (X, (Y1&Y2))= FF t men(X,Yll= FF
mem (X,(Y1&Y2))s F F t mem{X,Y2)e FF
mem (X,Y1)&FF, mem(X,Y2)=FF } mem(X,(Y14Y2))= F F

.

Fo omens[oG. [Ax y . (islist(yl-
(null (y)=(a(x)=FF, UJ), ({x=head(yl) }-TT,G(x, tail (y))}),UU}]]

g) The “menl” predicate.
.

FO¥X . menl (UU,X)l=2 UU
+ vx. membL (X,UU)= UU
islist{X})= FF F VY . meal{X,Y}= UU
isl ist{Y)= FF pb VX . menL(X.Y}= UU
mem (X,Y)=T TF islistX)=TT
menl (X,Y) =F FF islistX)=TT
memL (X,Y) = TT }F islist(Y)=TT
memlL{(X,Y)=F FJ} islistiY)=TT
islist(X)eT TPF memLINIL,X)=2 TT
islist(X)=e TT ,islist(¥Y}=TT , memL(X,Y)s U UF TT = FE

. FOVYX Y . meml{cons(X,NIL},Y) = mem(X,Y)

46

APPENDIX 18 (continued).

menl (tai1 (X),Y)e TT t mel (X,Y) oo mem(head(X),Y)
EL mem (X,Y)&TT, nul | (X)eFFFb mom(head (X),Y)e TT

| mem (X,Y) TT, nul | (X)aFF Fk mewl (tail(X),Y) ¢ TT~ memL (tail (X),Y)a FF Fo omenl(X,Y)s FF
membL IX, Y)=TT, mem (A, X)&TTfF mem{A,Y)= TT

FF meml= [aG. [Ax y .(islistiyl-(islist{x)-

| (nul | (x)=TT, (mem (head (x), y)=G(tail(x),y),FF)},0U),UU}]]membL (X, tai ({Y))s TT Eo omen X,Y) TT
~ nul | {Y) =FF, memL(X,Y)sFF PF memlL(X, tai I{Y))s FF
| islist(X)= TT Fo omenl(X,X)=TT

islist{X)=sTT, isl ist (Y)sTT, VA. mem{A, X}:smem{A,Y)= T T

SE Fomenl(X,Y)s TT
! VX. islist{X):: memL(X,Y)=null{A) F Y= NIL
| menmL (X, NIL) = TT Fonul 1(X)= TT
~ memL (WM,X) sTT, memL (X,Y) TTF meal (U,Y)s TT

Po YX Y . memL (rev (X),Y) =memk (X,Y)
Fo OYXY . memL (X, rev {(Y))=menL (X,Y)

bo meml (X,L1)=TT, islist{lL2)sTTF meml(X,L18L2)= TT

| memL (X,LZ21=TT, isl ist(Ll)=sTT Fb memL (X,L1&L2)= TT
| membL (X1,Y)=TT, memL(X2,Y)aTTF wemL(X18X2,Y)= TT
| memL (X1&x2,Y)s TT bo onenl(X1,Y)=s TT
oT menl (X18X2,Y)= TT Fo omenl(X2,Y)= TT
| memL (X,Y1&8Y2)= FF bb omemL(X,Yl)s FF

memL(X, Y18Y2)s FF Fo meml(X,Y2)=s FF

Lo mem(X1,Y)FF, isl ist(X2)=TT Fb emL(X18&X2,Y)s FF
meml(XZ, Y)=sF, islist X1)aTTF nemL(X18XZ,Yi= FF

| h) “memEQ” - Equality with respect to (list) membership,

VX . memEQ(UU,X)= UU
[Fo VX . memEQ(X,UU)s UU

islist(X)s FF F VY , memEG(X,Y})=s UU

isl ist (Ya FF pb VX . memEQ{X,Y¥}= UU
memEQ(X,Y)=TTF islistX)=TT
memEQ(X,Y)=F FF islist(X)= TT
memEQ(X,Y)=TTF islist(Y)=TT
memEQX,Y)sF FF islist(Y}=TT
islist{X)=TT, istist{Y)=TT, memEQ(X,Y)=UU F TT =FF
memEQX,Y)s T TF meml (X,Y) TT
memEQX,Y)= TTF meml(Y,X)e TT

Le memL (X.Y)=F FF memEQ(X,Y)= FF
memL (Y,X})= F FPF memEQ(X,Y)= FF
istist(X)=T TF menEQO,X)=TT
islistX)=T TF men&Q (X,rev(X))=TT

47

APPENDIX 18 (continued).

FV XY , menEQ(X,Y) 2 nemEQ(Y,X)
| memEQ(WL, X) &TT, memEQ(X,Y)=TT Fb menEQWU,Y)eT T

memEQ (W,X)=TT, memEQ(X,Y)=FF F menEQW,Y)as FF
| memEQ(X,¥)= TT Fo omemEQX&Y,X)= TT

memEQ(X,Y)= TT Eo omemEQX&Y,Y)I= TT
Tr memEQ(X,Y)= TT F Yz. mem(z,X) =memi(z,Y)

| islist(X)=TT, V z . mem(z,X)zmem{z,Y) b memEQ(X,Y)= TT

a i) The “memS’” operation (de | e t i ng an e | ement from a | i st)

| Fo YX. memS(UU,X)= UU
SE Fo OVX. memS{X,UU)= UU
] islist(X)s FF JF VY . men6 (X,Y)UU

JimemS (X,Y)sTT JF islistX)=TT
 ~- dimemS{X,Y)=TT fF dY) TT

istist(X)TT, a(Y)&TT pb islist (memS{X,Y))&e TT
: SX)s TT t memS(NIL,X})= NIL
SE WX Y . memSicons(Y,X),Y) & memS (X,Y)

istist(X)eTT, 3(Y)sTT | memiY,memS(X,Y)) ee FF
isl ist(X)=TT, J(Y)sTT kb meml (nemS(X,Y)},X) = T T

- mem(Y,X) 8 FF P memS({X,Y) = X
Tr FoVX Yo (mend (X,Y) =X) = (mem(Y,X)-FF,TT)

Fo YX Y . menl CC memS(X,Y)) & (mem(Y,X)=FF,TT)
EV XY . memEQ(menS(X,Y),X) = (mem(Y,X)FF, TT)

. j} The “memSL” operation.

ET VX. menSL(UU,X)= UU
| YX. mem3L(X,UJ)e UU
| islist(X)= FF | VY. menSL(X,Y) a UU

| oo islist(Y)e FF JF VX. menSL(X,Y)a UULo d(memSL(X,Y))&TTp islistX)e TT
| d(memSL(X,Y))=TTF islist{Y)=TT
EN islist(X)=TT, islist(Y)aTT } iclict(memSL(X,¥))=eTT

islist(X)= TT PF memSLNIL,X)= NIL
ististiX)= TT F memSL (X,NiL)=z X

-

-. islistiX)e TT EV WY. mend, nemSL (X,Y) = (mem (Wd, Y)2FF, mem (WU, X))
mem (W,Y)sTT, islist(X}=TT F mem(d,memSL(X,Y)) = FF

| mem (W,X)=FF, isl ist{Y)eTT }F mend, menmSL{X,Y)) = FF

| — mem(W, X)=TT, mem{W,Y)=FF F mend, menSL{X,Y))s TT: mem (W,menSL(X,Y))eTT t nen, Xe TT
| mem (W, memSL(X,Y))= TT Foorenld,Y)= FF

islistX)=TT Fo omenSL{X,X)= Ni L

48

| APPENDIX 10 (continued).
N oT

k) Properties of 'subexp’,

Fb F VX. subexp (X,UU)= uu
F VX . subexp (UU,X)= UU

\ subexp (X,Y)= TT FoX)= TT
subexp(X,Yle TT t aly) = 77

FT subexp (X,Y)= FF FolXibe TT
subexp{X,Y)= FF Fal) TT
3(X)=eTT, 3(Y)=TT, subexp(X,Yi=sUU F TT =FF

bb aX) TT tI subexp (KX, X)= TT
~ atom(X) = FF t subexp (head (X),X)=TT

atom(X)= FF t subexp(tail(X),X)= TT
| atom(Y) = TT F VX. subexp (X,Y)a{X=Y)
LT 3(X) TT Fo VY . subexp(X,cons(X,Y)) & 3(Y)

aX) sTT VY . subexp(Y,cons(X,Y)) = d(Y)
subexp (X,head(Y))=TT fb subexp(X,Y})= TT

“ subexp (X, tai | (Y)}sTTF subexp{X,Y)= TT
subexp (W,X)&TT, subexp(X,Y)elT |} subexp(ld,Yle TT
subexp (head (X),Y)eFF| subexp(X,Y)s FF

} subexp (tai | (X),Y)=FF} subexp (X,Y)= FF
. subexp (X,Y)sFF, atom(Y)=FF t subexp {X, head (Y})= FF

subexp (X,Y) sFF, atom(Y}sFF t subexpiX, tai | (Y))= FF
C subexp (X,Y)aTT, subexp (Y,X)alT F X=sY

—- atom(X)s FF t subexp (X, head (X))= FF
atom(X) = FF t subexp (X,tai | (X))& FF

|) Properties of ‘assoc’.

| F VX. assoc(X,UU)= UU
k vx. assoc{UU,X)s uu

islist{Y)aFF }F VX. assoc(X,Y}=zuu
atom(X) = TT YW Y . associld,cons(X,Y))e UU

“- dlassoc(X,Y))=TT Fb JX) TT
“ dlassoc(X,Y))sTT Fb S(Y)s TT

aX) =TT t assoc(X,NIL)= NIL

_ islist(Y)e TT FV W X.assoc(l,cons{cons(l,X),Y))econs(W,X)

m) The “orl? function.

fy

F Vf NIL. forl (UU, f, fNIL)= UU
VX. f(X,UU)sUU, ististX)=FF F VNIL . forL(X, f fNIL)= UU

- d{forl(X, f, fNIL))=TTE 3(X) = TT
FV of fNIL. forlL (NIL, f, fNIL) = fNIL

alX) =TT F Vf fNIL. forL (cons (X,NIL)}, f, fNIL) =f (X, fNIL)
. JX)eTT, 4(Y)=TT

Vf NIL. forLl (cons (X,cons(Y,NIL)), f, fNIL)=f (X, f (Y, fNIL))

oo 49

~

w APPENDIX 11 ~Basic Theorems for Finite Sets
mca Ezx= 3 3 azsss seeeszss WW: Wize ssax:a | |

(uses the axioms of sections 3,6 and 7.1 to 7.5)

' E isset(UU)s UU
i sset (X)sUUF X= UU
i sset (X}sTTlF A(X) =TT
isset(X)aFF F 3X) =TT

F setof(U)= UU

« F listof (UUl= UU
isl ist{X)=FF } setof (X) = UU
i sset (X)=FF u | istof {X) 3 UU

- isl ist{X)=TT Pb issetlsetofiX))=TT
i sset (X)=TT Fo oislist(listof (X))=TT
isset(X)=TT bb setof(listof{Xi}lz X

w disetof (X})=sTT PF islistX)=e TT
d(listof(X))=TTF issetX)z=TT

memEQ(X,Y)=TT [J setof{X) = setof(Y) :
~- FF VX. setof(listof(setof(X))) s setof(X)

o vx. listofisetof(listof{X}))) = listof(X)
isl ist{X)sTT F memEQ(X, listof(setof(X)))=TT

_ FOVX LL. mem(X, | istof (setof(L}))=mem(X,L)

C

\

“

Ce

| 53

\

N APPENDIX 12 - Theorems About the Basic Set Operations,

\ (relies on the axioms of sections 2,6,7},

| a) Theorems involving the null set,

t isset(NS)e TT a.
F 3(NS) = TT
F listof(NS)= N | L

setof(X)s NS FX = NIL
listof (X)= NIL FX = NS

~ isset (X)eTT, (XaNS)sFF | null (listof(X)}) ee F F

b) Properties of the membership relation.

F VX. XCUU = UU
a F VX . UWX= UU

isset(Y)sFF F vx . XY= uu

| ieset (Y)aTT,XeYsUUF x= uu
EF .. XeYeTT EF aiX)e TT
: XcY=FF FaX)= TT
| XeYaTT I issetiV)=TT
~ XeY=FF t isset(Y)a TT
oT dX)= TT Lb XeNS = FF

VX. 3(X):: XeYaFFF Y = NS
isset(Y)=TT, VX. XeYZlsXeY F Y2=Y

~ c} Introducing the 'subset' relation,

oo F VX. subset (X,UU}a UU
; F VX . subset (UU,X}s UU

isset(X)e F FF VY. subset (X,Y})s UU
RE isset(Y)a F FPF vx.subset ix, Y)= uu
| subset (X,Y)=TT F isset(X)=TT

subset (X,Y) =TT pb isset(Y) = TT
subset (X,Y)=FF fb isset(X) = TT
subset (X,Y)sFF pb isset(Y) = TT
isset(X)aTT, isset(Y)elT, subset(X,Y)sUU } TT a FF
isset (X)aTlT bP subset(NS,Xle TT
subset (X,NS}=TTp x = NS
subset (X,Y)=TT, WcXeTT pF Wyse TT
subset (X,Y)=TT, WeYsFF fF WeX = FF
isset(X}) eT TF subsetX,X}=eTT
isset (X)=TT, isset(Y)=TT, VW. WeX::lWeY=TTF subset (X,Y) =TT
subset (X,Y)=TT Fb VW. WeX = WdeYs TT

|. subset (X,NS)=TTF X= NS
subset (W,X)=TT, subset (X,Y)=TT { subset(l,Y}=TT

: 51

N

] APPENDIX 12 (continued).———e em

| d) The usual union operation - ‘U7

| PF vx . xuuu = UU| Fovx . UUUX = WU
5 isset(X)sF FF VYY.XuYs wu

isset(Y)m F FF vx . XuYe uu
: dXuY¥) es TT fF isset(X)= TT

dXuY) = TT F iesaet(Y)=TT
iscet(X)sTT ,isset(Y)=eT TF isset(XuV)s TT
isset(X)e TT, isset{Y)=TT , AuY =UU } TT = FF

\ WeX= TT, isset(Y)s TT pWc (Xuy) = TT
WeY= TT, isset(X)= TT FMW (XuY) = TT

WeX = FF, WeY= FF FUWCXUY) = FF
We(XUY)= FFF WX = FF
Wc {XUY) a FF Pp UeY = SF
isset(X)s TT ,isset(YieT Tk subset(X,Xuy)e TT

L_ isset(X)s TT ,isset(Yi=T TF subset(Y.XUY)e TT
feset(X)=T TPF XUNS = X
isset(X)eT TF NSUX = X
isset(X)=T TF xux= x
subset (X,Y)=TT F XuYy = Y

F XUY = YuX

'Y Fovx YZ. (XuY)uZ s Xu(yuz)

| e) The set subtraction (\) operation.
Fw, X\UWU= uu

! Fo owx JUU\X 3 uu
_ isset(X)saF FPF VY. X\Y= uu

isset(Y)s F FF vx. X\Y=z uu
diX\Y) 8 TT Pp issetX)=TT
diX\Y) = TT J} isset(Y)=TT

" isset(X)e TT, isset{Y)= TT t isset(X\Y)=eTT
ieset (X)aTT, isset(Y)sTT, X\Y=WU FT T=F F

WeX = FF, isset(Y)a TT F We (X\Y) 8 FF
WeY = TT, icsset(X)e TT F WelX\Y)s FF
WeX s TT, WeY = FF FUc(X\Y) 5 TT
We (X\Y) = TT FHWeX= TT
We (X\Y) = TTF ueY= FF

isset{X)= TT, isset(Y)=TT t subset (X\Y,X)= TT
“jeset{X)=T TF X\X= NS
issetX)=T TF X\WS=z X

isset(X) = TT PF NS\X = NS

52

APPENDIX 12 (continued).

f) Properties of usual intersection operation - NN .

EF YX, XnUU= uu
C F vX , UUnX= uu

isset(X})a FF Pp VY . XnYs UU
: isset(Y)s FF f VX, XnY =UU

diXnY) = TT PF issetiX})zeTT
3{XnY) = TT }F isset(Y)s TT
isset(X) a TT,isset(Y)s T T Poisset{(XnNY)=sT T

" isset(X)alT, isset(Y)sTT, XnY=UU F TT s FF
WeXe FF , isset(Y)sT TT F We (XNY) = FF
WeY 8 FF, ji sset(X)e TT wc (XnY) = FF

| WeX 8 TT , WeY s TT F WelXnY) s TT
We (XY) &8 TT fF WeX = TT)
W(XnY) = TT PF WeY = TT

“ i sset {X) sTT,isset(Y)sT T F subset(XnY,X) = TT
isset (X)aT T ,isset(Y)=TT EF subset(XnY,YlaT T
isset(X)s TT pF XONS=NS
isset (X) 8 TT bp NSNX= NS

i jesetX) eT TF XX = X
F XnY = YnX

“ FPYX Y Z . (XnYInZ = Xn(YnZ)

g) The ‘select’ function.

FF select (UUl=UU
% FF selectiNS)=U U

isset(X)s FF Pp select(X)=UU
— d (select (X))sTTp isset{X)=T T

diselect(X))=TTp (XsNSlsF F
isset(X})m TT, (X=NS}= FF } G(select (X)) a TT
isset(X)a TT, (XeNS)= FF } selectX)eXaTT

«

h) The ‘singtn’ function.

Fo singtn(UU}=UU
aX) TT Fo isset(singtn(X))=T T

w disingtn(X))=TTF aX) = TT
alX) =TT F Xesingtn(X) =T 7
Xesingtn(Y)eTTfb X 2 Y
aX) = TT FE (singtn{X)=NS} =F F
3X)eT T F select{singtn(X))= X

53

