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Abstract

Two efficient computer implemented algorithms are presented

Jor explicitly constructing all distinct labelings of a graph G

with a set of (not necessarily distinct) labels L , given the

« symmetry group B of G . Two recursive reductions of the problem
and a precomputation involving certain orbits of stabilizer subgroups

are the techniques used by the algorithm. Moreover, for each

. laveling, the subgroup of B which preserves that labeling is cal-
ulated.
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CONSTRUCTIVE GRAPH LABELING USING DOUBLE COSETS™

“ By Harold Brown, Larry Masinter and Larry Hjelmeland

1. Introduction. We consider in this paper the following graph

‘ theoretical problem: Given a graph G with n nodes and topological

symmetry group B and a set I of n not necessarily distinct labels,

construct all topologically distinct labelings of the nodes of G

. with the elements of I . This problem arises in numerous contexts,

and it has been investigated by Pélya {7], DeBruijn [4] and others.

In particular, the number of such distinct labelings is given by

‘ the generalized Polya enumeration formula. We present here two

efficient computer implemented algorithms for explicitly con-

structing all topologically distinct labelings of G byL . More-

“ over, for each distinct labeling, the algorithms determine the

subgroup of B which preserves that labeling.

Our interest in the graph labeling problem initially arose

‘ in the context of the DENDRAL project [2]. This project includes

among its objectives the application of computer implemented art-

ificial intelligence techniques to the analysis and classification

‘ of organic compounds. Necessary to this work are algorithms to
systematically generate all the distinct valence isomers of a given

. set of atoms. Routines to perform this task in the special case
where the isomers form only topologically tree-like structures

have been described in [3] and [5]. For the general case, algorithms

C are required which generate all distinct cyclic structures formed

&
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from a given set of atoms with pre-assigned free valences. The

~ graph labeling problem is central to these cyclic structure gen-

eration algorithms.’ |

- We now describe a group theoretic approach to the graph

labeling problem.

2. Algebraic formulation and notation. The graph labeling problem

~ admits a completely algebraic formulation as follows:

We index from 1 to n the nodes of the graph G in some fixed

order and index also from 1 to n the n labels in the set I where,

~ for notational convenience, we index equal labels in sequence, i.e.,

if there are n, labels of the first type, n, labels of the second

type, etc., then we index the labels of the first type with

* Ly cen n,, the labels of the second type with ni*l, oevs Nyt,
etc. With this indexing, any labeling of G by L can be considered

as a bijective map from the integral interval [1,n] (the node

indices) to [1,n] (the label indices). (Throughout, [a.b] will

always denote the interval of integers from a through b inclusive

« if a <b, and [a,b] = @ if a > b). Thus, the indexed labelings of

G by LIL can be bijectively identified with S_ » the full permutation

group on [1,017

« Any topological symmetry of G in the symmetry group B
can be considered as a permutation of the node indices, i.e., B

can be isomorphically identified with a subgroup B of S_ , and

a for a € S. and B ¢ B, the labelings a and aB correspond to

“
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. topologically equivalent labeled graphs.
The indexed set of labels also admits a symmetry group.

If there are ny labels of the first type, n, labels of the second

type, o so Dy labels of the k-th type, ny +mn,+...+mn =n,

then the labels with indices in the intervals

j-1 3

| I = [( } n,) + 1, y n. 1s § = 1,2, «ees k,
‘ i=1 i=l

are indistinguishable as unindexed labels. These labels, therefore,

may be freely permuted in any indexed labeling without changing the

¢ corresponding labeled graph. Hence, the indices of the labels admit

the symmetry group A = S(n,) X S(n,) X ee X S(n,) where '"X'" denotes

« the (internal) direct product of subgroups in S_ and S (a) denotes
the full group of permutations on the interval I. naturally embedded

in S, Explicitly, for a € S_ » @ is in Sn.) if and only if

' a(t) = t for t ¢ I. Note that this latter tondition implies that
aL) = Ls since a is bijective and { L., [1,n)/1, } partitions

) [1,n]. The subgroup A will be called the label subgroup of S,

| corresponding to the the (ordered) partition n,tn,+...+tn =n
of n.

We now define a relation4 on S_ by 187, if and only if

¢ there exist a €¢ A and B € B such that Yy =ay,B. Since A and B

| are subgroups of S_» A is an equivalence relation on S, . In

. terms of the graph &¢ , Yy and Ys, determine topologically equivalent
&

|



labelings of the nodes of G with the labels in L if and only if

. Y,8v, . Since 0 is an equivalence relation on S,» the equivalence

classes of 4 partition S_ Hence, we can determine all topologically

distinct labelings of G by L by selecting precisely one element

“ from each distinct A-equivalence class, i.e., by selecting a

representative set for the partition of S, induced by A .

a For any Y € S > the A-equivalence class determined by vy

. is the set Cy = {avB|ac A, B € B } s l.€., C, is the set
product AyB. This set product is called the double coset of

A and B in S_ determined by y . Thus our graph labeling problem

- can be algebraically formulated as follows:

Given a label subgroup A of S. and a subgroup B of S. determine

algorithmicai.y a representative set for the double cosets of A

~ and B in CURA determine a subset { Yi» Yoo» JREEIES8 } of S_
such that S, = Yl Ay; B-and (Ay.B) N (Ay.B) = for 1 # J.

“ The correspondence between graph labeling and double cosets

and the use of double cosets as a basis for chemical nomenclature

) have been investigated by Ruch, Hasselbarth and Richter [8].

. Although the double coset formulation of the graph labeling

~ problem presents the problem in a conceptually less obvious form,

it does permit the techniques of constructive group theory to be

“ applied directly to the problem. Moreover, our algebraic solutions

are directly implementable on a computer.

2.1. Example. Let ¢ be the graph in figure la. Let L consist of

“ 3 labels ¥ and 7 labels C . The topological symmetries of § are:

b: The identity transformation.

b: Reflection about the line 2%

~ by: Reflection about the line 2X



S

. bi: 180° rotation about the center of G.

Index the nodes of &¢ as in figure 1b and the labels in L

. a3 XT Xp FT Xg = N and X, = vor TRF C.
Tnen, the labelings of G by L can be considered as elements in

510° E-8., the permutation YF (1256.73 84910) in S10

corresponds to the labeling of G¢ given in figure 2a and the per-
-

mutation Y, = (35498217106) to the labeling in figure 2b.

+ Here, we use the notation for S_ which identifies y ¢€ S_ with the

n-vector (y(l), v(2), ... 5 Y(n)).
|

The topological symmetry group of ¢ determines the subgroup

B of S10 via

50 By =(123u4567839 10),
“~

2 > By =(l09 87654321),

by > By = (54321109876),

“ by “By t (6 7891012345).

The label subgroup of 8.10 associated with L is A = S(3) X S(7y3
) a subgroup of order 3!7! . For example, the permutation

| a =(213 47106 59 8) is in A, and the permutations Y, and Y, |

are A-equivalent since Y, =ay.B84s i.e., the labeled graphsin

figures 2a and 2b are topologically equivalent.

“ By Polya's enumeration formula, there are 32 distinct double

cosets of A and B in 510° i.e., there are 32 topologically distinct

labelings of G by L.

\

“-
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. 3. General theory. Let A and B be subgroups of the finite group
G. A straightforward group theoretic argument shows that the

double cosets of A and B in G partition G. This partition, unlike

« a single coset partition of G, is generally not a partition into
subsets of equal size, and there is no simple analogue to LaGrange's

theorem. There is, however, a certain regularity in a double

coset partition as evidenced by the following known theorem:

3.1. Theorem. Tor any g € G, let Ry be a set of right coset
representatives of (g tag () B) in B. Then the double coset

« AgB consists precisely of the union of right cosets U Agx.
XeR

g

Moreover, this union is disjoint. Symmetrically, if i is a set
of left coset representatives of (A MN gBg 1) in A, then AgB is the

&

disjoint union |) ygB.
ye L

g

Proof. Let R, = { X1o Koy ov oy Xp } , 1.e., B is the disjoint
k

‘ union J (g Lag () B)x., and let u ¢ AgB, say u = agb. Now b
i=l

in B implies that b = hx, for some 1<i<k and h ¢ g tag ( B. Also,
: -1 oo -1 _

h is of the form g a.g, a, € A. Thus u = agg agx; = (aa, )ex,,
| .

and u e IU agx, l.e., AgB = U Agx. If Agx = Agx., then
XER X€ER J

g g

-1 - -1 . :

* %s = 8 a,g for some a, e A. Since Xs and Xs are in B,

« XX € g tag N B. Therefore, (g tag MN B)x, = (g tag MN BJ.»
and, since Ry is a right coset representative set for g Lag N B

$

| §



in B, we must have i = j, Hence the union is a disjoint union.1l |

. For any finite set T, we denote by IT] the number of elements

in T. From Theorem 3.1 and LaGrange's theorem we have:

3.2. Corollary. |agB| = |A||B] / |gtag B]

. = |a]|8| 7 |a  gBg™t].

Theorem 3.1 does yield the following algorithmic method for

determining a list D of double coset representatives of A and B

“- in G:

1. Determine a list of right coset representatives for A in

G, say R = { a,b, ..., t } » and form the list D with

- initially D = g.

2, For the first member m in KR, place m on D and determine

a set of right coset representatives of (m Lam 0 B)

- in B, say T_= { %y, .... z }.
3. For each w in T determine the unique element h in R

such that Ah = Amw and eliminate h from the list R.

4, If R=@, stop, otherwise go to step 2.

; The difficulty with the above algorithm is that any direct

. implementation is computationally prohibitive in terms of both

machine time and core store even for relatively small groups, e.g.,

G = S15 Our objective now is to derive certain modifications to

« this algorithm in the case G = S, and A is a label subgroup so

that the modified algorithm admits efficient machine implementation.

The main device used is the natural ordering of S

-

.
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The group S_ admits a natural linear ordering. This ordering

¢ 1s a very powerful computational tool, and it has been used by

Sims [9] and others in devising group theoretic algorithms. The

ordering is defined as follows:

¢ Consider S_ as the set of bijective maps from [1,n] to
itself. For 7 € S identify 7 with the integral n-vector

(r(1),m(2), ..., ®(n)). Using this latter representation of S

* the natural linear ordering is the lexicographical ordering on
the n-vectors induced by the usual ordering on [l,n], i.e., if

. we denote the order relation on S by "<<", then W, << T, if
and only if either m, =m, or for some k € [1,n], wm, (1) = m, (1) for

1<i<k and m, (k) < mk). This relation can be extended to sub-

| sets of S_ via T << U if and only if for every T € T and n € U,

* T << n .

Given any partition P of Ss this linear ordering permits us

« to easily specify a canonical representative set for P. Namely,
we choose as the representative for P € P the "least" element in

] P with respect to <<, i.e., we choose the unique 7m € P satisfying

mn << P,
|

Let A and B be subgroups of S_ The canonical representative

sets for the right cosets of A in Ss» the left cosets of B in S

« and the double cosets of A and B in S_ are

Spc laes |a<<an},s ={8eB]|8<<pp]
and Sp = { me S_ | = << AmB } , respectively.’ Since A and B

(0

-



contain the identity element of S > if nm is in ASpp? then =

- must satisfy nm << Am and w << 7B. The converse, unfortunately,

is not true. We will call a double coset representative set small

. if it is contained in AS. e In particular, ASnB is small.
The following technical lemma , which is due to Sims [9],

gives a criterion for when w << 7B.

3.3. Lemma. Let B be asubgroup of S Let H, be the subgroup

* of B fixing elementwise [1,i~1], and let 0, be the orbit of i with
respect to H. , i.e., 0, = { (i) | T € H, } . Then for any 7m € Ss

« mn << 7B if and only if n(i) < w(x) for eachx ¢ 0: , i=21,2,.. 40.
Proof. For any 1<i<n and anyx € 0.» there is a Bs x € B such

that Bs x(3) = j for 1l<j<i and Bs (1) = Xx. Assume that w << nuB.

« Then w << "Bix? and since 7(j) = mB; x(3) for 1<j<i, we must have

7(1) < 8; (iF n(x). Conversely, assume that w(i) < n(x) for

every X e 7% For any B ¢ B, if nw # nB8, let ig be the least

« argument for which 7 and wg differ, i.e., w(j) = wB(j) for 1<j<ig

and (ig) Fup(iy). Since m is bijective, B(j) = J for 1<<i gq.

Hence B ¢ =. and B(1.) € % . Thus (ig) < mB(i,) and 7 << wg.| |
. The subgroups H, in this lemma form a descending sequence

B= HD H, = eee DH ={7} where 1 denotes the identity element

of 5. Thus if k is the least index such that H = {1} , then

ns = {1} and 0, = {i} for k<j<n. Hence in applying lemma 3.3,
we need only check those indices i with 1 < k. For example, if B

|

.
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. is transitive, i.e., 1f 0, = [1,n], and if H, = {1} for j 2 2,
then n << 7B if and only if w(1l) = 1.

Let A be a label subgroup of -S_, say A 1s the subgroup

~ corresponding to the partition n,t...+n =n. We claim that

the set of all w ¢ S satisfying mn <<wA can be constructed as

follows:

“ l. Form all the distinct ordered partitions |

P. = {P..» cee Po} of [1,n] into k subsets Ps; sat-
isfyi =n = n!/n !...n!isfying |Pysl n,- There are ¢ = n!/n, n such

« partitions.

2. For each P. and for each Py € P, list the elements of
P.. in their natural order, say h.. < h,..< ... < h,.
ij 1j1 ij2 ijn, .

3. Fori=1, ..., c, define Lr by mh) = Ln + Ss.
Each P. is a partition of [1l,n], and the integral intervals

1-1 )

I. = [ ) n +1, ) n lJ, J=1, ..., ky, also partition [1,nl].
3 Lp uo

. r=1 r=1

Thus, since |Pi4l = 1; | » 1 < J < k, the m. are distinct, well-
defined elements of S

. 3 3.4. Lemma. {wn |l1gige}={mnes |m<<an}.
Proof. Tor o ¢A, assume that me # an,. Let t be the least integer

in [i,n] for which ws (t) # an. (t). Say t € el and t = hy for
some 1 < 3 <k and 1 <s <n,. ‘Now 7.(t) =] n_ +s e I.. Since

“~ J 1 r= * J

A is a label subgroup, { a(m) | m ¢ i } = Ls Also, by the choice

of t, my (ngs) = omy hy gpl SF 1 <p AN Thus, since m. (t) # am, (t),
we must have aw.(t) = af y n + s) > ) n + s = nw(t). Hence,

‘ * r=1 © r=1 ©

«
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me << aw. and LA << Am, By the above,

v { me 11 <1 <¢ } Cr eS | nm << Am } . Since the latter set
forms the canonical set of right coset representatives of A in S,»

by LaGrange's theorem |{m eS | 7 << Aw } = |s_|/]4] = Cc. Hence

N (mn; ll sigel={nes |n<<an}.|]
3.5. Corollary. The set ASh = { T E S_ T << Am } can be

naturally identified with the set D of all integral n-strings

N containing ns 0-digits; nq l-digits; ... ny» (k-1)-digits.
More explicitly, definé t : [1,n] + [0,k=1] by 1(s) = k-j where s ¢ I.

o Then the map y : aS, + D given by y(n) = (tw(l), ..., TW(N)) is
a bijection.

Proof. For wm, and wm, in ,S , let H,. = { hell] [nel },

o i=1,2; 3 = 1, «sep ke Now vin,) = vwix,) if and only if Hy = Hpi»

1 <j < k. Linearly order the sets Hygo say hye h.s% A "3s,

1 <3 5 k. Then, since 3 and m, are in Anz, BY the proof of
. lemma 3.4, Hs = H+ implies that my (hy) = LPs +s = my(hso).

thus , vim,) = wm,) implies that mS Tas and ¢y is injective. Since

) [48,1 = ni/m tecen l= Df, y is bijective.

= In the special case where k = 2, i.e.,.A is the label subgroup

of §_ corresponding to a partition of n of the form m + (n-m) = n,

the identified set of canonical right coset representatives takes

a particularly simple form. Namely, it is the set D° of all n-bit

binary strings with m, l-bits and (n-m), 0-bits. Moreover, the

natural ordering of the elements of D} considered as binary integers

agrees inversely with the ordering << on S.- Explicitly, if for

a 1n D’ we denote by a the permutation in Sq associated with a,
i.e., a = Y(a) where y is the bijective map of corollary 3.5,
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then:

“

3.6. Lemma. For any aq and 8 in D’, a > B if and only if a << B,

Procf. Let a = (a,a, Vas a) and 8 = (b.b, Co b J. Assume that

C a > 8. Let i be the least index such that a; # b.. Then we must
have a; = 1 and b, = 0. Hence,by the definition of a and B ’
aj) = 8(3) for 1 < j <i, and ai) < m < B(i). Thus a << B.,

o Conversely, if a << B,a # 8 , the converse argument yields that a > B J
Let ¢ be the collection of all linearly ordered m-element

subsets of [l1,n], i.e., C is the collection of all linearly ordered

. combinations of the elements of [l,n] takenmat a time. Any a

in D uniquely determines an element w(a) : 1 < a, <a, <...<a In

of C where the a,-th digit (from the left) of a is 1. w is a

“ bijective map from D to { , and we have:

3.7. Lemma. For any a and B in D_, a > B (as binary integers) if
and only if w(a) 5 w(B) (lexicographically).

“ Proof. Let w(a) :1 ca, <a, <...<a <n, and

) w(B) + 1 gb <b, <... <b <n. Then, a > B if and only if

) there exists an index i, 1 £ 1 <m, such that a, = bs» l1 £3 <i,

- and a. > b. if and only if w(a) is lexicographically less than w. B). | |

We can combine the correspondence between D’, aS, and m-element
combinations with lemma 3.3 to.give a method for describing the

canonical right coset representatives of Ain Swhich are also

canonical left coset representatives of B in S, Namely, if we

let 0: i=1, ..., n, be as in lemma 3.3, then:

3.8. Lemma. Let Dbe the set of all linearly ordered m-element

subsets A of [1,n] satisfying 0, MN A=¢g ifi ¢ A. Then there is
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a bijective map y fromD to the subset R of all gq ¢ D’ satisfying

- a << gB. Explicitly, for 4: la, <a, <...<a <n, ind ,
v(g) = (ee ...e ) where ey = 1 if je A and 0 otherwise.

. Proof. Let [1.0/4 = {by «By <.ooeb  }, and let (4) = vy.
Then ¥(3) 4 3 t . Choose any je [1,n] and x €¢ O,.mt, J = b J

If J = acs then x 2 a, and v(x) > t. Hence y(j) = t < v(x).

~ If j = b> then j 4 and, by hypothesis, x ¢ A. Thus x = b, for
some s >t, and y(j) =m + t < m+ s = y(x). Therefore, v(j) < v(x)

for any x ¢ 0 and by lemma 3.3, y = u(A) << u(4)B. Hence vu
~ is a map from Dpto R. The converse argument shows that v is surjective.

Clearly, v is injective, and thus v is bijective.||

Note that in the special case when B is transitive,

~ 0, * [1,n], and hence for any allowable m-element subset Ain Dp,

a0) 0, = AF 0, and we must have1 ¢ 4.
The results of this section admit a straightforward general-

> ization. For any subset X of [1,n], say X = { Xys avon oo }
denote by Sy the full permutation group on X, i.e., the group of

all bijective maps from X to X. The natural bijective map A from

- [1,m] to X defined by A(i) = Xx. induces the isomorphism t from
Sy, to 8S by t(w) = Atma + We call a subgroup A of S, the label

R subgroup of Sy corresponding to the partition m, +... +m =m
of m if and only if t(A) is the label subgroup of S_ corresponding

to this partition of m. Also, we take as the linear ordering on

Sy the ordering induced via t by the natural ordering of Sh, i.e,

“
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© for a and 8 in Sy» a << B if and only if 1(a) << 1(B). This

ordering is dependent on the indexing of X. With these definitions,

all of the above results immediately generalize to Sy

“ 4. Basic recursive schemes. We see from section 3 that for com-

puting double coset representativeson a binary machine, it would

be advantageous to reduce the general double coset representative

“ problem to the special case where the label subgroup corresponds

to a partition of n of the form m + (n-m) = n. In terms of the

graph, such a reduction is conceptually clear. For example, we

‘“ can label an n-node graph G with ny labels L;> n, labels L, and

ng labels Las ny + n, + n, = n, as follows:

1. Determine all topologically distinct labelings of G with

& n, labels Ly and (n-n,) blanks.
2. Tor each such labeling, determine all distinct labelings

of the blank labeled nodes with n, labels L, and n,

| labels Lge

The following procedure formalizes this concept and yields

© "the desired recursive scheme:

. Let X be a subset of [1,n], say X = { X19 X55 40, x } R

“and let B be a subgroup of Sy For any subset Y of X and any

3 € B such that g(Y) = Y, denote by Bly» B restricted to Y, and

‘ denote by B|, the group { 8|, | 8 € B with 8(Y) = Y }. Then, if

A is the label subgroup of Sy corresponding to the partition

m tm, +...+tm =m of my, k > 2, we claim that a double coset

‘ representative set R for A and B in Sy can be obtained as follows:

‘
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l. Determine a double coset representative set Ry of Ay and
|.

B in Sy where Ay is the label subgroup of Sy corresponding

to the partition my + (m-m,) = m.
2. Do for each a in R,:

“ 1
. _=1

a) Determine N, =a ~({ “n, +1° « ne Xo }) oma Bly «
Index the elements of N, y Say N_ = {y, "ddd mem .

b) Determine a double coset representative set R, of
©

A, and Bl, in S; where A is the label subgroup of
a a

oN corresponding to the partition m, tooo tm = mem.
3. SetR = U { Y*a | y €¢ R } , where yv%a ¢ Sy is defined by

‘ ~~ aelR
1

® =

v#*a(x) x . Xe N andy(x) = y..

4,1. Lemma. R is a double coset representative set for A and B in Sx*

Proof. Since a(X/N ) = { Xs oes Xo } and { “+3 | vj e Y(N ) }1 ;

partition X, each y*a is a well-defined element of Sy

We will first show that R contatins a representative set.

For any wn ¢ Sys since Ry is a representative set for Ay and B in
“ ) |

Sy» there exist a ¢ Ry» 6, € A and By e B such that 6,78, =a.
i ' ' = =

Define (g;) by (78, ) (x) Y; where w8(x) x (45, € N_
\ _ ¢ ss gi . ‘. (78) (N) N_ , and (78,) is in Sy . Since R, is a representative

set for A and Bly in Sy : there exist y ¢ R , §, ¢ A and
' = =

B, € Bly, such that §,(78,)'8, = y . Choose 8 ¢ B, B(N) = N ,
C satisfying Bly = 8, Define § by

a

.
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©

“+s? X = X and §,(y,) = Y6(x) = 1, 1

AL

A direct computation shows that § ¢ A and 6n(B,B) = y%a, Hence R

contains a representative set.

Now, assume that for some y.,¥. and Y-¥&,. in R there exist
“ 1 1 2 2

¢ € A and B € B such that 8y, "a, B = Yo, Then,

Yo ¥a, (X/N ) = a, (X/N_)

o 1 my

= §(y, ®a, )B(X/N )

= a, BIX/N ) .

Thus, (a 8 Ya ( {x xX by = {x eey X } and ¢.8 and a
- ’ 1 9 1° * 0 0 my 1? ° ] m, ’ 1 2

differ only by an element of A,. Since Ry is a representative set,

a, = a,- From 6y,%a,B = YoHa, we have that for x € N
'e - = % - ‘sn

. ga(0) xy 5 S1yag (x), where (x) = yg. Therefore
B(x) € Ns and Ys = §y,B8(x) =y, (x). Hence, 6 ly v, Bly _ Ye

al aA

= * = Hs PRSince R_ is a representative set, Y, =, and vy, *a, Y, Na,

~ Thus the members of R determine distinct double cosets, and R is

a representative set for the double cosets of A and B in Sur | |

Let B be a subgroup of Sy |x| =n, and let A be a label

~ subgroup of Sy The computation of a representative set of the

- double cosets of A and B 1n Sy admits a further recursive reduction

based on the orbits of B. By lemma 4.1, we can assume for this

~

recursive scheme that A corresponds to the partitionm+(n-m)=n.

Conceptually, the reduction scheme works as follows:

“

“
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1. Choose a fixed node x of the graph &¢ , and let ¥ be the

image nodes of x under the symmetry group B of G,

2. Do for i, max( 0, |[N|+m-n) <i <min( |N|, m):

i, Determine all distinct (with respect to B) labelings

o of § with i labels of the first type and |V]-i
labels of the second type.

ii. For each such labeling of ¥ , let U be the subgroup

i of B which preserves that labeling of N, and de-

termine all distinct (with respect to U) label-

ings of the remaining nodes of Gwith (m—-1)

“ ~. labels of the first type and (n= |N|-m+i) labels

of the second type.

lili. Compose each labeling of N and its associated

“ labelings of G/N.

Formally we have:

Let X = { Xi» 0 dot a }, and let 0 be an orbit of B, i.e.,

< 0= { mx.) | 7m € B } for some fixed Xy € X. Then a representative

| set R of the double cosets of A and B in Sy can be obtained as
] follows:

L 1. Index the elements of Oand X/O 7 0, say {yys oe n= Yy }

and { Wis ooo wl , respectively. Since 0 is an
orbit, B(0) = 0 and 8(0) = 0 for any B € B.

‘ 2. Do for i = max(0, m+k-n), ..., min(k, m):

1. Determine a double coset representative set T.

Of A; and B |p in S, where A; is the label subgroup

- of So corresponding to the partition i + (k-1) = Kk.

|
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ili. Do for each ¢g ¢ T,:

a) FormN = a” {y ..vy ¥.}) and- a 1’ » Ti

a - ~ —

B = {mes | mN)=N_}

b) Determine a double coset representative

o

o set H of As and B lr in Sy where Az is
the label subgroup corresponding to the

partition (m-i) + (n-k-m+i) = n-k.

“ c) Form R = {yoa |v ¢ H, } where

X.s XE Ns a(x) = Y.

Xnoiege ¥ 6 O/Ng, ox) = y,
yoa (x) |

w ~. Xspo XE 0,v(x) = Wes tL mei

Xpp? XE J, v(x) = We, t 2 m-i.

3. Set R = UJ \J R, » max(0,m+k-n) £ i £ min(k,m).
i «eT.

i

4.2. Lemma. R is a double coset representative set for A and B in Sy

Proof. For any m€ S,, let N, ={xeo|mx)=x,t cm},

“ 1 1 1 k=-1

LEY € Sy by |

R Ys Y €N;» Y = Tt,

Yieg? Y éN., Y “Ys,

Since T, is a representative set, there exista ¢€ Tes §, € A, and
L € = 3 1 =B. B, such that 8 7. 8 = a. Choose B e B satisfying Bl, B,

Let N, = { xe 0 T8(x) = Xp» t £m } y Say N, = fw, y ree Wo }
1 m=1

and O/N, = {w 9p seesW } Definemw, € Sz by
- : ®1 ®h-k-mti 2 0

.
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Wyo W E Nos Ww = “t.

. mw) =— Ww i Ny Ww = “s .
Since H_ is a representative set, there exist Y € Hd . 5, € A and
B, € B | such that S, m8 = Y + Choose B' € B satisfying

~ B! | T= B, and let N, = yw, Cee woo). sO
B(N,) = B,(N)

= 11 ey
=n. Hy,» Ce y. 1)

| = Ny.
Similarly, B8'N = N,. Thus,

“ ¥ 2

"BB'(N UN) = nN, UmBN,

= {xeX]|m(x)= Xx.» t Sm }

= Yoa(N UN.) .
Hence, "B8B' and yoa differ only by an element in A and AWB = AyoaB.

Assume that there exist Y 00, and Y,0u, in R, § € A and

C B € B such that $y, 0a, 8 =Y,00,. Then,

1200) = 6,00 8(N,)
= {xs ooos xg),

o for some 0 £ i £ m. Thus Ba, '- Ya. Symmetrically,
| sh, C Na,’ and hence Na, Ng This implies that a, and a,
are both in the same T., and a 8] anda, differ only by an

~ element of Aj. Hence a, =a, and 8 ¢ BL, A similar argument using

“v, = { weO | Y; (Ww) = Wes t 5 mi } » 1 = 1,2, shows that Yq = Yoo
Thus the elements of R determine distinct double cosets , and

« R is a representative set for A and B in S,.| |

.
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Since the only property of 0 used in the above proof is

that B(0) = 0 for all B € B, we have:

N 4.3. Corollary. Lemma 4.2 is valid if O is a union of orbits of B.

As we have seen in section 3, we can always choose a double

coset representative set R for A and B in Sys |x] = n, such that

~ RC ASy? the canonical representative set for the right cosets
of A in Sy» i.e., we can always choose a small double coset

| representative set. Moreover, by corollary 3.5, such a small

N representative set can be identified with a set of certain
integral n-strings. We will assume, henceforth, that such an

C identification has been made. In particular, in the special case
where Ais a label subgroup corresponding to a partition of the

form m + (n-m) = n, any small double coset representative set

is a set of n-bit binary strings withm, l-bits and (n-m), O-bits.

if a is such a binary string, we will denote by © the associated

permutation in Sy:

In many cases the following lemma when applied to the T,

in step 2(i) of lemma 4.2 reduces considerably the number of

) steps in the process:

“ 4.4. Lemma. Let T be a small representative set for the double

~ cosets of A and B in Sys Ix | = n. Say A is the label subgroup

of 8, corresponding to the partition k + (n-k) = n. Let A be the

“ label subgroup of Sy corresponding to the partition (n-k) + k = n.

Then a small representative set T for the double cosets of A and

3 in Sy can be obtained by simply forming the binary complements

- T of each a in T, ive., T= {TT = (2-1) -a|a eT}.

“
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; _ _ .=1
Proof. Define 6 € S, by 8(x.) = X_.,_;+ Note that § = § ~.

For anysmall representative a, let a be the corresponding

permutation in Sy We will first show that Ts = { Sa |lae T } is

a representative set for the double cosets of \ and B in Sy

For any 7 ¢ Sys dm is also in Sy Since T is a representative

set, there exist a €¢ T, Y € A and B € B such that én = yaB. Thus

§%n = 5 = 8yaB = 6y8(Sa)B. Since y € A,

8v8( {x,, cee x 1) = Sv({x, 1» cea x_|) = 8({x, 1» Coes x_})

= {x}, Ceo x} Hence 6yv6 € 7) and ® 1s in the double coset
determined by Sa. Now assume that for some a, and a, in T,

~ v8a, 8 = Sa, for some yY ¢€ a and 8 €¢ B. Then,

§yéa. 8 = 6%a, = a. As above, 6Yy6 €¢ A, and, since T is a
representative set, a, = a, and Sa, = Sa, Hence we have that Ts

is a representative set.

We will now show that for anyae T, ® ¢ ASaB. By the
ees A —-1 . .

definition of a, f(a (x:)) =X lei for 1 £1 £ k, and
x1 . .

oa “(x .)) =x, for 1 £ i £ n-k. Therefore, for 1 £ i g n-k,
Aa 1s m1 = .& (x;) Ga (X41 i) ¥n-k+1-i° ©

Qa tox) € {x,, ves Xo os and da 1s ¢ A. Thus & eASaB, and
A

T is a small representative set for the double cosets of A and B

. in Sy .1|
X t

Using the results of 'this section, we now can describe the

two algorithms.

“.

.
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.

5. Double coset algorithms. The analysis done in the previous sections

yields two efficient computer implementable algorithms for determining a

< small double coset representative set of A and B 1n Sy (Xx € [1,n],

|X] = kx) where A is the label subgroup of 8, corresponding to the

partition m tm te. .tm = k of k.

C As 1s often the case, the form of the data structures in the

machine implementations of the algorithms determines the form of the

algorithms, and conversely. In the implementations, any subset X of

« (1,n] is represented by the binary n-string U where the i-th bit (from

the left) of V 1s 1 1f and only 1f 1 ¢ X. Thus, there 1s no distinction

between subsets and their associated binary strings, and the elements of a

« subset are implicitly indexed, Each such string U is carried right

justified in a machine word.

Any element i of [1,n] when considered as an element in the domain

« of 5 1s represented as the machine word A and a small right coset
representative.1ls represented as an&vector in the form given by

“ corollary 3.5 if t'>2 and as a binary word if t=2. For example, if A

« 1s the label subgroup of So corresponding to the partition 2 + 2 + 3 = 17

(respectively, 3 + 4 = 7) and

SoS Rd) S.,« A = (:. 3 0 6 1 R! 2 e 1 then the small double ooset

“

¢
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representative of A is (2, 1, 0, 2, 0, 1, 0), (respectively, (1 00101 0)).

. This compact representation of subsets and coset representatives 1s
in practice

neededVsince for even relatively small values of n , the number of distinct

double cosets can be very large. This latter number 1s optionally computed

‘ in advance via the generalized Polya enumeration formula, and it is used to

help decide 1f the desired construction 1s even feasible 1n-terms of time

and core store.

~ A permutation ® in a symmetry group B contained in IS 1s
represented 1n the Implementations in two ways. It isrepresented as the

n-vector of the images, c(n )=( (2% 1)=p0" md) ce ey x (2T)= of m(n)y and

‘ also as a list p ( 7) where the members of P(g) are the sets of elements

in the non-trivial cycles of x . For example,

2 2% 2” 0% 23 a ot 2

“ 7 = 2. 3,07 2 6 is carried as cl w)=
(25. 0%.23.20, 27, 22, 2°, *) and as P(y )= {(10101000), (01000010)~

« (00010001) } . For many of the necessary computations, the second representation
1s the most efficient. However, the first representation 1s also needed

. since P{( =) does not uniquely determine = .

“ These representations permit most of the computations to be performed

as logical hardware operations,, For example, 1f A corresponds to the

partition m+(n-m)=n, e is a small right coset representative, gq ¢B,

“ and y is a subset of [1,n], then { i ¢ y | the j-th digit of e is 1}

is represented by VU Ae, and nv (VU) =U if and only if pAU=p or 0 for

all pe P(w ).

. We will describe the algorithms using these representations,

|
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5.1. Algorithm I. This algorithm 1s recursive both in the number of terms

. in the partition of k and in the orbits of B . The algorithm 1s presented

as three nested subalgorithms,

Subalgorithm Ic. The deepest level subalgorithms:

- Purpose. To determine the canonical set of double coset representatives

of A and B in Se in the special case where A corresponds to the

partition m + (k-m) =k of k= {X , and B is transitive, 1i.e., B

- has only one orbit.

Technique. The subalgorithm is based on corollary 3.5 and lemmas 3.3,

-3.4, 3.6 and 3.8. It first generates the small subset

. = —_

Pp = 1 T&S, | m<< wB}, Py co , 1.e., the subset of canonical

right coset representatives which are also canonical left coset

“ representatives. It then eliminates from Py any elements yg not

satisfying w® << A ®B.

Input. The binary n-string y corresponding to X , k = | ¥ , mM, and a

. list which is the n-vector form of a set C of permutations in S)

such that v(X) = X for every y € C and cl, = B.

) Output. A list Ry of binary n-strings e, eA y= e, which corresponds

|. to the canonical set of double coset representatives of A and B in

| Sy

« Ordered lists: Ry» R,, Dys D, 0.
START

* [Determine the elements of X].

~ 1. Determine s(i) e[l,n], 1 <i < k, such that s(i)A v# 0 and

“
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s(i) > s(j) if i <J.

- * [The following handles the special cases where there must be only

one double coset].

2, If m=0, Rj < 0; else if "m=l, R, €= 8(1); else if m=k-1,

. Ry += U -s(k), else if mw=k, Ry = Uj else go to L,
3. RETURN.

# [Generate the orbits 0 of lemma 3.3].

- | L, Initialize: N €= C.

5. Do T, i=2, .... k.

6, N & { nN | w(s(i-1)) = s(i-1) }.
7. 0(i) « Vn(s(i)).

7 EN

* [Generate all allowable m-element subsets as per lemma 3.8].

« 8. Initialize: R, «= s(1) D, «= 0, Ry « #, Dy « #.
9, Do 16, t=1, . . . . m-1l.

10. Do 15 for each W in R, using its corresponding D in D,,

“ 11. Determine max { d | s(d)A W # 0) .

12. Do 14, i =d + 1, . . . . (kml).

) 13. If DAN O(i) = 0, put WVs(i) on Ry, and: D on Di.
. 14, D «= D VO0(i).

| 15. Continue,

16. R, «Ry, D; € Dj, Ry & #, D, « d.
* [Eliminate redundant representatives].

17. Do 22 for e € R)

18. Do 21 for me C / {identity) ,

19. Do 20, i=, .... Kk.
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20, "If w(s(i)) Ae # 0 and s(i) Ae = 0, go to 1T;

« else 1if m(s(i)) A e= 0 and s(i)Ae # 0, go to 18.
| 21. Continue.

| 22. Put ee on Ry, .

“ 23. RETURN.

END

Subalgorithm Ib. The intermediate level subalgorithm

Purpose. To determine a small set of double coset representatives of

A and B in Sy in the special case where A corresponds to a

partition of k of the form m+(k-m) = k and B is any subgroup

‘ of Sy.
Technique. This ,subalgorithm 1s recursive and 1s based on lemma 4.2,

l1.e., on recursion on orbits. It uses subalgorithm Ic.

Input. The binary n-string U corresponding to X, k= [x | , m, and

two lists which contain the n-vector form and the cycle set form,

respectively, of a set C of permutations in S such that YX) = x

‘ for every y ¢ C and C ly = B.
output. A list R of binary n-strings e, eA'U=e, which corresponds

to a small double coset representative set of A and B in Sy

Ordered lists: R, R(h,1), V(h,]).

START

|
I. Initialize: (1) «= U , C(1l) «C, k(1) &k, m(l) em, h <1.

* [The following 1s the reduction part of the recursion].

A 2.8 <- max {2% | 22 A Uh) # 0 }.

.
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3. Obt(h) & V xis).

. 7eC(h)
4. t(h) <= l-bit count of Obt(h).

5. i(h) €= max {0, m(h) + t(h) = k(h)) » u(h) < min {t(h), m(h).),

. i, € mex{ i(h), t(h) - u(h)} , Ww <—min {u(h), t(h) - i(h) }.

6. Do 8, 1 eH = [1i,, min fu, [t(n)/27 -1} 1.
T. Call subalgorithm Ic with input Obt(h), t(h), i, C(h);

« getting as output R(h,i).

9 R(h, t(h) - 1) & {obt(h) - e | e.eR(h,i)} .

9. Do 10 for i e [i(h), u(h)] . (EV {t(h) - 3 {ld ea}.

‘ 10. Call subalgorithm Ie with input Obt(h), t(h), i, C(h); getting

as output R(h,i).

11. If t(h) = k(h), go to 17.

6 12. Remove the first element e(h) from R(h,1(h)).

13. C (bh + 1) &« {me c(h) | pAe(h) = p or 0 for all

peP(n)} .

¢ 14. U (h + 1) €= y(h) - Obt(h), m(h+l) = m(h) = i(h), k(h + 1)& k(h)-t(h).

15, h &= h'+ 1,

| 16. Go to 2.

¢ * [The following 1s the expansion part of the recursion].

| 17. If h=1l, R & R(1l, 1(1)) and RETURN.

18. h ¢ h-1.

‘ 19. Put the elements of { f¥e(h) | £ R(h+1, i(h+1))} on V(h,m(h)).

200 If R(h, i(h)) =9, i(h) €= i(h) + 1; else go to 12,

21. If i(h) <u(h), go to 12.

‘ 22. If h=1, R &=V (1,m) and RETURN.

|
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“

23. h &= h-1.

2h. Put the elements of {f¥e(h) |fe V(h+l, m(h+l)} on V(h, m(h)).,

25. Go to 20. .

END

| Subalgorithm Ia. The highest level subalgorithm.

v Purpose. To determine a small set of double coset representatives

of A and B in 5S. where A 1s the label subgroup of S

corresponding to the partition n, tn, + ..0 + ng'=n and B is

N any subgroup of 5. .
Technique. The main loop of the subalgorithm is based on lemma 4.1,

o 1.e., on induction on the number of terms in the partition of n.
The subalgorithm uses subalgorithms Ib and Ic.

onputqs nis ©. . ) 8. and two lists which contain the n-vector

« form and cycle set form, respectively, of B.

Output. A list R of integral n-vectors if q > 2 or binary

.. n-strings 1f 4 €¢ 2 which corresponds (as in corollary 3.5) to a

« small double coset representative set for 'A and B in S i and
a list P of subgroups of B where 1f e is the i-th element of

R , then the i-th element of P Tri |

-

.

“-
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Ordered lists: R, Ry P, Pos T, I

“ START °°

# [Trivial partition case].

'1, If g=1: R & 0, P «=B-and STOP.

w * [Initialization procedure].

2. Call subalgorithm Ib with input 2%1, n, n-n, , Bj getting
as output T.

3, Do 4 for e €T.

4. P «~B(e) = {nm eB|pAe = p or 0 for every PEP(m)}

5, If q=2, R <=T and STOP.

“~ 6. Do 8 for e eT. .. 0-3 A 40
T. Form w = (w(l), «++, w(n)) where w(Jj) = { 0, otherwise .
8. Put w on R. |

9. 14 <n,

¥ [Induction section].

10. Do 18,i=2, . . . . gq -1.

- 11. Initialize: n, << ny - ny +01? Ry <« R, Py <P, I, & T,
R « pf, P 4 §, T « @.

12. Do for 1T each w = (wll), . . . . w(n)) tR, and its corresponding

e(w) eT, and B(w)e P,.

13. Call subalgorithm Ib with input e(w), Nhs By = a +1oi?

B(w) ; getting as output T.

> 14, Do 16 for f eT.

15. Form f*w = (v(1l), ..., v(n)) where

i, 273 Af #0
- v(3) = {3, otherwise .

16. Put f*w on R, put B(f*w) = { 7" €B(w) | pAf=p or 0

for every p eP( wn) } on P. |
“
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17. Continue,

.- 18. Continue.

19. STOP.

"END

.

5.2. Algorithm II. This algorithm is a variant of the first algorithm,

It uses recursion on the number of terms in the partition of n, 1i.e., 1it

- uses the technique of subalgorithm Ia. We will describe only that part

of algorithm II which differs essentially from algorithm I.

Subalgorithm IIb.

“ Purpose. To determine a canonical set of double coset representatives

of A and B in Sy, XC [1,n], in the special case where A

corresponds to a partition of k = x] of the form m+ (k-m) = k and

> B 1s any subgroup of Sy
Technique. This subalgorithm 1s based directly on theorem 3.1. It

also uses lemmas 3.3 and 3.6 and corollary 3.5. It systematically

- generates the binary n-strings contained in X with m l-bits. As
each such string e 1s generated, the subalgorithm checks 1f e 1is

on BL (bad list). If e 1s not on BL, it 1s put on GL (good list),

* and all other n-strings which correspond to small right coset

representatives of A in Sx which belong to the double coset

determined by e are computed. These latter n-strings are merged

> into BL. For each e in GL, the group #1 MeNB is determined
in the course of the computation and 1s saved on GLG.

“

 .
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“~

| Input. The binary n-string U corresponding to X, k = |X], m,

“ and two lists which contain the n-vector form and the cycle set form,

respectively, of a set C of permutations in SH such that ’

: ¥(X) = X for every Ye C and C |, = B .
“ output. A list GL of binary n-strings e, eAU = e , which

corresponds to the canonical set of double coset representatives of

A and B 1n Sy , and for each e on GL the set

“ {mec | “nly € gL a NB} on the list GIG.

| Ordered lists: GL, BL, GLG, OL, OB.

“ START .

l.. Initialize: GL «=~ §, BL <« @, GLG « #.

.* [Trivial cases].

- 2. If m=0, GL <= 0; else if m=k, GL <= U; else go to k4.

3. GLG <4= C and RETURN.

* [Determine the elements of X].

- 4, Determine s(i) €{l,n], 1 <i <k, such that s(i)AU # 0 and

s(i)> s(J) if 1 < 5
* [Transfer out of main routine 1n special cases].

“- 5. If m=1l or m=k-~l, go to 29.

* [Main loop].
m

6. Initialize: e v s(i); t(i) <= mtl-i, 1 < i < m.
« i=1

7. Put e on CL.

* [Determine 1 azNB3l.

.
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8. T Ps ne C lpAe = p Or 0 for every PE p(n) } ,
9. Put T on GLG.

« * [Compute the orbits 0° of lemma 3.3 for T in BJ].

10. Initialize: N = T / {identity} . . .

11. Do 13, i=l, «¢., k=1,

'e 12. 0(1) <= { w(s(1))| me N}.

13. N « {re W| w(s(i)) = s(i)}.

* [Determine the left cosets ofT in B using lemma 3.3, and via

‘ : theorei 3.1 determine the right cosets contained in agB].”
14, Do 20 for ® € C / {identity) .

15. Do 18, i=1, . . . . k-1.

‘ 16. Do 17 for s¢ Oi).

17. If n(s) >'m(s(i)), go to 1k.

18. Continue.
m

- 19. f << V n(s(t(3))).
j=l

; 20. If f#e, merge ff into BL (largest first).

« * [Generate the next binary string].

21. Do 22, i=l, ...m.

22. If t(i) <k-i, go to 2k.

« 23. RETURN.

2b. e <= e A binary complement (2+s(t(i))=1).

25. Do 27, j=l, ¢ *es i.

| §
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26. e « evs(t(i)+J).

~ | 27. t(3) <= t(i) + (i+1-J).

28. If e is equal to the first member of BL, delete this member

from BL and go to 21; else go to T.

“ * [Special cases: Compute orbit represendatives for CJ.

29, Initialize: OL «= @, OB «— §.

30. Do 35, i=l, ¢ *09 k.

v 31. If OBAs(i) # 0, g to 35. |

32. Put 1 on OL.

33. Do 34 for we C.

* 3h. - OB <«— OBY w(s(i)).

35. Continue.

* [Special cases: Determine double coset representatives].

N 36. Do 38 for i eOL.

37. Put s (i) on.GL.

38. Put { 7 e Cc | 7(s(i)) =s(i)} on GLG.

> 39. If m=1, RETURN.

) 40. Replace each e on CL by its binary complement .

C 41. RETURN.
END

. 5.3. There are significant operational differences in the two algorithms.

Algorithm I 1s computationally more complex than Algorithm II. Also,

subalgorithm Ic does initially construct a list of double coset representatives

I with redundances which is later pruned, while in subalgorithm IIb the pruning
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C

process is incorporated directly into the main loop. A possible

“ compensation for the additional complexity of Algorithm I is that

for many graphs, most of the cases when subalgorithm Ic is called

are the trivial cases in which there must be only one double coset.

.- The first algorithm essentially as described and a variant

of the second algorithm not using recursion on the number of distinct

g labels have been coded in LISP for the Stanford Computation Center's

.“ IBM 360/67. The recursive and list processing capabilities of

LISP make it well-suited for coding these algorithms.

The empirical evidence obtained in running the coded algorithms

- clearly indicates that the key recursion in the described algorithms

is the recursion on the number of distinct labels. The coded

variant of AlgorithmII is much slower than Algorithm I. The

~ typical running time for Algorithm I is under .0l per distinct

double coset. The described version of Algorithm II should be

even more efficient.

~ 6. Example. Let G be the planar graph in figure 3. Using

Algorithm II we will determine all topologically distinct labelings

of G with one label a, two labels » and three labels ec.

- The topological symmetry group of G consists of:

Ty Identity transformation.

LEE Reflection about the line 2%

- mT, Reflection about the line Lye
LINE 180° rotation about the center.
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The input to Algorithm II 1s:

§ U= (111111); n=6; q=3; n=l; n,=2; n=3; the two lists corresponding
to the symmetry group:

List 1. List 2.

. LI (2°, 2 23 2°, ot, 2°)
LI (23, 24: 25, 2°, ot 2%) {(Lo10f00)}
LP (27, 22, 23, a 2°, oh) {0 210100), (000011)}

- LN (23, 2° 2° ot 2° oh {LL 01000), (010100),(0000 11))

First, subalgorithm IIb is called with input:

- U = (111111); k=6; m=3; List 1, List 2.

~The initial input for the main loop at IIb 1s:

~ s(1) = (100000), s(2) = (010000),s(3) = (001000), |

s(4) = (000100), s (5) = (000010), s (6) = (000001);

e = (111000); t(l) =3, £t(2) = 2, t(3) = 1.
.

The loop first determines:

r= Lm, wo}; e(1) = {(002000)}; 0 (Jy) =4, 2 cy <5.
“

Since (23) = 23? (27) = 23 for j=leand 3, ® and ¥J J 3

“ produce no elements for BL (bad list). produces

f = Lo (23) vom, (29) Vr, (2h) = (1001100) which is mergedinto
BL.

.“
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At the end of the first time through the main loop of IIb, we have:

“ GL: (1 11 0 0 0)

| GLG: { mgs Tq }

BL: (1 0 11 0 0).

|

With the given input, IIb goes through’ its main loop 8 times

producing:

|

GL | GLG

e, (111000) { 70 LI
2° 110100) {ro "2;

‘ es (110010) 0 3
e),: (110001) SE
ee...

X 5 (101010) (mg, m
°° (1000 11) {ror "23

tT" (01011 0) {rg "1)

. eg! (010 0 11) { LN }.

Next, the following é-vector list is computed from the elements

« of GL:

Wy = (1, 1, 1, 0, 0, 0), Vs = (1, 1, 0, 1s» 0s 0)

“© Ws = (1, 0, 1, 0, 1, 0), We = (1, 0, 0, 0, 1, 1) | .

Vo = (0, 1, 0, 1, 1, 0), wg = (0, 1, 0, 0, 1, 1).

.

.
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- Subalgorithm IIb 1s called for each LF For example, for Vo
IIb is called with input:

U = (110100); k=3; m=1l; the two lists:

. List 1 List 2

no: (2°, 2%, 23, 22, ot, 20) 6
m: (2°, 22; 23, 2" 2°, ot) {l010100), (0000111),

|

With this input, IIb transfers to the special case section and

computes OL = -{1, 2} and

- GL GLG

f, : (100000) { my,7, }

x £,: (0 10 0 0 0) ALP
~

The main routine determines:

. fo¥w,i (2, 1, 0, 1, 0, 0)
fo Mw, (1, 2, 0, 1, 0, 0).

w,, Woy, Ww_ and w, each induce 2 distinct labelings of ¢ , and wg
« 1° "2° 75 6 R 3

wy,s Vo and wg each produce 3 distinct labelings of ¢ . The 20 distinct
labelings of G with a, b, b, e, 6, ¢ are given in figure UL.

~

-
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© FOOTNOTES

- 1. This work was supported in part by ARPA Contract SD-183

and NSF Grant GP-16793.

2. A complete description of Pélya's theory of counting can be

~ found, for example, in [1] and [6].

3. The cyclic structure generation algorithms will be described

in a later paper.

4, For consistency with our choice of notation, one should always

view a labeling a in S as a map from the nodes of G¢ to labels
in L.

=

5. Note, however, that in terms of the graph this "canonicalness"

1s completely dependent on the indexing of the nodes and labels.

~ =)
6. © AellB corresponds to the subgroup of the topological symmetry

group of the graph which preserves the labeling determined by

e., This subgroup 1s needed in many applications of the labeling

« algorithm.

7. Recall that j € [1,n] is represented by "J,

“ 8. Here we use the property that the inverse of a left coset

representative set 1s a right coset representative set.

~

|
~
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SYMBOLS

C Set containment

U Set union

() Set intersection

/\ Logical and
¢

V Logical or

«

.
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