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AN ANALYSIS OF DRUM STORAGE UNITS

ABSTRACT

This article discusses the modeling and analysis of drum-1like
storage units. Two common forms of drum organizations and two common
scheduling disciplines are considered: the file drum and the paging
drum; first-in-first-out (FIFO) scheduling and shortest-latency-time-
first (SLTF) scheduling.

The modeling of the I/O requests to the drum is an important aspect
of this analysis. Measurements are presented to indicate that it is
realistic to model requests for records, or blocks of information to a
file drum, as requests that have starting addresses uniformly distributed
around the circumference of the drum and transfer times that are
exponentially distributed with a mean of 1/2 to 1/3 of a drum
revolution. The arrival of I/0 requests is first assumed to be a Poisson
process and then generalized to the case of a computer system with a
finite degree of multiprogramming.

An exact analysis of all the models except the SLTF file drum is
presented; in this case the complexity of the drum organization has
forced us to accept an approximate analysis. In order to examine the
error introduced into the analysis of the SLTF file drum by our
approximations, the results of the analytic models are compared to a

simulation model of the SLTF file drum.
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1. Introduction

Gains in the performance of computer systems are not solely
related to the power of the central processor. In particular, the I/0
structure of computer systems has ﬁeen an increasing cause of concern
because of its relatively poor performance and high cost with respect to
the central processor. This article focuses attention on one major form
of I/0 processor, the drum-like storage unit. Examples of drum-like
stores include fixed-head disks, acoustic delay lines, and large semi-
conductor shift registers, as well as storage units that actually contain
physically rotating drums as shown in Fig. 1.1.

The purpbse of this paper is to investigate the consequences of
using a device such as a drum that must operate under the constraints of
rotational delays. In the models of drum storage units that follow,
every attempt has been made to keep the models as simple and free from
obscuring details as possible while carefully describing those aspects
of the drum relating to rotational delays. No attempt is made here to
relate the capacity of the drum to the performance of the computer
system., We are focusing on the response and service times of the drum
and their effect on the utilization of the computer system, Furthermore,
no attempt is made to differentiate read requests from write requests on
the drum; when a request is made to 'process' an I/0 request, only a
starting address and length will be given. This assumption accurately
models most drums currently in operation and should provide a base from
which to analyze drum scheduling algorithms that exploit the opportunity
to write a record in the most convenient empty space on the drum rather

than into a fixed location.
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(a) A storage unit organized as a file drum.
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(b) A storage unit organized as a paging drum.

Figure 1.1, Two common drum organizations: the file

drum and the paging drum.



This article deals with two drum organizations that encompass the
majority of drum-like stores that are in use or that have been proposed:
the file drum and the paging drum., A drawing of a file drum is shown in
Fig. 1.1(a). The drum rotates at a constant angular velocity, with
period T, and the read-write heads are fixed. Blocks of information,
often called records, or files, are read or written onto the surface of
the drum as the appropriate portion of the drum passes under the read-
write heads. Once a decision has been made to process a particular
record, the time spent waiting for the .record to come under the read-

write heads is called rotational latency or just latency. With a drum

storage unit\prganized as a file drum we do not constrain the records to
be of any particular length nor do we impose restrictions on the starting
position of records. Let the random variable Si denote the starting
position of record i and the random variable Ri denote the length of
record i, For convenience, let our unit of length be the circumference
of the drum and hence Si and R; are in the half open interval [0,1).

A drum storage unit organized as a paging drum is shown in Fig. 1.1(b);
the drum rotates at a constant angular velocity, as in the case of a file
drum, with period T and the records are recorded on the drum's surface in
tracks. Unlike a file drum, however, a paging drum partitions all of its
tracks into equal sized intervals called sectors, The records are
required to start on a sector boundary and the record lengths are
commonly constrained to be one sector long, As we will see in the
course of our analysis, this organization allows improvements in

performance not possible with a drum organized as a file drum,



In the analysis of both of the drum organizations just described
two scheduling algorithms are considered: FIFO and SLTF. First-in-
first-out (FIFO), scheduling is a simple scheduling policy that merely
services the I/0O requests in the order in which they arrive at the drum.
FIFO scheduling is sometimes called first-come-first-serve (FCFS)

scheduling, for obvious reasons, Shortest-latency-time-first (SLTF), is

a scheduling discipline well suited for storage units with rotational
latency. At all times, an SLTF policy will schedule the record that
comes under the read-write heads first as the next record to be trans-
mitted. For example, in Fig., 1.1(a), assuming the drum is not trans-
mitting record 2, an SLTF policy will schedule record 5 as the next
record to be proceEsed. An SLTF algorithm never preempts the
processing of a record once transmission of the record has begun. SLTF
~ scheduling is often called shortest-access-time-first (SATF) scheduling.
The word 'access', however, is an ambiguous term with respect to storage
units (it is used both to denote the time until data transfer begins as
well as the time until data transfer is complete) and to avoid possible
confusion we will use the SLTF mnemonic. While SLTF is not the optimal
policy to use in all situations, some remarks can be made about its
near-optimality [ Fuller, 1972A], and it enjoys the important practical
feature that it is straightforward to implement in the hardware of the
druﬁ controller [IBM, 1971; Burroughs, 1970]. Another drum scheduling
algorithm, although not considered any further in the article, that may

be of practical value is shortest-processing-time-first (SPTF), i.e,

service the record whose sum of latency and transmission time is the
smallest. Variants of SPTF scheduling include policies which do, or do

not, allow preemptions of a request once transmission has begun. Other



scheduling algorithms have been developed that are superior to SLTF

under assumptions more restrictive than those considered here [Fuller, 1971]

Figure 1.2 applies to both paging and file drums. It defines the
basic time intervals and events associated with servicing an I/0 request
on a drum. The four events involved in this processing of an I/0
request are: (1) arrival of the I/O request at the drum, (2) decision
by the scheduler that the I/0 request is the next to be serviced, (3)
the start of the record comes under the read-write heads and transmission
begins, and finally (4) transmission of the record is completed. If the
I/0 request finds the drum idle upon arrival, events (1) and (2) occur
at the same instant. The interval of time between events (2) and (3) is
the rotational latency of the I/0 request,

A drum using a SLTF scheduling algorithm may push a request back
onto the queue between events (2) and (3) if a new request arrives that
can begin transmission before the currently selected event., Neither
SLTF nor FIFO scheduling algorithms allow a request to be preempted
after event (3).

The waiting time, or response time, of an I/0 request will be

denoted by the random variable W and includes the time from event (1),
the arrival of the request, until (4), the completion of the request.
This definition of wait time was chosen, rather than from events (1) to
(2) or (1) to (3), since the interval from events (1) to (4) directly
measures the time a process must wait before receiving a response to an
I/0 request.

The utilization of the drum, call it Uys is the long term fraction

of time the drum is transmitting information. Note that only the

fraction of time a drum actually transmits information is included, i.e,

Hll
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Figure 1.2. 1Intervals and events associated with

servicing an I/O request.



between events (3) and (4), and intervals of rotational latency is not
included in our definition of ud.

A wide variety of drum performance measures have been used., For
instance, some popular measures are: expected waiting time of an I/O
request as a function of queue length, or arrival rate, or traffic
intensity; cpu and drum idle times as a function of arrival rate or
traffic intensity; throughput as a function of drum speed, etc.
Obviously, some measures of performance convey more information than
others and many measures convey the same information but with varying
degrees of clarity.

One measure that is used widely in the evaluation of computer

systems is the utilization of the central processor, call it u,. u, is

a measure that is easily monitored in practice and has the advantage
that it bears a strong correlation with our intuitive concept of
"throughput' .

In those cases where the utilization of the drum and central
processor cannot be used, in particular when the drum is analyzed
independently of the other processors in the computer system, the
expected waiting time of the I/O requests appears to be an appropriate
measure of performance. The expected waiting time has a more direct
interpretation than the two other common measures of processor
performance, the expected queue size or the length of the busy periods.

In this article we will present an analysis of each of the four
major drum organizations: the FIFO file drum, the FIFO paging drum, the
SLTF file drum, and the SLTF paging drum., All the organizations except
the SLTF file drum can be precisely modeled if we assume I/O requests to

the drum form a Poisson arrival process, and in these cases we will



present expressions for the expected waiting time of I/0 requests at
the storage units. In the case of the SLTF file drum several models
are presented and compared with a simulation model of an SLTF file drum
to evaluate their utility and the validity of their approximations.
Finally, we remove the assumption of Poisson arrivals and explore the
performance of a model of a computer system consisting of a central

processor and an SLTF file drum,

2. Analysis of the FIFO Drum Scheduling Discipline

This section discusses the first-in-first-out (FIFO) scheduling
discipline applied to drum storage units. Expressions are developed for
the expected waiting time for I/0 requests to file drums, paging drums,

and a variation of the paging drum, the sectored file drum,

The FIFO file drum. First, let us consider the case of a storage

unit organized as a file drum with FIFO scheduling. This is the simplest
drum organization analyzed in this article, but it is worthwhile to
consider explicitly each of the assumptions required to construct a
tractable model even in this simple case.

The simplest arrival process to handle mathematically, and the one
we will initially use to model the arrival of I/0 requests to the drum
is the Poisson process. This arrival process has been widely studied
[cf. Cox and Smith, 1961; Feller, 1968], and the fundamental properties
of a Poisson arrival process are: any two time intervals of equal length
experience an arrival(s) with equal probability, and the number of
arrivals during disjoint intervals are independent random events., The
Poisson assumption implies that the probability of k arrivals inlan

arbitrary interval of time, t, is

e
o



Pr{k arrivals in interval t} = .

and the interarrival intervals have the exponential density function
. -\t
Pr{interarrival time = t} = \e .

In the more specific terms of I/0 requests arriving at a drum, the
Poisson assumption requires that the degree of multiprogramming* is
sufficiently large that the central processors generating requests to
the drum are never idle and that the times between the generation of I/0
requests can be modeled as independent, exponentially distributed
random variables. In general, central processor utilization is not near
unity; howevgr, several current computer systems have been reported to
enjoy this property [Sherman, Baskett, and Browne, 1971; Kimbleton and
Moore, 1971]. The Poisson arrival assumption is removed in Sec. 5, and
the more general case of drum performance in a computer system with
arbitrary central processor utilization is studied. 1In this section,
however, we will pursue the analysis of drum storage units with Poisson
arrivals because it is our hope that the relatively straightforward
results obtained will provide insight, at the most fundamental level, as
to how a processor with rotational latency performs. As we progress
through discussions of the various drum organizations, it will become
evident that a device with rotational latency possesses several subtle,
but significant, properties not encountered in more conventional
processors., In the analysis that follows it is necessary to describe

the starting addresses and the record lengths more completely than to

* The number of jobs, or processes, actively using the main memory

resources of the computer system.



merely note they are 'random variables' as was done in the introduction.
Figure 2.1 is of considerable help in this respect; it is a histogram of
the observed service time, i.e. latency plus transmission time, for I/0
requests to the drum storage units on the IBM 360/91 computer system at
the Stanford Linear Accelerator Center Qhere a FIFO discipline is used
to schedule the I/0 requests on the drums [Fuller, Price, and Wilhelm,
1971]. The shape of this histogram suggests the following model for I/O
requests: let the starting address of a record, Si’ be a random

variable with the uniform density function

O<t<rT (2.1)

Al

£4(t)

= O elsewhere;

and let the record lengths, with mean E, have the exponential density

function

-x/R
2

fo(x) = (1/R)e xz0, (2.2)

and if we let y = 1/(fﬁ), then p is the reciprocal of the mean trans-

mission time and
fT(t) = “'e > t = O .

If we assume the Si's are independent, then it follows immediately
that the rotational latency associated with a record, denoted Li’ has
the same uniform distribution as the starting addresses, i.e. Eq. (2.1).
Thetservice time is just the sum of the random variables Li and TRi, and

the density function of the service time is the convolution of fs(t) and

fT(t):

©

g(t) = SfT(t-w) fR(w) dw

-0
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1 - oMt ,0<t<T ;

- (1- Wy ekt

The relatively good fit of g(t) to the histogram when py = 3/7
indicates the appropriateness of this model of I/O requests and we will
use it in our analysis of file drums, h

The above assumptions concerning the arrival process and the
attributes of I/O requests completely specifies our model of a file drum
with a FIFO scheduling discipline. The model is in the form of the
classic M/G/1 model, i.e. Poisson arrivals (M), general service time
distribution (G), and one server (1), and we can use the Pollaczek-

Khinchine formula [cf. Cox and Smith, 1961; Saaty, 1961] to give us the

expected waiting time of an I/O request at the drum:

T o= (%+§)[1+§if§2]T (2.3)
where
E = A%+ R)T
—_ 02
c = 12 (coefficient of variation of service time)

(% + }_1)21'2

For exponentially distributed record lengths, o = 1/R in the above
equations and we can achieve some simplifications. In this case,
howéver, it is not necessary to make the exponential assumption; we need
onl? assume the record transfer times are independent, identically
distributed random variables with mean RT and variance 02.

The FIFO paging drum. The extension of the above result to a FIFO

paging drum is not as straightforward as might be expected. The problem

lies in accurately describing the drum when it is idle. In a FIFO file
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drum, the idle state is truly a Markov [memoryless) state. That is,
when the drum is idle, the distance from the read-write heads to the

starting address of the arriving I/0 request, D.,, can be accurately

i
modeled as a random variable with a uniform distribution, Eq. (2.1).

The duration of the idle period, or any other fact about the drum's
history, has no effect on the distribution of Di'

In contrast, the idle state of a FIFO paging drum does not enjoy a
similar Markovian property. The reason is readily evident: starting
addresses of I/0 requests always occur at sector boundaries and when a
paging drum becomes idle it does so at sector boundaries. Consequently,
the duration of the drum idle period has a significant effect on the
latency required to service the I/0 request arriving at the idle drum,

With the above comment serving as a cautionary note, let us proceed
with the analysis of a FIFO paging drum., As with the file drum, assume
the arrival of I/0 requests form a Poisson process with parameter A.
Moreover, suppose there are k sectors on the drum and I/0 requests
demand service from any one of the k sectors with equal probability. In
most paging drums records are required to be one sector in length and we
will assume this to be true in our analysis, and consequently‘i = 1/k.

With the above assumptions, the FIFO paging drum is an example of
an abstract model developed by C. E. Skinner [1967]. The significance
of Skinner's analysis is best appreciated by considering the approx-
imations others have made in their analysis of a FIFO paging drum
[Denning, 1967].

Skinner's model is depicted in Fig. 2.2. The processor services a
request in time A, where A is a random variable with arbitrary

distribution FA(t). After servicing a request, the processor becomes
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Figure 2.2, Skinner's model of a processor

with latency.
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latent for time B, where B is a random variable, possibly dependent on
A, with distribution FB(t). Let Z denote the sum of A and B, and Fz(t)
the distribution function of Z., After a service-latency cycle, the
processor inspects the queue to see if there are any outstanding
requests. If the queue is not empty, a new service period begins, If
the queue is empty, the processor begins a new latency period of time T,
where ' is a random variable, independent of A and B, with distribution
Fr(t).

The major departure of Skinner's model from the classic M/G/1 model,
i.e. the models described by the Pollaczek-Khinchine formula, is that it
no longer assEmes the idle state has the memoryless property. The only
points in time that enjoy the Markovian property in the Skinner model are
those instants at which the processor inspects the queue, The Laplace-
Stieltjes transform of the waiting time for Skinner's model is [ Skinner,
1967]:

w(s) - (1= AE)I(s) - 1)a(s)

AT 1 -2 - z(s)]

Consequently, the expected waiting time of a request at the server is:

W = limit {—E' (S)} = r_2 + )\_Z_g + -A- (2.)4-)
s 0 oT  2(1-\Z)

where 1'Hospital's rule must be used twice to find the limit as s — 0.
The interpretation of Skinner's model as a FIFO paging drum is
straightforward. From the assumptions that the starting addresses are
independent random variablesvthat are equally likely to have the value
of any of the k sector boundaries and all records are one sector long it

follows that
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(i-1 (i-1)7 it .
FA(t) = = ) » ) <ts<-— and i =1,2,...,k.
(k+1)T
FA(t) = 1 , t > =

The first two moments of A are

- k+1

A = K T

22 §k+1)§1;%) 2
3k

Since all the records are one sector long, the paging drum is in a
position to begin servicing a new request immediately after finishing
the previous one; this is reflected in Skinner's model by requiring B to
always be O, This leads to the simplifying result that Fé(t) = F,(t).

If the queue is empty after the paging drum finishes servicing a
request, it must remain latent for the time to traverse one sector

- before examining the queue again, Hence, for a paging drum [ is not a

random variable at all, it is always T/k, and

.
T = ¢

A%

¥ = ()P

Therefore, the mean waiting time for I/O requests at a FIFO paging

drum is 1

Vo= {(%+§)+§_§%:_§_) (2.5)
where

S = AG+e)T = MG+ R

The FIFO sectored file drum. Suppose the record lengths are

exponentially distributed rather than the constant size required by a

paging drum, but assume records are still constrained to begin at sector
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boundaries. This type of drum will be called a sectored file drum, and

the IBM 2305* is a good example of this type of drum organization. The
IBM 2305 has 128 sectors, its track capacity is roughly 3/4ths of the
track capacity of an IBM 2301, and from the histogram in Fig., 2.1 it is
clear most records will be considerably longer than a sector., Skinner's
model is adequate to describe the behavior of a sectored file drum using
the FIFO scheduling discipline. Let A be the sum of the latency plus
the transmission time, as in the case of a paging drum, and we see

immediately that

- — 1 1
A = (R+—2-—-é-E)T

Let B be the time required to get from the end of the record to the
next sector boundary, and let Rp denote the sum of the record length and

B, i.e, Rp is the record length rounded up to the nearest integer number

of sectors. The probability mass function of Rp is

Pr{Rp = -J%} = (ep'T/k bl 1)e-i|J,T/k’ i= 1,2,...

and
- —_
Rp k(l-e-“T/k)
—2 or2e HT/K
R =
Y

In order to find Z and Z2, it is more helpful to treat Z as the sum

of Rp and the latency interval rather than the sum of A and B. Hence

* As will be discussed later, a more efficient way to schedule a
position-sensing, sectored drum like the IBM 2305 is with a SLTF

scheduling discipline,
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= k-1 1
z = [ %t k(1-e_”T/k)]T
;é - Tz(k-l)(l-e_MT/k)2[(k_%)il_e'uT/k>+3] + 3e-pT/k[l_e-pT/k]

3k°(1-e HT/K)3

Now using Eq. (2.4) we see that the expected waiting time for 1/0

requests at a sectored file drum with FIFO scheduling is

Vo= (-%+_R)'r +LZ.2._ (2.6)
2(1-z)

Note that in the limit as k — ®, the above equation approaches the

Pollaczek-Khinchine formula for a FIFO file drum, Eq. (2.3).

3. Analysis of the SLTF Drum Scheduling Discipline

In this section we attempt to provide the same analysis for the
shortest-latency-time-first (SDTF) scheduling discipline that we
provided for the FIFO scheduling discipline in the last section. We
will continue to model the I/0 requests as a Poisson arrival process,
and both file and paging drum organizations are considered. In contrast
to FIFO scheduling, it is considerably simpler to analyze an SLTF paging
drum than a SLTF file drum, and in fact several articles exist that
analyze an SLTF paging drum with a Poisson arrival process [Coffman, 1969;
Skinner, 1967]. The difficulty defining an exact, tractable model of a
SLEF file drum leads here to the presentation of three alternate models
that vary in the approximations they make as well as the complexity of
their analysis and results.

The SLTF paging drum, For the analysis of an SLTF paging drum, let

us use the same notation that was developed for the FIFO paging drum, as

well as the same assumptions concerning the I/0 requests: all requests
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are for records of size 1/k and a request is equally likely to be
directed to any one of the k sectors., Referring back to Fig. 2.2, let
the queue shown be for the I/O requests of a single sector, rather than
the entire paging drum as in the case of the FIFO scheduling discipline.
It follows as an obvious consequence of the Poisson assumption that the
arrival process at an individual sector queue is also a Poisson process
with rate A/k. Let A = 17/k, the time to transmit a record, and let B =
(k-1)T/k, the time to return to the start of the sector after finishing
the service of a request. I is the time between inspections of the
sector queue after the queue is found to be empty, and hence I' is simply
the period of the drum revolution, T. Interpreting Fig. 2.2 as a sector

queue of a SLTF paging drum is a simple application of Skinner's model

since neither A, B, nor I' is a random variable. Note that

- T
A:E
E=T=T
ZE - T2 _ T2

Therefore, using Eq. (2.4), the expected waiting time for I/O requests

at a SLTF paging drum is:

W

A

p < 1. (3.1)

(G+g) * iy, ©

AT/k = A\RT

©
]

Define the utilization of a drum, denoted u to be the equilibrium, or

d,
long term, probability that the drum is transmitting information, From

basic conservation principles it follows that the utilization of a paging

drum is AT/k and hence u, =p.
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*
Coffman [1969] derives this same result from first principles and
those interested in a more complete discussion of SLTF paging drums are

encouraged to read Coffman's article.

The SLTF file drum. For the remainder of this section we turn our

attention to the SLTF file drum. This form of drum organization is
becoming more important to understand as drums that provide hardware
assistance to implement SLTF scheduling gain wider acceptance.

Let us use the same model of I/0 requests for the SLTF file drum
that was used for the FIFO file drum; in other words, the successive
arrival epochs form a Poisson process with parameter ); starting
addresses are independent random variables, uniformly distributed about
the drum's circumfeérence, Eq. (2.1); and the record lengths are
exponentially distributed, Eq. (2.2).

The most difficult aspect of an SLTF file drum to model is its
latency intervals., Since the initial position of the read-write heads
of the drum is not related (correlated) to the starting addresses of the
outstanding I/0 requests, Si’ it follows that the distance from the
read-write heads to Si’ denoted Di’ is uniformly distributed between
zero and a full drum revolution and hence

Pr{Di>t}=¥ 0O<t<T; 1<i<n,

Since the distances to the starting addresses from the read-write

heads are independent,

Pr{D1 > t and D2 >t and ... and Dn >t} = [(l;t)]n, O=st<r.
* Coffman's definition of W does not include the data transmission time,
and hence his expression for W is smaller than Eq. {3.1) by the

quantity T/Kk.



The SLTF scheduling discipline requires that the first record
processed is the one whose starting address is the first to encounter
the read-write heads; call the time until processing begins Ln' We can
now state the cumulative distribution function of Ln’ as well as its

density function, mean, and variance

Fn(t) = Pr{Ln <t} =1- [ilgﬁl]n , 0<t<T; (3.2)
n-1
f (t) = F'(t) = n(i-t) s 0<t<rT;
n n n
T
- T
Ln = el ’
2n n 1 2

) = - -

ng-r(Ln’ = {1 ntl | nFp Ir

(n+1)2

Although the above distribution of Ln is relatively simple,
significant simplification in the analysis will result by replacing Eq.
(3.2) with the exponential distribution

n+l)t/T
)

Gn(t) =1- e"( t=20., (3.3)

Let L) be the random variable with distribution Gn(t). Gn{t) has
several attractive properties as an approximation to Fn(t):

— — 'r
' - = —
Ln - Ln T n+l ’

and if we let Ch be the coefficient of variation for L; and Cn be the

coefficient of variation for Ln we have

n
' - (S —
C = 5 <1=2°0C

but

limit C' =1
n

n — o
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Consequently, Gn(t) becomes a better approximation to Fn(t) as the depth
of the queue at the drum increases. We cannot ignore the fact Gn(t) is

a rough approximation for small n, but note how quickly Ch approaches 1:

c; = .577
c, = .707
Cjp = -910

The above disgussion makes no mention of how well the higher order
moments (greater than 2) of Gn(t) approximate Fn(t). However, we feel
somewhat justified in ignoring these higher moments since both the
" Pollaczek-Khinchine formula, Eq. (2.2), and the Skinner formula, Eq.
(2.4) show that the expected waiting time (and queue size) is only a
function of the first two moments of the service time. Unfortunately
neither the Pollaczek-Khinchine or Skinner formulas directly apply here
since service time, in particular latency, is queue size dependent.
However, it appears likely that the first two moments of the service
time are also the dominant parameters in a SLTF file drum and comparison
of:models based on the exponential approximation to latency shown in
Seé. 4 behave very similarly to models not using the approximation.

Figure 3.1 is the model of a SLTF file drum based on the
assumptions discussed above. We have a Poisson arrival process with
parameter A, a single queue, and the server is made up of two exponential
servers in series, The second server, with servicing rate , models the
transmission of records and qeflects our assumption of exponentially

distributed record lengths.



Figure 3.1. Two-stage Markov model of the SLTF file drum.
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The first of the two servers has service time distribution Gn(t),
and hence service rate {n+l}/7, and models the latency incurred accessing
a record when there are n I/0 requests demanding service. This 'latency'
server is the result of our recent discussion and one further assumption:
we assume that the latency is purely a function of queue depth and not
related to the past performance of the drum. Although this is normally
a very good approximation, it is not entirely true. 1In Sec. 4 we will
explore why this is an approximation and show its relation to Feller's
waiting-time paradox [Feller, 1970].

Since both servers in our model have exponential service times and
the arrival process is Poisson, our model is a birth-and-death Markov
process. Let E0 Aﬁbe the state where n I/0 requests are queued or in

)

service and the latency server, server O, is active; define EO 0 as the
J

idle state. Similarly, let E be the state with n I/0 requests and

1,n

the transmission server, server 1, active., If Pi j(t) is the probability
B4

of being in state Ei j at time t, then the differential equations
pd

describing the SLTF file drum are

1 N o oo (

PO’O(t/ = -\ Po)o\t) + (8] Pl’]_(t))

v 2 ,

Palt) = -+ ) Pl’l(t) + = Po,l\t),

P (t) =-(n + 2y b (t) 4+ P (t) + u P (t)

O,n‘ "’ T O,n O,n-1 1,n+1 72
n=1,2,...;

Pl,n*t) = —{A+p) Pl,n(t) +\ Py —1\t) +— P, n(t),

In this article we are primarily interested in the steady state
solution, or more precisely, the solution at statistical equilibrium.

Consequently let P, 3= limit Pi j(t), and the above set of differential
4 t —» @ )



e5
equations reduce to the following set of recurrence relations (often
called balance equations):
Mg o = M Py g (3.4)
(Mu)py 4 == p " (3.5)
VATH 1,1 "1 "0,1° (3e2J
n+1
— = = ooy . \
(h + T pO,n pr,n—l TH p1,n+1 ? n = 1,2, ’ (3.6)
()P, = A ¢ 222 n = 2,3 (3.7
VIR 0 T APy n T Po,ner TSI K

The most direct solution of the above set of balance equations lies

in working with their associated generating functions:

P,(z)

]

1t
o]
N

P (2)
C<ngeo

Equation (3.6), using Eq. (3.4) as an initial condition yields
v/ { - —ﬂ
z PO‘Z) + {1 + AT = AT2) Po(z) == Pl(z) + Po,0 (3.8)
Similarly, Egs. (3.5) and (3.7) yield
T(h+ X - 2z) P (2) =2 Pé(z) + Po(z) - Po,0 * (3.9)

Pl(z) can be eliminated from the above set of simultaneous equations

and we get a linear, first-order differential equation in Po(z):

] l - )\Tp 14 — }_ !
Pi(z) + (7 = AT + pz_l) P(z) =~ Po,0 {3.10)
where p = A/u. Using
2 ATP 3 . \
Sk; AT + EE:T)dz =1n z - ATz + AT 1n(pz-1) + C

as an integrating factor, we find the following explicit form for Po(z)
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P eXTz
P (z) = 220 S A2y 02 Tdz + C (3.11)
0 x

z(1-pz)

where C is the constant of integration. We can eliminate C by replacing
the indefinite integral by the correct definite integral. Clearly
limit P (z) = pO 0? and thus C vanishes if the indefinite integral is

z -0
replaced by a definite integral with limits from O to z:

eXsz z
B (2) = ——22 S AT (1-pw M
z(1-pz) 0

A more useful generating function for the subsequent analysis than

Po(z) is

Q{z) = :i (p +p ) = P, (z) + P, (z)
0 <SS <cw O,n 1,n

. From Egs. (3.8) and (3.9) it follows that

P (2) = £2 Py(2)
and hence
Q(z) = P (z)
eXsz z
a(z) = —— x M (1-pw) T aw (3.12)
z{1-pz)

-0
It is impossible to integrate, in closed form, the integral in the
above equations. However it is in the form of the well-known, and

extensively tabulated, incomplete gamma function [Abramowitz and Stegun,

19647 :

X

-y o1
vla,x] = S eV ¥y ay
0
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Restating Eq. (3.12) in terms of the incomplete gamma function gives

e(hzmr)Ty VIANTHL, —pr] —y[ATHL, (hzep)T]

[0z - w)r] ™

Q(Z) =K 0,0

Az

It is now possible to find an explicit expression for Py o2 the
2
equilibrium probability that the drum is idle, since it is clear that

limit Q(z) = 1. Hence, from Eq. (3.12)
z -1
1 -1
Py o = e—XT(l_p)XT+1 S e_xTw(l—pw)Xwa (3.13)
,0
0

Equation (3.12) can be used to find the mean queue length, 1:

p(AT+1) + p0,0
1-p

L = 1limit Q'(z) = AT-1 +
z - 1

Using Little's formula, L = AW [cf. Jewell, 1967], we can state the
expected waiting time of I/0 requests at an SLTF file drum for this two-
stage Markov model:

1 -1
AT

= T+1 1 AT (1-w) .
W= T&:‘fﬁ—' * T S [e 1_p(1-pW>] dw (-1 (3.14)

o)

Figure 3.2 displays the expected waiting time, W, as a function of both
A and p for this two-stage model of the SLTF file drum.

The expression for W is not given in terms of the incomplete gamma
function since numerical integration of the integral in Eq. (3.1&) is
routine,

In the analysis of the two-stage model of an SLTF file drum just
discussed, a concerted attempt was made to closely approximate the
behavior of the drum. It is interesting, even if for comparative purposes

only, to briefly discuss a simplification of the two-stage model. The
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most obvious simplification is to replace the two series-coupled servers
in Fig. 3.1 by a single exponential server with the same mean service
rate. Let Ky denote the mean service rate of the single server when

there are n I/0 requests in the queue, then

It follows in a straightforward manner that the balance equations

for the one-stage model, analogous to Egs. (3.4)-(3.7), are

A po = “1 pl ’ (3'15;’

{* \ ;:;‘ P ( \"
A+ dp = AP L+ n=1,2,... (3.16)

n+1 Pn+1 2

The above set of recurrence relations can be solved directly with

forward substitution and yield:

p —l p
1 Hy 0
P = xg p
- b
2 HyHo 0)
and in general
_ p ut + n + 1 . . \
Php = ut + 1 < n+ 1 Po > nz0; (3.17)

where = -,
p m

The sequence {pn} must sum to unity, i.e.
n
o (HT + n + 1> p. =1
0 <F < w pT+l n+ 1 0)

and hence

|

b1 1 z (p.'l‘+n+1)pn
0 puT+1 0 «h< n+ 1

With the aid of the binomial theorem the above relation reduces to
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p (ur+1) (1-p )T

T+1
1 - (1-p)¥

P, (3.18)

Using Egs. (3.17) and (3.18) we see that for this simple model of a SLTF
file drum we are able to get explicit expressions for the probability of
being in any state En' However, only'W ;ill be used in comparing this
single-stage model to the two-stage model and W is most easily

determined from the generating function for the model.

i
g
C
=}
N
=3

P(z)

O=n<e®®

n
EE p uT +n + 1 2B
puT+1 n+ 1 Po

0 €£n«gow

Applying the binomial theorem as before, and using the expression for P,
in Eq. (3.17),

(1-p)PTH [ 1- (1-p2) M
2(1-pz)H I 1- (1-p)HT M7

(3.19)

The expected waiting time for I/O requests at the single-stage model of

a SLTF file drum is

W = 1limit P'(z) = 1 p(pT+1) — - 1) - (3.20)
z-1 (1-p)(1-(1-p)*""7)

For our third model of the SLTF file drum we turn to an article by
Abaﬁe and Dubner [1969]. Although the majority of their paper is
con?erned with a particular variant of the SLTF scheduling discipline
implemented by Burroughs [1970], their approach can be applied to the

*
SLTF file drum discussed here.

* Abate and Dubner do in fact briefly discuss the model of a SLTF file
drum presented here, and Eq. (3.22) is their Eq. (1k4), with

appropriate changes in notation,

et



Abate and Dubner's analysis, when applied to a file drum with pur
SLTF scheduling, is surprisingly simple. They divide the waiting time

into three, independent terms:
W = D+R+T(K-1). (3.2

D is the distance from the read-write heads to the start of the I/0

request at the instant of the request's arrival. Consistent with our

31
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1)

previous discussions, D is a random variable uniformly distributed from

zero to a full drum revolution; hence D = 1/2. R is the length of the

record that must be read or written to the drum; Abate and Dubner make

no assumptions concerning the distribution of D; they only use the mean

of the recofd length, R. With the same conservation argument followin
Eq. {(3.1), Abate and Dubner also note the drum utilization is just A/u
or p, and that on the average, the drum is free to begin servicing a
record at its starting address with probability (1 - p), which is the
equilibrium probability the drum is not busy transmitting a record.
Furthermore, they assume successive attempts to read a record can be
modeled as independent, Bernoulli trials with probability of success
(1 - p). The random variable K in Eq. (3.21) is the number of trials
required until the record is serviced, and hence K is geometrically
distributed with probability mass function:

k-1
PriK = k} = (1 - p)p ’ k =1,2,...

and mean

Therefore, the expected waiting time for I/0 requests at Abate an

Dubner's model of an SLTF file drum is:

g

b

d

g
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= ey p
T {§+R+1_p}'r. (3.22)

This concludes the development of models for the SLTF file drum,.
Unlike the FIFO file drum, the FIFO paging drum, and the SLTF paging
drum, we do not have a model that is exact; in each of the three models
of the SLTF file drum, assumptions are made that do not exactly reflect

the actual behavior of a SLTF file drum.

4. Verification of SLTF file drum models

We have presented three different models of the SLTF file drum:
the one-stage Markov model; the 2-stage Markov model, and Abate and
Dubner's model, In order to resolve the relative merits of these models
we will compare each of them to the results of a simulation model of the
.SLTF file drum. The simulation uses all of our original assumptions,
i.e. (1) Poisson arrival process, (2) exponential distribution of record
lengths and (3) starting addressing uniformly distributed around the
surface of the drum.
The precision of the summary statistics of the simulation model is
described in detail in [Fuller, 1972B]. All the points on the graphs in
“this article represent the result of simuiation experiments that are run
until 100,000 I/0 requests have been serviced; this number of simulated
eveﬁts proved sufficient for the purposes of this article. The sample
means of the I/O waiting times, for example, are random variables with
standard deviations less than ,002 for p = .1 and slightly more than .1
for p = .75.
A plot of the results from the models of the SLTF file drum are

shown in Fig. 4.1 for an expected record size of 1/3 of the drum's



W, (drum revolutions)

4.0

3.0

2.0

SIMULATION

ONE-STAGE MARKOV MODEL:

DUBNER'S MODEL

STAGE MARKOV MODEL

0.2

Figure k.1,

0.4

P

The expected waiting time of the four models of the

SLTF file drum for R = 1/3.

0.6

0.8

€e



34

circumference. Specifically, W, the mean waiting time for I/0 requests
at the SLTF file drum are shown as a function of drum utilization, p.
Figure 4.2 is a similar plot except the expected records size is 1/8 of
the drum's circumference. We use 1/3 because this is close to the
measured value of record sizes discussed“in Sec. 2 and 1/8 because Abate
and Dubner thought their model should be a good approximation for
R < 1/4. For R = 1/3 and p < .45 the results are encouraging: the two-
stage model tracks the simulated waiting time very closely, but is a
slight overestimate; the one-stage model follows the simulation fairly
closely but is more of an overestimate than the two-stage model; and
Abate and Dubner's model is an underestimate, but they warned their
model might not apﬁiy very accurately for R > 1/4. When we estimated
the latency intervals by the exponential distribution with mean of
~7/(n+l), we slightly overestimated the coefficient of variation. It has
been shown in other queueing models that the mean waiting time is
positively related to the mean service time as well as the coefficient
of variation of the service time. Therefore, it is not surprising that
the two-stage model is an overestimate of the results found by simulation.
Lumping the latency and transmission servers into one server in the one-
stage model further over-approximates the coefficient of variation of
service time, even though the mean is still exact, and hence the one-
stége model is a larger overestimate of the waiting time than the two-
stage model.

Examination of Fig. 4.2 for small p, i.e. R = 1/8 and p < .45,
shows several significant features of the SLTF file drum models. Most
striking is the degradation of the one and two-stage models. The reason,

however, is quite simple; since the record lengths are not uniformly
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distributed over some integer number of drum revolutions, the finishing
address of an I/0 request is not independent of its starting address.
In particular, as the expected record length goes to zero, the average
wait time for an I/0 request approaches 7/2, regardless of the arrival
rate of I/0 requests.

Figure 4.2 illustrates an interesting phenomenon with respect to
the Abate and Dubner model: no change, to within the accuracy of the
simulation model, is detectable between the difference in the simulation
model and Abate and Dubner's model for R = 1/3 and R = 1/8. Counter to
original intuition [Abate and Dubner, 1969], no improvement in the Abate
and Dubner model is detected as R becomes smaller. If instead of
comparing the curves for R = 1/3 and R = 1/8 at points of equal p, as is
suggested by Figs. 4.1 and 4.2, we compare them at points of equal A,

~then as R is reduced, we do see a significant improvement in the Abate
and Dubner model,

The most outstanding feature of Figs. 4.1 and 4.2 is when p becomes
large, i.e. p > 0.45: the one and two-stage models, as well as Abate
and Dubner's model, are underestimates of the expected waiting time
found by the simulation model, and the underestimates become increasingly

‘pronounced as p — @, The following illustration gives an intuitive
explanation for this phenomena. Suppose we have n outstanding I/O
requests. From the arguments that lead to Eq. (3.3) we know the expected
distance from the read-write heads to the first starting address is
1/(n+1). However, the reasoning can be applied to distances opposite to
the drum's rotation and again the distance from the read-write heads to
the closest starting address behind the read-write heads is 1/(n+l).

Hence the expected size of the interval between the starting addresses,
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punctuated by the read-write heads, is 2/(n+1). If we consider the n
1/0 requests by themselves, however, since the starting addresses are
independent random variables, from symmetry it follows that the expected
distance between adjacent startingﬁaddresses is 1/n. Therefore we see
that when we randomly position the read-write head on the drum, we are
most likely to fall into a larger than average interval between

starting addresses. In other words, those starting addresses that end
large intervals are most likely to be chosen first by an SLTF schedule
and as the SLTF schedule processes I/0 requests, the remaining starting
addresses exhibit an increasing degree of clustering, or correlation., A

more complete discussion of this phenomenon, and related topics, are

discussed by Feller [1970] under the general heading of waiting-time

paradoxes,

Let us consider in more detail why the two-stage model under-
estimates the wait time. Let S(l)’ S(E)’ and S(3> denote the starting
addresses in order of increasing distance from the read-write head,
denoted H, and let F(l) be the finishing address of the record beginning
with S(l). Let F(l) be a random variable uniformly distributed around
the circumference of the drum, and for this example suppose it is
independent of S(1>. Suppose initially there are n I/O requests, the
S(i)'s, H, and F(l)'s make up n+2 random variables, and they can form the

following three basic configurations with respect to H:

H F(l) s(l) s<2) cee s(n) (4.1a)

H s(l) cen s(n) F(l) (4.1p)

H s(l) ces s(j) F(l) s(j+1) . s(n) ; 1 <j<n-1 (h.1c)
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We know that the density function of the distance between any two
adjacent random variables is (n+2)(1—x)n+1, 0 £ x < 1, and has a mean of
1/{(n+2). Moreover, an obvious extension of the above expression leads
to the following distribution functions for the difference between any

two random variables separated by k-1 otﬁér points on the drum [Feller,'

19707 :

(n+2)(2fi) F 1™ E, osx<1.

with mean k/(n+2).

Referring to the n+2 situations in (4.1) we can see that

Pr(L_=t) = (n+1)(1-t)", Ost<rT
and .

Ln = 'r/n+1

‘and this is precisely what we found‘fn to be by a much simpler argument

in Sec. 3. However, now consider I%_ in the same example. In (L4.la)

1
and (4.1b) the latency is the distance from F(l) to S(2) and in the n-1
\

cases of (4.lc) the latency is the distance from F(l) to S(j+1)' Hence
- 1 2 1 3 n-1 1
Lic1 = ™1 R S v~ Ry R
. _ n+h > 1
n+2) (n+l) n °

" The above inequality illustrates that latency is dependent on the
pasé history of the drum; and that unlike the SLTF and FIFO paging drums,
as well as the FIFO file drum, the SLTF file drum does not experience a
Markov epoch upon completion of an I/0 request. The only instances in
which the drum's future performance truly uncouples from the past
behavior is when the drum is idle. This fact makes the precise analysis
of a SLTF file drum, even with the simple arrival process described here,

very difficult,
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In concluding this section we might pause to consider the relative
errors introduced by the approximations used to make a tractable model
of the SLTF file drum. In the best analytic model, the two-stage Markov
model, we made three assumptions, all with regard to latency, that are
not entirely correct: (1) we approximated Eq. /3.2) by the exponential
distribution Eq. 3.3), (2) we assumed the position of the read-write
heads at the end of a record transmission is independent of its position
at the start of transmission, and (3) we assumed that latency is a
function only of the current queue length and not influenced by previous
queue sizes. The first two approximations are dominant for pd < .4 but

the error introduced by these approximations is slight for large ﬁ, and

as R becomes small, the second assumption causes large overestimations
of numbers. However, for larger p, the third approximation, related to
Feller's waiting time paradox, dominates and the error it introduces
becomes severe as p - 1. Consequently, attempts to make a significant
practical improvement over the two-stage model should not dwell on
removing the exponential approximation to the latency interval, but

rather on the second and third approximations.

5. An Empirical Model of the SLTF File Drum

In this section we develop a simple, empirical expression for the
expected waiting time of the SLTF file drum. Such an empirical
expression has a limited utility, but in conjunction with the other
models available for the SLTF file drum it can be a useful tool.

The expressions for the expected waiting time for the FIFO file
drum, the FIFO paging drum, the SLTF paging drum, and Abate and Dubner's

model of the SLTF file drum all have the basic hyperbolic form:
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Vo= {3+R+ b({—p)}w (5.1)

and consequently this form is a likely candidate for a model of the SLTF
file drum. All that must be empirically determined is the coefficient b,
and whether or not an expression of the form of Eq. (5.1) is adequate to

describe the SLTF file drum. Figure 5.1 is a plot of
w- (3+R)J1-p) (5.2)

for all four models of the SLTF file drum for R = 1/3. Curves that are
of the form of Eq. (5.1) will appear as straight lines in Fig. 5.1.

Note Abate and Dubner's model appears as a straight line with a slope of
one, and both of the Markov models approach finite, nonzero value as

p — 1, indicating they are also fundamentally hyperbolic in form. The
simulation points, however, do not appear to approach a finite value as
p — 1, and hence Eq. (5.1) does not capture all the significant behavior
of the SLTF file drum., In order to model the part of the SLTF waiting
time that is growing faster than p/(1l-p), we will add another term to

Eq. (5.1) to get:

¥ o= (3+T+ b+ (=) . (5.3)

1-p 1-p
From Fig. 5.1 we see that for small p, the simulation curve appears to
have a slope of about one, and hence if Eq. (5.2) is an adequate model

of the SLTF file drum, the expression

= (1-p)%
(W - (3 + %) - g5 (5.4)

should appear as a straight line when plotted as a function of p.
Figure 5.2 shows Eq. {5.4) as a function of p. Clearly the simulation
results are not growing as fast as Eq. (5.3) suggests and it over-

estimates the rate of growth of W as p — 1.
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Another expression for W that may lead to an adequate empirical

model is

W o= {#+R+ T% + c(1—83)3/2}7 . (5.5)

In Fig. 5.2 we have plotted

-, = (1-p)3/2 o
V- (3+0) - 2250 4 pﬁ)e (5.6)

and show that to a first approximation it has a slope of .368. This is
an approximate model, but until we have more understanding of the SLTF
file drum, and have some idea of the form of the expected waiting time,
it is pointless to add refinements to Eq. (5.5). Therefore, our

empirical model is

- — 2

o= {3+ R+ L+ .368(2)Y F (5.7)
1-p 1-p

and Fig. 5.3 shows the expected waiting time of the empirical and

simulation models for R = 1/3. The closeness of the empirical model to

the simulation results makes them almost indistinguishable in the figure.

Eq. (5.7) is also a very good model for R = 1/8.

6. Cyclic queue models of central processor-drum computer systems

The previous models of drum storage units have all considered the
performance of a drum as an isolated system by means of the Poisson
;ssumption. That is, requests arrive at the drum from some undefined
source such that the interarrival times follow an exponential
distribution. In this section we extend the previous models by removing
the Poisson assumption and consider a simple case of the type of

environment that generates requests to be processed by the drum.

Cyclic queue models with a FIFO file drum can be treated by Gaver's [1967]
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analysis, and for a SLTF and FIFO paging drum, an exact analysis has not
been found., The models of this section are cyclic queue models with two
processors. One of the processors is a model of an SLTF file drum and
the other processor represents a central processing unit (CPU). A

fixed number of customers (jobs) alternate between waiting for and
receiving service at the CPU and waiting for and receiving service at
the drum. Thus the completions of one processor form the arrivals at
the other processor. The structure of actual computer systems is
typically more complex than this simple cyclic model. Such a model does
allow us to consider the feedback effects of drum scheduling disciplines
and to evalugﬁe the accuracy of the models and their appropriateness for
use in more complex feedback queueing models of computer systems, Closed
queueing models of the type considered by Jackson [1963] and Gordon and
Newell [1967] can be analyzed when the service rate of a processor is a
function of the queue length at that processor and the service time is
exponentially distributed. The one-stage model of an SLTF file drum is
an important example of this type of processor,

The two-stage cyclic model., Figure 6.1 shows a cyclic queue model

incorporating the two-stage Markov model of an SLTF file drum of the
previous sections and a single CPU. The CPU server processes requests
from its queue and its completions are routed to the drum queue.
Completions at the drum are routed to the CPU queue, There are a fixed
number, m, of customers in this cycle. This number, m, is called the

degree of multiprogramming. The CPU processing times are exponentially

distributed with parameter A, The drum is composed of two stages, the
first representing latency time, exponentially distributed with rate

{n+1)/7 where n is the size of the drum queue and T is the period of
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revolution of the drum. The second stage represents transmission time,
exponentially distributed with rate pu.

We can easily write down the balance equations describing the
equilibrium distribution of queue sizes for this model. Let pO,n be the
steady state probability of having n I/O requests in the drum queue and
having some request in the first stage, i.e., the drum is latent. When
the drum reaches the first starting address of some customer in the
queue, it begins data transmission by passing to the second stage.
Denote the steady state probability of transmission with n requests at
the drum by pl,n' For convenience let p0,0 denote an idle drum and let

p1 0 be identically zero. The balance equations are then:
s g

APy o = BPp 3

4
_ n+1) <
(+u)ey AL Pon * My s LSm<m
n+1
) = {
(X+_?_)p0,n = HP1nt1 * kpo,n—l ’ lsn<m (6.1)
_M + A
“pl,m TooT pO,m p1,m—1
m+1
( T )pO m XPO m-1 °

These equations can be transformed to the following form

Pin = Po(Po,n-1 * P1jne1) l=ns=m

1l

(
pn~p0,n-1 M pl,n) ?
pO,m = Pn pO,m—-l

where Po = A/u and Py = AT/(n+l). Remembering that p = 0, we have

1,0

om+l equations in 2m+2 variables. We get the final (nonhomogeneous)

equation by recalling that all the variables must sum to unity in order



to represent a discrete probability distribution. Now note that if a

value for p0,0 were known, the values of all the other variables could
be computed directly from Eqs. (6.2). Note also that p0,0 is a factor
of all the other variables; that is, if p0,0 were incorrect by a factor
of o, all the other values computed from‘Eqs. (6.2) would be incorrect
by a factor of . Thus to find the correct value for p0,0 assume some
arbitrary, nonzero value for Po, 2 Say one, and use Eqs. (6.2) to
compute the sum of all the variables. The reciprocal of the resulting
sum is the factor by which the initial value of p0,0 was incorrect.
Thus if we assumed an initial value of one, the correct value would be
the reciprocal of the sum., Now we can either correct the computed values
of the other variagies or recompute them using the correct value of p0,0'
The expected waiting time at the two-stage drum, W, (the queueing

. time plus the service time) will be

m

W o= zi n(po’n + pl,n> .

n=0

The utilization of the CPU will be

u =1-(

+ .
c pO,m pl,m)

The one-stage cyclic model. Figure 6.2 shows a cyclic queue model

using the one-stage Markov model of an SLTF file drum. There is one
exﬁonential server for the drum, the service rate of which is queue size
dependent. Let “n be the service rate when n customers are in the drum
queue. Since we want the mean service time to be 7/(n+l) + 1/u, where

1/p is the mean transmission time, we see that

_ {(ntl)y
Hp = n+14+pT

A
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The balance equations for this model are

These are equations for a simple queue with arrival and service rates

dependent on queue size [cf. Cox and Smith, p. 43] so the solution is

n
P = (_H pi) P 1<n<n
i=1
T
: -1
Py = {2 1 pj}
- i=0 j=0

where p = X/pn.

Comparison of the models, Figure 6.3 shows the expected waiting

time, W, for a drum service request versus the ratio of drum transmission
time and computing time, A/u, when the expected record size is one-third
of a drum revolution for three models and four different degrees of
multiprogramming, m = 2, 4, 8, 16. The model results depicted by the
square plotting symbol are from a modification of the simulation model
discussed in the earlier sections. The drum server captures the true
latency of an SLTF drum. A CPU server and a fixed number of customers

. have been substituted for the Poisson source. The model results
depicted by the smooth curves are from the two-stage model. The one-
stage model results are indicated by the curves with the plotting @
symbol, Both of the analytic models are very close to the simulation
model except for large degrees of multiprogramming {(m > 8), but the two-

stage model gives slightly better results than the one-stage model.
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Figure 6.4 shows the CPU utilization for all of the cases shown in
Fig. 6.3. The results from the analytic models seem even better for
this normalized measure of system performance.

Figure 6.5 shows the expected waiting time for the three models and
four degrees of multiprogramming vers;s the ratio of transmission and
computing when the expected record length is one-eighth of a drum
revolution. The problems with the approximations of the analytic models
are becoming more apparent in this figure. The analytic models over-
estimate the expected waiting time except for large values of A/u and
large degrees of multiprogramming. Again, in Fig. 6.6, the CPU

utilization for the same cases as Fig. 6.5, the models still give very

good results.

Cc‘>mparison of Figs. 6.3 and 6.5 with Figs. 4.1 and 4.2 show that
the expected waiting time for the cyclic models follows the expected
waiting time for the Poisson source models until the CPU utilization
falls away from 100%. Then the expected waiting times flatten out and
approach the asymptote determined by having all m customers in the drum
queue at all times. Comparison of Fig. 6.4 and Fig. 6.6 show that for a
given ratio of transmission and computing, large records are to be
preferred over short records. For a given quantity of work less latency
will be incurred if records are large since fewer records will be
;transmitted. However, it is expected that the penalty associated with
short records will be less severe in an SLTF system than in a FIFO
system since the total incurred latency is reduced by SLTF scheduling.

The degree of agreement among the curves for the different models
encourages us to use the analytic models of SLTF file drums in more

complex models of computer systems at least until a more exact treatment
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of SLTF scheduling can be developed. Even if an exact analysis were

available, that analysis might not be compatible with the analysis used
to treat a larger model in which an exact model was imbedded. Thus, for
example, the one-stage model may be useful for some time because it fits

naturally into queueing network models of computer systems.

T Conclusions

We have analyzed two types of drum-like storage organizations, file
drums and paging drums, and two types of scheduling, first-in-first-out
and shortest-latency~time~first. For the FIFO file drum with Poisson
arrivals we ;bserved that the Pollaczek-Khinchine formula gives exact
results for the expected waiting time of a request to the drum., For a
FIFO paging drum, a FIFO sectored file drum, and an SLTF paging drum,
all with Poisson arrivals, different interpretations of Skinner's model
yield exact expressions for the expected waiting times. For the SLTF
file drum with Poisson arrivals, two new approximate models are
developed and an earlier approximate model is discussed and all analytic
results are compared with results from a simulation model. The weak
points of the approximate models are identified and the reasons for
the errors are discussed. Table 7.l shows the expressions for W, the
expected waiting time of I/0 requests for the four drums discussed in
this paper. Note that all the expressions are hyperbolic in form, with
vertical asymptotes at € on p, except for the SLTF file drum. In Sec. 5
we showed the expected waiting time for I/0 requests at the SLTF file
drum grows faster than hyperbolically as p — 1, Figure 7.1 graphically

illustrates the relative performance of the different drum organizations

and scheduling disciplines. (The two-stage Markov model is used for the
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Table 7.1. Expressions for the Expected Waiting Times of I/0

Requests at a drum with Poisson arrivals,

scheduling drum
discipline organization W
FIFO file E+R)[1+ 2 1+c?
o(1-g) |7
1
PO PRCCh- 2
FIFO in + R + T
peging 3
two-stage Markov model
B 1 AT -1
“I+1’r . 7\% X l:e)"r(l'w)(l-pw)]dw 1
SLTF file 0
empirical model
T P p_\3/2
{#+R+ it .368(—1_p) I
B P
SLTF paging £+ R+ i

p =)\—R’I'; g:l(%-l-_R)T =-—2-+p.
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SLTF file drum).

The one-stage and two-stage Markov models are incorporated into a
cyclic queueing model and these results are compared with simulation
results., The comparisons indicate the suitability of these models of
SLTF file drums for use in more complex dueueing network models of
computer systems. A reasonably accurate model of an'SLTF paging drum
that could be easily incorporated into larger queueing network models

would be a valuable addition to this work.
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