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AN ANALYSIS OF DRUM STORAGE UNITS

ABSTRACT

| This article discusses the modeling and analysis of drum-1like

storage units. Two common forms of drum organizations and two common

scheduling disciplines are considered: the file drum and the paging

drum; first-in-first-out (FIFO) scheduling and shortest-latency-time-

first (SLTF) scheduling.

The modeling of the I/0 requests to the drum is an important aspect

g | of this analysis. Measurements are presented to indicate that it is

_ realistic to model requests for records, or blocks of information to a

file drum, as requests that have starting addresses uniformly distributed

around the circumference of the drum and transfer times that are

exponentially distributed with a mean of 1/2 to 1/3 of a drum

. . revolution, The arrival of I/0 requests is first assumed to be a Poisson

process and then generalized to the case of a computer system with a

| finite degree of multiprogramming.

| An exact analysis of all the models except the SLTF file drum is

) presented; in this case the complexity of the drum organization has

forced us to accept an approximate analysis. In order to examine the

error introduced into the analysis of the SLTF file drum by our

> approximations, the results of the analytic models are compared to a

| simulation model of the SLTF file drum.
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1. Introduction

Gains in the performance of computer systems are not solely

i related to the power of the central processor. In particular, the I/0

structure of computer systems has been an increasing cause of concern

because of its relatively poor performance and high cost with respect to

the central processor, This article focuses attention on one major form |

of I/O processor, the drum-like storage unit. Examples of drum-1like

stores include fixed-head disks, acoustic delay lines, and large semi-

conductor shift registers, as well as storage units that actually contain

physically rotating drums as shown in Fig. 1.1.

The purpose of this paper is to investigate the consequences of

using a device such as a drum that must operate under the constraints of

rotational delays. In the models of drum storage units that follow,

every attempt has been made to keep the models as simple and free from

) obscuring details as possible while carefully describing those aspects

of the drum relating to rotational delays. No attempt is made here to

relate the capacity of the drum to the performance of the computer

system. We are focusing on the response and service times of the drum

and their effect on the utilization of the computer system. Furthermore,

- no attempt is made to differentiate read requests from write requests on

: . the drum; when a request is made to 'process' an I/0 request, only a

) starting address and length will be given. This assumption accurately

models most drums currently in operation and should provide a base from

which to analyze drum scheduling algorithms that exploit the opportunity

to write a record in the most convenient empty space on the drum rather

than into a fixed location,
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(b) A storage unit organized as a paging drum.

Figure 1.1, Two common drum organizations: the file

drum and the paging drum. i
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This article deals with two drum organizations that encompass the

. majority of drum~like stores that are in use or that have been proposed:

the file drum and the paging drum, A drawing of a file drum is shown in

| Fig. 1.1(a). The drum rotates at a constant angular velocity, with
period T, and the read-write heads are fixed. Blocks of information,

often called records, or files, are read or written onto the surface of

| the drum as the appropriate portion of the drum passes under the read-

| write heads. Once a decision has been made to process a particular

record, the time spent waiting for the record to come under the read-

write heads is called rotational latency or just latency. With a drum

storage unit organized as a file drum we do not constrain the records to

be of any particular length nor do we impose restrictions on the starting

position of records. Let the random variable Ss denote the starting

- position of record i and the random variable R, denote the length of

] record i. For convenience, let our unit of length be the circumference

of the drum and hence Ss and R, are in the half open interval [0,1).

A drum storage unit organized as a paging drum is shown in Fig. 1.1(b);

the drum rotates at a constant angular velocity, as in the case of a file

] } drum, with period T and the records are recorded on the drum's surface in

tracks. Unlike a file drum, however, a paging drum partitions all of its

. tracks into equal sized intervals called sectors. The records are

| - required to start on a sector boundary and the record lengths are

- commonly constrained to be one sector long, As we will see in the

course of our analysis, this organization allows improvements in

performance not possible with a drum organized as a file drum. |
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In the analysis of both of the drum organizations just described

two scheduling algorithms are considered: FIFO and SLTF. First-in-

first-out (FIFO), scheduling is a simple scheduling policy that merely

services the I/0 requests in the order in which they arrive at the drum.

FIFO scheduling is sometimes called first-come-first-serve (FCFS)

scheduling, for obvious reasons, Shortest-latency-time-first (SLTF), is

a scheduling discipline well suited for storage units with rotational

latency. At all times, an SLTF policy will schedule the record that

comes under the read-write heads first as the next record to be trans-

mitted. For example, in Fig. 1.1(a), assuming the drum is not trans-

mitting record 2, an SLTF policy will schedule record 5 as the next

record to be processed. An SLTF algorithm never preempts the

| processing of a record once transmission of the record has begun, SLTF

| scheduling is often called shortest-access-time-first (SATF) scheduling.

The word 'access', however, is an ambiguous term with respect to storage

units (it is used both to denote the time until data transfer begins as

well as the time until data transfer is complete) and to avoid possible

confusion we will use the SLTF mnemonic. While SLTF is not the optimal

policy to use in all situations, some remarks can be made about its

" near-optimality { Fuller, 1972A], and it enjoys the important practical

feature that it is straightforward to implement in the hardware of the

drum controller [ IBM, 1971; Burroughs, 1970]. Another drum scheduling

algorithm, although not considered any further in the article, that may

be of practical value is shortest-processing-time-first (SPTF), i.e.

service the record whose sum of latency and transmission time is the

smallest. Variants of SPTF scheduling include policies which do, or do |

not, allow preemptions of a request once transmission has begun. Other
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scheduling algorithms have been developed that are superior to SLTF

- under assumptions more restrictive than those considered here [ Fuller, 1971]

Figure 1.2 applies to both paging and file drums. It defines the

basic time intervals and events associated with servicing an I/0 request

on a drum. The four events involved in this processing of an I/0

request are: (1) arrival of the I/O request at the drum, (2) decision

| by the scheduler that the I/O request is the next to be serviced, (3)

| the start of the record comes under the read-write heads and transmission

begins, and finally (4) transmission of the record is completed. If the

I/0 request finds the drum idle upon arrival, events (1) and (2) occur

at the same instant. The interval of time between events (2) and (3) is

the rotational latency of the I/0 request.

A drum using a SLTF scheduling algorithm may push a request back

” | onto the queue between events (2) and (3) if a new request arrives that

) can begin transmission before the currently selected event. Neither

SLTF nor FIFO scheduling algorithms allow a request to be preempted

after event (3).

The waiting time, or response time, of an I/0 request will be

- i denoted by the random variable W and includes the time from event (1),

the arrival of the request, until (4), the completion of the request.

| This definition of wait time was chosen, rather than from events (1) to
(2) or (1) to (3), since the interval from events (1) to (4) directly

i measures the time a process must wait before receiving a response to an

I/0 request.

| The utilization of the drum, call it uy» is the long term fraction

- of time the drum is transmitting information. Note that only the

fraction of time a drum actually transmits information is included, i.e.
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Figure 1.2. Intervals and events associated with |

servicing an I/0 request.
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between events (3) and (4), and intervals of rotational latency is not

- included in our definition of uy.

A wide variety of drum performance measures have been used, For

instance, some popular measures are: expected waiting time of an I/O

request as a function of queue length, or arrival rate, or traffic

intensity; cpu and drum idle times as a function of arrival rate or

| traffic intensity; throughput as a function of drum speed, etc.

| Obviously, some measures of performance convey more information than

others and many measures convey the same information but with varying

degrees of clarity.

One measure that is used widely in the evaluation of computer

systems is the utilization of the central processor, call it u,. u, is

a measure that is easily monitored in practice and has the advantage

” | that it bears a strong correlation with our intuitive concept of

"throughput".

In those cases where the utilization of the drum and central

processor cannot be used, in particular when the drum is analyzed

independently of the other processors in the computer system, the

. expected waiting time of the I/O requests appears to be an appropriate

measure of performance. The expected waiting time has a more direct

interpretation than the two other common measures of processor

performance, the expected queue size or the length of the busy periods.

] In this article we will present an analysis of each of the four

major drum organizations: the FIFO file drum, the FIFO paging drum, the

| SLTF file drum, and the SLTF paging drum. All the organizations except

- the SITF file drum can be precisely modeled if we assume I/O requests to

the drum form a Poisson arrival process, and in these cases we will



present expressions for the expected waiting time of 1/0 requests at

the storage units. In the case of the SLTF file drum several models

are presented and compared with a simulation model of an SLTF file drum |

to evaluate their utility and the validity of their approximations, )

Finally, we remove the assumption of Poisson arrivals and explore the

performance of a model of a computer system consisting of a central

processor and an SLTF file drum,

2. Analysis of the FIFO Drum Scheduling Discipline

~ This section discusses the first-in-first-out (FIFO) scheduling

discipline applied to drum storage units. Expressions are developed for

the expected waiting time for I/0 requests to file drums, paging drums,

and a variation of the paging drum, the sectored file drum,

| The FIFO file drum. First, let us consider the case of a storage

unit organized as a file drum with FIFO scheduling. This is the simplest

drum organization analyzed in this article, but it is worthwhile to

consider explicitly each of the assumptions required to construct a

tractable model even in this simple case.

_ The simplest arrival process to handle mathematically, and the one

we will initially use to model the arrival of I/0 requests to the drum

is the Poisson process. This arrival process has been widely studied

[cf. Cox and Smith, 1961; Feller, 1968], and the fundamental properties

of a Poisson arrival process are: any two time intervals of equal length |

experience an arrival(s) with equal probability, and the number of

arrivals during disjoint intervals are independent random events. The

Poisson assumption implies that the probability of k arrivals in an

arbitrary interval of time, t, is |
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Pr{k arrivals in interval t} = Gr)”
and the interarrival intervals have the exponential density function

Pr{interarrival time = t} = reME,

In the more specific terms of I/0 requests arriving at a drum, the

Poisson assumption requires that the degree of multiprogramming is

| sufficiently large that the central processors generating requests to

| the drum are never idle and that the times between the generation of I/0

requests can be modeled as independent, exponentially distributed

random variables. In general, central processor utilization is not near

unity; however, several current computer systems have been reported to

enjoy this property [Sherman, Baskett, and Browne, 1971; Kimbleton and

Moore, 1971]. The Poisson arrival assumption is removed in Sec. 5, and

i | the more general case of drum performance in a computer system with

arbitrary central processor utilization is studied. In this section,

however, we will pursue the analysis of drum storage units with Poisson

arrivals because it is our hope that the relatively straightforward

results obtained will provide insight, at the most fundamental level, as

; _ to how a processor with rotational latency performs. As we progress

through discussions of the various drum organizations, it will become

| ~ evident that a device with rotational latency possesses several subtle,
but significant, properties not encountered in more conventional

] processors. In the analysis that follows it is necessary to describe

the starting addresses and the record lengths more completely than to

- * The number of jobs, or processes, actively using the main memory

resources of the computer system.
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merely note they are 'random variables' as was done in the introduction.

Figure 2.1 is of considerable help in this respect; it is a histogram of

the observed service time, i.e. latency plus transmission time, for I/0

requests to the drum storage units on the IBM 360/91 computer system at

the Stanford Linear Accelerator Center where a FIFO discipline is used

to schedule the I/0 requests on the drums [Fuller, Price, and Wilhelm,

1971]. The shape of this histogram suggests the following model for I/O

tl requests: let the starting address of a record, S; be a random
| variable with the uniform density function

f(t) = 2 0<t<rT (2.1)S T

= 0 elsewhere;

and let the record lengths, with meanR, have the exponential density
|

function

t,x) = WBE, x20, (2.2)

and if we let py = 1/ (TR), then py is the reciprocal of the mean trans- |

mission time and

f(t) = we HE tz 0.

. If we assume the S;'s are independent, then it follows immediately

that the rotational latency associated with a record, denoted L., has

the same uniform distribution as the starting addresses, i.e. Eq. (2.1).

The service time is just the sum of the random variables L, and TR, , and
the density function of the service time is the convolution of f(t) and

f(t):
co

g(t) = |ex(e-0 fo (w) dw
—®@ :
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Figure 2,1, Histogram of latency plus transfer times for a FIFO file drum,
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= 1 - e Mt , Ot <1 ;

= (1 - eH) e HL t-T] , tzT.

The relatively good fit of g(t) to the histogram when py = 3/7

indicates the appropriateness of this model of I/0 requests and we will

use it in our analysis of file drums,

The above assumptions concerning the arrival process and the

attributes of I/0 requests completely specifies our model of a file drum

: with a FIFO scheduling discipline. The model is in the form of the

classic M/G/1 model, i.e, Poisson arrivals (M), general service time

distribution (G), and one server (1), and we can use the Pollaczek-

Khinchine formula [cf. Cox and Smith, 1961; Saaty, 1961] to give us the

expected waiting time of an I/0 request at the drum:

| W = CR JE nl (2.3) |
where

E = M%+ R)T

IA |
c . 12 (coefficient of variation of service time)

(3 + BR)

- For exponentially distributed record lengths, co = 1/R in the above

equations and we can achieve some simplifications. In this case,

however, it is not necessary to make the exponential assumption; we need

only assume the record transfer times are independent, identically
distributed random variables with meanRT and variance a°.

The FIFO paging drum. The extension of the above result to a FIFO

paging drum is not as straightforward as might be expected. The problem

lies in accurately describing the drum when it is idle, In a FIFO file
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drum, the idle state is truly a Markov (memoryless) state. That is,

’ when the drum is idle, the distance from the read-write heads to the

starting address of the arriving I/0 request, D,, can be accurately

modeled as a random variable with a.uniform distribution, Eq. (2.1).

The duration of the idle period, or any other fact about the drum's

history, has no effect on the distribution of D; .

: In contrast, the idle state of a FIFO paging drum does not enjoy a

similar Markovian property. The reason is readily evident: starting

addresses of I/0 requests always occur at sector boundaries and when a

paging drum becomes idle it does so at sector boundaries. Consequently,

the duration of the drum idle period has a significant effect on the

latency required to service the 1/0 request arriving at the idle drum.

With the above comment serving as a cautionary note, let us proceed

) | with the analysis of a FIFO paging drum, As with the file drum, assume

} the arrival of I/0 requests form a Poisson process with parameter A.

Moreover, suppose there are k sectors on the drum and I/O requests

demand service from any one of the k sectors with equal probability. In

most paging drums records are required to be one sector in length and we

- . will assume this to be true in our analysis, and consequently R = 1/k.

With the above assumptions, the FIFO paging drum is an example of

~ an abstract model developed by C. E. Skinner [1967]. The significance

| of Skinner's analysis is best appreciated by considering the approx-

| imations others have made in their analysis of a FIFO paging drum

[ Denning, 1967].

Skinner's model is depicted in Fig. 2.2. The processor services a

) request in time A, where A is a random variable with arbitrary

distribution F,(t). After servicing a request, the processor becomes
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Figure 2.2, Skinner's model of a processor

with latency. |



latent for time B, where B is a random variable, possibly dependent on

. A, with distribution F(t). Let Z denote the sum of A and B, and F(t)
the distribution function of Z, After a service-latency cycle, the

processor inspects the queue to see if there are any outstanding

requests. If the queue is not empty, a new service period begins. If

the queue is empty, the processor begins a new latency period of time T,

| where I' is a random variable, independent of A and B, with distribution

| F(t).
The major departure of Skinner's model from the classic M/G/1 model,

i.e. the models described by the Pollaczek-Khinchine formula, is that it

no longer assumes the idle state has the memoryless property. The only

points in time that enjoy the Markovian property in the Skinner model are

those instants at which the processor inspects the queue, The Laplace-

- | Stieltjes transform of the waiting time for Skinner's model is [ Skinner,

1967] :

wis) = (1 ND)(L(s) - 1)A(s)

Consequently, the expected waiting time of a request at the server is:

W = limit {-w' (s)] _ 1? is a + A (2.4)
$= 0 oT 2(1-\Z)

| where 1l'Hospital's rule must be used twice to find the limit as s — O,

] The interpretation of Skinner's model as a FIFO paging drum is

straightforward. From the assumptions that the starting addresses are

independent random variables that are equally likely to have the value

of any of the k sector boundaries and all records are one sector long it

follows that
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F (t) = 1 , ¢ > (kH1)T
A k

The first two moments of A are

— k+1 .
A = —-5 7

2 (k+1)(k+g) _2
A = 5 T .

3k

3 Since all the records are one sector long, the paging drum is in a

position to begin servicing a new request immediately after finishing

the previous one; this is reflected in Skinner's model by requiring B to

always be O. This leads to the simplifying result that F,(t) = F,(t).

If the queue is empty after the paging drum finishes servicing a

request, it must remain latent for the time to traverse one sector

~ before examining the queue again, Hence, for a paging drum [' is not a

random variable at all, it is always T/k, and

= T

P= x

2 T\2
I" = (3)

Therefore, the mean waiting time for I/O requests at a FIFO paging

"drum is

- 1 1 £(1 + 5)
| wo= (G+) + se (2.5)

where

1 1 1 =

E = Mz +o)T = Mz+ R)T

The FIFO sectored file drum, Suppose the record lengths are

exponentially distributed rather than the constant size required by a

paging drum, but assume records are still constrained to begin at sector



eT

boundaries. This type of drum will be called a sectored file drum, and |

. the IBM 2305" is a good example of this type of drum organization, The

IBM 2305 has 128 sectors, its track capacity is roughly 3/4ths of the

track capacity of an IBM 2301, and from the histogram in Fig. 2.1 it is

clear most records will be considerably longer than a sector, Skinner's

model is adequate to describe the behavior of a sectored file drum using

| the FIFO scheduling discipline. Let A be the sum of the latency plus

| the transmission time, as in the case of a paging drum, and we see
immediately that

A = (R+ : - So)

Let B be the time required to get from the end of the record to the

next sector boundary, and let R, denote the sum of the record length and

B, i.e. R, is the record length rounded up to the nearest integer number

of sectors. The probability mass function of Bp is

Pr{R - 1 = (eMT/K - 1)e” IHT/k i=1,2,...

and

_ T

Bp = k(1-e HTK)

] p Kk (1-e HT/K)2

) In order to findZ and 7°, it is more helpful to treat Z as the sum

- of R, and the latency interval rather than the sum of A and B. Hence

* As will be discussed later, a more efficient way to schedule a

position-sensing, sectored drum like the IBM 2305 is with a SLTF

scheduling discipline,
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— k-1 1

z = Log+TI
2 ro (ke1) (1-H) (ko3) (1TH HF )e3] + 3THMoe THK]

| 3k (1-6 HT/K)3

Now using Eq. (2.4)we see that theexpected waiting time for I/O

requests at a sectored file drum with FIFO scheduling is

W = & + R)T + rz (2.6)
: 2(1-2)

Note that in the limit as k— «©, the above equation approaches the

Pollaczek-Khinchine formula for a FIFO file drum, Eq. (2.3).

3. Analysis of the SLTF Drum Scheduling Discipline

In this section we attempt to provide the same analysis for the

- shortest-latency-time-first (SLTF) scheduling discipline that we |

provided for the FIFO scheduling discipline in the last section, We

will continue to model the I/O requests as a Poisson arrival process,

and both file and paging drum organizations are considered. In contrast

to FIFO scheduling, it is considerably simpler to analyze‘an SLTF paging

drum than a SLTF file drum, and in fact several articles exist that

analyze an SLTF paging drum with a Poisson arrival process [ Coffman, 1969;

Skinner, 1967]. The difficulty defining an exact, tractable model of a

SLTF file drum leads here to the presentationof three alternate models

that vary in the approximations they make as well as the complexity of

their analysis and results.

The SLTF paging drum. For the analysis of an SLTF paging drum, let

us use the same notation that was developed for the FIFO paging drum, as

well as the same assumptions concerning the I/0 requests: all requests



19 :

are for records of size 1/k and a request is equally likely to be

. directed to any one of the k sectors, Referring back to Fig. 2.2, let

. the queue shown be for the I/O requests of a single sector, rather than

the entire paging drum as in the case of the FIFO scheduling discipline.

It follows as an obvious consequence of the Poisson assumption that the

arrival process at an individual sector queue is also a Poisson process

with rate A/k. Let A = T/k, the time to transmit a record, and let B =

(k-1)T/k, the time to return to the start of the sector after finishing

the service of a request. I is the time between inspections of the

sector queue after the queue is found to be empty, and hence I is simply

the period of the drum revolution, T. Interpreting Fig. 2.2 as a sector

queue of a SLTF paging drum is a simple application of Skinner's model

since neither A, B, nor I is a random variable. Note that

A = x

. Z = T = T

7° = re = _

Therefore, using Eq. (2.4), the expected waiting time for I/O requests

g - at a SLTF paging drum is:

- 1 1 P
_ w = —_ Ft + < . he| {G+ 3) 115)" ’ O=p <1 (3.1)

: Pp = AT/k = ART

Define the utilization of a drum, denoted u,, to be the equilibrium, or

long term, probability that the drum is transmitting information, From

basic conservation principles it follows that the utilization of a paging

} drum is A7/k and hence u, =p.
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Coffman [1969] derives this same result from first principles. and |

those interested in a more complete discussion of SLTF paging drums are

encouraged to read Coffman's article.

The SLTF file drum. For the remainder of this section we turn our

| attention to the SLTF file drum. This form of drum organization is

becoming more important to understand as drums that provide hardware

assistance to implement SLTF scheduling gain wider acceptance.

: Let us use the same model of I/0 requests for the SLTF file drum

that was used for the FIFO file drum; in other words, the successive

arrival epochs form a Poisson process with parameter )\; starting |

addresses are independent random variables, uniformly distributed about

the drum's circumference, Eq. (2.1); and the record lengths are

exponentially distributed, Eq. (2.2).

| The most difficult aspect of an SLTF file drum to model is its

latency intervals. Since the initial position of the read-write heads

of the drum is not related (correlated) to the starting addresses of the

outstanding I/0 requests, S;» it follows that the distance from the

read-write heads to Ss denoted Ds» is uniformly distributed between

zero and a full drum revolution and hence

Pr{D, >t} = =r O<t<T; 1<1i<n,

- Since the distances to the starting addresses from the read-write

heads are independent, | |

Pr{D > t and D, >t and ... and D, > t} = (Athyn, Ost <r.

* Coffman's definition ofW does not include the data transmission time,

and hence his expression forW is smaller than Eq. (3.1) by the

quantity T/k. .
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The SLTF scheduling discipline requires that the first record

- processed is the one whose starting address is the first to encounter

the read-write heads; call the time until processing begins L - We can

now state the cumulative distribution function of L as well as its

density function, mean, and variance

1-t )-n

F(t) = Pr{L_ <t} =1- (Ath , 0 <t<T; (3.2)
: n-1

' n(l-tf(t) = F(t) = ) , 0 <t<T;
n n n

T

-— T

Ly =~ n+l’

2n n 1 2
) = A ——— ie-=var(L ) {1 n+1 H n+2 537

(n+1)

Although the above distribution of L is relatively simple,

significant simplification in the analysis will result by replacing Eq.

(3.2) with the exponential distribution

~(n+1

G (t) =1-e (n JE/T t=0, (3.3)

Let L be the random variable with distribution G (t). G (t) has

several attractive properties as an approximation to F(t):

: — -— T
- 1 — -—— EE

1 BN 1, ~ n+l’

and if we let Cc be the coefficient of variation for L and C, be the

: coefficient of variation for L we have

vo LB ~
Cn - n+2 <1= Ch

but

limit C' = 1
n

- n — ©
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Consequently, G_(t) becomes a better approximation to F(t) as the depth |

of the queue at the drum increases. We cannot ignore the fact G (t) is

a rough approximation for small n, but note how quickly C, approaches 1:

C, = OTT }

C5 = 707

| Clg = +910

The above discussion makes no mention of how well the higher order

moments (greater than 2) of G (t) approximate F(t). However, we feel

somewhat justified in ignoring these higher moments since both the

 Pollaczek-Khinchine formula, Eq. (2.2), and the Skinner formula, Eq.

(2.4) show that the expected waiting time (and queue size) is only a |

function of the first two moments of the service time. Unfortunately

neither the Pollaczek-Khinchine or Skinner formulas directly apply here

since service time, in particular latency, is queue size dependent.

. However, it appears likely that the first two moments of the service

time are also the dominant parameters in a SLTF file drum and comparison

of models based on the exponential approximation to latency shown in

Sec. 4 behave very similarly to models not using the approximation.

Figure 3.1 is the model of a SLTF file drum based on the

assumptions discussed above. We have a Poisson arrival process with

parameter A, a single queue, and the server is made up of two exponential

servers in series, The second server, with servicing rate yu, models the

transmission of records and reflects our assumption of exponentially

distributed record lengths.
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: Figure 3.1. Two-stage Markov model of the SLTF file drum,



The first of the two servers has service time distribution G (t),

and hence service rate (n+l}/T, and models the latency incurred accessing

a record when there are n I/0 requests demanding service. This 'latency' .

server 1s the result of our recent discussion and one further assumption:

we assume that the latency is purely a function of queue depth and not

related to the past performance of the drum. Although this is normally

a very good approximation, it is not entirely true. In Sec. 4 we will

explore why this is an approximation and show its relation to Feller's

waiting-time paradox [Feller, 1970].

Since both servers in our model have exponential service times and

the arrival process is Poisson, our model is a birth-and-death Markov

process. Let Ey n P® the state where n I/0 requests are queued or in

service and the latency server, server O, is active; define 0,0 as the

~ idle state. Similarly, let Ey n be the state with n I/0 requests and

the transmission server, server 1, active, If Pi, jot) is the probability

of being in state Ei); at time t, then the differential equations

describing the SLTF file drum are |

Py, ot) = =A Po, ott) + Py, 1(t);

Pl L(t) =-(A + pu) P(t) +2 P(t),
: 1,1 1,1 T 0,1

Py, nlt) = -(A + 22) Po, nt) + A Po, n-1(t) + wu Py neath
n =1,2,...;

| Plat) = -0oh) Bp(8) +A Py(6) + BEB (1),
n ==2,3,...

In this article we are primarily interested in the steady state

solution, or more precisely, the solution at statistical equilibrium.

Consequently let Pi; = Limit Pi 5th and the above set of differential



equations reduce to the following set of recurrence relations (often

. called balance equations):

(Nu )p _ Zp (3.5)1,1 1 “0,17 or

n+1
TT — _— = ce oy . )+=) Pon =Any FHP pgs Bm LE (3.6)

A+u)p. = Ap as n= 2,3 (3.7)VATH l,n =~ l,n-1 T Po, n+1 ? Ed Noel

The most direct solution of the above set of balance equations lies

in working with their associated generating functions:

> \ n

0 0 <5 < w O,n

“ -— \| n; P.(z) = > Pin zC<n<e

Equation (3.6), using Eq. (3.4) as an initial condition yields

z Plz, 1 + AT = AT2) P,(z) - P.(z) + Po, 0 (3.8)

Similarly, Eqs. (3.5) and (3.7) yield

: - ) : - _ rt / { -

Th + A = Az) P (2) = z p)(z) + Py(z) P50 (3.9)

: P (z) can be eliminated from the above set of simultaneous equations

: . and we get a linear, first-order differential equation in P(z):

- + (= =~ + — = — £3.P\(z) (5 AT 2-1) P.{z) p Po,0 3 10)
where p = A/u. Using

1 ATP |

\& - AT + So-1/92 = 1ln z = ATz + AT*1In(pz-1; + C
as an integrating factor, we find the following explicit form for P (2)
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P {(z) 90 e MZ (1-52) Taz + C (3.11)
o* A

z(1-pz)

where C is the constant of integration, We can eliminate C by replacing

the indefinite integral by the correct definite integral. Clearly

limit P,(2) = Py 5» 8nd thus C vanishes if the indefinite integral is
z = 0 ?

replaced by a definite integral with limits from O to z:

WAL z

: P,(2) = 222 \ e AY (1 ow) Tawz{1l-pz) 0

A more useful generating function for the subsequent analysis than

P, (2) is

| ; / n
Ql{z) = > (p + p Jz =P. (z) + P (z) .

0 <5 < O,n l,n 0 1°

~ From Eqs. (3.8) and (3.9) it follows that

- PZ py
P. (2) - l1-pz P (2) . :

and hence

, 1

Q(z) = 152 P.(z)

| RAL z
Qlz) = ———gs | eV (1-pw) Maw (3.12)

- It is impossible to integrate, in closed form, the integral in the

above equations. However it is in the form of the well-known, and

extensively tabulated, incomplete gamma function [Abramowitz and Stegun,

1964]:

| .X

~ -1

vla,x] = \ ey 7 dy
0
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Restating Eq. (3.12) in terms of the incomplete gamma function gives

wey yrel, pr] —yIATHL, (Az-p)T]
Q(z) = 0,0 ’ a

AZ \ ATH]
[Az = p)T]

It is now possible to find an explicit expression for Py 0’ the
2

equilibrium probability that the drum is idle, since it is clear that

limit Q(z) = 1. Hence, from Eq. (3.12)
| z = 1
' 1 ~-1

=AT AT+1 -ATW AT

Pog =¢ (1-p) \ e " "(1-pw)" dw (3.13)2

0

Equation (3.12) can be used to find the mean queue length,L:

_ p(AT+l) + Po go
L = limit Q'(z) = AT-1 + ——m2

1-p
z — 1

Using Little's formula,L = AW [cf. Jewell, 1967], we can state the

expected waiting time of I/O requests at an SLTF file drum for this two-

. stage Markov model:

1 AT -1

Ww = ar Pa \ 201g) | a -1 (3.14)p=A)T AT 1-50 P

) _ Figure 3.2 displays the expected waiting time, W, as a function of both

A and p for this two-stage model of the SLTF file drum,

~The expression forW is not given in terms of the incomplete gamma

function since numerical integration of the integral in Eq. (3.14) is

) routine,

In the analysis of the two-stage model of an SLTF file drum just

discussed, a concerted attempt was made to closely approximate the

. behavior of the drum. It is interesting, even if for comparative purposes

only, to briefly discuss a simplification of the two-stage model. The
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Figure 3.2. Ww, the expected waiting time, of the two-stage Markov

model of the SLTF file drum.
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most obvious simplification is to replace the two series-coupled servers

- in Fig. 3.1 by a single exponential server with the same mean service

rate. Let Ho denote the mean service rate of the single server when

there are n 1/0 requests in the queue, then

1 T 1 T+ n+ 1 |
— =  eeem—— = .

by n+1 Li ne + 1)

It follows in a straightforward manner that the balance equations

for the one-stage model, analogous to Eqs. (3.4)-(3.7), are

3 ,
A Py = Hg Py os (3.15,

7 \ oo _ a(A+ wpJp =Ap +p Po n=1,2,... (3.16)

The above set of recurrence relations can be solved directly with

forward substitution and yield: |

I |
1 Hy

| p = A p= To J

2 Hq Ho 0

and in general

0" nT + n + 1— — . \Ph = ut + 1 n + 1 ) Pg > n=O; (3.17,
where p _2 .

IL

| The sequence ip _} must sum to unity, i.e. |
- n

> 0 G + n + ) p= 10 <5 < uT+l n +1 0

and hence

ol 1 > (init)0 uT+1l 0 <I < n+ 1

With the aid of the binomial theorem the above relation reduces to
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. T+1

_ opluT+1)(1-p)H 2.18Py = T+1 (3.18)
1 - (1-p)¥

Using Eqs. (3.17) and (3.18) we see that for this simple model of a SLTF

file drum we are able to get explicit expressions for the probability of

being in any state E . However, only W will be used in comparing this

single-stage model to the two-stage model andW is most easily

determined from the generating function for the model.

P(z) = > P z"n

O<£ ne

n

_ > Pp (+ + n + ') D 80 «F< uT+1 n+ 1 O

Applying the binomial theorem as before, and using the expression for Pp

in Eq. (3.17),

T+1 T+1
(1-p)*" [1-(1-pz)HTT
z(1-pz)" [1-(1-p)" 7]

The expected waiting time for I/0 requests at the single-stage model of

a SLTF file drum is

— 1

W o= limit P'(z) = 5 p (pr+1) — - 1). (3.20)
} z = 1 (1-p)(1-(1-p)*' 77)

For our third model of the SLTF file drum we turn to an article by

Abate and Dubner [1969]. Although the majority of their paper is

concerned with a particular variant of the SLTF scheduling discipline

implemented by Burroughs 11970], their approach can be applied to the
*

| SLTF file drum discussed here,

* Abate and Dubner do in fact briefly discuss the model of a SLTF file

drum presented here, and Eq. (3.22) is their Eq. (14), with

appropriate changes in notation.



Abate and Dubner's analysis, when applied to a file drum with pure

SLTF scheduling, is surprisingly simple. They divide the waiting time

- into three, independent terms: |

W = D+ R+T(K=-1), 3.21) |

D is the distance from the read-write heads to the start of the 1/0

| request at the instant of the request’s arrival. Consistent with our

| previous discussions, D is a random variable uniformly distributed from

zero to a full drum revolution; henceD = 1/2. R is the length of the

record that must be read or written to the drum; Abate and Dubner make

no assumptions concerning the distribution of D; they only use the mean

of the record length, R. With the same conservation argument following

Eq. (3.1), Abate and Dubner also note the drum utilization is just AJ,

- or p, and that on the average, the drum is free to begin servicing a

record at its starting address with probability (1 - p), which is the

equilibrium probability the drum is not busy transmitting a record.

Furthermore, they assume successive attempts to read a record can be

modeled as independent, Bernoulli trials with probability of success

] (1 - p). The random variable K in Eq. (3.21) is the number of trials

required until the record is serviced, and hence K is geometrically

| distributed with probability mass function:

| Pr{kK = k} = (1 - 0)! , k = 1,2,...

and mean

K= +s.

- Therefore, the expected waiting time for I/0 requests at Abate and

Dubner's model of an SLTF file drum is:

:
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Wo= (# +R + ir : (3.22)

This concludes the development of models for the SLTF file drum,

Unlike the FIFO file drum, the FIFO paging drum, and the SLTF paging

drum, we do not have a model that is exact; in each of the three models

of the SLTF file drum, assumptions are made that do not exactly reflect

the actual behavior of a SLTF file drum,

| i, Verification of SLTF file drum models

We have presented three different models of the SITF file drum:

the one-stage Markov model; the Z2-stage Markov model, and Abate and

Dubner's model, Inorder to resolve the relative merits of these models

we will compare each of them to the results of a simulation model of the

SLTF file drum. The simulation uses all of our original assumptions,

i.e. (1) Poisson arrival process, (2) exponential distribution of record

lengths and (3) starting addressing uniformly distributed around the

surface of the drum.

The precision of the summary statistics of the simulation model is

described in detail in [ Fuller, 1972B]. All the points on the graphs in

“this article represent the result of simulation experiments that are run

until 100,000 I/0 requests have been serviced; this number of simulated

events proved sufficient for the purposes of this article. The sample
means of the I/0 waiting times, for example, are random variables with

standard deviations less than ,002 for p = .1 and slightly more than .1

for p = .75.

A plot of the results from the models of the SLTF file drum are

shown in Fig. 4.1 for an expected record size of 1/3 of the drum's
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Figure 4.1, The expected waiting time of the four models of the w

SLTF file drum for R = 1/3.
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circumference. Specifically, W, the mean waiting time for I/0 requests

at the SLTF file drum are shown as a function of drum utilization, p.

Figure 4.2 is a similar plot except the expected records size is 1/8 of

the drum's circumference. We use 1/3 because this is close to the

measured value of record sizes discussed in Sec. 2 and 1/8 because Abate

and Dubner thought their model should be a good approximation for

R < 1/4. ForR = 1/3 and p < .45 the results are encouraging: the two-

stage model tracks the simulated waiting time very closely, but is a

slight overestimate; the one-stage model follows the simulation fairly

closely but is more of an overestimate than the two-stage model; and

Abate and Dubner's model is an underestimate, but they warned their

model might not apply very accurately forR > 1/4. When we estimated

the latency intervals by the exponential distribution with mean of

~7/(n+tl), we slightly overestimated the coefficient of variation. It has

been shown in other queueing models that the mean waiting time is

positively related to the mean service time as well as the coefficient |

of variation of the service time, Therefore, it is not surprising that

the two-stage model is an overestimate of the results found by simulation,

Lumping the latency and transmission servers into one server in the one-

stage model further over-approximates the coefficient of variation of

service time, even though the mean is still exact, and hence the one-

stage model is a larger overestimate of the waiting time than the two-

stage model. | .

Examination of Fig. 4.2 for small p, i.e. R = 1/8 and p < .45,

shows several significant features of the SLTF file drum models. Most

striking is the degradation of the one and two-stage models. The reason,

however, is quite simple; since the record lengths are not uniformly
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distributed over some integer number of drum revolutions, the finishing

address of an I/0 request is not independent of its starting address.

In particular, as the expected record length goes to zero, the average |

wait time for an I/0 request approaches 7/2, regardless of the arrival |

rate of I/0 requests. )

Figure 4.2 illustrates an interesting phenomenon with respect to

the Abate and Dubner model: no change, to within the accuracy of the

: simulation model, is detectable between the difference in the simulation

model and Abate and Dubner's model forR = 1/3 and R = 1/8. Counter to

original intuition [Abate and Dubner, 1969], no improvement in the Abate

and Dubner model is detected as ® becomes smaller, If instead of

comparing the curves forR = 1/3 andR = 1/8 at points of equal Pp, as 1is

suggested by Figs. 4,1 and h.2, we compare them at points of equal A,

“then asR is reduced, we do see a significant improvement in the Abate

and Dubner model,

The most outstanding feature of Figs. 4.1 and 4.2 is when p becomes

large, i.e. p > 0.45: the one and two-stage models, as well as Abate

and Dubner's model, are underestimates of the expected waiting time

found by the simulation model, and the underestimates become increasingly

"pronounced as p —» «©, The following illustration gives an intuitive

explanation for this phenomena, Suppose we have n outstanding I/0 |

requests, From the arguments that lead to Eq. (3.3) we know the expected

distance from the read-write heads to the first starting addressis

1/(n+l), However, the reasoning can be applied to distances opposite to

the drum's rotation and again the distance from the read-write heads to

the closest starting address behind the read-write heads is 1/(n+l).

Hence the expected size of the interval between the starting addresses,



punctuated by the read-write heads, is 2/(n+l). If we consider the n

1/0 requests by themselves, however, since the starting addresses are

independent random variables, from symmetry it follows that the expected

distance between adjacent starting addresses is 1/n. Therefore we see

that when we randomly position the read-write head on the drum, we are

most likely to fall into a larger than average interval between

starting addresses. In other words, those starting addresses that end

| large intervals are most likely to be chosen first by an SLTF schedule

and as the SLTF schedule processes I/0 requests, the remaining starting

addresses exhibit an increasing degree of clustering, or correlation, A

more complete discussion of this phenomenon, and related topics, are

discussed by Feller [1970] under the general heading of waiting-time
paradoxes,

- Let us consider in more detail why the two-stage model under-

estimates the wait time. Let S(1)7 S(2) and 5(3) denote the starting
addresses in order of increasing distance from the read-write head,

denoted H, and let Foy be the finishing address of the record beginning

with S(1)° Let Fr1) be a random variable uniformly distributed around
) the circumference of the drum, and for this example suppose it is

independent of Si1)- Suppose initially there are n I/O requests, the

| S18) H, and Friy's make up n+2 random variables, and they can form the
~ following three basic configurations with respect to H:

H Fy) Sq) Sia) ++ Sip (4.1a)

H Sp) «oe Sin) Fry) (4.1b)

H S01) “ee S05) Fry) S(541) oo Sn) ; 1 <j <n-1 (h.1c)

:
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We know that the density function of the distance between any two

adjacent random variables is (n+2) (1-x)" 1, 0 < x <1, and has a mean of

1/(n+2). Moreover, an obvious extension of the above expression leads

to the following distribution functions for the difference between any

two random variables separated by k-1 other points on the drum [Feller,

1970]:

(ne2)( 17) (1x) 7K , 0<x<1.

| with mean k/(n+2).
Referring to the n+2 situations in (4.1) we can see that

| Pr(L_=t) = (n+1)(1-t)" , O0=<t<n7
and ~

L = T/n+l

‘and this is precisely what we found L_ to be by a much simpler argument

in Sec. 3. However, now consider L 4 in the same example. In (L,la)

and (4.1b) the latency is the distance from Fi1) to So) and in the n-1

cases of (L4.lc) the latency is the distance from Fro) to S541)" Hence

- _ nL. > 1

~ The above inequality illustrates that latency is dependent on the

past history of the drum; and that unlike the SLTF and FIFO paging drums,

as well as the FIFO file drum, the SLTF file drum does not experience a

Markov epoch upon completion of an I/0 request. The only instances in

which the drum's future performance truly uncouples from the past

behavior is when the drum is idle. This fact makes the precise analysis

of a SLTF file drum, even with the simple arrival process described here,

very difficult.
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In concluding this section we might pause to consider the relative

) errors introduced by the approximations used to make a tractable model

of the SLTF file drum. In the best analytic model, the two-stage Markov

model, we made three assumptions, all with regard to latency, that are

not entirely correct: (1) we approximated Eq. (3.2) by the exponential

distribution Eq. 3.3), (2) we assumed the position of the read-write

heads at the end of a record transmission is independent of its position

at the start of transmission, and (3) we assumed that latency is a

function only of the current queue length and not influenced by previous

queue sizes. The first two approximations are dominant for Pa < .4 but

the error introduced by these approximations is slight for large R, and

as R becomes small, the second assumption causes large overestimations

of numbers. However, for larger Pp, the third approximation, related to

- Feller's waiting time paradox, dominates and the error it introduces

becomes severe as p - 1, Consequently, attempts to make a significant

practical improvement over the two-stage model should not dwell on

removing the exponential approximation to the latency interval, but

rather on the second and third approximations.

Se An Empirical Model of the SLTF File Drum

; | In this section we develop a simple, empirical expression for the

| expected waiting time of the SLTF file drum. Such an empirical |
| expression has a limited utility, but in conjunction with the other

models available for the SLTF file drum it can be a useful tool.

The expressions for the expected waiting time for the FIFO file

drum, the FIFO paging drum, the SLTF paging drum, and Abate and Dubner's

. model of the SLTF file drum all have the basic hyperbolic form:



Ww = {%+R+ b(35)} (5.1)
and consequently this form is a likely candidate for a model of the SLTF

file drum. All that must be empirically determined is the coefficient b,

and whether or not an expression of the form of Eq. (5.1) is adequate to

| describe the SLTF file drum. Figure 5.1 is a plot of |

(Ww- (+ R)I1-p) (5.2)

po for all four models of the SLTF file drum forR = 1/3. Curves that are

of the form of Eq. (5.1) will appear as straight lines in Fig. 5.1.

Note Abate and Dubner's model appears as a straight line with a slope of

one, and both of the Markov models approach finite, nonzero value as

p —» 1, indicating they are also fundamentally hyperbolic in form. The

simulation points, however, do not appear to approach a finite value as

p —» 1, and hence Eq. (5.1) does not capture all the significant behavior

of the SLTF file drum, In order to model the part of the SILTF waiting

time that is growing faster than p/(1l-p), we will add another term to

Eq. (5.1) to get:

Ww = {+R + bet + e(325))r : (5.3)
_From Fig. 5.1 we see that for small p, the simulation curve appears to

have a slope of about one, and hence if Eq. (5.2) is an adequate model

of the SLTF file drum, the expression

2

ENCE EEN t= (5.4)
should appear as a straight line when plotted as a function of p,.

Figure 5.2 shows Eq. (5.4) as a function of p. Clearly the simulation

results are not growing as fast as Eq. (5.3) suggests and it over-

estimates the rate of growth ofW as p — 1.
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Another expression forW that may lead to an adequate empirical

model is

| Vo= (B+R+ Es e(155)¥ 4 (5.5)
In Fig. 5.2 we have plotted .

/ 2

Fo (30 F) -gl (56)
Y

and show that to a first approximation it has a slope of .368. This is

| an approximate model, but until we have more understanding of the SLTF

file drum, and have some idea of the form of the expected waiting time,

it is pointless to add refinements to Eq. (5.5). Therefore, our

empirical model is

Wo- {B+ Ris + 3683)Fn (5-7)
and Fig. 5.3 shows the expected waiting time of the empirical and

simulation models forR = 1/3. The closeness of the empirical model to

) the simulation results makes them almost indistinguishable in the figure.

Eq. (5.7) is also a very good model forR = 1/8.

6. Cyclic queue models of central processor-drum computer systems

The previous models of drum storage units have all considered the

performance of a drum as an isolated system by means of the Poisson

| dssumption. That is, requests arrive at the drum from some undefined
- source such that the interarrival times follow an exponential

distribution, In this section we extend the previous models by removing

the Poisson assumption and consider a simple case of the type of

. environment that generates requests to be processed by the drum.

Cyclic queue models with a FIFO file drum can be treated by Gaver's [1967]

:
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analysis, and for a SLTF and FIFO paging drum, an exact analysis has not

been found. The models of this section are cyclic queue models with two

processors. One of the processors is a model of an SLTF file drum and

| the other processor represents a central processing unit (CPU). A
fixed number of customers (jobs) alternate between waiting for and

receiving service at the CPU and waiting for and receiving service at

| the drum. Thus the completions of one processor form the arrivals at

| the other processor. The structure of actual computer systems is
typically more complex than this simple cyclic model, Such a model does

allow us to consider the feedback effects of drum scheduling disciplines

and to evaluate the accuracy of the models and their appropriateness for

use in more complex feedback queueing models of computer systems, Closed

queueing models of the type considered by Jackson [ 1963] and Gordon and

’ Newell [1967] can be analyzed when the service rate of a processor is a

] function of the queue length at that processor and the service time is

exponentially distributed. The one-stage model of an SLTF file drum is

an important example of this type of processor, |

The two-stage cyclic model. Figure 6.1 shows a cyclic queue model

] ) incorporating the two-stage Markov model of an SLTF file drum of the

previous sections and a single CPU. The CPU server processes requests

- from its queue and its completions are routed to the drum queue.

: Completions at the drum are routed to the CPU queue, There are a fixed

’ number, m, of customers in this cycle. This number, m, is called the

degree of multiprogramming. The CPU processing times are exponentially

distributed with parameter A, The drum is composed of two stages, the

- first representing latency time, exponentially distributed with rate

(n+1)/7 where n is the size of the drum queue and 7 is the period of

g
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revolution of the drum. The second stage represents transmission time,

- exponentially distributed with rate pu.

We can easily write down the balance equations describing the

equilibrium distribution of queue sizes for this model. Let Pon be the
J

steady state probability of having n I/0 requests in the drum queue and

having some request in the first stage, i.e,, the drum is latent. When

| the drum reaches the first starting address of some customer in the

queue, it begins data transmission by passing to the second stage.

Denote the steady state probability of transmission with n requests at

the drum by Py n For convenience let Py 0 denote an idle drum and let
hb J

Pio be identically zero. The balance equations are then:, ag

MPo0 = HPp3
,

, _ (n+l) <
(A+u)py + Po.n + AP) na , l<n<m

n+1

(A==Jpg 4 HP1 n+l APG noi ’ lsn<m (6.1,

— (ml) + A
MP3 'm TT Po,m P1,m-1

m+1

(=P n a; Mo med :

These equations can be transformed to the following form

= < <

. : P1,n Po(Po, n-1 + Pi n-1) g l=n=m
= ( < { )

] Po,n - Pn Po, n-1 N Py n ? l=n<m | 6.2.

Po,m = Pm Po, m-1

where p = Au and p= AT/(n+1l). Remembering that Py go = 0, we haveJ

} 2m+l equations in 2m+2 variables. We get the final { nonhomogeneous)

equation by recalling that all the variables must sum to unity in order
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to represent a discrete probability distribution. Now note that if a

value for Po,0 were known, the values of all the other variables could |

be computed directly from Eqs. (6.2). Note also that Po,0 is a factor

of all the other variables; that is, if Po,0 were incorrect by a factor
of , all the other values computed from Eqs. (6.2) would be incorrect

by a factor of &. Thus to find the correct value for Po,0 assume some

arbitrary, nonzero value for Py gs Say one, and use Eqs. (6.2) to
compute the sum of all the variables. The reciprocal of the resulting

sum is the factor by which the initial value of Po,0 was incorrect.
Thus if we assumed an initial value of one, the correct value would be

the reciprocal of the sum, Now we can either correct the computed values

of the other variables or recompute them using the correct value of Po,0
The expected waiting time at the two-stage drum, W, (the queueing

. time plus the service time) will be |

m

Ww = 2 n(P; n + Py n) .
The utilization of the CPU will be

Ue = 1° (Pm + Pym) )

The one-stage cyclic model. Figure 6.2 shows a cyclic queue model

using the one-stage Markov model of an SITF file drum, There is one

exponential server for the drum, the service rate of which is queue size

dependent. Let Ho be the service rate when n customers are in the drum

queue. Since we want the mean service time to be 7/(n+l) + 1/u, where

1/1 is the mean transmission time, we see that

_ (n+1)y
Hp = n+l+pt °C
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The balance equations for this model are

APy = Hy Py

ArhpJP = AP + Hpyy Pryy lL=n<m

Hp Pm = Moa | oo

These are equations for a simple queue with arrival and service rates

dependent on queue size [cf. Cox and Smith, p. 43] so the solution is

n

Pp, = (I ps) Py » l1<n<m
i=1

SE!

Py = » T 0 37
_1=0 j=0

where p= Mu

| Comparison of the models. Figure 6.3 shows the expected waiting

time, W, for a drum service request versus the ratio of drum transmission

time and computing time, A/u, when the expected record size is one-third

of a drum revolution for three models and four different degrees of

multiprogramming, m = 2, 4, 8, 16. The model results depicted by the

square plotting symbol are from a modification of the simulation model

| discussed in the earlier sections. The drum server captures the true

’ latency of an SLTF drum, A CPU server and a fixed number of customers

i have been substituted for the Poisson source. The model results

] depicted by the smooth curves are from the two-stage model. The one-

stage model results are indicated by the curves with the plotting @

symbol, Both of the analytic models are very close to the simulation

model except for large degrees of multiprogramming {(m > 8), but the two-

stage model gives slightly better results than the one-stage model.
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Figure 6.4 shows the CPU utilization for all of the cases shown in

Fig. 6.3. The results from the analytic models seem even better for

this normalized measure of system performance. :

| Figure 6.5 shows the expected waiting time for the three models and

four degrees of multiprogramming versus the ratio of transmission and

computing when the expected record length is one-eighth of a drum

revolution. The problems with the approximations of the analytic models

are becoming more apparent in this figure. The analytic models over-

estimate the expected waiting time except for large values of A/u and

large degrees of multiprogramming. Again, in Fig. 6.6, the CPU

utilization for the same cases as Fig. 6.5, the models still give very

good results, -

Comparison of Figs. 6.3 and 6.5 with Figs. 4.1 and 4.2 show that

: the expected waiting time for the cyclic models follows the expected

waiting time for the Poisson source models until the CPU utilization |

| falls away from 100%. Then the expected waiting times flatten out and

approach the asymptote determined by having all m customers in the drum

queue at all times. Comparison of Fig. 6.4 and Fig. 6.6 show that for a

given ratio of transmission and computing, large records are to be

preferred over short records. For a given quantity of work less latency

| will be incurred if records are large since fewer records will be

| transmitted. However, it is expected that the penalty associated with |
_ short records will be less severe in an SLTF system than in a FIFO

system since the total incurred latency is reduced by SLTF¥ scheduling.

The degree of agreement among the curves for the different models

encourages us to use the analytic models of SLTF file drums in more

complex models of computer systems at least until a more exact treatment :
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of SLTF scheduling can be developed. Even if an exact analysis were

available, that analysis might not be compatible with the analysis used

. to treat a larger model in which an exact model was imbedded. Thus, for

example, the one-stage model may be useful for some time because it fits

naturally into queueing network models of computer systems.

; Ie Conclusions

We have analyzed two types of drum-like storage organizations, file

drums and paging drums, and two types of scheduling, first-in-first-out

and shortest-latency~-time-first. For the FIFO file drum with Poisson

arrivals we observed that the Pollaczek-Khinchine formula gives exact

results for the expected waiting time of a request to the drum, For a

. : FIFO paging drum, a FIFO sectored file drum, and an SLTF paging drum,

all with Poisson arrivals, different interpretations of Skinner's model

yield exact expressions for the expected waiting times. For the SLTF

file drum with Poisson arrivals, two new approximate models are

developed and an earlier approximate model is discussed and all analytic

results are compared with results from a simulation model, The weak

points of the approximate models are identified and the reasons for

) the errors are discussed. Table 7.1 shows the expressions forW, the

) expected waiting time of I/O requests for the four drums discussed in

i this paper. Note that all the expressions are hyperbolic in form, with

vertical asymptotes at § on p, except for the SLTF file drum. In Sec. 5

we showed the expected waiting time for I/0 requests at the SLTF file

drum grows faster than hyperbolically as p — 1. Figure 7.1 graphically

illustrates the relative performance of the different drum organizations

and scheduling disciplines. (The two-stage Markov model is used for the

|



Table 7.1. Expressions for the Expected Waiting Times of I/O |

Requests at a drum with Poisson arrivals.

scheduling drum )
discipline organization Ww

2
: —= E(1+C")

FIFO file (# + R) E + be T
1

| _ 51+ 5p)
FIFO paging {# +R + }r3(1-E)

two-stage Markov model |

) 1 ar | TH
T+1 1 Ar (1-w)=r t= \ E (1-0w) | -1

SLTF file 0

empirical model

TR P p_\3/2
{# + R + T= + 368 (35) IT

i ry P

’ Sr. = AT
Op = ART; E =A(F + R)T = Ste. |

b
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SLTF file drum).

The one-stage and two-stage Markov models are incorporated into a | |

cyclic queueing model and these results are compared with simulation

results. The comparisons indicate the suitability of these models of

SLTF file drums for use in more complex queueing network models of

computer systems, A reasonably accurate model of an SLTF paging drum

that could be easily incorporated into larger queueing network models

would be a valuable addition to this work,
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