—— | e — — Sw— —

STAN-CS-72-310 SEL-72-040

Anomalies in Scheduling Unit-Time Tasks

by

Marc T. Kaufman

June 1972

Technical Report No 34

This work was supported in part by the National Science Foundation

under Grant GK 23315 and by the

Joint Services Electronic Programs
U.S. Army, U.S. Navy and U.S. Air Force
under contract N-00014-67-A-0112-0044

DIGITAL SYSTEMS LABORATORY
STRNFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STANFORD, CRLIFORNIA

ST:N-CS-72-310 SEL~72-040

ANOMALIES IN SCHEDULING UNIT-TIME TASKS

by

Marc T. Kaufman

June 1972
Technical Report No. 34

DIGITAL SYSTEMS LABORATORY
Debartment of Electrical Engineering Department of Computer Science
Stanford University

Stanford, California

This work was supported in part by the National Science Foundation under
Grant GK 23315 and by the Joint Services Electronic Programs U.S. Army,
U.S. Navy and U.S. Air Force under contract N-00014-67-A-0112-0044.

ABSTRACT

In this paper we examine the problem of scheduling a set of tasks
on a system with a number of identical processors. Several timing anomolies
are known to exist for the general case, in which the execution time can
increase when inter-task constraints are removed or processors are added.
It is shown that these anomalies also exist when tasks are restricted to
be of equal (unit) length. Several, increasingly restrictive, heuristic
scheduling algorithms are reviewed. The "added processor' anomaly is

shown to persist through all of them, though in successively weaker form.

ii

Abstract
Table of Contents

List of Figures

Introduction

Notation and Convention
The Anomalies

Longest Path Scheduling
Conclusions

References

TABLE OF CONTENTS

Page

ii

iii

16
21

22

1

2

3

10

11

12

13

LIST OF FIGURES

A system which degrades when the schedule is varied.
Gantt charts for the system of Fig. 1.

A system which degrades when the partial order is
relaxed.

A system which degrades with increasing n.
Gantt charts for the system of Fig. 4

An example of degradation with increasing n,
precedence preserved.

Gantt charts for the system of Fig. 6.

A system which degrades with increasing n, precedence
preserving list.

Gantt charts for the system of Fig. 8.
An example of non-optimal Longest-path scheduling.

A system which degrades with increasing n, Longest-
path scheduling.

Gantt charts for the system of Fig. 11.

A system with no optimal Longest-path schedule.

iii

Page

10

12

13

14

15
17

18

19

20

INTRODUCTION

In this paper, we consider the problem of scheduling computations
for a system with n identical processors. The computations are represented
by directed acyclic graphs. The node; of a graph represent tasks with spe-
cified execution time. The directed arcs of a graph represent a precedence
ordering of the tasks; i.e.: if there is a directed path from task Ti to
task Tj’ then task Tj cannot be started until task Ti is finished.

We are interested in finding algorithms that schedule the tasks
on the processors such that the total execution time is minimized. Optimal
solutions that do not require exponential time to compute are known for only
a small class o; problems; namely tree graphs in which every task is the same
(unit) length [7], and directed acyclic graphs of unit length tasks when the
number of processors, n, is 2 [2,3]. Much research has been directed toward
finding ''reasonable" heuristicé which give good, though non-optimal, results
[1,8,9].

Graham [4,5] has shown that the possible degree of non-optimality
for a schedule is bounded by the expression w'/w0 <1l + (n—l)/nf, where)
is the total (optimal) execution time using n processors and w' is the total
execution time with n' processors. For n=n', this reduces to w'/wO <2 - 1/n.

We would like to know if this bound could be reduced by requiring that
;certain constraints be met with respect to the scheduling of the tasks and the

tasks themselves. Of course, we would require that the constraints could be

fulfilled in a reasonably efficient manner computationally (say, in algebraic

time).

It is the purpose of this paper to show that, at least for several
simple and widely used heuristics, severe degradation can still occur.
Several heuristics are presented with‘examples of graphs that show degra-

dation using the heuristics.

Notation and Convention

Suppose we are given a set of tasks, T = {R,S,T,...}, a set of

identical processors P = {pl,pz,...,pn}, and a partial ordering & on T,

In this paper, only systems with identical (unit) length tasks are con-
sidered. We can define a schedule, L, as an ordering of the tasks in T.

We define the execution of 1 according to L as follows: at any

time t (beginning with t=0), we scan the list L from the beginning and
mark the first n tasks encountered that are executable. A task is exe-
cutable if it has not been assigned to an earlier time and if all of its
predecessors, if any, have been executed at earlier times. There may be
fewer than n tasks that can be marked in this way. The marked tasks are
assigned to the processors (pl,pz,...) at this time and executed. When
no task can be assigned, execution terminates. The totql execution time,
&, is the latest time at which the execution of a task in T is terminated.
Optimizing the total execution time involves finding a schedule
L. such that the total execution time for this schedule is minimal over

0

all schedules for the system of tasks.

The Anomalies

Graham [4,5] has shown that the time required to process a set of
tasks can increase if any of the following are done, singly or in combin-
ations:

1. Reorder the schedule (L' = permutation of L)
2. Relax the partial order (@' & Q)
3. Increase the number of processors (n' = n)

with the maximum degradation bounded by w‘/w <1+ (n—l)/n'.

These results are for general systems in which the execution times

for each task could be arbitrary. As stated earlier we consider these

anomalies for the case where all tasks are of unit duration.

Example 1l: Varying the schedule, L, and (possibly) n.
Consider the system shown in Figure 1. If schedule L is used,

with n processors, the total execution time is: w=n', If schedule L' is

used, with n' processors, the total execution time increases to: w' = n-l+n'.

The degradation is given by: w'/w =1+ 2%%, which achieves Graham's bound.
If we follow the Gantt chart for this example shown in Figure 2, we

see that the apparent cause of the degradation is the early scheduling of a

‘large number of independent tasks. This in turn forces %he chain of tasks

to a very late start and subsequent late termination. It will become clear

that this is the mechanism behind all of the anomalies in this paper.

‘pataea ST a[npayods ayj
uaym SapreI3Op YOTYM Wa3SAS v °T °S1d

WU tvee 4G o1 ¢« U boee & (4 ¢ T ees ¥ tees ¢C Mt =
(ch, da c& anﬁ anh anB Hﬁ ﬁ& HHV V1
WU ¢ U feee 1 ¥ €ees ¢C ¢ (4 N HN o1 ¢ T feee 1 =
Cul "ol " wl poud U =T
sjsel ,u jo
N .—H . . - H)
uteyo e s ST i
. 1 4L ca ﬁB, SB ca
\ u € 4 I
Iy . L] .
anﬂh alﬂh ﬂnch ﬁnuh
syse3l a13uts
118 axe asayy, J ” “ “ ”
Ju . . . € Z 1
T . T t*

1 1 1
Tl T2 L I] Tn.
2 2
Ti Tz e T ,
n a) Execution of Fig. 1
. . . with schedule L
n n n
T, T, ... T,
1 2 n-1 n n n
T1 T1 coe T1 T1 T2 .o Tn'
1 2 n-1
T T . T) [oo @
2 2 2 b)
' 1 2 n-1
T, T, «++ To, g ¢ o p
Fig. 2. Gantt charts for the

system of Fig. 1.

Execution of
Fig. 1 with
schedule L'

Example 2: Relaxing the partial order, @, and (possibly) varying n.

This example is shown in Figure 3. Execution of the system presented,
with n processors, yields w=n'. If the partial ordering is relaxed, by re-
moving all constraints between tasks in the first n-1 chains (leaving chain
Tln PN Tn,n), then execution is again the Graham bound.

Examples 1 and 2 are very similar. The constraints for optimality
in the first case being enforced by selection of the schedule, and in the

second case by additional explicit links in the partial ordering. This type

of tradeoff is generally possible when inventing such examples.

bt et

1 1 1
: T, : T, : T, :
2 2 2
() TZ() TS() l@

.

. . These are all
. . . . individual chains
n n n n of n' tasks each
_ 1 1 1 2 2 2 n n n
L = (Tl’ Tz, csey Tn" Tl’ Tz, ceey Tn" eeey Tl, T2, ooy Tn')

Fig. 3. A system which degrades when
the partial order is relaxed.

Example 3: Increasing n (only).

This type of anomaly, that due to increasing the number of available
processors, is the subject of the next several examples. The best schedule
would be one for which execution with n processors would always yield an
optimal time (for n processors, not necessarily a global optimal time). It‘
would certainly be disheartening to find that the total execution time may
increase when more processors are used. Unfortunately, this can‘be the
case.

Consider the system shown in Figure 4. The two constants, K and 4,

used in the construction are arbitrary with the following restrictions:

For any n,n', select K and { such that

K2 2; o<,[’,=|.K(L}—)2J.

n

The schematic Gantt charts for execution of this system with n and
n' processors are shown in Figure 5. With n processors, w=K. With n' pro-
cessors, w'= K+{. The ratio of these times is:

w'/w = —=

I
[
+

K(n—l)—nJ

K(n-1)-n

]
-
+
Rl R®I= Ries
—
s‘

—
—

A

-

+

|5
sl
-l

]
[1 o]
=N =] -

We see that w'/w can be brought arbitrarily close to 1 + 2%% by increasing K.
Note that task precedence is not preserved in L (task precedence is
preserved if, for any two tasks R,S € 7, R < S implies that R preceeds S

in L). In this example, nonpreservation of task precedence is what lets

us "'break the barrier" when Uy is executed, thereby letting all of the U,
come to be immediately available for assignment.
Since preservation of precedence is an easily checked property,

we next look at this same anomaly, with the restriction that the schedule

* L be precedence preserving.

-3
o
|
[
%ee'*w

U(k—ﬂrl)(n-l)

1 1 1 2 2 n-1
L=(Sl, TO, Tl, ceey T‘[)/, TO, ceey T«‘f,’ eoey TO 3 seay
n-1 :
Tp "5 Sgs Sy eees S Ugs Ugy wees U b 9y (n-1)° S,, U))

Fig. 4. A system which degrades
with increasing n.

10

k
r‘-—
< kb1 >
n-1
T, Ui
n-1
U (%
S2 .

i
L
n'-n+l U,
Fig. 5.

Gantt charts for the

system of Fig. 4.

Example 4: Increasing n (only), with a precedence-preserving list.

First let us consider the example shown in Figure 6. Execution with
n=4 and n'=5 processors is given by the Gantt charts in Figure 7. Notice

that, when n is increased to n', the earlier execution of T0 allows Tl’Tz’

and T, to be assigned with S

3 and Sz, thereby delaying R. and R,.

1 1 2

A fully general construction is not known for this case; however,
when n and n' satisfy the relations: n' > n, Kn-kK-1 2 (K-1)n', the con-
struction of Figure 8 may be used.

Once past the starting tasks, Ul’ ooy Un’ the system consists of

any number ({) repetitions of the same subgraph. Execution of this network

» (2K-1)4 + 1

is shown by the Gantt charts in Figure 9. We see that w'/w = ")

which, for sufficiently large [, arbitrarily closely approaches 2 - %.

The degradation is given in terms of the parameter, K. We would
like to see how this compares to Graham's bound, which is in terms of n
and n'.

We note that K is governed by the relation:

n'-1
< K € —m—
1 = nen+l

Substituting into the expression for degradation of this example we get:

n-2 - 14+ n-1 n'-n+l
n'-1 n' n'(n'-1)

1
' 2 - = +
w /w < K <1

>

which differs from Graham's bound by a term of O< 5

:). In the specific
(n")

case where n'=n+l, the expression reduces to:

w'/w <1+ n-l_

n+l 2
n +n

which closely approaches Graham's bound for large n.

12

Fig.

6.

: R§<:::>
T1
2

/) TO,
T E :
0 ,

An example of degradation with
increasing n, precedence preserved.

O

Py Ry Ry R,
Py Ul S | Ty
P31 Uy | Sy | Ty
Pat U3 Ty Ty
Py Ry | 51 R, Ry
P, v Sy
p3 U T1
p4 U T2 ¢
Py T T3
Fig. 7. Gantt charts for the

system of Fig. 6.

13

14

— 7,/_

-

[T 1]

&

\

e ax Ceove
(S

.

Coes
ﬁm

Z Uoy3oes

*35117 Sutaxasaxd aouapasdaad ‘u
BuysBaIouT Y3ITm Sopeadop UYOTUM WSS y g

¢Sy o1 .Aﬂlnvmﬁle Cose ¢ eI (0. -,2-T
Nm Nm Nm NB NB NH 4
x4 1 -AHIQVAAIMV teee ¢C T <0 -0
1 ™ Yol SR S
nqp tease

.—.::—,X—_.-.

"84

Cese &]
&

LY ‘
85

n"b QND L4

kS
T
ﬁﬁ
Toy =1

1 uot3o8s

n processors

L} L 2 S
1 Ul Sl . . L[] sk Sl . . .
1l 2
2 U2 R1 .‘Rl
1L 2
3 U3 R2 R2
1 2
. . . Ti . Ti
1 2
n Un T0 T0

section 1 section 2

If there are /f, sections, w =k{ + 1

15

n' processors w' = (2k-1)L + 1
1 1 B 1 2 2
-1 U1 Rl S1 o o e Sk Rl Kk
3
' 2
T 0
1 0 2
2 U2 R2 R2
“ L] .
3 U *)
3 . .
L0 . ¢
n U
n
n+l Tl < kTI Py
0 J units
nl

Fig. 9. Gantt charts for the system of Fig. 8.

16

Longest Path Scheduling

One commonly used heuristic constraint is that of "longest path"
scheduling. That is, at any time, give preference to the tasks that are
farthest from a terminal node in the constraint graph.

The schedules so obtained may still be far from optimal, as the
example of Figure 10 (due to Graham [6]) shows. Both L and L' are '"longest
path' schedules. Execution of schedule L with n processors gives w=n+1.
However, execution with schedule L' (again n processors) gives w'=2n. The
degradation is w'/w = 2 - 2/(n+1).

| Nor does this heuristic protect against degradation with increasing
n. Consider the system shown in Figure 11. Gantt charts for n=7 and n'=8
processors are shown in Figure 12. Under longest path schedulihg we find
a degradation of 1 unit when n is increased.

The above examples indicate that there are systems for which longest
path scheduling is always non-optimal. Indeed, such a system is shown in
Figure 13. All optimal schedules with 3 processors must include T5 as one

of the first 3 tasks.

Fig.

10.

2 n 1 n
1’ . T1§ Sl, TZ’ cees T) Sn)
1 2 n n
1’ Tl’ ey Tl’ Sz, ceey Tn)

An example of non-optimal
Longest-path scheduling.

17

Tl

T 14

T25

T32

L = (T1, T2, T3, ..., T35)

Fig. 11. A system which dégrades with
increasing n, Longest-path scheduling.

n = 7 processors

1|T1 T8 T14 T18 T26
2| T2 T9 T15 T19 T27
3 (T3 T10 T16 T20 Tzé
4|T4 T11 T17 T21 T29
5| T5 T12 T33 T22 T30
6 | T6 T13 T23 T31
7| T7 (@ @ T24 T32
n'-= 8 processérs

1Tl T9 T17 T18 T26
2 {T2 T10 @ T19 T27
3 (T3 T1l ¢ T20 T28
4 | T4 T12 @ T21 T29
5 [T5 T13 @ T22 T30
6 | T6 T14 @ T23 T31
7 |T7 T15 [T24 T32
8 | T8 T16 o @9 @

Fig. 12. Gantt charts for the
system of Fig. 11.

20

Fig.

Ll

13.

(T1, T2, T3, ..., T12)

(r5, T1, ..., T4, T6, ,.., T12)

A system with no optimal Longest-path scheduling.

21

Conclusions
In this paper we have examined a number of scheduling algorithms
for timing anomalies. The examples presented have shown that even heuristics

generally thought to be "good", can be highly non-optimal in certain cases.

22

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

Bowdon, E.K., Sr., 'Priority Assignment in a Network of Computers,"

IEEE Trans. on Computers, Vol. C-18, No. 11, Nov. 1969, pp. 1021-1026.

Coffman, E.G., Jr., and R.L. Graham, ''Optimal Scheduling for Two-
Processor Systems," Acta Informatica 1972.
Fujii, M., T. Kasami and K. Ninomiya, ''Optimal Sequencing of Two

Equivalent Processors, SIAM J. Appl. Math., Vol. 17, No. 4, July

1969, pp. 784-789.
Graham, R.L., '"Bounds for Certain Multiprocessing Anomalies, Bell

8yst. Tech J., Vol. 45, No. 9, Nov. 1966, pp. 1563-1581.

Graham, R.L., "Bounds on Multiprocessing Anomalies, SIAM J. Appl.

Math., Vol. 17, No. 2, March 1969, pp. 416-429.
Graham, R.L., '"'Bounds on Multiprocessing Anomalies and Packing Algorithms,"

Proceedings SJCC, Vol. 40, 1972, pp. 205-217.

Hu, T.C., '"Parallel Sequencing and Assembly Line Problems," Operations
Research, Vol. 9, No. 6, Nov. 1961, pp. 841-848.

Manacher, G.K., '"Production and Stabilization of Real-Time Task
Schedules,' J. ACM, Vol. 14, No. 3, July 1967, pp. 439-465.

Ramamoorthy, C.V., K.M. Chandy, and M.J. Gonzalez, Jr., ''Optimal

Scheduling Strategies in Multiprocessor Systems," IEEE Trans. on

Computers, Vol. C-21, No. 2, Feb. 1972, pp. 137-146.

