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| ABSTRACT

In this paper we examine the problem of scheduling a set of tasks

on a system with a number of identical processors. Several timing anomolies

are known to exist for the general case, in which the execution time can |

increase when inter—-task constraints are removed or processors are added.

: It is shown that these anomalies also exist when tasks are restricted to

be of equal (unit) length. Several, increasingly restrictive, heuristic |

scheduling algorithms are reviewed. The "added processor anomaly is

shown to persist through all of them, though in successively weaker form.
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INTRODUCTION

In this paper, we consider the problem of scheduling computations

for a system with n identical processors. The computations are represented

by directed acyclic graphs. The nodes of a graph represent tasks with spe-

cified execution time. The directed arcs of a graph represent a precedence

ordering of the tasks; i.e.: if there is a directed path from task T, to

| task Ty then task 1, cannot be started until task T, is finished.
We are interested in finding algorithms that schedule the tasks

on the processors such that the total execution time is minimized. Optimal

solutions that do not require exponential time to compute are known for only

a small class of problems; namely tree graphs in which every task is the same

(unit) length [7], and directed acyclic graphs of unit length tasks when the

| number of processors, n, is 2 [2,3]. Much research has been directed toward

finding ''reasonable’ heuristics which give good, though non-optimal, results

[1,8,9].

Graham [4,5] has shown that the possible degree of non-optimality

for a schedule is bounded by the expression w/w, < 1l + (n-1)/n", where LS
is the total (optimal) execution time using n processors and w' is the total

execution time with n' processors. For n=n', this reduces to w'/wo < 2 - 1/n.

| We would like to know if this bound could be reduced by requiring that

. certain constraints be met with respect to the scheduling of the tasks and the

tasks themselves. Of course, we would require that the constraints could be

fulfilled in a reasonably efficient manner computationally (say, in algebraic

time).
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It is the purpose of this paper to show that, at least for several |

simple and widely used heuristics, severe degradation can still occur.

Several heuristics are presented with examples of graphs that show degra-

dation using the heuristics.

Notation and Convention

Suppose we are given a set of tasks, T = {R,8,T,...1}, a set of

identical processors P = {Pp ,Pys---sp 1, and a partial ordering & on T.
In this paper, only systems with identical (unit) length tasks are con-

sidered. We can define a schedule, L, as an ordering of the tasks in T.

We define the execution of 1 according to L as follows: at any |

time t (beginning with t=0), we scan the list L from the beginning and

mark the first n tasks encountered that are executable. A task is exe- |
cutable if it has not been assigned to an earlier time and if all of its

predecessors, if any, have been executed at earlier times. There may be

fewer than n tasks that can be marked in this way. The marked tasks are

assigned to the processors (pysPgs--+) at this time and executed. When

no task can be assigned, execution terminates. The total execution time,

W, is the latest time at which the execution of a task in 1 is terminated.

Optimizing the total execution time involves finding a schedule

Ly such that the total execution time for this schedule is minimal over

all schedules for the system of tasks.
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The Anomalies

) Graham [4,5] has shown that the time requiredto process a set of

tasks can increase if any of the following are done, singly or in combin-

ations:

1. Reorder the schedule (L' = permutation of L)

2. Relax the partial order (' & )

| 3. Increase the number of processors (n' = n)

with the maximum degradation bounded by w'/w <1 + (n-1)/n"'.

These results are for general systems in which the execution times

for each task could be arbitrary. As stated earlier we consider these
anomalies for the case where all tasks are of unit duration.

Example 1: Varying the schedule, L, and (possibly) n.

| Consider the system shown in Figure 1. If schedule L is used,

with n processors, the total execution time is: w=n', If schedule L' is

used, with n' processors, the total execution time increases to: w' = n-1l+n',.

) The degradation is given by: w'/w =1 + =, which achieves Graham's bound.
If we follow the Gantt chart for this example shown in Figure 2, we

see that the apparent cause of the degradation is the early scheduling of a

"large number of independent tasks. This in turn forces the chain of tasks

to a very late start and subsequent late termination. It will become clear

that this is the mechanism behind all of the anomalies in this paper.
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1 1 1

Py T, T, cee T |
2 2 2

P, T, T, ooo To
a) Execution of Fig. 1

: . . . . with schedule L

n n n |

p | Ty T, «oo T 1

| FUL———

1 2 n-1 n n n
e & 9 ee & 0 TSUN IT Ty 1 Te n' |

b) Execution of

. : . . . . . Fig. 1 with

) | schedule L'
‘1 2 n-1

Poo] Too Too eee To, ¢ g ves §

Fig. 2. Gantt charts for the |
system of Fig. 1.
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Example 2: Relaxing the partial order, @, and (possibly) varying n.

This example is shown in Figure 3. Execution of the system presented,

with n processors, yields w=n'. If the partial ordering is relaxed, by re-

moving all constraints between tasks in the first n-1 chains (leaving chain

T,” vos T 0), then execution is again the Graham bound.
Examples 1 and 2 are very similar. The constraints for optimality

- in the first case being enforced by selection of the schedule, and in the

second case by additional explicit links in the partial ordering. This type

of tradeoffis generally possible when inventing such examples.

1 1 1 1 .-
T

Ty 8 T, B T, 8 T 8
2 2 2 2

T :

| | ) These are all

. . . . individual chains

n n n n fn!T of n’' tasks each

. 1 1 1 2 2 2 n n n
L = (Ty Ty» es 0 y T +s I,» IT, LIL IE I T + es sy Ts Ty LI I T +)

Fig. 3. A system which degrades when
the partial order is relaxed.
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Example 3: Increasing n (only).

This type of anomaly, that due to increasing the number of available

processors, is the subject of the next several examples. The best schedule

would be one for which execution with n processors would always yield an

optimal time (for n processors, not necessarily a global optimal time). It

would certainly be disheartening to find that the total execution time may

increase when more processors are used. Unfortunately, this can be the

case.

Consider the system shown in Figure 4. The two constants, K and 4,

used in the construction are arbitrary with the following restrictions:

For any n,n', select K and {such that

K = 2; |n

| The schematic Gantt charts for execution of this system with n and

n' processors are shown in Figure 5. With n processors, w=K. With n' pro-

cessors, w'= K+{. The ratio of these times is:

K+4,
) or ——w'/w =

1,
= + —1 K

) 1 |K(n-1)-n

1 (Keo D)om). < + —- |——————1 K n'

: n-1 .n
< ———
1+ n' Kn'

We see that w'/w can be brought arbitrarily close to 1 pe by increasing K.
Note that task precedence is not preserved in L (task precedence is

preserved if, for any two tasks R,S € Tv, R < S implies that R preceeds S

: in L). In this example, nonpreservation of task precedence is what lets



| |

us ''break the barrier’ when U, is executed, thereby letting all of the u, |

come to be immediately available for assignment. |

Since preservation of precedence is an easily checked property,

we next look at this same anomaly, with the restriction that the schedule

- L be precedence preserving.
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Fig. 4. A system which degrades

with increasing n.
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~ Fig. 5. Gantt charts for the
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Example 4: Increasing n (only), with a precedence-preserving list.

First let us consider the example shown in Figure 6. Execution with

n=4 and n'=5 processors is given by the Gantt charts in Figure 7. Notice

that, when n is increased to n', the earlier execution of Ts allows T,.T,,

and T, to be assigned with Sy and S, » thereby delaying R, and R,

A fully general construction is not known for this case, however,
ot

when n and n' satisfy the relations: n' > n, Kn-K-1 2 (K-1)n', the con-

struction of Figure 8 may be used.

Once past the starting tasks, Uy» cee U,> the system consists of

any number 1&2 repetitions of the same subgraph. Execution of this network

is shown by the Gantt charts in Figure 9. We see that w'/w By
which, for sufficiently large f, arbitrarily closely approaches 2 - =.

The degradation is given in terms of the parameter, K. We would

like to see how this compares to Graham's bound, which is in terms of n

and n'.

We note that K is governed by the relation:

1 <x < SL |
) Substituting into the expression for degradation of this example we get:

| w'/w < 2 x <1 » 22 = 1 + RO - PE EY

: which differs from Graham's bound by a term of o(—). In the specific(n')

case where n'=n+l, the expression reduces to:

; n-1 2

w'/w <1 + orl 3
| which closely approaches Graham's bound for large n.
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R, R, 30)

U Sy Ty

2 2 2

| () ® ) Ty» Tyr Tyr Tyo Ryy Ry)
T
3

Fig. 6. An example of degradation with
increasing n, precedence preserved.
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nN processors
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3 | U. | : y
IER 1 : :
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n U | |ntl | TY | I~ k-1 4
3 0 | units | |

n' |

Fig. 9. Gantt charts for the system of Fig. 8.
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Longest Path Scheduling i

One commonly used heuristic constraint is that of "longest path"

scheduling. That is, at any time, give preference to the tasks that are

farthest from a terminal node in the constraint graph.

The schedules so obtained may still be far from optimal, as the

example of Figure 10 (due to Graham [6]) shows. Both L and L' are "longest

path" schedules. Execution of schedule L withn processors gives w=n+l.

However, execution with schedule L' (again n processors) gives w'=2n. The

degradation is w'/w = 2 - 2/(n+1). |

| Nor does this heuristic protect against degradation with increasing

n., Consider the system shown in Figure 11. Gantt charts for n=7 and n'=8

processors are shown in Figure 12. Under longest path scheduling we find

| a degradation of 1 unit when n is increased.
The above examples indicate that there are systems for which longest |

path scheduling is always non-optimal. Indeed, such a system is shown in )

Figure 13. All optimal schedules with 3 processors must include TS as one

of the first 3 tasks.
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n = 7 processors

| 1|T1 T8 T14 T18 T26

2 | T2 T9 T15 T19 T27

3|T3 T10 T16 T20 T28

4 | T4 T1l T17 T21 T29 w=5

5 | T5 T12 fr33 T22 T30
oo 6 | T6 T13 T23 T31

7 | T7 129 (£35) T24 T32

n'-= 8 processors

1 | T1 T9 T17 T18 T26 (133)
TN

2 { T2 TI0  I25 T19 T27 @

| 3 |T3 T11 ¢ T20 T28 ¢

4 |T4 T12 ¢ T21 T29 ¢
w!'! = 6

5 [Ts T13 @ T22 T30 ¢

6 |T6 T14 ¢ T23 T31 @

7 |T7 T15 ¢ T24 T32 ¢

| $y By f
/

Fig. 12. Gantt charts for the

system of Fig. 11. ,
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L' = (T1, T2, T3, ..., T12)

L =(T5, T1, ..., T4, T6, eee, T12)

Fig. 13. A system with no optimal Longest-path scheduling.
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Conclusions

In this paper we have examined a number of scheduling algorithms

for timing anomalies. The examples presented have shown that even heuristics

generally thought to be "good", can be highly non-optimal in certain cases.
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