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ABSTRACT

‘ Because of its simplicity, Richardson's non-stationary iterative

scheme 1s a potentially powerful method for the solution of (linear)

operator equations. However, its general application' has more or less

been blocked by

(a) the problem of constructing polynomials, which deviate least

from zero on the spectrum of the given operator, and which

¢ are required for the determination of the iteration para-

meters of the non-stationary method, and

(b) the instability of this scheme with respect to rounding

|
error effects.

Recently, these difficulties were examined in two Russian papers. In .

the first, Lebedev [15] constructed polynomials which deviate least from

.
zero on a set of subintervals of the real axis which contains the spec-

trum of the given operator. In the second, Lebedev and Finogenov [11]

gave an ordering for the iteration parameters of the non-stationary

«
Richardson scheme which makes it a stable numerical process. Transla-

tion of these two papers appear as Appendices 1 and 2, respectively, in

|.
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this report. The body of the report represents an examination of the

“ properties of Richardson':; non-stationary scheme and the pertinence of

the two mentioned papers along with the results of numerical experimen-

tation testing the actual implementation of the procedures given in them.
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61. INTRODUCTION

“ Of the many methods proposed for the iterative solution of the

linear system

Au = f (1.1)
.

where A 1s an n x n non-singular matrix, the simplest is the non-

stationary method of Richardson [1], viz.

k+1 (k) k
.“ ul ou - or (An 4 (k=1,2, . ..) , (1.2)

where ays ay, . . . are iteration parameters with o = ay yk > N).

The given fixed integer N is called the period of the iteration (1.2).
.

Though Richardson's original method was the stationary version of (1.2),

V1Z.

k+ kne 1). a) o (a ). f) (¢ =const., k =1, 2, . ..) , (1.3)
“ ~ ~ ~ ~~

he observed that better convergence could be obtained if a, varied

. with n. Along with other methods, Young [2] examined its use for the

“ iterative solution of elliptic partial differential equations. In sub-

—sequent papers [3],[4], its numerical properties were examined in some

detail. It was shown that

. (1) 1n a certain sense, the choice

a, = 2[atb - (b-a) cos ((2k-1)n/2m)] (k =1, 2, . . . .N, (14

“ where a < A 5(8) <b (3 = 1,2, .. . .n), gives optimal con-

vergence properties to the yu ) defined by (1.2),

1
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(11) the method, at least when using the optimal choice (1.4)

C with the {oy} in the order given there, 1s very sensitive
to rounding error effects.

Independent studies of the method have been made by Birman [5]

" and Gavurin[ 6]. Since the publication of Young's paper [3], the method
has been discussed in different contexts by Stiefel [7], Engeli et al [8;

Chapter 11], Golub and Varga [ 9] and Young [10]. An important result

. obtained during this period is that due to Young[10; §11.4], which
shows that the non-stationary forms of (1.2) are related to semi-iterative

forms of the stationary procedure (1.3):

‘ Definition 1.1. Let {v;}={vy, 1 =1,2 ....3=12 ..] 1)
denote a set of coefficients which satisfy

i

| ) Vii = 1 (i =1, 2, . ..) . (1.5)
J=1

Given a sequence (x3 = {x j =1, 2, . ..) generated by (1.3), then“ J

k

Vy = > Vij X5 (k = 1,2, ...) (1.6)
cq

a J

defines a semi-iterative method with respect to the linear stationary

procedure (1.3).

~ Theorem 1.1. Let A be a non-singular matrix. Given {a}, there
exists, for o # 0,{v;,} such that (1.5) is valid and such that the

semi-iterative method based an (1.6) _and the {vy 5} yields the same
“

lterates for the starting vector WH (1) 4 does Richardson's method

2
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based _on the {o, } and thestarting vector ne . Conversely, given

C AFF such that (1.5) is valid, then, for any o # 0 and any i, there

exists a_set {ay}, such that the u(t) as determinedby Richardson's
method basedon the {¢,} and starting with 1) ,is the same as y(n)

“ determined by the semi-iterative method based on (1.3) and the AFR)
with ne _u (B)
—_— ~~ ~

Compared with the semi-iterative method based on (1.3), which

. requires the triangular array {Vy defining (1.6) to be stored, Richard-
son's non-stationary scheme 1s the simpler to implement. However, its

sensitivity to rounding error has more or less blocked its general use,

I’ especially since semi-iterative methods are less sensitive.

Closer examination of the Richardson scheme indicates that the

mentioned sensitivity 1s a function of the order in which the (a, ] are

. taken. This was first observed by Young [3], [4] who examined a number

of orderings and showed that some gave better results than others.

However, the more fundamental question of the existence of orderings

. for which Richardson's method defines a stable numerical process was

not examined.

; We pause to mention further connections of Richardson's method

. (1.2) with other well known iterative techniques:

((1)) The optimal choice of the relaxation parameter for the SOR

'method 1s only known explicitly in special cases; e.g. the given positive

& definite matrix A has Property A {see Varga [19; Chapter 14]}. This is

stronger than positive definiteness which 1s all that 1s required for

the application of Richardson's non-stationary method.

& ((11)) If the first order method (1.2) 1s replaced by the second

order (Richardson) method.

3
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EL EeEE AU
- then the problem of numerical instability is found to disappear {see

Golub [ 18]}. The close connection between this second order method and

the Chebyshev semi-iterative method, viz.

-

A IAS CEE
with

‘ o, =1/(1-p%w,/), (kx >2), 0; = 1, uw, = 2/(2 - p°),

where p denotes the spectral norm of A, has been examined in detail

« by Golub and Varga [ 19]. See also Varga [19] and Young [ 10; Chapter 16].

This semi-iterative method contains SOR as the special case w, =2/ (11-0217),
(k > 1).

g ((111)) The advantage of either method mentioned in ((i1i1)) over a

stable implementation of (1.2) 1s the choice of the iteration parameters.

For the first order Richardson method, it is necessary to specify 1n

“ advance the roots of the polynomial of degree N which deviate least from

zero on o(A) for a given N. For the second order method, Golub and

: Varga [19] have shown that there exists, under a wide range of circum-

“~ stances, an optimal choice of « and B, viz. «a = o/ (14[ 1 1B) and

8 = -1. In the case of the Chebyshev semi-iterative method, the Wy

are generated sequentially as and when required.

6 Recently, Lebedev and Finogenov [11]{A translation is giver in

Appendix 2} examined this question and constructed an ordering of the

oy of (1.4) for which Richardson's method defines a stable numerical

hr process. The construction of this ordering will be examined in §2, and

the application of Richardson's method based on 1t for the solution of

C 4
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different forms of Poisson's equation will be examined in §3. Lebedev

C and Finogenov did not examine whether their ordering 1s 1n any sense

optimal or whether other orderings exist for which Richardson's method

defines a stable numerical process. .

“

The other difficulty associated with the efficient implementation

of Richardson's method 1s the actual choice of the oy * The choice based

C on (1.4)is more or less optimal if
(a) a and b are the exact lower and upper bounds for o(A),

the spectrum of A, (assuming now that A 1s positive definite) and

“ (b) o(A) does not consist of widely separated disjoint sub-

intervals in which the Ag (4) {4 =1, 2, .... n) lie.

In fact, the optimal choice of the a, are the reciprocals of the roots

“ of the polynomials of the form

N

P(t) = NAC - ay t) (1.7 )

P(0) = 1, (1.8)

“ which deviate least from zero on the set o(A). However, the actual

~ construction of such polynomials 1s often blocked by

(0) the lack of knowledge about the structure of o(A) {the numer-

- ical determination of all the A; (8) (1=1, 2, .. . . n) in general,

involves more computation than the numerical evaluation of a trl, and

(8) the fact that, for a given o(A), the construction of poly-

nomials of the form (1.7) = (1.8) which deviate least from zero on o (3)

can be a difficult, if not impossible, task.

d
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For these reasons, the construction of the ory for a given A has been

. based on the following approximate procedure:

1. Determine a region

((i)) for which o(A) € Q, and

C ((ii)) such that the polynomials Py(t; Q) with P(0; Q) = 1
which deviate least from zero on Q are known or can be

constructed.

“ 2. Set the op (k=1, . . . . N) as the reciprocals of the roots

| of the polynomial P(t; Q). TT

The ay of (1.4) correspond to the case when = [a, Db].

“ A number. of authors, including Samokish [12], Achieser[13] and

Markov [14], have examined cases when QQ is disjoint. The most recent

analysis is that of Lebedev [15] {A translation is given in Appendix 1},

o who examined the construction of polynomials Pts QQ) when Q consists
of a number of disjoint subintervals of the real axis. This work is

summarized for the two interval case in §4 and applied to a problem in

o
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§2. THE ORDERING OF LEBEDEV AND FINOGENW. :

In this section, we describe the ordering of the iteration para-
be

meters of (1.4) which Lebedev and Finogenov [ll] proved makes the numer-

ical process defined by (1.2) stable.

For a given N, let Cp Pps Py) denote the basic ordering |
| |

of the iteration parameters defined by (1.4), viz.

©; = 2[b+a - (b-a) cos ((2i-1)n/2n)]7t (i =4,2,....N. (2.1)
& —.n p

Then, different orderings of the {0} for the ay in (1.2) can be defined

as permutations on the set (0,5 Pos vee Py) In particular, we define |

. a one-to-one mapplng between (0; 5 Pos «+. Py) and (015 Ups oo ory)
with a, = Pig by the permutation

ny = (15 Lo, Ap) (2.2)
|

Thus, any ordering of the iteration parameters (1.4) can be defined in

; terms of this permutation He
p _

« Let NE {2%, p =0, 1, 2, ..}, “0 _*1_ (1) and

* p-1 (315 3p 0 = J p-1) a (2.3)

ng Then, the permutation ar which defines the Lebedev-Finogenov ordering
of (2.1) 1s constructed inductively with respect to (2.2) and nef oF, p = 0,

1, 2, ...} using
|

/

.



ry Dyas . Pov Piq_s

"op = (34> 2°+1 Jjs doo 2 +1 dos ® ... J p-17 2 +1 J _p-1 . (2.4)

In particular,

n= (1,4,2,3)
«

na = (1,8,4,5,2,7,3,6) ,

ni16~ (1,16,8,9,4,13,5,12,2,15,7,10,3,14,6,11) ,

Hzo= (1,32,16,17,8,25,9,24 ,4,29,13,20,5,28,12,21,2,31,15,18,7 ,26,
.

10,23 ,3,30,14,19,6,27,11,22).

An ALGOL procedure for generating Hp for a given p 1s:
|. re

Procedure Lebedev-Finogenov-Ordering (P, Kappa);

Value P; Integer P;

Integer Array Kappa;
.“

Begin Comment For a given "P", this procedure generates the

permutation "Kappa" of order 2!'P which defines the Lebedev-

Finogenov ordering of period 2tP. The array "Kappa" must be
-

dimensioned externally with order 21P;

Integer I, J, INT, INS;

KAPPA [1]: = 1;
 -

INT: = 1;

For I: =1 step 1 until P do

Begin INT: = 2 X INT;
-

INS : = INT + 1;

For J: = INT + 2 step =~ 1 until 1 do

8
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Begin KAPPA [2 x J]: = INS - KAPPA [J];

C KAPPA [2 x J - 1]: = KAPPA [J]
End

End

“ End Lebedev-Finogenov Ordering;

-

LN

-“

-

oh

-

.“

9
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83. APPLICATION OF THE LEBEDEV-FINOGENOV ORDERING.

C In order to test the Lebedev-Finogenov ordering, we examine the

type of matrix equation (1.1) for which iterative methods are best suited,

- viz. A 1s a sparse large rank matrix with Ag defined in a systematic

C manner which rules out the necessity to store A. In particular, we

examine the following boundary value problem: using finite difference

methods, construct a function u(x,y), continuous on the unit square

« S = {(x,y5); 0<x<1, 0<y <1} except possibly at the corner points,

having first and second derivatives in the interior and satisfying

Poisson's equation

| 2 2
\ du ou

5 +—5 = g(x,y) (u = u(x,y), (x,y)€ 8), (3.1)
0x dy

and the boundary conditions

L ——
u(0,y) = a(y), u(l,y) = aly) (0< Y < 1) (3.2)

u(x,0) = p(x), u(x,1) = g(x) (0<x<1) . (3.3)

.
We introduce the grid

G={(ihygn);i=0,1, ....I, 3=0,1, . .. . I, Ih = 1}

w
and the notation

- 1 1 1
and we use the central difference approximations

10



3°u X 2 2

2g] - = 2U, _.. t+ Ug .)/h + 0o(nh itht 3x . { i+l,J lsd 23-1,3) (07) (3.4)1,J

d<u(x,y) |= (u - 2u + )/1° + 0h)2 1047 "1,5 7 1, 4-1 (3.5)
oy 1,3

a

3% 3%
| which are valid if 1 and 1 exist and are bounded for

OX 2

L (x,5) e Interior (S). Substitution of (3.4) and (3.5) in (3.1) yields,

after neglecting truncation error, the following finite difference scheme

for the approximate solution of (3.1)=(3.3):

- - - Vv. = = 2y0 —, I=1 .

|S

« where oF = (jh), a = (jh), Bs = 8 (ih) and 8; = g (ih), and
Vis denotes the calculated value of Uy ye

Since (3.6)-(3.8) define a linear algebraic system of order (1-2)°

for the determination of the finite difference solution (3.1)-(3.3) on
&

the grid G, 1t can be solved by the non-stationary scheme (1.2). In

‘fact, its implementation only involves the use of three matrix arrays

(1) (0) Co
I! = [4 1, . . « I .VIL VL and 744 (i, 3=0 ) (3.9)

in the following way:

.“ (0) _ (0) _- (0) _ (0)_ =

(3=¢0,1, 2, . .. .I,1=1, 2, . . . .1I-1) ,

‘ 11



(0) _ CL
vii’ oS dys (i, 3=1, . . . . I-1) (3.10)

«

where the 94; define the starting solution, and k = 1.

(ii) Compute

(1)_ (0) _—

|
where

(0) (0) (0) (0) (0) 2r.,, =4vy.. =v}! « eo, ro 7 | 2 ®iy i 7 Tdl,§ CT Vi-1,5 - Vi,3+L — Vi,j-1 +B ogij, (5.22)

and then

(0) _ (1) oo
Vis = V3 (1, 3=1, 2, . . . .I=1). (3.13)

.

(111) For a given positive value €, Jif R > €, set

k =k + 1 and return to (ii) then back to (iii); if R < €, stop as

0 CL

“ 0%) (1, 7=0,1, .. . . I) defines an approximate solution with the
required accuracy. The final value of k gives the number of iterations required.

) Note. Because (3.11) 1s only a three-level difference scheme,

& the storage requirement can be reduced to at most (1+1)° + 3(1-1)

-locations.

For the matrix defined by(3.6),the exact bounds for the eigen-

values of A are

a =). (A)=4(l-cos mh), b = h,, (A) = 4(1+cos mh). (5.14)
min

¢ Since the eigenvalues of A are dense 1n the interval [a,b], for sufficiently

small h, 1t 1s not inapprdpriate to define Q as the single interval [a,b].

The 1teration parameters for (1.2) are therefore defined by (1.4). Using

¢ 12
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8k, POLYNOMIALS WHICH DEVIATE LEAST FROM ZERO ON
DISJOINT SUBINTERVALS OF THE HEAL LINE

For the general case, when
.

n

Q = U [a,, a. (4.1)
§=1 2i-1, 2i

C with a, <a... (1=1, 2 ..., 2n-1) and Of [ans 1» 8,4] (i=1, 2, .... n),

Lebedev used a method of Markov [14] to construct the polynomial

P(t; Q), with P.(0; Q) = 1, which deviates least from zero on 2.

“ The construction hinges on the validity of the following assumption

which amounts to a restriction on the way in which the a; (i=1, 2, Co 2n)
are chosen.

“ Assumption: There exists a polynomial Q(t) of degree nm,

with leading coefficient one and Q, (0) = 0, which maps all of the

intervals [ass 1 8] (i=1, 2, . . . .n) onto one and the same interval

. [my, M], with nM > 0, and which maps the ends of [ans 15 8,5 | onto the

ends of [m, M]. Further Q, (t)must be amonotone function as each of

- he intervals [a,; 1; } which varies from mto M or from M to m.

“~ Let M.(7) €[ ] (1 =1, 2 n) denote the roots ofi “21-17 %2i SE
the equation

Q(t) = T (4.2)
“

for 7€ [m, M]. Then, the required P(t; Q) is defined in terms of
(4.2) using the following sequence of steps:

“ (1) Let N = jn, where J > 0 1s an integer, and set

14
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Py(t) = 5,(q,(¢)) (1.3)

ht where 55(2) is the polynomial of degree j which deviates least from
zero on [m, M] and 1s normalized with respect to the condition 5500) = 1.

(11) Observe that

&

55(2) = r,((2z - Mem)/ (Mom) )/T (2) (b.4)

where T,(e) = cos (jarc cos £)is the Chebyshev polynomial of degree j,
and

Zq = -—(M+m) (M-m)" , | 24] > 1. (4.5)

& oo ~
(111) Since

J

T.(z) = II (z-2;) y 23 = COs ((2i-1)n/23) , (4 .6)

it follows that

J (t) = =,

p(t) - II [2 (4.7)
& i=1 Ti

where

) Ty = £ (Mm + 7; (M=m)). (4.8)
&

(iv) Using the definition of n,(s), it follows that

w - on (fg er (1.9)
N i=1 s=1 \ 1 (r,) i=1 s=1 MstTy

which 1s the required Py (ts Q) [see Lebedev [ 15; Lemma. for the proof].
|

15>
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Thus, the actual construction of Py (ts }) and the required ay

(k = 1, 2, . . . . N) involves the following steps:
«

1. On the basis of the restrictions contained within the Assumption,

construct an 8 and a corresponding q(t).

& 2. Set N= jn, where j 2» 0 is an integer, and determine all

the roots ngs) (s =1, 2, . . . . n) of the polynomials

Q(t) = m4 (i=1,2....79

|

with the 7, defined by (4.8).

3. Then EMH Q) is defined by (4.9) with the roots

=| - . : .

¢ a, = (mn (r;)] (k = (i-1)n+s), 1 = 1,2,..0.,5J, s=0,1s0..,0n=1). (4.10)

In order to apply the results of §2, it 1s first necessary to determine

. (pq 5 Pos oe oy) which corresponds to the on arranged 1n descending
order of magnitude.

Since, for the case n = 2, Q(t) = t(at+b) is symmetric with

“ respect to the line t = -b/2a, it can only be used to generate the

required transformation for {) = [as a, ] U [as 2) if

“ 8p =8q = 2), =83 = const.

. Hence, given that o(A) € D = [by5 b,] U [bss by 1s it is necessary to

examine the optimum choice of the a, (1 = 1, 2, 3, 4) for this D.
|.

All the possibilities are examined in detail in Lebedev [15]. Ve only

pause to examine the case which covers the problem to be considered in

85. For this problem, we have a -a; = oa - 8 5 n = 2 and N even.
“

Thus, we can use the following explicit expressions for the 0 of

16

“



(4.10) which Lebedev [15] derived using the properties of Q(t):

N a, = fern +21, o = fel +PIETY (x = 1,2,...,5) (411)2k-1 k » Yok T TETLTE Creed)

with 7, defined by (4L.8), M = -a,8)5 M = aya, and c = (aytas)/2.

&

.“

.“

|

“

.

.
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§5. AN APPLICATION WITH THE SPECTRUM ON
TWO DISJOINT SUBREGIONS

In this section, we examine the use of the Lebedev-Finogenov

.

ordering for the solution of a positive definite sparse matrix A with

its spectrum contained on two equal-length disjoint subintervals. The

w.{1 =1, 2, .... N) of (2.1) will then be defined by the roots Bs
w =

of (4.11) arranged in descending order of magnitude.

We do this by examining the following problem: on the unit

square S fwe use the notation of §3}, use finite difference methods to
| —

construct a continuous function u = u(x,y), (x,y)€S, which satisfies

24 3%u
| <2, ~ + alo) u = gx) (5-1)X

. o) y

and the boundary conditions (3.2) and (3.3). Following the procedure

of §3, we introduce the grid G and the differencing (3.4) and (3.5).

~ This yields the following finite difference scheme for the determina-

tion of u = u(x,y)on the grid G:

AV... + hq v. +h 9. =0 (4, 3=1,2 ....11 (52
“- hij sRR By 1] ’ rot

"along with (3.7) and (3.8), where BV; ; is defined by

~ Av, =bv,. =v, . =v, = V, = V, (5 -3)h ij ij ij-1 i j+l i-1 J i+l J,°

For the solution of this difference scheme, we use the following

“ generalization of Richardson's non-stationary method (1.2):

18

“



(k+1) (k) (k)Ba = - - 1 !, Wy.~ ou a, (Cu A) (oh)

where the @, are now the reciprocals of the roots of the polynomials

which deviate least from zero on the spectrum of BC.

We denote by v {and gl the vectors obtained by ordering the
“ Cs

elements Vi 5 fand 8; 4} (i, J = 1, 2, « **, I-1) in the following way:

v, =Veeo k= (3-1) + i(1-1) (j=l, 2, . . . . 1-1, i=1,2, .... 1-1). (5.5)

-

Using this ordering, we can write (5.2) as

- 2 _ _

Iv +hg - b= (A +0QV +hg-b=0 (5 .6)
“ -~

where

Q = diag (9,1, 9,1, Cee 97.1%)

. ~
with I the unit matrix of order I-1,

‘A I Lh -1

& -1 A ° . .
“1h

and

;

“ b = [bysbys.m ° by]

where the vectors b, (x =1, 2, .... I-1) are all of order I-1 with

|

19
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= Pal — -_ py — T
by =log*Bys0ps sep poopy FB 5 bg = [ByHse SB Hy |]

|

and

qT

.“

Thus, the implementation of the generalized Richardson procedure

for the solution of (5.2), (3.7) and (3.8) becomes:

((1)) Set k = 1, and using the ordering defined by (5.5) set
«

M - (a, dip> dy JEG dr_1,1-1) (5.8)

“ where the 9 ; define the starting solution.

((11)) Compute

— —(0 — —

7 = 170 425 ob, R=max |r |, (5.9)~ ~ k
. k

and then

—-(1 —(0 -1-

71) 500, ro, (5.10)

followed by

=(0) _ =(1)
« V =v :

((1ii)) For a given positive value € , 1f R > €, set k=k+l

and return to ((i1)) and then back to ((iii)); if R < e, stop

« —-(0)
as Vv defines an approximate solution with the required

accuracy. The final value of k gives the number of iterations

required.

|
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Note. In (5.10), the actual inversion of A is done using one

of the recently developed direct methods which takes into full account
“

the sparseness of A. See, for example, Buzbee et al [19].

« For this implementation, the ay must be the reciprocals of the

roots of the polynomials which deviate least from zero on the spectrum

of A~1L. Since the A of (5.7) coincides with the A of (3.14%), we

“ obtain that the spectrum of a? must lie on the interval

[10°00 (@A (A) 10° (QA, (a)]]““min min‘e/ 2 “max mina’;

« iy A gn (Q) . (2) < 0, and 0a the interval

[1+070a (QA(Ws +070 (Q)/A, (a)1]

© | if aanCOR po (Q) > 0. IL, dn (5.1) and (5.2), we take

“bk (x <4 - 1/bk)
2/4.

q(x) = gy (x) — (4k) (% - x) (% - 1/hk < x <3 + 1/hk)

- +hk (x > & + 1/hk)

with @kh > 1 and I odd, then the spectrum of 27 will be on the

“ equal-length disjoint subintervals

, k Sin > - I cos =
2 h ? 2 h ?

. | cos TL -2 sin OB =
1 + k 2 | 1 + k 2

2 h ? 2 h ’

“

~ |

“
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Consequently, using the notation and results of §4, the Ps of §2

« become the roots Bs of (4.11) [arranged in descending order of magni-

tude) with

- sin TL (7H
C = # M = « l - k . eo? n h

(\

2 ff cos Ih. ~h
m= - ]l = kK ER -

L h

.

Applying the Lebedev-Finogenov ordering to the Ps (as detailed

in §2), the following two problems based on (5.1),(3.7) and (3.8) were
“ -

solved using the above implementation ((1i)), ((11)), and ((111)):

Problem 5.1. The homogeneous problem

\ 8 -— —

which has the exact solution u(x,y) = 0, (x,y)€S. Along with k = 4

“ and I = 32, the starting solution was taken to be

d; ; = 1 (i, = 1, 2, .... I-1).

“ Problem 5.2. The non-homogeneous problem with

aly) = p(x) = 0, @(y) = sin my, B(x) = sin Tx,

2, 2, 2

g(x,y) = ={m (x"+y") + a (x) sin Txy

which has the exact solution

- u(x,y) = sin Txy ((x,y)es).

22
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Along with k = 4 and I = 52, the starting solution was taken to be

“

d; ; = 0 (i,d=1, 2, . . . . I-1).

The actual numerical results-are discussed in §6.

|

|

. ~.

“-

“

.

|
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§6. NUMERICAL RESULTS AND CONCLUSIONS

Numerical experimentation with Problems 3.1-3.3 using the ordering

“ of Young [2], [3] as well as that of Lebedev and Finogenov indicated

that:

(1) Young's ordering allowed (1.2) to behave in'a stable manner

“ for small N when using the floating point double precision

arithmetic of the 1Bu 360/67 computer at the Computer Science

Department at Stanford University. This 1s easily reconciled

‘ with' Young's finding since his computations were performed

with the low precision fixed point arithmetic of the ORDVAC.

However, with the ay chosen 1n ascending order, even the

. use of floating point double precision arithmetic did not

prevent the rapid onset of instability.

(ii) For N ~ 100, Richardson's non-stationary scheme (1.2)

- behaved in an unstable manner when using the ordering of

Young. This 1s illustrated in Table 1, where we list the

errors arising from the use of Young's ordering with N = 128

“ when Problem1 was solved.

(111) When using the Lebedev-Finogenov ordering, the non-stationary

scheme (1.2) always behaved in a stable manner. This 1s

- illustrated in Table 2, where we list the errors arising

from the use of the Lebedev-Finogenov ordering with N = 128

when Problem 1 was solved.

|

: 2h
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Further support for the validity of (iii) is contained in Tables 3 and

4, Here, we list the errors arising from the solution of Problems 3.2

and 3.3 using (1.2) with the Lebedev-Finogenov ordering.

While of interest in its own right, the stability of the non-

‘ stationary scheme (1.2) for the Lebedev-Finogenov ordering raises

important practical questions. For example:

(1) Since this stability result applies to a wider class of

‘ matrices than covered by the Property A condition, do

there exist classes of matrices for which Richardson's non-

stationary scheme, with the Lebedev-Finogenov ordering,

‘ yields better results than SOR?

(11) Do there exist other orderings for which the non-stationary

scheme (1.2) 1s stable?

‘ Though answers to such questions will be of interest, the practical

importance of this result will depend on how good a method it proves

to be for the type of problem and procedure discussed in §5 (see also

‘ Concus and Golub [20]). That it represents a reliable method for such

problems is illustrated by the results of Tables 5 and6. Here, we

list the residuals arising from the solution of Problems 5.1 and 5.2

¢ using the generalized Richardson procedure of §5 with the Lebedev-

.Finogenov ordering applied to the a of (4.11) arranged 1n descending

order of magnitude to form the set (®,5 0, . ... Py)
|

¢
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= APPENDIX 1.

ITERATIVE METHODS FOR THE SOLUTION OF OPERATOR

« EQUATIONS WITH THEIR SPECTRUM LYING ON SEVERAL INTERVALS.*

V. I. Lebedev

(Moscow)

. Let

Au =t (1)

. denote an equation in a Hilbert space H with A a bounded self-

adjoint operator. Let ¢ (A) denote the spectrum of A with

Of o(n). We examine for the solution of (1) the effectiveness of

C the use of cyclic iteration methods of period N [see [1] -[3]}, viz.

k+ k

=oF a, (Au - f), (2)

L where the a, are numerical parameters such that XN = a Performing
N iterations with (2), we obtain

k+N k -1
u =P (Au + (1 -P_(A))A TT,

« N N

‘where the polynomials P(t) have the form
N

X Po(t) =m (1 - at) (3)
k=1

P (0) = 1. (4)
n

*Translator's Note. First published in Zhurnal Vychislitel'noy Matematiki
- i Matematicheskoy Fiziki 9(6) (1969), 1247-1252.
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Thus, the error e" —u- ut satisfies the following recursive formula

= p(a)e". (5)

Hence, 1f the coefficients 1n (2) are. chosen so that the polynomials of

q the form (3) and (4) deviate least from zero (PDLZ ~ polynomial which

deviates least from zero) on the set o(A), then we obtain a sufficiently

effective Chebyshev iteration method which gives for N iterations

C the maximum damping of all the errors ¢“en - {e:]]e]|< co)
The actual construction of such a polynomial, as a rule, does

not appear to be feasible because either a known structure of o(A) 1s

L not available, or o(A) 1s such that it 1s difficult to construct a

PDLZ. It 1s clear that the problem can be solved in the following simple

minded way: Assume it is known that o(A)éQ where } is such that

C a PDLZ can be constructed for it, then the ay are the reciprocals

of the roots of this polynomial.

Methods for the construction of iterative methods (2) with

“ Q = [mM] and mM> 0 are well known [see [1] - [3]}. In [4], the

choice of the ay withN = 1 1s based on a conformalmapping proce-

dure when o¢(A) belongs toa set in the complex plane and the

{ complement of Q 1s a connected region. The case, when (0 consists

of the region [m, M] with mM > 0 and a point A > M, was examined

in [5]. Methods for the construction of PDLZ on two non-intersecting

regions, with the coefficient of the highest term unity, were developed

in [6]. We note that, when these two regions lie on opposite sides of

the origin, the polynomials found in [6] can not be always used a: a

C basis for the construction of PDLZ of the form (3) and (4). -
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In this article, we examine the construction of PDLZ of the

form (3) and (4) when Q consists of n intervals of the real axis.
.

We make no assumption about whether A 1s positive or negative.

Case 1: n > 1. Let

n

=a = Ula; al,
i=1

where a, < ag, (i=1,2 ..., 20-1), of la,15 85.) (i=1, 2, ..0 , n).

“ In addition, we require that the a, satisfy the following algebraic

condition: there exists an n-th degree polynomial Q(t), with

leading coefficient one and Q, (0) = 0, which maps the intervals
“ ] T= *

lay; 19 a,] (i= 1, 29 .*a , n) as a whole onto one and the same

interval [m, M] with mM > 0 and maps the ends of [ay 12 8,1 onto

the ends of [m, M]. We denote by n,(r)ela,, ;s 2, (1 =1, 2,

\ +++ 4 Nn) the roots of the equation

Q(t) =T

“

for T€ [m, MJ]. It is clear that Q,(t) - (Mtm)/2 is a PDLZ on
(0) with leading coefficient one. It follows from this, that the mod-

ulus of Q(t) - (Mtm)/2 takes its maximum value of (M-m)/2 on Q
o

and that 1ts sign oscillates with respect to the following n+l point

of Q i ay 85, 85... By {see [T7]}. Below, we require the fact

. that Q(t) is a monotone function on each of the intervals (ay; 1 a4]
which varies fromm to M or M to m.

For the construction of the FPDLZ, we make use of a well-known

method [7), which is used in the actual construction of the polynomial
«

. A-3
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and in the proof that it 1s the required polynomial. Let N = 7n,

where J > 0 1s an integer. We set
“

Py(t) = 5, (q(t),

where 54(2) is the PDLZ on [m, M] of degree Jj which is normalized.

with respect to the condition 5,(0) = 1. In fact, 8,(2) satisfies
the following explicit expression [7]

where T4(8) = cos J arccos g 1s the Chebyshev polynomial of degree
j and z5 = -(M+m) (M-m) 1, EN > 1. Since

'. —-

J (2i - L)m

T(z) = 1m (z = zs) zg = COS ——pT— ,
i=l

\ it follows that

J (t) - 7,

P(t) = (Sf (6)i=1 Ti

where
“

Ty = 1/2(M + m + z, (M -m)). (7)

We transform (6) to obtain
.

J on /ft-n (1) J n t

P(t) = mn Mm [—2 =n n Gyo . (8)i=1 s=1 gly) i=1 g=1 n(Ts)
Let

|

E. = E(Q)= max |w (t)],
vox t€qQ

« where w, (t) 1s the PDLZ on Q of degree N which is normalized with

respect to the condition we (0) = 1.

A-4
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Lemma. Among all polynomials of degree N which are normalized

with respect to the condition (4), P_(t) defined by (8) is the PDLZ
_ -- --stYemeneT TTTTTTTTT_T—_,|—_—_—_—_—

on  .

For the proof of the Lemma, we note that P, (ft) attains, with

respect to its modulus, a maximum on § which equals 7,20) 7 and
has an oscillating sign with respect to the following Jjntl points

Q, of I : 84.1 (1 =1, 2, .a* , n), 8 and (J-1) internal points

. on each of the intervals [a,:;, py] (i=1, 2, . . . , n). In addition,

Pe(®si41) = Pyleny)s 1-12... 0-1 (9)

| We assume that P(t) and not P(t) is the PDLZ. We examine theLo. -—

behavior of the polynomial

p(t) = Bult) - P(t)
\

with degree less than or equal to N. It is clear that

oy (0) = O. (10)
..

On the other hand, ey (t) hh arges sign at the N + 1 points of ,

) i.e., ey (t) has no less than N roots on [a> IP and we conclude,

N as a consequence of (9), that not less than N roots of y(t) lie

in € . Taking the degree of y(t) and condition (10) into account,

'we obtain that oy (8) = 0. The resulting contradiction proves the Lemma.

Comparing (3) and (8), we see that the 0 of method (2) must
take the values

_ -1

“
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with Xx =n(i-1) +s (i=1, 2, ..., 3, s=1, 2, . ..n. lence,

LCI (CON [CONE SDR CN NGS = 0),

k+N k

and thus, |le || < lo |le”]|. This leads to the problem concerning
. the existence of implementations of (2) for which the strong accumu-

lation of rounding errors does not occur. 'We note that, for n = 1,

we obtain Chebyshev's method for one interval.

\ Case 2: n=2. If the above assumptions regarding hold,

then for n=2 they imply that a=a; = a), "az = h. Let

—_ / —_ -

R oc CH tag )/2 , hy (a5 a,)/2 ,

then

C Q,(1)= t(t - 2c), Mo= =8,8)5 M = "8,35 (12)

24 = ~(a a; - aya, )/ (a), "8 8);

—_ - 2 -1 2 -1 . «
- ago “Ler V (ry re) Tay =o ~~, +c), (i=, 2, crs de)

) We evaluate 1T5(z0)]. For this we put ty = (1 + z4)/2 Calculating
| tos we obtain“

2 -1
ty = (1 - 8,25/88) ) |

~ Trerefore,

\ = punting )

“

A-6
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and hence, for ty > 0, we have ty > 1 and

« BE, = 2f[t, + y(t."- 1)19 + [t Vie? - yaad

t..
and for 02 = —p2 < 0, we have -

t 2 J 2 J~-1
Byo= of(0° +1)+ pl Y + WP + 1) = p10)

For J >» 1 and n = 2, we examine the following problem. Assume

w CL

it is known that o (A) €D = [by b,] U [bs by, ] where b, < b, < b, < by,

OD , and let 1, = by = bys 1, = b - Ps and A = 4, - 4,. How is the
set chosen so that the modulus of Z is a maximum?

.- Let bby > 0. It 1s sufficient to examine the case when
b, ~ 0. If A> 0, then we put Ly = by and ay, = b It is neces-

sary to imbed [ b . y by J in an interval la, a J of length L). _—
‘ toliow 5 from (12) that for Q it is necessary to take the set

.

If A <0, then we put as = by » 8 = b and imbed [by> b, J in [a,, a,] .
From (12) it follows that

« a = [by, by = AlUlbg, bl. (15)

In this way, if Q , defined by (14) or (15), is simply connected,

then it is best to apply the Chebyshev method for [by by, 1. If a, < a, ,
Ll 7)

it 1s easy to see that the examined method converges more quickly than

the cyclic method (2) for the interval [by on with period 27.

“
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Let bb), < 0 and without loss of generality A > 0. We put

C a; = bys a, =b, and imbed [bs by, ] in [a a 1. From (12) it follows
that

Q = [bys by Julby b), + INE
«

Now, we construct a PDLZ on D of the form

: 2

P,(t) = 1 + 2at + bt. (16)
|

Then, for N = 2 and ¢ (A) &D, we have for (2) that

_ 2

9,2 - —a +a = b).
« ~

As a preliminary, we introduce the notation

. -1

ox, ¥y, 2) = =(x + y) (x(y +z) + 2(y - 2 =.
~L

v(x, vy 2) =2(x(y + 2) + 2(y ~ 2),
2 21-1

By, 20x v5 2) = =2(x + y * Vix - 2)" + (y - 27D),

. v(x, ¥5 2) = |(y - 2) (z - x) (x(y + 2) + z(y - 2)) 7}.

1. Let b, by, > 0 and, without loss of generality, by > 0.

) Then P,(t) will be a PDLZ, if, on D, it attains on three occasions

“~ the maximum modulus value with changing sign. We actually construct

such a polynomial.

a. If by, > (by +b) )/2 or b, < (b+ by, )/2, then, as is easily
verified, the PDLZ on D is the same as the PDLZ on [b> by, 15 i.e.

_ -1

oy» =2(by + by + (by, -b))NR)
2 2 -1

« E, = (by, - b,) ((by, + by) + kb b,) :

| | | A-8
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b. Let b, < (by*b),)/2 and by > (b,+by)/2. If A > 0,

then the points of oscillation are by b, and by,
& o

Wc tind from P,(b,) = -P,(b,) = P,(b),) that

a = (by, b), 5 by)» b = ¥(b,, by,» by) 5 2 5 _87 o(by; by, » by)»

- (b., b,, b.)By = yiPys By» 05).

For A £ 0, the points of oscillation will be the points bys bs and
& : = -n —by, - We find from P,(b,) B, (b;) P5 (by) that

& = _

E, = v(by5by 5b;).

For the examined case 1, the results of [6] and [8] on the con-

« struction and evaluation of PDLZ of higher degree are applicable.

In particular, 1in [6], the explicit form of the polynomial of third

degree 1s presented.

. 2. The analysis of the case b,b), < 0 1s somewhat more 1nvolved,

since the system Bt (k =1, 2, .... n) does not satisfy the Haar

: condition on [0,50] {see [9]}. Initially, we note that E, <1, i.e.

“ the maximum of the modulus of the PDLZ 1s not attained inside D,

but is attained on the ends of the intervals [,,b,] and [b5,b),] :
Let A> 0. We construct P, (t) under the assumption that

.- -P, (b;) = P,y(by) = By(bg). Then a = o(by,b;,b)) and b = ¥(by,b,,b,).

The deri-rgtive of P, (t) becomes zero at the point (b+b, )/2¢D, ence,
P(t) attains its extreme values on D at tt = bs (Lr =1, 2, 3, 4)

“- with P,(b,) = Py (bs) > 0. As a consequence of the symmetry of P,(t)

A-9
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with respect to the straight line t = (b, +h )/2 and A>0, we have
|P,(b,)| <|P,(b;)|. We show that P,(t) is the PDLZ. In fact, if

a“ 3
it 1s not P, (t), then let 1it be E,(t). Then the second degree poly-
nomial

. 0, (t) = By(t) = EB, (t)

changes sign on [5b], and hence, there exists a zero of 0, (t)

« inside [by,b,]. On [b,b.] the polynomial 0, (t) has two roots, since

it has the same sign at the ends of [b, 5b] and 0, (0) = 0. Hence,

p(t) = 0. The resulting contradiction shows that P,(t) is the PDLZ

“ and that .

« Analogously, 1f A < 0, then the PDLZ on D is determined by

1.e.

. a = ¢(v,,b,,b,), b = ¥(b,,0 2b) ) 5 Yo = Bo (bysb,50), )

E, = Y(b,;by 50), )

“ We compare the examined method with two known convergent itera-

tion methods with b,b) < 0. The method

k+1 k 2
ut ou faa - 1), (17)

“~

where oF 1s a constant, has each iteration defined by the operator (1%).

We assume that Rh 1s calculated for each iteration by multiplying
“

A-10
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u twice with A. Analogously, the method [10]

k+1 k k k

. uw t= wy (<1) aan - or) (18)

has every two iterations defined by the operator (1 -20°D ). Com-

paring (17) and (18) with (5), we see that for the same number of
(8

operations the methods (17) and (18) guarantee a lower rate of con-

vergence when either A 3 0 or A = 0 and |b, | i |b, | .

Finally, we note that the examined iterative methods allow
“

problems of the following kind to be solved: Let the selfadjoint

operator B have eigenvalues As such that either A < A < LL.
< < << LB BN J | I BN J eo 0° 8

o She SA Serr SRO A2hZee 20 ZT MyZeer 2B

It is necessary to solve Bu - wu = f for Ae < Kk < Merl by the

iteration method (2). For example, such problems arise when eigen

“ value and functions are deternined by a method with shift [2] .

. Received by the Editors: 24.05.1968.

“-

-

-
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“ APPENDIX 2.

ON TIX ORDER OF CHOICE OF THE: ITERATION PARAMETERS

IN THE CHEBYSHEV CYCLIC ITERATION METHOD.*

“

V. I. Lebedev and S. A. Finogenov
(Moscow)

“ A solution is given for the problem of ordering the
iteration parameters 1n a cyclic iteration method**
which can be used to solve Au = f£. This solution

guarantees a computationally stable form for the
method.

“ -

in the 1950's, when it was proposed that the equation

(1) Au= f

-

be solved by cyclic iteration methods [1-k]

k+1 k
(2) w= dF. oo(aut - fy,

“-

with the 1teration parameters on Co = a) related to the roots

of" thr Chebyshev polynomial:;, it was noted that, when solving (1) by

such methods on a computer with a finite word length using fixed or
“

floating point operations, one can estimate, for poorly conditioned A,

te loss of significant figures in the intermediate and final results

(1n wt), and the resulting significance of the intermediate calcu-
-

lations with respect to tne 1nitial accuracy of the data. Marked

—

Translator's Note. First publishedin Zhurnal Vychislitel'noy Matematiki

i Matematicheskoy Fiziki 11(2) (1971), 425-438,
¥x

“- Translator's Note. In fact, Richardson's non-stationary method.
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C

instability has to a significant degree blocked the wide application of

these methods. It can be shown that this instability depends heavily

~ on the order in which the iteration parameters a) arc used.
In [3] {see also [5] and [6]} some proposals regarding the use

« of the oy have been given; but, as we shall explain, they do not
eliminate but only reduce the instability within the method. No other

investigations of this particular problem are known to the Authors.

In this article, we are given an ordering for the iteration parameters

a which guarantees a computationally stable implementation of the
method.

« We shall assume that (1) is defined on a Banach space B,
that u,i€B,and that A 1s a bounded operator which maps from B

into B and has a complete system of normalized eigenvectors Pp

« which correspond to its eigenvalues A Let o(A) {the spectrum of A}
lieon the real axis, and m and M denote 1ts exact lower and upper

bounds with 0 < m < M.

« Let e® = pou and N > 0 be some fixed integer. Then, in (2),
the sect CIEL 2 1s a permutation of the set (V15vs0 . svg) where

(2i- Lm -

(3) Yi T° 1+ m= or meer) ’ 1 =1, 2, .... N.« 2N

.The one-to-one mapping between (a) ays Ca oy) and (V1 5¥ps voy)

1s defined by the permutation

~ Ei COILVR

with oy = Vi

.

B-2
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Let N belong to some increasing sequence of inte;ers fn, } for

which the permutations ny are defined. Our problem reduces to the
i

determination of a permutation ny which guarantees a computationally

stable implementation of' (2) for small x/1 and Nef, }.

Perf'orming ©N iterations with (2) using exact arithmetic, we
“

obtain that

N 0 -1

u” = Pe(A)u” + (I - P(A))A °F,N

where the polynomials P(t) have the form

N T (M+ m= 2t)/(M - m)]
' P(t) (1 = oy ,

7, (8 )
k=1

with M+ om
T (tt) = cos(N arccost), pg = —— > 1.
N M-m

|

Let

. N
i

N

. rN) =f] (met) gp (ER) = | | (1 - at).wii

j=i+1

j=1 :

T.on the errors ¢ (k=1,2, . . . . N) satisfy
“

k N 0

(4) e = R, (A)e™,

| and 1f

| 1. Le

€ = : €n Pp
n

- B-%

.



then we obtain that

| k _N O
‘ (5) «© = Ry (A, )e

Real computations on a computer,. which has fixed or floating

¢ point operations with finite length words, are executed with rounding

error as a result of which errors arise. This fact can be taken into

Co aL k k
account if it is assumed in (2) that u + h 1s written instead of

‘ uk, where nk 1s the error added to of during the calculation of
k+1

u . Independent of the actual rounding procedure on a given computer,

k
the nh can be interpreted as the result of errors which arise as a

k
¢ result of the rounding in the computation of u and in the final

k
result. The hn can be correlated among themselves.

Instead of (2), we obtain

‘ k+1 k k k k
(6) wT o=uw +n - a(Au + nT)- 6)

with

¢ k-1

| N i k
i=1

¢
11

kK k © 3
no = My n

' n

then

k-1

N 0 k i k

(8) e Kora e O- YC ofa nt on
¢ J

i=1

B-4
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C

We now examine two reasons why the iteration process (2) loses

computational stability and the accuracy of the approximate solution
-

of (1) 1s reduced. Our optimal choice of My is based on the removal.

from (2) of situations of this type.

Let

&

N N N

(9) gq; = max lq, (t)|, rr.” = max IR. V(t) ,i i i

mM mt

N_ NN N _ N N N
.“ (10) tsar, gq = max qs r’ =max r, .

i i

The first reason: The loss of significant digits in the inter-

. mediate iterations (with k < N) which results in the loss of accuracy

in the final solution and in the growth of In| or the accidental

stopping of computations due to computer under or overflow.

. The loss of significant digits will occur when [u¥| >> |u| with

1 <k<N and N 4 =. This is equivalent to the condition

k

supl||e | > [|u| as N + ©, . & {N.} .
. k 1

Taking (4), (5), (9) and (10) into account, we see that a substantial

. k

loss of accuracy due to the growth of |ju'|| does not occur for initial

. data which satisfies |g] <C,, if

(11) fl <c,,

- where Cy is a constant which depends on m/M but not on N.
The second reason: The growth of the quantity.

N ky, k

. supl|@. (An |l/[n)l as Nn +=, NEN],
k

B-5
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which characterizes the instability in the computation.

C Taking (7), (8), (9) and (10) into account, we see that the cal-
culation will be stable with respect to permissible error, if

N .

(12) q < C35

where C3 is a constant which depends on m/M but not on N.

Thus, conditions (11) and (12) insure that a substantial loss

. of accuracy in the final solution 1s avoided. In fact, they represent
necessary conditions for the stability of any real implementation of

(2) on a class of initial data which satisfy [|e] < c,. Sufficient
conditions for the stability of such an algorithm depend on the method

and order of the implementation of (2) and the type of rounding used

as well as (11) and (12).

CL N N

« Initially, we examine the character of r and q for the
simplest permutations; viz.

N N

ny = (1,2,...,N) or My = (N,N = 1,...,2,1).
|

As a preliminary, we 1ntroduce the notation which will be used

] in the proofs of the Lemmas:

¢ 6=6-1, A=8/2, 8, =(2k-1)n/on,

z=M+m-2t)/ (Mm).

& Lemma l. If corresponds to the permutation m N then

| B-6



(3-N)/2

1 + — 1 + — <
cos” (r/U4N) cos [(2N - 23 - 1)/4N]

J=N
N - A

Sg < {ld—m—
J cos“ [x (NV - J)/4N]

Procf. It follows from the conditions of the Lemma and (3)

that o = Yio It 1s clear that
.

max |1 - a, t| = (1 = or, In) <1 (k>VN/2),
m<tM

| N _ _N

'e and hence, a5 ~= Q (m) for j > N/2.
We now prove that for j < N/2

N N N

& m<t<M

in order to do this, we examine the function

N-3
a

“ v (0) = cos - cos—— (2k - v) =2N

k=j+1

N/2

“ | th TT

= (coz - cos — (2k = 1) cosp + cos —— (2k = 1) J] =Ili \ 2M oN

k=3+.

N-j

= sin [@ + —— (2k - 1) :
2N

k=3+1

- where cosgp = 2.
B-7
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Let 9 = \P + ni/N, where 0 <P <q/N, 0<i<N/2-1, then

N-g+1i

13 i

v (p+ — 1): sin $y + — (2k - 1) =N 2N

k=j+i+l

N~j N=-j+1i
| 1 Tm

= sin (P + — (2k ~ 1) sin {PY + — (2k - 1) .
2N 2N

k=j+1+i k=N-9+1

But

N-j+1 B
ui

sin {PY + — (2k - 1)) <
2N

k=N-j+1

Cy Jt

< sin {P + — (2k - 1) ,
1 2N
k=j+1

‘ and consequently,

“

V + — 1 < v(¥).\h

Since v (¥) attains 1ts maximum for P= 0 and differs from 0. (4)
: J
.

only by a constant factor, 1t follows that

N N N

aq; = max |Q; (t)| = Qs (m).
m<t<M

B-8



“

But

N

1 - cos[n(2k - 1)/2N]

“ a)" (mn) - | —| 8 - cos[n(2k- 1)/2N]

k=j+1 |

“ 2 -1
.

N Lt ~
| sin [m(2k - 1)/4N]

| k=j+1
.“

N-]

2 | _1
A

= | Lt ———————1 x. I§ cos [m(2k =~ 1)/4N] }
k=1

-1

| A )
. Xx J1 +EE — <{ cos [n(2(N = § - k) + 1)/4N] . -

N=]

-1 Jj=-N

< A A

— 1 + — = 1 + —
cos” [n(N - j)/uN] cos” [m(N - j)/uN]

. k=1

|

On the other hand, N-j)/2 _1
N A

|Q (m) | > 1 + 5 ¥
cos (m1/4N)

.~ k=1 1

X 1 + — 5. i =
| cos“[m(2N - 2 § -1)/4N]

| (3-N)/2 j~

“ A / ) \ N)/2
- 1 + - 0°. : 1 + - °_ , : :

cos (m/4N) | cos” [m(2N - 23 - 1)/4N] J

“ B-9



Lemma 2. If ny =m, ,A = m/(M-m) < 1/2 and i <N,(N) =
O 2 , (2N/m) [(1 - 2)/21% , then

. 3 5 5 1 + 1/2
N ~ mo UT L-m@E + DYae

_ 16| _ A+ n (ei + 1)5/16F
|.

Indeed, under the conditions of the Lemma rN = IR," (1) , 1f .
2\ 1%

21 = 1 < (2N/n1) arc sin [(1 - A7)I]E

| Noting that

2

1 + cos By 1 - (A /2)7
—5, ~4——{(8,/2) — > 1 when B,< Yiz2@ -4)],
6 + 2sin”( B,/2) k

we obtain that
i i

2
l + cos B 1 -x

§ + 2sin"( B,/2) A+ ox
k=1 =

where

By 2k - 1 TT
T — E — ee i < N.(N).x 2 2N 2 0

« But

2N

a

. B-10
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where

i Le Bil LLP

A + X 2N A + x

k=1 Bi

1 =x X Bi+1
= { x1n— * 2 arcsin x - 2/4 arctg —— >

p+ X Va
1

L-xt al (Byyy - By) By Bay
A+ x 8

1

“

At this stage, we make use of the inequality

} 2 2

/ x \ la B, Bii1( By ~ By)+ . .

Va :
B1

. and obtain i+1/2
. 2

. ON 1 - (m(2i + 1)/4N)
Tr; > exp -— 4 > 2 X

- a + (m(2i + 1)/4N)

1/2| 5 =

.- A + (m/4N) om)x || (1 < 3A.(N)) .
2 - 0

1 - (n/4N)

“ It follows from Lemma 2 that,for small A and large N, the

values rt grow strongly for i < No (NW) : Since the quantities
nN

rN and a for the permutation Moy correspond to the quantities
Qos and res for the permutation ms it follows from Lemmas 1 and

B-11

|



2 that

_ N
Corollary 1. If x, = mn , then

J/2

1 + l + — <
2 2 : —

| cos” (n/L4N) cos (n(2j — 1)/4N)

J

N :

<r, Ss Ht 5 (1< J <N)
- | cos” (mr 3/LN)

.

|

an

1/2 N-j+1/2po .

N N . | [2 - (mW) - rT - ofa, = At == nea) 1 1)

J | 16N~ | | a + (m/4N)° (2 (N - J) + 1)“

for § > N - N,N).

Let N = 2n. We examine the permutation

> N
my = (n, ntl, n-1, n#2, . . . . . 1, 2n).

Noting that T,,(2) = T (T(z) and using the above results, we see that
“

Ca k+2 k 8
(15) EO Sr RE

(M - m)(26° - 1 - cos B,)

-~ k
x((M + m)T - a) (Au - f), k=0,2 ....2.

N N N

Hence, the functions Ros (t) and bs (t) for ms are equal to the
N/2

_ functions RY (t) and 0, V3 (t) for the permutations n, WA applied

B-12
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to the cyclic method (13) for the solution of

.- ((M + m)I = A)Au = ((M + m)I - A)f.

N N N _

Therefore, for £03 and % corresponding to UES the inequalities
of Corollary 1 are valid; viz.

| 8

5, . i/2
cos (m/2N) cos” (m(2j - 1)/2N)

“

N by y
S Thy = 1+ 5 (1 <3<nN,

cos (m j/2N) 3

1/2 N-j+1/2| i 2 2 2 JT
“ : - 1 - (n/2N)"((N- §) + 1)

I I >
J a b, + (n/2M)°((¥ - 4) + 1)

for 23 > N- Ny(N) where & = 6% - 1. The permutation which corre-
N/2

sponds to Tq 1n an analogous way 1S

N

m =(n, 1, 2n = 1, 2, «.., n+ 1, 1).
&-

In this way, we see that, when using the permutatianps mn and

; ml in the exact iteration process (2), the | |u| are suitably
k

located on the real axis, and |e || in (7) is constantly decreacing,

but that the error due to rounding can grow strongly. These permuta-

tions were proposed in [3],[6] - [7]. For the permutations my and

. m,~ the norm of the initial errors decreases for subsequent iterations,

however | {u®| | can grow strongly and this can lead to the growth of
k

|In"]| and further to the accidental stopping of the computations.

-

- B-13
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3

Let Ne feb, p=20,1, 2, . ..}. For this (ase, we construct a

permutation for which
“

(14) <1, No Cc, -

We define a recursive procedure for the construction of the permu-
“

tation x forN = 2° which insures that (14) is satisfied. For N = 1,
N

the solution is obvious. For N = 2871 with p-1 < n, let the required

| permutation be
.

2 2

then the permutation of order 2F is defined inductively as

(15) "oP = (3 Pb 1-5,5.,2P +143 2P +1 - ; )1°? 1° 22 0? J p-1° J p-1 .
o Wve & 2

|

putting p = 0, 1, 2, .... we obtain the required set of permutations.

For example, for N = 16,

ne = (1, 16, 8, 9, 4, 15, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11).

Below, we shall shot. that for this method the ordering is such that the

.

operators (I - A) with large norm are uniformly distributed among

‘the operator,. which decrease the norm of the error.

We explain in a different way the mentioned procedure for the

construction of yu n- In order to do this, we put P(t) in the form
2

.

] B-14
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T (2) oT (z) - 1 T..,.(z) = cos ¢
N _ N/2 _ __'N/2 1

. P(t) co ————==.N2 = 1- 1 -

Ty (8) 2T w/2(8) Ty/o (6) cos 0,

X —o>»

“« Tyo (0) - Cos 0,

where

. 0, = n/k, 0, =m =O,

(1)
We assume that the roots of the polynomial ry (z) = Ty/o - COS oq

“ precede the roots of r, (1) _ Ty/2 - COS 0, In a similar way, we replace
each of’ the polynomials r (3) and r, (1) by the product of two, {for
example

) - - COS - g./2

1 SL 2?- - cos(m ~ o,/2))(yy, (8) = cos(ay2)(Ty, (8) = cosln = oy

and again we assume that the roots of r (8) precede LN (2) Ne con-—
tinue this process and determine by this method a sequence of roots for

] cach r (4) (i = 1, 2) up to the point where the degree of the poly-
« nomials r (1) become equal to one. As a result, we obtain a permu-

tationx . Observing that the roots Xs (1 =1, 2, «++4 k) of the
N

equation T, (x) = Bg satisfy

- 2(1 = Ln ) 2(i - 1)m
X, = Mn COS EE —— YE) - 0 ) sin ——————(i = 1, . .)) kj,1 0 0 >

k k
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o

where ay = COS (y/k), y = arccos Bf, it can be shown that this permu-

tation ae coincides with the permutation (15).
“

Before estimating rand & for the permutation (15), we

establish a series of subsidiary inequalities:

a. If e=1+ 6, §> 0, then
“

12(12 = 1)

(16) T.(g) > 1 + i%6 f—————— § .
1% = 6

“

In fact,

2 i i

21,(8) = (8 + V (6° - 1) + (8 - V (6° - 1))* =
| - ey

[1+ (6+V28 +67) + [1+ (6-6 +28))% =

i(i = 1) 5
| =2 + 2i§ + ——————————(46 + U7) +...

- 2

5 i7(17 - 1)¢
ee + 2iy + —m—o

3

-

b. IfO<w<m/2, n>2, then

. 2 . 2

sin” (w/2) + TH sin" [ (mr - w)/2n] + pe
“ (17) ER

cos (w/2) cos’[ (nm - w)/2n]

. 2 2

sin” (w/2n) + ye cos” (w/2) + TY
- S73,2,

cos” (w/2n) cos” (w/2),

where pu, = T,(0) - 1.

-
B-16
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The inequality (17) is established once we show that

w T= W W

- (18) tg — tg————> tg — ,
e ’n 2n

he sin™[ (mr - w)/2n]

“ cos (uy/2) cos [(m = w)/2n]

=

f——————— > ——————— +
“ cos [ (nm = w)/2n] cos (w/2) cos (w/2n)

sin” (w/2n) bo
f 2 2 )

o cos~ (w/2n) cos” (w/2)

For a proof of inequality (18), wc replace w by n/2 - o 1n

it and obtain

- o o n/2 + « n/2 - «
(20) cos -—— - sin —} sin ——— cos —@™ >

| 2 2 2n 21

| o o m/2 - « n/2 + o
“~ > fcos — + sin — s+{—— cos

2 2 2n 2n

Transforming (20), we obtain

~

x o (ai ov
cos —— =~ sin — sin—— + sin — >

: 2 2 2n n

“ o o al o
> fcos =—— + sin — sin —— - sin —1} ,

2 2 2n n

~ B-17
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which yields

oY o 04 i

. cos —— sin — > sin- sin — ,
2 n 2 2n

and thus,

“ sin(o/n) o
(21) Ts eg

sin(m/2n) 2

C We note that for ¢ = 0 and ¢ = 5/2 the inequality (21)

becomes an equality. However, since tg(o/2) lies above and

sin (¢/n) sin *(r/2n) lies below the line y = 2¢ /m on the interval

C (0, m/2), it follows that (21) must be satisfied at any interior point

of this interval, and consequently, that (18) is satisfied.

Inequality (19) is equivalent to the following inequality

“

Hk 2 Toa > 2 9 op TM = @
(co) ———_ sin ———— Q———— = sln —— cos mm |

Hy 2n cos 2n 2n 2nAY

> C08 ——COS ——————= sln —— COS — .
2 2n 2 2n

We show that (22) holds 1f the following 1s valid:

L mo. Ww

__nk sinc_ - sin — > cos w .
Moe 2n 2n

&

Since po|u, >n”, the last inequality follows from

2 m =
. (23) n- sin -- sin ——> sin qo,

2n n

B-18
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11 ow = m7 .. - a. This lnequality is valid, since f'or « 0 the in-

. cqualii ty (v4) reduces to an equality, and since the derivative with
respect to o of' the left hand side 1s always greater than that of the

right. In this way, we have established inequality (17).

C Bemma . If ny is defined by (15), and
J J. J

N~-1-=2 Loe, 40 ,

. > . > > . < -where J, > 9; Js > 0, 1<t< log, (N-i+l), then

t -1
NE

. ye (N - 1). < 2(1 + . < SS— .

35 = ( Todi (8 < {1 ) A
L i=]

Proof. It can be shown that

C
T 5.(z) - cose T {,) -cosJj1 20 S

(24) a = max RE 2 v= Ce Cam<tM | T,jy(0) - cosg, T, jp(6) -cost,

T ;,.(z) - cosgTodt
' a edt tv ,

Tit (8) - COS,

wiere all € Ie n/2, and hence, the ith component in (24) does not
Lo -1 233 | -1

exceed 2(1 + T 35 (8)) or, if (6) holds, does not exceed (1 +2 ~&) ~.
"But since

t 2 t

2

la; | St a; 2
A—

i=1 i=1

it follows that

B-19
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“ (1+ 2% zie) 2291 > 1 + 4 pJ1 gt4d / BF
i=1 i=1 i=1

( - 1)°
> 1+ ——1,

L C

This proves the Lemma.

« Lemma 4. If wy, is defined by (15), and

1 i i

t=2te2®4 408

“ where i, > 1, 2 Ce ee > 1 > 0, then

2 - -

N m : (i - 1)° L
(25) Ty S |——— + a l + —m—A .

160° g
“~

Proof. It can be shown that

| S

T i,.(z) - cos o.N 5k k
(26) Ry (8)] = || |——ono |,

- I ik(e) - cos 0,
k=1

. n-1 i, = i
_ o 1 _ k k+l

where all Op n/2 and C4 = n/2.2 , Tyr] = mq o- 0, /? . Yor
&

5.. 1, taking (16) and (17) into account, we obtain from (26) that
_ s=1

: T 5; (z) - cos © | T 5. (z) + cos ©: 1 1 k(27) r” < max _—=  ® max onl) cor Oy <
-1<z<1 T 150) - cos 0 |-1<z<1 I 1x(8) cos Oy

“ k=1

_ _1 c=1
2 “5 21 -1

S (te — +2 ° a 2(L+1 45 (8) ,k2 2

C k=1
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n=l
where og = n/2.2 ©. We make se of the method of estimation con-

« tained 1n the proof of Lemma 3. For i = 0 and s >1,(25) follow:

at once from (26).

For 1 . 0. taking account of' the following inequality

\

2 m 1 = 21
tg —1 7 ~—5— (T ; (6) = 1) 2 | —= ta (1 +2 7a),

2.27 Ts 275 16N™

which can be verified by means of inequality (16), we obtain from (27) that

5 -1 s y
N i 21

ro < Zz 8 (L+277k 4) <16
A

. - k=1

2 ~1 2 -1
i

< |—s + A 1 + —— A .= S
|.

In this way, the Lemma is proved.

Corollary 2. If

.

_ nr +1 : og 4

where Jy is defined by the recursive method (15), then
“ 2 -1 2 -1

N m (N - 4-1)
a; < |\—= + 8) [t+———1] ,161° s

5° -1
N

“ rs < (=e) .t

Corollary 3. If the order of the choice of' the oy correspond::

« to the permutation (15), then for k > i we have

B-21
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“

|
“ max (1 = a,t) < ro

m<t<M J | 1
j=i

- Lemma 5. If the order of the choice of the oy corresponds

to the permutation (15), then

. 16 is 16 =» 5° -1
“ 28)+t.” < — —— << — N- +6 + - (g -1) .1 —- 2 — 2

mn Ty (6) n 6

: N N

In fact, since R; (t) and Q (t) always contain a polynomial

ht of the form ~

T 5 (z) + cos (m/21 1) (i = p-1, WP== 0 m*., ny > 0)
2

“

then

n n

3] m 0N -1 3 2 2t. <2N 1 + COS—r07 Ty (8) = oN CoOs__775$40 COS_—75-
2 2 2

. But

I +0
. 5 sin(m/u) n/a" 1

c0§ ——— = —=

142 i i+2 >1] 2 m/l sin(m/27"%)  V242%in(n/2™*)
1=1

~ and hence,

N 1 16 N
t.. <——m << -
i — 2 n+2 - 2 )

- tg (n/27 7)Ty(e) mo Tye)
-
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Linge inequality (16), we obtain (28).

Lemma 6. Let oY = 5 a; Then
i=1

N ! __ -1/1nk(29) v < exp [—— + §/1lnk) §
l + §

\

N N/2
Proof. Along with v we examine vy It 1s easy to see that

-1

| T ,.(8) - 1 2

- v< (bo Suet) J? + V2 = Je l+——]<2 T,i(6) + 1
n-1

2

< 1 +— |
= - . + 1

| | T,i(6)
1=0

However,

“ n-1
- n-1 n-1

2 2 .

In ¢ + — < —< (1 + 223g) 1| T,i(e) + 1 T,i(e) + 1 |
i120 1=0 1=0

Together with this, we have

. n-1
n-1

| i, \=1 - -. > (1+ 8%)" <a +g) + [ (1+ 2%) dx<
AN 0
1=0

6 - 1nd _1
< — + (1 +38) 7,

“- 1n4

which therefore establishes the validity of (29).
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In the Table, values for ry and ay corresponding to

. uy» defined by (15), are given with m/M = 0.01.

16 16 16 16
1 Tr. oF] 1 Ts Qs

“ 1 1 1 1

1 79.8 0.418 9 27.0 0.761
2 19.6 0.423 10 5.63 0.768

3 9.59 0.432 11 5.14 0.790
“ 4 4.63 0.440 12 0.601 0.803

p, 28.0 0.479 13 /.66 0.940
6 2.68 0.485 14 1.27 0.750
T 7.98 0.511 15 2.18 0.98(
3 0.907 0.518 16 0.0812 —

-

For a more detailed study of the iteration process(2), it ic

necessary ito introduce a priori assumptions about the nature of hn,

Concentrating on the situations wiiich cause the iteration process to

.“

behave unfavorably {for example, when 1 1s larger or smaller

than m/M) and taking into account the final ordering which insures

that [n") | is proportional to 5] | for [21>] |u|» we make
|

the assumption that the errors belong to the class

K Kk od k
y D={n :n = (rk, + ko Dw, | WE] < cl,

- 0
where C, k, and k2 {for example, k, = 0 (ul) and k, = 0 (] |e 11)

are positive constants which are independent of N but depend on m/M,

~ the ordering in the computer and the implementation of (2).

Then, 1f w = zw Ps 1t follows that

N Ny 0 N
e = -n Ry Apley Yn

“.

wherc
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N-1

N \ N Ny i Ny N\ m= . k kr.“ n (ny) (ky + ots IW + (ky + kor Dw
i=1

Consequently,

Aq N
IW] < c k a. V4 x Ln— 1 i 2 i )

ASN | A
“ i=1 i=1 |

Taking the results of Lemmas 5 and 6 into account, we are led to the

k
conclusion that 1f nh €D, then the calculation is stable.

We have also examined the ordering of the coefficients oy

when the spectrum o(A) lies on p intervals, the ends of which

. satisfy the conditions of [8] {see Appendix 1}. In this case, there
exists a polynomial of degree p, Us (t), with (0) = 0, which map::

all the intervals onto one [m, M] with mM > 0. [et N = pa", and

“ wl be a permutation of the form (15). We denote by « (i=1,2,. . . . 2"2 1

the coefficients of the cyclic method of ordering for [m, M] according

-1 ’

] to uo. Now, we put A = Wg (t4)> where

“ k = (i-1)p+s (i=1, 2, ® xx, 2% s=1, 2, @ *=, p)

and the pu _(r;) are the roots of the equation

“ —

which are ordered with respect to increasing modulus.

\
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It 1s clear that the above results can be extended to iteration

methods of the following type {see [9]]}

.

ptt = mf or (An - f).
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