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RICHARDSON'S NON-STATIONARY

MATRIX ITERATIVE PROCEDURE

R. S. Anderssen and G. H. Golub

Computer Centre, Australian National University and
Computer Science Department, Stanford University

ABSTRACT

Because of its simplicity, Richardson's non-stationary iterative
scheme is a potentially powerful method for the solution of (linear)
operator equations. However, its general application' has more or less
been blocked by

(a) the problem of constructing polynomials, which deviate least

from zero on the spectrum of the given operator, and which
are required for the determination of the iteration para-
meters of the non-stationary method, and

(b) the instability of this scheme with respect to rounding

error effects.
Recently, these difficulties were examined in two Russian papers. In .
the first, Lebedev [15] constructed polynomials which deviate least from
zero on a set of subintervals of the real axis which contains the spec-
trum of the given operator. In the second, Lebedev and Finogenov [11]
gave an ordering for the iteration parameters of the non-stationary
Richardson scheme which makes it a stable numerical process. Transla-

tion of these two papers appear as Appendices 1 and 2, respectively, in



this report. The body of the report represents an examination of the
properties of Richardson':; non-stationary scheme and the pertinence of
the two mentioned papers along with the results of numerical experimen-

tation testing the actual implementation of the procedures given in them.



61. INTRODUCTION

Of the many methods proposed for the iterative solution of the
linear system

Au = (l-l)

f
o~ ~
where A is an n x n non-singular matrix, the simplest is the non-

stationary method of Richardson [1], viz.

o (K1) 2(1‘1) - ozk(AE,(k)' ) (k=12,. .., (1.2)

~

(x > N).

where ays Aoy - - - are iteration parameters with o = ¥y
The given fixed integer N is called the period of the iteration (1.2).
Though Richardson's original method was the stationary version of (1.2),

viz.

u(k+l)= u(k)- oz(Au(k)' ,.i:.) (@ = const., k =1, 2, . ..) , (1.3

~ ~ ~
he observed that better convergence could be obtained if ay varied
with n. Along with other methods, Young [2] examined its use for the
iterative solution of elliptic partial differential equations. In sub-
-sequent papers [3],[4], its numerical properties were examined in some
detail. It was shown that

(1) in a certain sense, the choice

o, = 2[atb - (b-a) cos((ek-l)n/zw)]'l k=1,2, . .. .N, (14

where a < )‘j(A) <b (3 = L,2, ... .n), gives optimal con-

vergence properties to the u(k) defined by (1.2),

~



(ii) the method, at least when using the optimal choice (1.4)
with the {ak} in the order given there, is very sensitive
to rounding error effects.
Independent studies of the method have been made by Birman [5]
and Gavurin [ 6]. Since the publication of Young's paper [3], the method
has been discussed in different contexts by Stiefel [7], Engeli et al [8;
Chapter 11], Golub and Varga [ 9] and Young [10]. An important result
obtained during this period is that due to Young [10; §11.4], which
shows that the non-stationary forms of (1.2) are related to semi-iterative

forms of the stationary procedure (1.3):

Definition 1.1. Let {v.

lj}={vij (i=1,2 ....39=1,2, ..) i)}

denote a set of coefficients which satisfy

Zvij =1 (i =1,2, ... . (1.5)

J=1
Given a sequence {fﬁ] = {5j, 3 =1, 2, . ..) generated by (1.3), then
k
Yy = z: Vs 5 (k = 1,2, ...) (1.6)
Jj=1

. defines a semi-iterative method with respect to the linear stationary

procedure (1.3).

Theorem 1.1. _Let A be a non-singular matrix. Given_laj}, there

exists, for ¢« % O,{Yij} such that (1.5) is valid and such that the

semi-iterative method based an (1.6) _and the {Yij} yields the same
L @
~ ~

iterates for the starting vector as does Richardson's method




based _on the {O{k} and the starting vector 11\,}(1) . Conversely, given

{Yij} such that (1.5) is valid, then, for any o # 0 and any i, there

. 1
exists a set {aj},_§uch that the Ef ), as determined by Richardson's

method based on they{ak] and starting with ~fl)ui§ the same as an)

determined by the semi-iterative method based_gg (1.3) and the {Yij]
(1) _, (1)
~

with ¥

Compared with the semi-iterative method based on (1.3), which
requires the triangular array inj] defining (1.6) to be stored, Richard-
son's non-stationary scheme is the simpler to implement. However, its
sensitivity to rounding error has more or less blocked its general use,
especially since semi-iterative methods are less sensitive.

Closer examination of the Richardson scheme indicates that the
mentioned sensitivity is a function of the order in which the [ak} are
taken. This was first observed by Young [3], [4] who examined a number
of orderings and showed that some gave better results than others.
However, the more fundamental question of the existence of orderings
for which Richardson's method defines a stable numerical process was
not examined.

We pause to mention further connections of Richardson's method
(1.2) with other well known iterative techniques:

((i)) The optimal choice of the relaxation parameter for the SOR
'method is only known explicitly in special cases; e.g. the given positive
definite matrix A has Property A {see Varga [19; Chapter 14]}. This is
stronger than positive definiteness which is all that is required for
the application of Richardson's non-stationary method.

((11)) If the first order method (1.2) is replaced by the second

order (Richardson) method.



L(e+1) I N ari(k) ‘E(k-l)} ,

o~

then the problem of numerical instability is found to disappear {see
Golub [ 18]]. The close connection between this second order method and

the Chebyshev semi-iterative method, viz.

20 gl g ey By

with

2 2
e =1/(1-p wk/h), (k > 2), w; =1, w, = 2/(2 - p%),

where p denotes the spectral norm of A, has been examined in detail

by Golub and Varga [ 19]. See also Varga [19] and Young [ 10; Chapter 16].
This semi-iterative method contains SOR as the special case wk=2/(l+[l-p2]%),
(k > 1).

((iii)) The advantage of either method mentioned in ((ii)) over a
stable implementation of (1.2) is the choice of the iteration parameters.
For the first order Richardson method, it is necessary to specify in
advance the roots of the polynomial of degree N which deviate least from
zero on o(A) for a given N. For the second order method, Golub and
Varga [19] have shown that there exists, under a wide range of circum-
stances, an optimal choice of « and B, viz. a = 2/(l+[11?ﬁb and
‘8 = -1. In the case of the Chebyshev semi-iterative method, the 0y
are generated sequentially as and when required.

Recently, Lebedev and Finogenov [11] {A translation is giver in
Appendix 2} examined this question and constructed an ordering of the
oy of (1.4) for which Richardson's method defines a stable numerical
process. The construction of this ordering will be examined in §2, and

the application of Richardson's method based on it for the solution of



different forms of Poisson's equation will be examined in §3. Lebedev
and Finogenov did not examine whether their ordering is in any sense
optimal or whether other orderings exist for which Richardson's method

defines a stable numerical process. .

The other difficulty associated with the efficient implementation
of Richardson's method is the actual choice of the e The choice based
on (1.4) is more or less optimal if
(a) a and b are the exact lower and upper bounds for o(A),
the spectrum of A, (assuming now that A is positive definite) and
(b) o(A) does not consist of widely separated disjoint sub-
intervals in which the ki(A){i =1, 2, ....n) lie.

In fact, the optimal choice of the @ are the reciprocals of the roots

of the polynomials of the form

N
Py(t) = kIrl(l - o, t) (7))
with
P, (0) = 1, (1.8)

which deviate least from zero on the set o(A). However, the actual

_ construction of such polynomials is often blocked by
(a) the lack of knowledge about the structure of o(A) {the numer-
ical determination of all the xi(A) (i=1,2, .. . .n) in general,
involves more computation than the numerical evaluation of A_lf}, and
(8) the fact that, for a given ©0(A), the construction of poly-
nomials of the form (1.7) = (1.8) which deviate least from zero on o(A)

can be a difficult, if not impossible, task.



For these reasons, the construction of the oy for a given A has been
based on the following approximate procedure:

1. Determine a region Q

((1)) for which o(A) € Q, and

((ii)) such that the polynomials PN(t; Q) with PN(O; Q) =1
which deviate least from zero on {1 are known or can be
constructed.

2. Set the o (k =1, . . . . N) as the reciprocals of the roots

of the polynomial PN(t; Q).

The oy of (1.4) correspond to the case when = [a, Db].

A number. of authors, including Samokish [12], Achieser[13] and
Markov [14], have examined cases when Q is disjoint. The most recent
analysis is that of Lebedev [15] {A translation is given in Appendix 1,
who examined the construction of polynomials PN(t; Q) when Q consists
of a number of disjoint subintervals of the real axis. This work is
summarized for the two interval case in §4 and applied to a problem in

8.



§2, THE ORDERING OF LEBEDEV AND FINOGENW.

In this section, we describe the ordering of the iteration para-
meters of (1.4) which Lebedev and Finogenov [1l] proved makes the numer-
ical process defined by (1.2) stable.

For a given N, let (¢l’¢b’ Co ¢N) denote the basic ordering

of the iteration parameters defined by (l.4), viz.

¢; = 2[b+a - (b-a) cos ((21-1)n/2N)]'1 (1 =42,....N. (2.1)

Then, different orderings of the {mk] for the o, in (1.2) can be defined

k
as permutations on the set (¢l’¢?""’ @N). In particular, we define
a one-to-one mapping between (cpl, Pos + - - - cpN) and (a/l, Aoy oo OIN)

with o, = mik by the permutation

k

Hy = (il, i, ... .iN). (2.2)

Thus, any ordering of the iteration parameters (1.4) can be defined in
terms of this permutation oy

Let NE (2%, p =0, 1, 2, ..}, n, x, (1) and
2 —3 3 '

“Ep_l g (jl’ 32’ o @ jzp-l) X (23)

Then, the permutation wu, which defines the Lebedev-Finogenov ordering

N
of (2.1) is constructed inductively with respect to (2.2) and N€{2p, p =0,

1, 2, ...} using



n = (3gs 2P41=3ys dps 2PH1-5,5 o

oP+1-j
2P 2

(2.4)

j2p_l’ p_l) .

In particular,
ny = (1,2)
), = (1,4,2,3) ,
ng =(1,8,4,5,2,7,3,6) ,

16~ (1,16,8,9,4,13,5,12,2,15,7,10,3,14,6,11) ,

nsp= (1,32,16,17,8,25,9,2k ,4,529,13,20,5,28,12,21,2,51,15,18,7 ,26,

10,23,3,30,14,19,6,27,11,22).

An ALGOL procedure for generating nap for a given p 1is:

Procedure Lebedev-Finogenov-Ordering (P, Kappa);
Value P; Integer P;

Integer Array Kappa;

Begin Comment For a given "P", this procedure generates the

permutation "Kappa" of order 2'P which defines the Lebedev-
Finogenov ordering of period 2'P. The array "Kappa" must be
dimensioned externally with order 21P;

Integer I, J, INT, INS;

KAPPA [1]: = 1;

INT: = 1;

For I: =1 step 1 until P do

Begin INT: = 2 X INT;
INS ¢ = INT + 1;

For J: = INT + 2 step - 1 until 1 do




Begin KAPPA [2 x J]: = INS - KAPPA [J];
KAPPA [2 x J - 1]: = KAPPA [J]
End

End

End Lebedev-Finogenov Ordering;



§3. APPLICATION OF THE LEBEDEV-FINOGENOV ORDERING.

In order to test the Lebedev-Finogenov ordering, we examine the
type of matrix equation (1.1) for which iterative methods are best suited,
viz. A is a sparse large rank matrix with Ag defined in a systematic
manner which rules out the necessity to store A. In particular, we
examine the following boundary value problem: using finite difference
methods, construct a function u(x,y), continuous on the unit square
S = {(x,y); 0<x<1,0<y< 1} except possibly at the corner points,
having first and second derivatives in the interior and satisfying

Poisson's equation

— + ——— = =g(x,y) (u = u(x,y), (x,y)€ 8), (3.1)

and the boundary conditions

u(0,y) = a(y)su(l,y) - aly) (0< v <1), (3.2)
u(x,0) = p(x), u(x,1) = p(x) (0<x<1) . (3.3)
We introduce the grid
G={(hgn)s;i=0,1,....1,3=0,1, .. ..1I, Ih=1}
and the notation
u,, = u(ih,jh) ((ih,Jjh) € G) ,

1]

and we use the central difference approximations

10



&
u\x -
‘Jﬁ = (g 57 20y ,p P S+ ol G4
- i,J

9 _u(x = -2
> ] (uy T R U T I N 1)/h + 0(r?) (3.5)
- ay i .
d
3'u 3'u
which are wvalid if % and 1 exist and are bounded for
Ty

(x,¥) e Interior (S). Substitution of (3.4) and (3.5) in (3.1) yields,
after neglecting truncation error, the following finite difference scheme

for the approximate solution of (3.1)=(3.3):

2 .o
- - = = = * — I-1
,'Wi,j Vi1, T Vi,j+1 Vi,j—l+h €y O(i, ] 1, 2, , )y  (3.6)

Vi, = Q.9 V

03 32 Vs = @ (3=0,1, . ... 1), (3.7)

= = 1 = - A9
Vio Bys Vi =By (i=1,2, ..., I=1) , o)

where aj = a(jh), &J = @(jh), By = 8(ih) and —B-i = B(ih), and

vij denotes the calculated value of ula.
Since (3.6)~(3.8) define a linear algebraic system of order (I-2)2

for the determination of the finite difference solution (3.1)=(3.3) on

the grid G, it can be solved by the non-stationary scheme (1.2). In

‘fact, its implementation only involves the use of three matrix arrays

(113) , V(i?) and g, i, 3=0,1, . ... 1) (3.9)

in the following way:

(i) set v\ = ©) _5 ., ,00 (0) -

0j ~ % Y1y T %2 Vio TBi» Vir T By



L(0)

i3 dij (i, 3=1, . . . . I-1) (3.10)

where the dij define the starting solution, and k = 1.

(ii) Compute

1 (0) I
V§3)= Vig - ak(rij) and R = nlz;lx Irijl (1,3=1,2,...,1I-1), (3.11)

where

(©) (0 (0) (0) (0) 2
iy T Wes T Vel gt Vil - Vi - Vige1 + Bogiy,  (G-12)

and then

L0 @

i viy i, 3=1,2, .. ..I=1). (3.13)

(iii) For a given positive value €, 4if R > €, set
k=%k + 1 and return to (ii) then back to (iii); if R < €, stop as

L(0)

i3 (i, 3=0, 1, . . . . I) defines an approximate solution with the

required accuracy. The final value of k gives the number of iterations required.

Note. Because (3.11) is only a three-level difference scheme,

)2

the storage requirement can be reduced to at most (I+1)T + 3(I-1)

-locations.

For the matrix defined by (3.6), the exact bounds for the eigen-

values of A are
a =A_; (a)=k(l-cos mh), b = h,, (B) = b(Ltcos mh). (5 )

Since the eigenvalues of A are dense in the interval [a,b], for sufficiently
small h, it is not inapprdpriate to define Q as the single interval [a,b].
The iteration parameters for (1.2) are therefore defined by (1.4). Using

12



84, POLYNOMIALS WHICH DEVIATE LEAST FROM ZERO ON
DISJOINT SUBINTERVALS OF THE HEAL LINE

For the general case, when

n
Q = ilil [azi-l, a1 (k.1)

with a; < a. . (1=1, 2 ..., 2n-1) and Of [aZi-l’ agi] (i=1, 2,
Lebedev used a method of Markov [14] to construct the polynomial
PN(t; Q), with Eh(O;Q) = 1, which deviates least from zero on .
The construction hinges on the validity of the following assumption
which amounts to a restriction on the way in which the ai(i=l,2,
are chosen.

Assumption: There exists a polynomial Qn(t) of degree n,

with leading coefficient one and Qn(O) = 0, which maps all of the

intervals [521-1? 321] (1 =1, 2, . . . .n) onto one and the same interval

[my, M], with mM > 0, and which maps the ends of [a2i-l’32i] onto the

ends of [m, M]. Further Qn(t)mgst be a monotone function as each of

. 2n)

%2% intervals hbi-l’ ] which varies from m to M or from M to m.

Let ﬂi(T) E[a2i_l,a21] (i=1, 2, . . . . n) denote the roots of

tke equation

Qn(t) =7 (4.2)

for 1€ [m, M]. Then, the required RN“” ) is defined in terms of

(4.2) using the following sequence of steps:

(i) Let N = jn, where j > 0 is an integer, and set

1k



Py(t) = Sj(Qn(t)) (4.3)

where Sj(z) is the polynomial of degree j which deviates least from
zero on [m, M] and is normalized with respect to the condition Sj(O) = 1.

(ii) Observe that
Sj(z) = Tj((2z - M—m)/(M-m))/'l‘J.(zO) (4.4)

where Tj(g) = cos(jarc cos g)is the Chebyshev polynomial of degree j,

and
2y = —(Mm) (M-m)" , |zg| > 1. (k.5)
(iii) Since
J
T.(z) = 11 (z=2z.) , z, = cos ((2i=-1)n/23) , (4 .6)
3 g i
it follows that
J Qn(t) -y
P(t) = II (4.7)
N i=l( Ty )
where
Ty = £ (Mm + zi(M-m)). (4.8)
(iv) Using the definition of ni(s), it follows that
P (t) lglﬁ b Nl IJI rrl1 1 b (%.9)
S Y N A =Y T WY '

which is the required PN(t; Q) [see Lebedev [ 15; Lemma.] for the proof].

15



Thus, the actual construction of PNCt;SU and the required e

(k =1, 2, . . . . N) involves the following steps:

1. On the basis of the restrictions contained within the Assumption,

construct an @ and a corresponding‘Qn(tL

2. Set N= jn, where j > 0 is an integer, and determine all
the roots ﬂS(Ti) (s=1, 2, . . . . n) of the polynomials

Qn(t)='ri (i=1,2,....79

with the 7, defined by (L.8).

3. Then PNCt;(D is defined by (4.9) with the roots
01.;'= [N (1)1 ™ (k = (i-1)nts), i = 1,2,...,3, 5=0,1,...,0-1). (4.10)

In order to apply the results of §2, it is first necessary to determine
(¢l, o oo wN) which corresponds to the oy arranged in descending
order of magnitude.

Since, for the case n = 2, Q2(t) = t(at+b) is symmetric with
respect to the line t = -b/2a, it can only be used to generate the

required transformation for Q = [al, a2] U [35: ah] if

ay~a, = ah-aB = const.

- Hence, given that o(A) € D = [bl’bE]LJ[bB’bh]’ it is necessary to
examine the optimum choice of the ai(i =1, 2, 3, 4) for this D.
All the possibilities are examined in detail in Lebedev [15]. Ve only
pause to examine the case which covers the problem to be considered in
§5. For this problem, we have a, = a; = g - 5> D = 2 and N even.

Thus, we can use the following explicit expressions for the o of

16



(4.10) which Lebedev [15] derived using the properties of Q2(t):

Aoy = Terlmr I, ay = fe-ln+®IH ™ (6 = 12,..,5) @11)

ok-1 o

with 7 defined by (4.8), M = -y, M= -8ya, and c = (a2+a5)/2.

17



§5. AN APPLICATION WITH THE SPECTRUM ON
TWO DISJOINT SUBREGIONS

In this section, we examine £he use of the Lebedev-Finogenov
ordering for the solution of a positive definite sparse matrix A with
its spectrum contained on two equal-length disjoint subintervals. The
¢i(i =1, 2, .... N) of (2.1) will then be defined by the roots B,
of (4.11) arranged in descending order of magnitude.

We do this by examining the following problem: on the unit
square S {we use the notation of §3}, use finite difference methods to

construct a continuous function u = u(x,y), (x,¥)€S, which satisfies

2u 32u
a 2 + 2 + Q(X) u = -g(x?y) (5'1)
dX Ay

and the boundary conditions (3.2) and (3.3). Following the procedure
of §3, we introduce the grid G and the differencing (3.4) and (3.5).
This yields the following finite difference scheme for the determina-

tion of u = u(x,y) on the grid G:

piq vy, R0 g, =0 (L, 3=1,2 ... . -] (52

CINED J i3

" along with (3.7) and (3.8), where Ahvij is defined by

by, . - v

= - -V, .-V, . -
BpVij 15 7 V4 g1 7 Viger T Vi-1 37 Vil g, (5-3)

For the solution of this difference scheme, we use the following

generalization of Richardson's non-stationary method (1.2):

18



Bg(k%-l.) . Bz(]i) _ Q’k(cﬂ‘,(k) _’1;), (L.h)

where the ¢.

kx ore now the reciprocals of the roots of the polynomials

which deviate least from zero on the spectrum of B 'c.
We denote by f {and E] the Qectors obtained by ordering the

elements Vij fand g j} (i, 3 =1, 2, ¢ **, 1I-1) in the following way:

i
v, =vi_b,k= (3-1) + i(1-1) (=1, 2, . . . . I-1, i=1,2, .... I-1). (5.5)

Using this ordering, we can write (5.2) as

- 2- - —
Iv+hg-bs=z (A + h2Q)v + h?g -b=0 (5 .6)
where
Q = diag (q;I, g1, . 9rgd)
with I the unit matrix of order I-1,
‘A -I (4 -1 i
I A -1 -1 4 -1
A = . with A = -1 4 -1 s (5.7)
-i A - . .
_l )'l' -
and
b T
= [91’92, L ’QI_l]
where the vectors Bk (k =1, 2, . ... I-1) are all of order I-1 with

19



= g7 = .ty 2 -~ T
By =log*Bys0ps . L sy ooy ) * BT s bp ) = (B K s Byt ]

and

B = [Bys 05 eees O, Bk]‘h (k = 2, 3,...,1-2).

Thus, the implementation of the generalized Richardson procedure
for the solution of (5.2), (3.7) and (3.8) becomes:

((1)) Set k = 1, and using the ordering defined by (5.5) set

~(0) _ r
X - (dll' dl2’ d]_j’ it dI-l,I-l) (5.8)

where the dij define the starting solution.

((ii)) Compute

(0) 2

r=Lv' '’ +n°g-b, R = max |T,|, (5.9)
k

and then

7 =700 g a7, (5.10)

followed by

;(O) - ;;(1)_

((iii)) For a given positive value € , if R > €, set k=k+l
and return to ((ii)) and then back to ((iii)); if R < e, stop
as f(o) defines an approximate solution with the required

accuracy. The final value of k gives the number of iterations

required.

20



Note. In (5.10), the actual inversion of 4 is done using one

of the recently developed direct methods which takes into full account

the sparseness of A. See, for example, Buzbee et al [19].

For this implementation, the @ must be the reciprocals of the
roots of the polynomials which deviate least from zero on the spectrum
of A_lL. Since the A of (5.7) coincides with the A of (3.14%), we

obtain that the spectrum of A-lL must lie on the interval

[1+0°0 (@A 5 ()Y, 1070 (@ ()]
iy xmin(Q) . &max(Q) < 0, and oa the interval

(140710, g (@A, ()Y 14071 (@A (a))]
if (o (@) 2 o T, dn (5.1) and (5.2), we take

bk (x <4 - 1/kk)
k)@ - x) B - bk < x < + 1/hk)
+4k (x > % + 1/Lk)

a(x) = g (x)

with 2kh > 1 and I odd, then the spectrum of A-lL will be on the

equal-length disjoint subintervals

B . .. rh -2 mh -2
1. k. sin p) - Kk cOs 5
2 h 4 2 h J ’
cos 1A -2 sin 2 -2
1+ k 2 1+ k 2
2 h ? 2 h ‘




Consequently, using the notation and results of §k, the N of §2
become the roots 31 of (4.11) [arranged in descending order of magni-

tude) with

Applying the Lebedev-Finogenov ordering to the @i (as detailed

in §2), the following two problems based on (5.1), (3.7) and (3.8) were

solved using the above implementation ((i)), ((ii)), and ((iii)):
Problem 5.1. The homogeneous problem

a(y) - aly) - B(x) = g(x) = 0, g(x,y) =0,

which has the exact solution u(x,y) = 0, (x,y)éS. Along with k = 4

and I = 32, the starting solution was taken to be
d,. =1 (i,d =1, 2, .... I-1).
Problem 5.2. The non-homogeneous problem with
aly) = p(x) = 0, &(y) = sin my, B(x) = sin mx,
g(x,y) = [ (EP) + gy (x)} sin Txy
which has the exact solution

u(x,y) = sin Txy ((x,¥)es).
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Along with k = 4% and I = 52, the starting solution was taken to be

d.. =o (i,=1, 2, . . . . I-1).

The actual numerical results-are discussed in §6,
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§6. NUMERICAL RESULTS AND CONCLUSIONS

Numerical experimentation with Problems 3.1-3.3 using the ordering

of Young [2], [3] as well as that of Lebedev and Finogenov indicated

that:

(1)

(i1)

(iii)

Young's ordering allowed (1.2) to behave in'a stable manner
for small N when using the floating point double precision
arithmetic of the 1M 360/67 computer at the Computer Science
Department at Stanford University. This is easily reconciled
with' Young's finding since his computations were performed
with the low precision fixed point arithmetic of the ORDVAC.
However, with the @ chosen in ascending order, even the
use of floating point double precision arithmetic did not
prevent the rapid onset of instability.

For N ~ 100, Richardson's non-stationary scheme (1.2)
behaved in an unstable manner when using the ordering of
Young. This is illustrated in Table 1, where we list the
errors arising from the use of Young's ordering with N = 128
when Problem 1 was solved.

When using the Lebedev-Finogenov ordering, the non-stationary
scheme (1.2) always behaved in a stable manner. This is
illustrated in Table 2, where we list the errors arising

from the use of the Lebedev-Finogenov ordering with N = 128

when Problem 1 was solved.
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Further support for the validity of (iii) is contained in Tables 3and
4. Here, we list the errors arising from the solution of Problems 3.2
and 3.3 using (1.2) with the Lebedev-Finogenov ordering.

While of interest in its own right, the stability of the non-
stationary scheme (1.2) for the Lebedev-Finogenov ordering raises
important practical questions. For example:

(i) Since this stability result applies to a wider class of

matrices than covered by the Property A condition, do

there exist classes of matrices for which Richardson's non-
stationary scheme, with the Lebedev-Finogenov ordering,
yields better results than SOR?

(ii) Do there exist other orderings for which the non-stationary

scheme (1.2) 1is stable?
Though answers to such questions will be of interest, the practical
importance of this result will depend on how good a method it proves
to be for the type of problem and procedure discussed in §5 (see also
Concus and Golub [20]). That it represents a reliable method for such
problems is illustrated by the results of Tables 5 and 6. Here, we
list the residuals arising from the solution of Problems 5.1 and 5.2
using the generalized Richardson procedure of §5 with the Lebedev-
.Finogenov ordering applied to the &  of (4.11) arranged in descending

k
order of magnitude to form the set (¢1,w2, o i.. @N).
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APPENDIX 1.

ITERATIVE METHODS FOR THE SOLUTION OF OPERATOR

EQUATIONS WITH THEIR SPECTRUM LYING ON SEVERAL INTERVALS.*

V. I. Lebedev
(Moscow)

Let
Au = £ (l)

denote an equation in a Hilbert space H with A a bounded self-
adjoint operator. Let ¢ (A) denote the spectrum of A with
Of o(n). We examine for the solution of (1) the effectiveness of

the use of cyclic iteration methods of period N [see [1] -[3]}, viz.

A ovk(.l\uk - f), (2)
where the oy are numerical parameters such that dk+N = Olk Performing
N iterations with (2), we obtain

k+N k -
u = PN(A)u + (I - PN(A))A lf,
‘where the polynomials PN(t) have the form
N

PN(t) =1 (1 - akt) (3)

k=1
P (0) = 1. ()

*Translator's Note. First published in Zhurnal Vychislitel'noy Matematiki
i Matematicheskoy Fiziki 9(6) (1969), 1247-1252,
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k k . e . :
Thus, the error ¢ =u-u satisfies the following recursive formula

N = By(a)e". (5)

Hence, 1if the coefficients in (2) are. chosen so that the polynomials of
the form (3) and (4) deviate least from zero (PDLZ ~ polynomial which
deviates least from zero) on the set o(A), then we obtain a sufficiently
effective Chebyshev iteration method which gives for N iterations
the maximum damping of all the errors CkGM = {e:||e] |< ©

The actual construction of such a polynomial, as a rule, does
not appear to be feasible because either a known structure of o(A) is
not available, or o(A) is such that it is difficult to construct a
PDLZ. It is clear that the problem can be solved in the following simple
minded way: Assume it is known that o¢(A)€Q where Q is such that

a PDLZ can be constructed for it, then the are the reciprocals

Y%
of the roots of this polynomial.
Methods for the construction of iterative methods (2) with

Q = [m,M] and mM > 0 are well known [see [1] - [3]}. In [4], the
choice of the @y with N = 1 is based on a conformalmapping proce-
dure when g(A) belongs to a set Q in the complex plane and the
complement of Q is a connected region. The case, when Q consists
of the region [m, M] with mM > 0 and a point A > M, was examined

in [5]. Methods for the construction of PDLZ on two non-intersecting
regions, with the coefficient of the highest term unity, were developed
in [6]. We note that, when these two regions lie on opposite sides of

the origin, the polynomials found in [6] can not be always used a: a

basis for the construction of PDLZ of the form (3) and (4). -
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In this article, we examine the construction of PDLZ of the
form (5) and (4) when @ consists of n intervals of the real axis.
We make no assumption about whether A is positive or negative.

Case 1: n > 1. Let

n
0 = u [a2i_l’ a2i]’
i=1

where a; <ay., (i=1,2 ..., 2n-1), of [ap5.1> 23] (151, 2, ..0 , n).
In addition, we require that the ai satisfy the following algebraic
condition: there exists an n-th degree polynomial Qn(t), with

lecading coefficient one and Qn(O) = 0, which maps the intervals

[321_1, 8‘21] (i=1, 29 .*a , n) as a whole onto one and the same
interval [m, M] with mM > 0 and maps the ends of [a‘2i-l’ a2i] onto
the ends of [m, M]. We denote by ni(T)E[a2i_l, a2i] (i =1,2,

-3 n) the roots of the equation
Q,(t) =

for T€ [m, M]. It is clear that Qn(t) - (M+m)/2 is a PDLZ on
Q) with leading coefficient one., It follows from this, that the mod-
ulus of Q‘n(t) - (M+m)/2 takes its maximum value of (M-m)/2 on Q
and that its sign oscillates with respect to the following n+l point
of QO : 815 85 8)5.. .5 By {see [7]}. Below, we require the fact
that Qn(t) is a monotone function on each of the intervals [aQi-l’ a2i]
which varies fromm to M or M to m.

For the construction of the PDLZ, we make use of a well-known

method [7), which is used in the actual construction of the polynomial
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and in the proof that it is the required polynomial. Let N = in,

where j > 0 is an integer. We set

where Sj(z) is the PDLZ on [m, M] of degree j which is normalized
with respect to the condition SJ.(O) = 1. In fact, Sj(z) satisfies

the following explicit expression [7]

85(2) = T,((2z - M - m)/(M - m))/T,(z,),

where Tj(g) = cos J arccos g is the Chebyshev polynomial of degree
. -1 .
j and ZO = —(D{J:I—m) (M-m) -, ‘zo\ > 1. Since
(2i - L)n
TJ.(Z) = n (z - Zi)’ z; = COS 53 ,
i=1

it follows that

j t) - T,
P () = 7 (Q“( Tl) (6)

i= Ti

where

Ty = 1/2(M + m + zi(M - m)). (7)

We transform (6) to obtain

Let

E_ = EN( Q) =t2aé |wN(t)| R

where w, (t) is the PDLZ on Q of degree N which is normalized with

respect to the condition «WN(O) = 1.
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Lemma. Among all polynomials of degree N which are normalized

with respect to the condition (h),l?u(t) defined by (8) is the PDLZ
on Q.

For the proof of the Lemma, we note that P, (t) attains, with
respect to its modulus, a maximum on  which equals |Tj(zo)‘-l’ and

has an oscillating sign with respect to the following Jjn+l points

Ql of Q : 821_1 (i=1, 2, «a* , n), a2n and (j-1) internal points
on each of the intervals lags_ 1+ 8‘21] (i=1, 2, . . . , n). In addition,
Ph(a2i+1) = Ph(aei)’ i=1,2, ... .n-1, (9)

We assume that -P-’N(t) and not PN(t) is the PDLZ. We examine the

behavior of the polynomial
o(t) = By(t) - By(t)
with degree less than or equal to N. It is clear that

oy (0) = 0. (10)

On the other hand, (pN(t) h arges sign at the N + 1 points of Ql’

i.e., q;N(t) has no less than N roots on [a.l, a2n]’ and we conclude,

as a consequence of (9), that not less than N roots of gpN(t) lie

in Q. Taking the degree of <pN(t) and condition (10) into account,

'we obtain that (pN(t) = 0. The resulting contradiction proves the Lemma.
Comparing (3) and (8), we see that the o of method (2) must

take the wvalues

-1

oy = Mg (ry

) (11)
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with k =n(i-1) + s (i=1, 2, ..., 3, s=1, 2, ...« Iience,

-1 . 2 j o Jy-L
w0 T 200y, q\l(zo -1+ (g '\'(“u - )T <,

Jdot

and thus, | \ek+NH < Ey HekH This leads to the problem concerning
the existence of implementations of (2) for which the strong accumu-
lation of rounding errors does not occur. 'We note that, for n =1,
we obtain Chebyshev's method for one interval.

Case 2: n=2. If the above assumptions regarding Q hold,

then for n=2 they imply that a,-a; = ay, a3 = h. Let

c= (a2 * ey )2, h, = (a5 - ae)/2 s
then
Qe(t): t(t -2c), Moo= =83, M = -agaj, (12)
2o = -(ala)f -+ aeaj)/(alaLL -828.5),
ayy_q =le+ (e + 17, a,; = e -\/(-ri £ A7, 2,

We evaluate \Tj(zo)]_ For this we put t02 = (1 + zo)/2. Calculating

tO’ we obtain

-1
t02 = (1- aeaﬁ/alah) ,

Trerefore,

Tj(zo) = TJ.(Te(tO)) = ng(to),
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2

0 >0, wehavet2>land

and hence, for t 0

By = of[tg + -\/(t03 -1 [t, -Wf(to2 - 119yt (11)

and for t-'02 = -p2 < 0, we have

5y, =2l 6%+ ) el T+ WP 4 1) - el

For j > 1 and n = 2, we examine the following problem. Assume

it is known that o (A) €D = [b;, b,]J U (b5, b,] where b, < b, < b, < by,

1 2 3

OfD , and let 4; = b, - by, 1, =b -Db and A =4; -4,. How is the

2

set Q chosen so that the modulus of 4

3

0 is a maximum?

Let blEip > 0. It is sufficient to examine the case when
b'_L ~ 0. If A> 0, then we put Gy = bl and a,, =Db ), It is neceg-
sary to imbed [ b . J bh] in an interval [aj’ ah] of length ,;l. 1t

toliow 5 from (12) that for it is necessary to take the set
Q = [by, b2]U[b5 RVAY) bl#]. (14)

If Ao <0, then we put a; = b5, 2 =D and imbed (b5 b1 in [a,, a,].

From (12) it follows that
Q = [by, b, = Alulbys Byl (15)

In this way, if Q , defined by (14) or (15), is simply connected,
then it is best to apply the Chebyshev method for [bl, bh]' If a, < az)’
it is easy to see that the examined method converges more quickly than

'

the cyclic method (2) for the interval [ul, bh] with period 2j.



Let blbh < 0 and without loss of generality A > 0. We put

= b = 1 3 3
b, and imbed [bj’ bh] in [9'3’ ah]. From (12) it follows

g 1° %

that
Q = [by, byJulbys by + Al
Now, we construct a PDLZ on D of the form
2
B,(t) = 1 + 2at + bt . (16)
Then, for N = 2 and ¢ (A) €D, we have for (2) that

2
0= -a _+_"J(a - b).

-

As a preliminary, we introduce the notation

Oy ¥s2) = =(x +y) (x(y +2) + 2(y = 2

¥ v, 2) = 2(x(y + z) + a(y - 2)7h,

2 27,~1
By, o(xs ¥y 2) = =2(x +y £ Vi(x - 2)" + (y - 2",
v(x, ¥, 2) = |y - 2) (2 - %) (x(y + 2) + 2(y - z)) Y.
1. Let blb’-t > 0 and, without loss of generality, bl> 0.
Then Pe(t) will be a PpiZ, if, on D, it attains on three occasions
the maximum modulus value with changing sign. We actually construct
such a polynomial.

a. If by, > (bl+b)+)/2 or b5 < (bl+ bh)/2, then, as is easily
verified, the PDLZ on D is the same as the PDLZ on [bl’ bh]’ i.e.
- -1

o =2(by + by £ (b, - b AR,

B, = (b, = b)) ((b, + b))% + kp o))" .
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b. Let b, < (bl+bh)/2 and b5 > (bl+bh)/2. If A > O,
then the points of oscillation are bl’ b2 and bh'

Wc find from Pg(bl) -P,a(be) = Pg(bh) that

a = cP(bls bh’ b2>, b = *(bls bL’ b2), @) ,0 =51' 2(b1: b)p b2),

E, = y(bl, by, » b2).

For A £ 0, the points of oscillation will be the points bl’ b5 and

b,. We find from Pg(bl) = 'Pe(b5) = Pj(bh) that

a= cp(bl,bh,b5), b = V(bl,bh,ba), o o = Bl’e(bl,bh,%)
h E, = y(bl,bu,bB).

For the examined case 1, the results of [6] and [8] on the con-
struction and evaluation of PDLZ of higher degree are applicable.

In particular, in [6], the explicit form of the polynomial of third
degree is presented.

2. The analysis of the case blbu < 0 is somewhat more involved,
since the system 'tk (k =1, 2, .... n) does not satisfy the Haar
condition on (bl’bh] {see [9]}. 1Initially, we note that E, <1, i.e.
the maximum of the modulus of the PDLZ is not attained inside D,

-but is attained on the ends of the intervals [bl’b2] and [b5,bh]

Let A> 0. We construct P, (t) under the assumption that
-F, (bl) = P2(b2) = PE(bB)' Then a = :p(bg,bj,bl) and b = w(bg’b‘j’bl)'
The deri-rative of P, (t) becomes zero at the point (b2+b5)/2¢_1), ;ience,
Pe(t) attains its extreme values on D at t =b, (i =1, 2, 3, 4)

i
with P2(b2) = P2(b5) > 0. As a consequence of the symmetry of P2(t)
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with respect to the straight line t = (kb-ﬂ%)/2 and A > 0, we have
|2, (by) | <|P2(b5)|, We show that P, (t) is the FDLZ. In fact, if
it is not P, (t), then let it be fE(t). Then the second degree poly-

nomial
0, (t) = By(t) = B, (t)

changes sign on [blﬂ@]’ and hence, there exists a zero of ¢2(t)
inside [bl’bg]‘ on [b2,b3] the polynomial ¢?(t) has two roots, since
it has the same sign at the ends of [b2,b5] and ¢é(o) = 0. Hence,
¢2(t)-s 0. The resulting contradiction shows that Pé(t) is the PDLZ

and that

o o :BLg(be,bﬁ,bl), E, = Y(b2,b3,bl).
Analogously, if A < 0, then the PDLZ on D is determined by
B,(b,) = By(bs) = -By(b,),

i.e.
a = cp(t);.__,,bj,bu), b = V(bg,% ,bh), ST 31’2 (b2,b5,bu)

E, = Y(bg,bB,bh).

We compare the examined method with two known convergent itera-

tion methods with blq‘< 0. The method

k+1 k 2
oW A - 1), (17)

where a? is a constant, has each iteration defined by the operator (1.,

2k . . . .
We assume that A™u is calculated for each iteration by multiplying

A-10
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k . .
u twice with A. Analogously, the method [10]

uk+l = uk + (-1) kd(Auk - f) (18)

has every two iterations defined by the operator (1 -%02R ). Com-
paring (17) and (18) with (5), we see that for the same number of
operations the methods (17) and (18) guarantee a lower rate of con-
vergence when either A * 0 or A = 0 and |bl| + Ibhl.

Finally, we note that the examined iterative methods allow
problems of the following kind to be solved: Let the selfadjoint

operator B have eigenvalues )‘i such that either )‘l < )‘2 <.

SA S A S S8 0or A 2 Ay Z e 2N T Mgy 2 e 2B

It is necessary to solve Bu - xnu f for )‘k <K by the

< Ml

iteration method (2). For example, such problems arise when eigen

value and funcltion: are deternined by a method with shift [2]

Received by the Editors: 24.05.1968.
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APPENDIX 2.

ON TIE ORDER OF CHOICE OF THE: ITERATION PARAMETERS

IN THE CHEBYSHEV CYCLIC ITERATION METHOD.*

V. I. Lebedev and S. A. Finogenov
(Moscow)

A solution is given for the problem of orde:ring the
iteration parameters in a cyclic iteration method**
which can be used to solve Au = f. This solution
guarantees a computationally stable form for the
method.

in the 1950's, when it was proposed that the equation
(1) Au= f

be solved by cyclic iteration methods [1-4]

(2) uk+l - uk - Q’k(Auk - f),

with the iteration parameters oy (ak+N = ak) related to the roots
ol' the Chebyshev polynomial:;, it was noted that, when solving (1) by
such metiiods on a computer with a finite word length using fixed or
floating point operations, one can ecstimate, for poorly conditioned A,
t:e loss of significant figures in the intermediate and final results
(in uk), and the resulting significance of the intermediate calcu-
lations with respect to tne initial accuracy of the data. Marked

*
Translator's Note. First published in Zhurnal Vychislitel'noy Matematiki
i Matematicheskoy Fiziki 11(2) (1971), 425-L38.

*x
Translator's Note. In fact, Richardson's non-stationary method.
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instability has to a significant degree blocked the wide application of
these methods. It can be shown that this instability depends heavily
on the order in which the iteration parameters o are used.

In [3] {see also [5] and.[6]}usome proposals regarding the use
of the o have been given; but, as we shall explain, they do not
eliminate but only reduce the instability within the method. No other
investigations of this particular problem are known to the Authors.

In this article, we are given an ordering for the iteration parameters
ak which guarantees a computationally stable implementation of the
method.

We shall assume that (1) is defined on a Banach space B,
that u,f€B, and that A is a bounded operator which maps from B
into B and has a complete system of normalized eigenvectors P
which correspond to its eigenvalues A\ . Let o(A) fthe spectrum of A}

lie on the real axis, and m and M denote its exact lower and upper

bounds with 0 < m < M.

Let e = u—uk and N > 0 be some fixed integer. Then, in (2),

the set (al’aéﬁ°°°’aN) is a permutation of the set (Yl,ve, .. ”YN) where
. -1
2i- L)m

(3) Y. = 2 M+m- (M~ m)cos , i=1,2, ....N.

i

2N
.The one-to-one mapping between (dl’aé’ Co qN) and (Yl:Yas..-aYN)
is defined by the permutation
T I i)
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Let N belong to some increasing sequence of integersfb%} for
which the permutations nNi are defined. Our problem reduces to the
determination of a permutation "y which guarantees a computationally
stable implementation of' .(2) for small =/’ and NEfNi}.

Perf'orming N iterations with (2) using exact arithmetic, we

obtain that
0 -
u o= PN(A)u + (1 - PN(A))A lf,

where the polynomials PN(t) have the form

N T LM+ m = 28)/(M - m)]
P (t) = (1 -~ ot = >
N | . T,(0)
k=1
with M+ m
TN(t) = cos(N arccost), g = ———— > 1.
M-m
Let
i
RN = | (- agt), Ql(t)—’l (1 - o).
‘
J=1 -
k ,
T.en the errors ¢ (k=1,2, . . . . N) satisfy
k N 0
() e =R_(Ae",
and if

1.
€ = E Sn Cpn;

n



then we obtain that

- k _ N Y
() e =R, ) e,

Real computations on a computer,. which has fixed or floating
point operations with finite length words, are executed with rounding
error as a result of which errors arise. This fact can be taken into
account if it is assumed in (2) that uk+ hk is written instead of
uk, where hk is the error added to uk during the calculation of

k+1 . .
u . Independent of the actual rounding procedure on a given computer,

the llk can be interpreted as the result of errors which arise as a
. . . k . .
result of the rounding in the computation of u and 1in the final
k
result. The n can be correlated among themselves.

Instead of (2), we obtain

6) e S G (R
with
k=1
| -
(7) e = N(a)e - E q, (an* - n.
i=L
It

nk - § nﬁ e,

n
then
k-1
k __N 0 }" k i k
(8) € —Rk()‘n)cn Qi(xn) noo-n .
i=1
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P2

(11) r < ¢

We now examine two reasons why the iteration process (2) loses
computational stability and the accuracy of the approximate solution
of (1) is reduced. Our optimal choice of "y is based on the removal.

from (2) of situations of this type.

Let
N N N N
(9) gy = max |Q (t)|, r;" = max |R, (t)] ,
m<t<H Mt
N N N N N N N
(10) t.0 =ayrg , Qg = m?x G , r = m?x r,o.

The first reason: The loss of significant digits in the inter-

mediate iterations (with k < N) which results in the loss of accuracy
in the final solution and in the growth of anH or the accidental
stopping of computations due to computer under or overflow.

The loss of significant digits will occur when Huk" >> |ju| with

1<k<N and N 4 =. This is equivalent to the condition
suplle’ > flufl  as N 4w, . &{N,].
k

Taking (4), (5), (9) and (10) into account, we see that a substantial
Kk
loss of accuracy due to the growth of Hu H does not occur for initial

data which satisfies |f%| < Cy, if

N
X

where 02 is a constant which depends on m/M but not on N.

The second reason: The growth of the quantity.

s;ankN(A)nkn/un | as N ==, NEN],
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which characterizes the instability in the computation.

Taking (7), (8), (9) and (10) into account, we see that the cal-

culation will be stable with respect to permissible error, if

(12) qN < Cé’

where C5 is a constant which depends on m/M but not on N.

Thus, conditions (11) and.(12) insure that a substantial loss
of accuracy in the final solution is avoided. In fact, they represent
necessary conditions for the stability of any real implementation of
(2) on a class of initial data which satisfy Heo” < ;. Sufficient
conditions for the stability of such an algorithm depend on the method
and order of the implementation of (2) and the type of rounding used
as well as (11) and (12).

Initially, we examine the character of rN and qN for the

simplest permutations; viz.

N

N
"1 = (l ,2 ,ooo,N) or 1'1'2 = (N,N - l,...,g,l).

As a preliminary, we introduce the notation which will be used

in the proofs of the Lemmas:

o
1

-1, A= 8/2, Bk = (2k - 1)n/2N,

M+m-2t) / (Mm).

N
n

Lemma l, If corresponds to the permutation n N, then
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A A (3-N)/2

1+ 5 1+ >
os” (n/4N) cos“[n (2N - 2§ - 1)/4N)

N - A J-N
Say s Qb 2 ;
J cos [11 (N - J)/hN]

Procf. It follows from the conditions of the Lemma and (3)

that o) = Yyl It is clear that

max\l—o:kt| (l-o, m) < 1 (k> N/2) ,
m<t

and hence, qJ.Nx.: QJN(m) for j > N/2.

We now prove that for j < N/2

N N
= max | Q, (t)] = q, (m).
J mStSJ 5 (0] =9

In order to do this, we examine the function

(o) - m (e - (gk-l)’

k=j+1
N/2
T
(coscp - cos (2k - 1) cosp + cos —— (2k - D}| =
T e am ~ 2N .
k=j+.
N-j
= sin (@ + —— (2k - 1) ,
2N
k=j+1

Where cosgp =

A



Let ¢ = P + ni/N, where 0 < W< n/N, 0 <i <N/2 -1, then

N-j+i
m i
v (V) + — i)= sin + — (2k - 1) =
N 2N
k=j+i+1 i
N-j N-j+i
, - o
= sin + (2x ~ 1) sin (P + (2k - 1)
2N ON
k=j+1+i k=N-j+1
But

N-j+1

m
sin |P + — (2k - 1)) <

2N

k=N-j+1

gt
™
< sin \P + (2k - 1) ,
J_ 2N
k=j+1

and consequently,
- )
v +— i) < v(¥).
\P N

Since v OP) attains its maximum for ﬂ>= 0 and differs from Q.N'j(t)
J

only by a constant factor, it follows that

N
aj = max o ()] = q,"(m).
m<t<M J
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But

. 1 - cos[n(2k - 1)/2N]

Qj (m) = =
‘ 8 - cos[m(2k - 1)/2N]
k=j+1
N .
A
= 1 + 5 =
sin [m(2k - 1)/4N]

k=3+1

N-7
—o )
-1
A
= 1+ 5
‘L- cos” [rm(2k - 1)/4N]
k=1

_ -1
A h
x Q1+ 5 h
cos [m(2(N - 3 - k) + 1)/4N] L
N-jJ
-1 J-N
< \ ‘ A ’ A
- 1+ 5 = 1+ 5
{ cos™[n(N - j)/4N] } { cos” [m(N - j)/uN] }
k=1
On the other hand, N-j)/2 -1
A
o)) | > 1+ 1 x

k=1

A '
1+ =
" { cosE[n(QN - 2§ -1)/4n] }

1) /o ' .
\ (3-n)/ . \(J N)/2
= 1l + P 1l + 5 i :
cos” (m/4N) cos”[m(@N - 23 - 1)/4N] /
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Lemma 2. If N
e

N

r,
1

Indeed, under the conditions of the Lemma

Noting that

XN':TTl

2
m

< !A +

[ 7L i+ 1)%/160F

,A = m/(M-m) < 1/2 and i <Ny(N) =
Y2 . () [(2 - 8)/21F | then

i+ 1/

L 0¥ | A+ no(ei + 1)2/161\12

r
2i ~ 1 < (2N/n) arc sin [(1 - Ae)]%

1 + cos By 1-¢ R /212

N

_ 2
P 5/2) > —b—~—8,/2) >

we obtain that

N 1l + cos Bk 1
o 2 2
§ + 2sin ( sk/e) A
k= =
where
Bk 2k - 1 T
X T = s i < NL(N).
2 2N 2 0
But
2N
In w = Z,
u

B-10
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where

A B
1. Xkd i+l 1 - X2
Z = in > u Z v = In > dx =
. A+ Xk 2N A+ x
k=1 B,
1- x2 X Bi+1
= { xln — * 2 arcsin x - 2'\/A arctg >
b+ X va
1
2 4B 2 2
1-x" B ey, - 8) 8 84y
A+ x L 8
1
At this stage, we make use of the inequality
; 2 2
/ x \ |8 B, Bir1( By = By)
Kfrcsin X = \/A arctg — i+l > = itl® 7ivl 1
V2 8
B1
and obtain i+l/2
. 2
X 2N |I" 1 - (m(2i + 1)/4W) -I
ri > exp Z > 5
- LA + (m(2i + 1)/4N)
1/2
2
A + (n/4W)
X 5 (i < (V) .
1 - (n/4W)

It follows from Lemma 2 that,for small A and large N, the

values riN grow strongly for i < NO(N) . Since the quantitics
nr
riN and qiN for the permutation “2" correspond to the quantities

qNTi and rNTi for the permutation nlN, it follows from Lemmas 1 and
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2that

Corollary 1. If o T ngN , then

/2
A A
=l = -
cos (n/)-l-N) cos (n(2j - l)/uN)

and
I5) 1/2 N",j'i_l./g
2 2 :
, r ” I ’ 1-(@m/n)<“@ - v J-f
q-N -~ 1A+

- L_ 16X | LA + (n/bN)2(2(n - 3) + 1)°

for 3 > N - Ny(N).

Let N = 2n. We examine the permutation

N

My = (n, ntl, n-1, n¥2, . . . . . 1, 2n).

Noting that T2n(z) = Tn(T2(Z)) and using the above results, we see that

8

M - m)(292 ~ 1 - cos sk)

x((M + m)T - A) (Auk—f), k=0,2,....02.

Hence, the functions Rglf (t) and QQI;I (t) for m N are equal to the

3

functions RiN/e(t) and QiN/g(t) for the permutations neN/2 applied
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to the cyclic method (13) for the solution of
(M + mI=AAu= ((M+mI-=-Aa)rf.

Therefore, for r2§ and qe? corresponding to nBN, the inequalities

of Corollary 1 are valid; viz.

/2
=i bt
cos” (m/2N) cos™(n(2j - 1)/2N)

A
<oy < E+ — (L<i<m,
cos” (m j/an) 3

1/2
N " / 1 - (n/2m) (v - 3) + 1)° 1
. 2> A, + ——
2y = [l “NEJ by + (/202 (( - §) + 1)° l

for 2j > N - Ny(N) where 4, = 8 - 1. The permutation which corre-
N/2

sponds to - in an analogous way 1is
1

N-j+l/2

N
mo = (2, 1, 2n =1, 2, ...y n 1, n).

In this way, we see that, when using the permutatiops HZN and

nﬁN in the exact iteration process (2), the ||uK|| are suitably

. k
located on the real axis, and ||e¢7|| 1in (7) is constantly decrecacing,

but that the error due to rounding can grow strongly. These permuta-
o

1
nu“ the norm of the initial errors decreases for subsequent iterations,

tions were proposed in [3], [5] - [7]. For the permutations m." and

however !Iukl| can grow strongly and this can lead to the growth of

||nk|| and further to the accidental stopping of the computations.
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Let Ne {EP’ p=20,1, 2, . ..}. For this case, we construct a

permutation for which
(14) & < 1, o< e

We define a recursive procedure for the construction of the permu-

tation u for N = 2n which insures that (14) is satisfied. For M = 1,
N
the solution is obvious. For N = 2F71 with p-1 < n, let the required

permutation be

) s

o9 — (j s dos sees J -
P 1 1° “2 oP 1

then the permutation of order oP is defined inductively as
] P = (. 2P . . 2p 1 . P .
(15) 27 = Jl’ + 1 - Jl’ J2’ - 32’ J ~1° 25 + 1 - p_l)-
* e 2 2
putting p = 0, 1, 2, .... we obtain the required set of permutations.

For example, for N = 16,

ng = (1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11).

Below, we shall shot. that for this method the ordering is such that the
operators (I - akA) with large norm are uniformly distributed among
.the operator,. which decrease the norm of the error.

We explain in a different way the mentioned procedure for the

construction of n- In order to do this, we put Ph(t) in the form
2
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T(z) 2T2N/2(z) -1 T /,(2) = cos o,

T(e)  2p(e) - 1 Ty/2(8) - cos o,

TN/Z(Z) - cos g,

TN/E(Q) - cos o,
where

o, = /4, g. =1 -0

(1)

We assume that the roots of the polynomial rl (z) = TN/2 - Cos oq

(1)
precede the roots of r2 _ TN/2

each of’ the polynomials r

= COs oy, In a similar way, we replace
by the product of two, for

example

(TN/h(Z) -COS(Gl/E))(TN/u(Z) - cos(m - 01/2)) @) @)
1 2

(1)
1

r (2

(Ty, () = cos(oy 2))(Ty () - coslm = ,/2))

(2) precede r (2). we con-

1 2

tinue this process and determine by this method a sequence of roots for

cach rl(l) (

and again we assume that the roots of r

i =1, 2) up to the point where the degree of the poly-

nomials rk(l) become equal to one. As a result, we obtain a permu-
tation 4 . Observing that the roots X5 (i =1, 2, «++y k) of the
N

equation Tk(x) = B satisfy

-

2(1i = L)m
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where ay = cos (y/k), y = arccos B, it can be shown that this permu-
tation g coincides with the permutation (15).
Before estimating r' and qN for the permutation (15), we

establish a series of subsidiary inequalities:

a. Ife=1+ 6, §> 0, then

1212 - 1)

(16) T.(0) > 1+ % + p 5°.

In fact,

2r.(8) = (6 + Y (8° - 1))  + (o - V(6° - 1))} -

1+ (6 + Vs + 62))]i +[1+ (6 -1/(62 + 26))]i =

i(i=1) )
2 + 21§ + (46 + b67) + . . .
2

2,2 2
2 1(1 '1)6
. >2 + 2178 +

3

b. If0<w<m/2, n>2, then
. 2 . 2
sin”(w/2) + T sin"[(m - w)/2n] + by
(17) >
cose(w/E) cosz[ (m - w)/2n]
. 2 2
sin”(w/2n) + e cos” (w/2) + T
g 2 2
cos” (w/2n) cos” (w/2),

where Wy = Ti(e) - 1.
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The inequality (17) is established once we show that

® T =W w
(18) tg tg > tg ,
2 Zn 2n
T sin2[ (mr - a))/;_‘n]
(19) ot - .
cos” (ay/2) cos [(m - w)/2n)
. 2
UAk sin ((1)/2) u'k_

i 2 2 Z 2 *
cos [ (m - w)/2n] cos” (w/2) cos” (w/2n)
sing(a)/2n) m

+ nk )
cos (w/2n) cos” (w/2)

For a proof of inequality (18), wc replace w by n/2 - ¢ in

it and cttain

o o n/2 + o /2 - o
(20) cos —— - gin —} 3in ———————— cos >
2 2 2n en
o o /2 - o /2 + o
> fcos — + sin SiF cos
2 2 2n 2n

Transforming (20), we obtain

o o ™ o
cOog =— =~ sin — sim—— + sin — >
2 2 2n n -
o o ™ o
> fcos — + sin — sin - sin —1},
2 2 2n n
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which yields

o o o ™
- cos —— sin — > sin- sin — ,
2 n 2 2n
and thus,
“ sin(o/n) o
(21) > t g -
sin(m/2n) 2
C We note that for ¢ = 0 and o = w/2 the inequality (21)
becomes an equality. However, since tg(ar/e) lies above and
sin (a/n) sin_l(n/en) lies below the line y = 2¢ /m on the interval
w (0, m/2), it follows that (21) must be satisfied at any interior point
of this interval, and consequently, that (I8) is satisfied.
Inequality (19) is equivalent to the following inequality
(.
L Mg 5 mTow w s O o T - 7
(co) — [sin 2 - sin cos T
. 2n €O 2n 2n 2n
K
-~ G o M oW o W w
> cos cos - sin  —— cos .
2 2n 2 2n
We show that (22) holds if the following is wvalid:
b T =W W
e asin2 _— - sin2 > cos w
p,k 2n 2n
&
Since T [T >n2, the last inequality follows from
2 m &
L (23) n- sin -- sin > sin g,
2n n
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i1 o = . - a. Ti's inequality is valid, since f'or g 0 the in-
cguali 6y (¢4 ) reduces to an equality, and since the derivative with
respect to o of' the left hand side is always greater than that of the

right. In this way, we have established inequality (7).

Bemma . If "y is defined by (15), and
J J J
N-1=2 . + 2 e + ., + 2 t s
where §, > J, > —-—- > iy 2 0, 1<t < log, (N-i+l), then
t , -1
N -1 (- 1)
. < + . < + .
a; < 2(1 T3 (8))"" < (1 : A
izl
Proof. It can be shown that
T ;.(z) - cosg T {,) -cosg
J ; o2
(24) aIN = max 291 L 2 2
m<t<M nglﬁe) - cosgl T2 jgﬂe) —cosg2
ngt( z) - cosg, |
oo @ 2
ngt(e) - cosg, |

woere all € . > m/2, and hence, the ith component in (24) does not

- 233 (-1
excead 2(1 + Téji(e>) lor, if (6) holds, does not exceed (1 +2 IA) .
"But since
t 2 t
2
; |ai| < t a; >
A
i=1 i=1

it follows that
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This proves the Lemma.

Lemma 4. If x_ is defined by (15), and

— N
i i i
=0ty +2 5
where il>'%22 e e > is > 0, then

2 -1 , -
- I m . . . (i - 1)2 1
< + .
1 l6N2 S y

Proof. It can be shown that
S
T i,.(z) - cos o,
(26)  |R"(8)] “ l — 1,
Telk(e) - cos oy
k=1

n—i1
where all oy <m/2 and o

5.. 1, taking (16) and (17) into account, we obtain from

i
1 = -n/2.2 , Ck+l = o= OIJE

k 1k+l

that

tor

lk(z) + cos Oy

; T ; (z) - cos o T
i
(e7) riN < max 28 - |
-1<z<1 Tgis(e) - cos O —l<z<l

- .y -1 s=-1
<t — 42 sy o(1+1; (8)7F
2 27k
k=1
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n
where o . = n/2.2

g We make se of the method of estimation con-

tained in the proof of Lemma 3. For iS = 0 and s >1,(29) follw.s

at once from (26).

For i . 0., taking account of' the following inequality

2

: L (1. (o) . s
tg” _ + T.®) "1 > f——+a) (2 +2 ")
o o0 2 o's —\ ¢ ’

which can be verified by means of inequality (16), we obtain from (27) that

5 -1 s
N m 21 -1
r,” < + A (1 +27k 4) <
1 - 168
A
- iy
2 -1 2 -1
n .
< |—— + & 1+

In this way, the Lemma is proved.

Corollary 2. If

= 1 - . L. +1 - 3 . +1 - 3 .
nN (N JN/Z’ JN/Q’ . s N J2’ Je, N+1 Jl’ Jl)’

where jk is defined by the recursive method (15), then

o -
. T 1 (N - i - 1)°

i 161\]2 S

-1

Corollary 3. 1If the order of the choice of' the «

K correspond: :

to the permutation (15), then for k > i we have
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max (1 - a,t) < r
m<t<M J | 1
j=i
Lemma 5. If the order of the choice of the @y corresponds
to the permutation (15), then
I 16 W 16 - 6° -1
(28) t.. < < NT+6 + - (g -1) .
1 - 2 = 2
m Ty (8) n 6

In fact, since RiN(t) and QiN(t) always contain a polynomial
of the form ~

T, (2) * cos(m/2™Y

(i = n-1, BPE= ® m*., n, > 0)
2
then
m ™ m
N -1 _ 2 2
t,0 <aN 1+ COS—FI-) T, (8) = 21 cos_2i+2 cos_2n+2.
i=1 i=1
But
1 +2
5 sin(n/4) n/2n 1
cos - = =
+2 . i+
2t n/h Sln('rr/2:L 2) VQ‘ZnSin(n/2n+2)
i=
and hence,
N 1 16 N2
ti <

< _— .
te”(m/2")my0) T oF mye)
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Uine inequality (16), we obtain (28).

Lemma 6. Let vN = qiN. Then
i=1
I ' D\ -1/1nk
(29) v <exp [—— + §/1lnk) &
1+
: N . N/2 .
Proof. Along with v  we examine v It is easy to see that
-1
T /~(8) - 1 2
N < (1+ N/2 vN/2 + VN/E _ \)N/2 14
2 Tgi(e) + 1
n-1
2
< 1+
. + 1
T21(9)
i=0
However,
n-1

n-1

| 2 nl 2
1n <1 + —) < — < (1 + 2°%)"t.
T,i(6) * 1 T,i(6) + 1

i=0 1=0 1=0
Together with this, we have
n-1
n-1
. i =1 - -
(L+47%8) < (1 +g) L+ 1+ 4%)t ax <
0
i=0
6 - 1ns -1
< + (1 + ) s
1nd

which therefore establishes the validity of (29).
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In the Table, values for r116 and qilb corresponding to

#y;» defined by (15), are given with m/M = 0.01.

i rilé qil6 i ril6 qi16

1 79.8 0.418 9 27.0 0.761
2 19.6 0.423 10 5.63 0.768
3 9.59 0.432 11 5.14 0.790
b 4.63 0.440 12 0.601 0.803
5 28.0 0.479 13 7.66 0.940
6 2.68 0.485 14 1.27 0.0
7 7.98 0.511 15 2.18 0.986
8 0.907 0.518 16 0.0812 ——

For a more detailed study of the iteration process(2), it ic
necessary to introduce a priori assumptions about the nature of hk.
Concentrating on the situations wiich cause the iteration process to
behave unfavorably {for example, when I|uﬂ 1 1s larger or smaller
than m/M) and taking into account the final ordering which insures
that ||nk|| is proportional to ||uk|| for ||uk||>>||u||, we make

the assumption that the errors belong to the class

R R S R R TR

where C, k, and k2 {for example, k; = O (||u|]) and k, = 3(||€0||)}

1
are positive constants which are independent of N but depend on m/M,

the ordering in the computer and the implementation of (2).

. .
Then, if w = an¥ P it follows that

N . 0 N
e = -
n Ri U\n)en Vn ?

wherc
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Consequently,
{ N
N N N x
[Vl <c [x Q. + kg to ] .
AN | 3
i=1 i=1

Taking the results of Lemmas 5 and 6 into account, we are led to the
conclusion that if nkED, then the calculation is stable.

We have also examined the ordering of the coefficients o
when the spectrum o(A) lies on p intervals, the ends of which
satisfy the conditions of [8] {see Appendix 1}. 1In this case, there
exists a polynomial of degree p, Qp (t),  with Qp(o) = 0, which map::
all the intervals onto one [m, M) with mM > 0. 1Let N = pgn, and

w 0 be a permutation of the form (15). We denote by T, (i=1, 2, .
the coefficients of the cyclic method of ordering for [m, M] according
-1

to ngn- Now, we put ¥ T Wy (Ti)’ where

k = (i-Lipts  (i=1, 2, ® **, 2", s=1, 2, @ *=, p)
and the y (r,) are the roots of the equation
BTy

T Qp(t) =1

which are ordered with respect to increasing modulus.

B-25

.:n)



It is clear that the above results can be extended to iteration

methods of the following type {see [9]}

ST LI o,k_(Auk - ).
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