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An Error Analysis

of a Method for Solving Metrix Equations

by

C. C. Paige

Abstract

let B= [L 0]Q be a decomposition of the m by n matrix B cf

rank m such that IL is lower triangular and Q is orthonormal. It

is possible to solve Bx = Db using L but not Q in the following

manner: solve Ly = b , solve L'w =y , and form x = Blw . It is

shown that the numerical stability of this method is comparable to that of

the method which uses Q . This is important for some methods used in

mathematical programming where B is very large and sparse and Q is

discarded to save storage.
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1. Introduction and Insight.

For a given m by n real matrix B with rank m, n>m, and a

real m dimensional vector b , the under-determined set of equations

Bx = b (1)

can be solved as follows. First use the transformations of either Givens

or Householder to obtain the decomposition

where LL is lower triangular and Q is orthonormel, so that

T

This could be done for example for small matrices by applying Householder

transformations to BY via the procedure "decompose" in [1]. A solution

of (1) is then seen by substitution to be

x = QL , (4)

and since this lies in the range of B it is orthogonal to the null space

of B and so is the solutior hich minimizes

T

|xll, =x» (5)



This problem arises in important algorithms used in mathematical

programming, for example in [2) and {3). However, in these cases B is

usually very large and sparse and because of storage difficulties it is

oo often uneconomical to store and access < . If this is so, the solution

can still be obtained by noting that if w is obtained from

BBW = QQ LW = LL'w = b (6)

by solving with L and then (x » then x ig given by

T
X = Bw » (7)

and this can be seen to give the same mathematical result as in (4.

Unfor:unately, when such results are obtained on a computer, rounding

errors occur; and the two different approaches are likely to give different

answers. Sometimes it has been thought that the second result could be

disastrously worsc than the first, thus negating to a large extent algorithms

similar to the one described by (€) and (7). It ic the purpose of this

note tu chow that such algorithms are numerically quite saticfactory.

In order to obtain a clear understanding of the problem and what is

happening, a simple computation will be examined tefore carrying out the

full analysis. This computation has no practical use other than vo clarify

the numerical performance cf the actual case, Suppose A is a nonsingular

square matrix and
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is solved on a floating point computer with precision e to give Ww . How

well does X = Alu approximate x = Aw 7? Note that this computation is

similar 70 that in (6) and (7), except that no special advantage ic taken

of any decomposition here and no error in forming IR” will be considered.

For simplicity assume that || A ll, = 1, so that = a! ll, is the spectral
condition number of A .

The set of equations (8) can be solved in two distinct ways. First

AAT could be computed and the resulting positive definite symmetric matrix

equation solved, for example using .ne Cholesky factorization. From the

rounding error analysic (4, p. 1.5, p. 231] it is known that the computed

sclution w will satisfy

T ~

(AA” + EW= b, iF ll =e fln)e (9)

where f{n) is some function of n , the dimension of the problem. But

this ic Juct

A(T + ATE AT AT ~ b= AAW R (10)

so that on multiplying throuchout by A? and taking norms

~ aT T-- -T.T~PX =X, = [AWA = IA "EA Tas Il

<xeq wily € xe ix - (11)

But. uct s.lving Ax = b directly using a reliable method is kncvn to give
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a bound on the error || x - x i» Proportional to ye | x lo » so that if
I w |, is very large, the above method for solving this equation can lead

to a disastrous loss of accuracy.

For the second approach to solving (8) consider solving Ay =b and

then solving Alw =y for w . Using, for example. .riangular decompositicn

wich pivoting, this will give a computed sclution w satisfying [&, p. 215,

p. 2u8]

T ~~ ]

(A + E,) (A" + Ew =b, IE lp = ¢; & fln)ae , (22)

where a depends on the largest clement arising in the decompesition,

. -1 =T\T~
* Ax =A(I+A E,) (1 + EA JA'w = b (13)

so that

x= lps wep Il X lly + Cegt wegen) IW i

< (yen + yer + yoeser) | Xl (11)= \X&o ¥=3 YX €o 2 5 9

and if xt; < 1 , the order of magnitude of the error bound is the came ug
th:+ for the direct. solution. This in effect is what happenc in solving

(6) and computing (7), that is, whenever the square of the condition number

sc.ur. in the error bound for the final solution, it is effectively multiplied

by the square of the precision. Note that in both the examples jus! considered

4 4 ¢ term will appear in the error bound for w , so that the intermediate

vector w could have negligible accuracy, but in the second method ofl solu-

tion the final resul* could still have quite a few accurate figures. The

same comments apply to computing (6) and (7); x will not lose ai much
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accuracy a5 the intermediate result w . This is a fairly regular occurrence

in numerical computations and needs to be emphasized.
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2, Anulysis of the Practical Algori‘hm

For simplicity in the full analysic tte multiplicative terms involving

the dimensions of the problem will be omitted from the error bounds. Tr.se

are relatively unimportant and can be fcund for any particular computation

from the literature [4]. Results of rounding error analyses will be quoted

from [4] without further reference, and the symbols € will indicate none

negative quantities which are just the product of € , the computer precision,

and constants dependent only on the dimensions of the problem. It will be

assumed that || L lio = 1 in (2) so that y = || al ~ 1s the condition- : [a

number of 1 for solution of equations,

The computed lower triangular matrix L obtained oy applying the ortho-

sonal transformations of either Givens or Householder to B can be shown

to saticfy

(15)

UY = 1, Il Ey ily = 3

anc wien this is combined with (2) it follows that

"y ~ T ~ TrT ..Loo TR,Q + BQ . (16)

| . ~ = MT .
Tre computed solution w of Ly =b , L'w =y can be shown to satisfy

(+E) (If + E)w = 1 IE; li. =e (17)- 1 2 ’ iz i?

whil. the formation of the final solution gives

-f=



~ T ~~ ]

x = (B + Ev, | Bx lly = & . (18)

Equations (15), (17), and (18) describe the rounding errors tha™ occur

in the computation. These will now be manipulated to show their effet on

the final solution. From (4), (16) and (17) it can be seen that

T. -1 T -1 ~ T ~ T ~T ~
xr QL 'beQ'L (IRQ" +ERQ"™ +E) (I +Ex)v,

T - VEER 5 J I JS

=Q Iq + L(g, + EQ) IL + LEV, (19)

where use has been made of 3" = I . But using (15) and then (18;

3, Th = Bly + E,W

~ T~ ~

=x + Ew - Ew (20)

so that (19) becomes

x= QoQ +L VE +EQ))[x+ (ET - E+ E,W] (21)< L 1 L 3 < 2 ‘

Next from (18), using QQ" =],

T. ~ T.T. T

QQX= Q LW+ Q EW

1 EN
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so that (21) gives

~ T ~ T,.7T ~ Toy»
x = x= (QQ - IEW+ QQ (ry - Ey + OE,

T,-1 2 ~ T ~ T_, \~ .

+ Q, L (E, + E,Q) [x + (E, - E, + Q E,)w] . (22)

The Q, QE, terms cancel in this last equation, and since from (18)

Woe LT - LQ Ev ,

which, if x; <1, gives

~ x
lps Axle (25)

1 - XE

i. can bc scen by taking the norm of (22) that

hx xl seg +e + ep + xley +c) (ey veg + ed) Iv

+ x(€), + ¢,) I X lo

< {rt + cy) + les + <3 + €),) {1 + x(e, + “oy i“ In .1 - ¥€3
(ak)

Thus if xc << 1 , the bound on the error in X is proportional x€
»)

rathcr ‘han y € as has often been thought, There is “hen no catastrophic

loc: of accuracy in computing (6) and (7) rather than (4), and so the algorithme

decoribed in [2] and [3] can safely be uced.

This analysis applies to the fully dctermined case as well as to the

under-determined case, Of course the analysis can be simplified it ac fully
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determined case is treated alone, but the result will be just the same.

Computational tests carried out by Michael Saunders for the fully determined

case using leading parts of the Hilbert matrix indicated that (24) was a

fairly tight bound. The computations on the same matrices using (4) gave

results well within the bounds for this approach, and so these results

vere in fect better than those obtained by using (6) and (7). Such compar-

isons have probably helped to form the myth that (6) and (7) produce a

ye error effect in the solution x .
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