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Bidiagonalization of Matrices

and Solution of Linear Equations

by

C. C. Paige*

An algorithm given by Golub and Kahan [2] for reducing a general matrix

to bidiagonal form is shown to be very important for large sparse matrices,

The singular values of the matrix are those of the bidiagonal form, and these

can be easily computed. The bidiagonalization algorithm is shown to be the

basis of important methods for solving the linear least squares problem for

large sparse matrices. Eigenvalues of certain 2-cyclic matrices can also be

efficiently computed using this bidiagonalization.

*Institute of Computer Science, University of London, England. This work
was done while Visiting Research Associate at Stanford University under

National Science Foundation grant, GJ 29988X.
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1. Introduction

The singular value decomposition of an m by n matrix A is

A=XTY > (1.1)

where X and Y are unitary matrices and § is a rectangular diagonal

mby n matrix with non-negative real diagonal entries, the singular values

of A.

Golub and Kahan [2, equation (2.4)] suggest a particular method for

producing a bidiagonal matrix with the same singular values as A . This

method is related to the lanczos method of minimized iterations for tridia-

gonalizing a symmetric matrix [5], and like that method is ideally suited

for large sparse matrices. The equivalent bidiagonalization of a general

matrix and tridiagonalization of a symmetric matrix using Householder matrices |

is more stable but cannot be applied to many large sparse problems because of

storage and time considerations.

Despite a certain numerical instability it is known that a particular

variant of the Ianczos tridiagonalization algorithm still gives extremely

useful results [7], that is, the eigenvalues and eigenvectors are given as
accurately as could be hoped, but the convergence can be slower than the

theoretical rate, and often several computed eigenvalues can represent just

one true eigenvalue. The bidiagonalization algorithm of Golub and Kahan Will be

seen to be numerically equivalent to this variant of the Lanczos method applied

to a certain matrix, and so will have the same sort of stability. Thus

singular values will be given accurately, but with uncertain multiplicity.

The bidiagonalization algorithm and its properties are given in Section 2
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2, The Bidiagonalization Algorithm

Here | + || will denote thc (, norm, that is

2 H
full” = (uu) =u.

The algorithm suggested by Golub and Kahan [2] for bidiagonalizing A will now

be described in detail.

For a given m by n matrix A and a given initial vector u, with

| u, | = 1, the method produces m-dimensional vectors u,,us,..., and

n-dimensional vectors ViaVoseers as follows; For i =1,2,...

av, = Al, - p.vV B, vy, 20 (2.1)id i” Pivier 1°0 ’ :

= - 2,BiaqUieg = AVL —@3Y; (2.2)

where the real scalars ay and Be are chosen to be non-negative and&-~

such that || CIP | = || vy | = 1. Suppose a, , B,,, are non-zero for
i =1,2,...,k , then the above process is fully defined for k steps,

and if

V = [vysVpseersVy] ,

By N

3



then (2.1) and (2.2) may be re-written

H H

Aly = VL , AV = UL + Brest Ut Sk , (2.4)

where ey is the last column of the k by k unit matrix L s 50 that

H

| av = vu + Bail 01 es «WY (2.5)

If a,, is also non-zero and one more step.of (2.1) alone is executed,

with U = U,u,,,] , L = [L 2B1e.41% , then

AU = VL + a4V01%ey AV = UL (2.6)

« ~H H PTT |.. vay = viv + OV Varin = L . (2.7) |

It is now easy to show by induction that

This is certainly true for k = 1 , so suppose it is true for some k >1 ,

then from (2.5) tu, =0, TW = 1 , thus from (2.7) vi, = 0, and
so (2.8) is true for k + 1.

This orthogorelity ensures that the process will curtail for some

value k no greater than the minimum of m and n with either JL = 0

in (2.4) or 1s = 0 in (2.6). As a result there are two possible
final states of the algorithm, the first with the k by k matrix L

ly



Av-=vi', aveur, vuavivar, (2.9)

and the second with the k+1 by k matrix L

~ ~H ~~ ~H~
AN =v, av = OT, Pom,  , Var . (2.10)

To understand which termination will occur, consider the singular

value decomposition of L in (2.10). 7, has linearly independent columns so

i= me, PP=-P =I, ,dQ= =1_, (¢.11)

where M is k+1 by Kk and has eler.ents

Thus

Alp= vou! , AvQ= OPM,

~ aap = Ged! , Atavq = vodiM (2.12)

and so when (2.10) results, A has at least k non-zero singular values

MygseeesBey » and at least one zero singular value with the last column

of UP being “he singular vector that lies in n(a%) , the null space of

al .

Now if for {i =1 it is true that wu, € R(A) , the range of A , then

it can be seen from (2.2) that this is “rue for all i . But n (aM) is

the orthogonal complement of R(A) , so if u, € R(A) then all u, are

-5-



orthogonal to nA , and from the previous paragraph this means that (2.10)

cannot be the final result, and so (2.9) must result. Next note that if

(2.9) is the final result, then since IL is nonsingular U = Ave , SO

that wu, € R(A) for all i ; thus if u, f R(A) then (2.9) cannot
follow and (2.10) must be the final result.

Note that if A has rank r =m, then u, € R(A) necessarily, and

(2.9) follows. If r <m , then (2.10) will result unless u, is a linear
combination of some of the columns of X in (1.1). Both final states

give k non-zero singular values of A , so the process must curtail with

k<r.

If the process halts with k < r , then it can be continued in an

obvious way until r orthogonal vectors v,,...,V Aare obtained [2].

Then if u, is orthogonal to the null space of al , the result (2.9)
can be written

A = ULV du=vv=1r_. (2.13)

Otherwise the result follows from (2.10)

A=0vE, FU=1 , Pv = 1 . (2.14)r+ r

Such continuation need not be considered here,

We will now relate the bidiagonalization algorithm to the lanczos reduction

of a certain symmetric matrix to tridiagonal form. Defining

-6-



"os 5 0 w, 0 w 0 |2 ae 09 []

0 \£ 0 Vo 0 Vie

(2.15)

0 A 0 oy
B E H » T =

A” 0 0
a, Bo

Bo 0 a

oh, 0

it can be seen for example that (2.4) is mathematically equivalent to

T

BW = WD + By,VouCou WW =I, , LT =0, (2.16)

which is the result of applying 2k steps of the lanczos process to B

using as initial vector wv, , the first colum of W . Note that computation
and vector storage have effectively been halved by taking full advantage

of the structure of B . In the 2i-th step the successful variant of the

Lanczos algorithm [7] forms

Pw, - (vi Ba Ww, - av21 2i2i“2i i 2i-1

-f =



where the computed and exact values of Vo Bp, are zero, giving

Bir¥aia © [Pere] = | i)0 0

Now since Bs 44 is found by normalizing this vector, the two methods can
be seen to be computationally as well as mathematically equivalent.

In practice neither algorithm will stop with either a Or Bx Zero,

but for large enough k many of the eigenvalues of T in (2.15) will

approximate eigenvalues of B to almost machine precision. Now if

A is an eigenvalue of B such that

\

O A y = AY
|

At 0 z z |

then

AfAz = NT ’

so that ¢ = | A is a singular value of A , and several singular

values of A will be given to almost machine precision by computing the

eigenvalues of T . However, with the permutation matrix

P= CFLNOPLINL SPYTRITL wl 5

1 0
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so that the singular values of I are the moduli of eigenvalues of T ,

and thus we need only compute the singular values of L. These can be

accurately computed using the QR-like algorithm given in [3].

Finally, if o is a singular value of A , then y *¥ ¢ are eigen-

values of the 2-cyclic matrix

vI A |¥ vi ’
so eigenvalues of such matrices can be computed efficiently just by using

the bidiagonalization algorithm on A , and this is particularly important

for large sparse A , which arise from 21liptic partial differential equa-

tions. This result is parallel to that in [9], where Reid shows how the

computation and storage can be halved when the conjugate gradients algorithm

is applied to such 2-cyclic matrices.

In practice the bidiagonalization algorithm performed just as expected,

the largest singular values being given with remarkable accuracy very quickly,

while the small ones (which correspond to the middle eigenvalues of B in

(2.15)) were slower to converge, especially when there were several very

close, very small ones. If the process was carried far enough, the large

singular values would often appear several times.

-Q-



3, Solution of the Linear least Squares Problem I |

Given the m by n matrix A and an m-vector b , the problem is

minimize || Ax -% || (3.1)

or equivalently, find x and r such that

H
r +Ax=b, Ar=0 . (3.2)

Any such x is called a least squares solution, The x which also mini-

mizes || x | 4s called the minimum least squares solution. The minimum

least squares solution is the unique solution orthogonal to Nn(A) , and

so will have the form x = aly . Thus if y is any solution of

H, Habaally o af (3.3)

then x = Aly is the minimum least squares solution.

In order to motivate the methods that are about to be introduced

for solving such problems, suppose that AV = UL as in (2.9), and the

representation x = Vy holds; then since O = FAV = rHuL and L is
nonsingular, vr = 0. Also

ber+Ax =r + AVy =r + ULy (3.4)

thus y and x may be found from

-10-



w=Uv , xe=Vy. (3.5)

It is now necessary to show that for a certain choice of wu, in (2.1)

and (2.2) such a representation of x is possible. We must then consider

which of (2.9) and (2.10) results and what can be done in the latter case.

The most convenient choice of initial vector is the one to be considered

here

a

this is convenient because ho = 3,9 is then known a priori; this will
be discussed again in Section 5. The equations of the form (3.1) or (3.2)

now separate into two possible classes with corresponding slightly different

methods of solution, First, if the equation Ax = b is compatible, that is

if r=0 in (3.2), then b € R(A) and so u, € R(A) in (3.6), and from
Section 2 it follows that (2.9) must result. This compatible case will

be treated now in full; the case when r f O will be examined later in

this paper.

Here :

Ax = b = B.u,, Aly « vit , AV =UL, tu aVyer, (3.7)

and let x = Vy + w , where Vw = 0. Then Ax = Uly + AW = By, ; but

vPAv = hv «a0, so y= Bye and thus Aw = O , meaning that the solution
of m:aimua norm is

-1ll-



since from (3.7) Vy = aur ty ¢ a (al) , and so is orthogonal to 7M(A) . :

The elements LA of y are found from Ly = B,e , that is

-— 02 w- hd1, - 8/a ’ M41 CIRTL Ie my ) (3.9)

The method is an attractive one because the 2-norm of the error is

minimized in the i-th step over all possible approximate solutions which

are combinations of ViseeesVy o It is an excellent slgorithm if A is
a large sparse matrix, since a means of computing ui= Av - u and storage

for 3 vectors is just about all that is needed. What is more, the residual

is available at each step with no extra computation, for if

yy = (RyseesMys0peee,O) then the residual r, after the i-th step is

ry =b- AVy; = Bu UL, = By Tilie (5.10)

= 0, (ou, - Av,) = BM,_ 4; - TAY,

= Ti.q - MAY

where use has been made of (2.2) ond the expression for LI in (3.9)
From this expression it can be seen that residuals at different steps are

orthogonal.

This is not a new method as will be shown in the next paragraph. Its

importance here is the very simple derivation from the very natural bidiagon-

alization algorithm (2.1) and (2.2), so that the connection between the

method and the relevant singular values of A is laid bare, As is well

=12-



known, these singular values are of vital importance in the solution of

linear equations.

In fact, the method (3.9) is equivalent to Craig's method in the

computational form described by Faddeev and Faddeeva [1, p. 405, ecuations

2 2 2
Cc ! i = = =(23)]. In Craig's algorithm take X,=0, a, 1/a; y by CIN Fp ACAR

gy = oF vy » and ry = Big M14 » and the algorithm here will result.
Thus Craig's method is seen to apply to any compatible system of linear

algebraic equations. It has been pointed out in [1] that Craig's method

is mathematically equivalent to applying the method of conjugate gradients

[4] to

H H

The purpose in using (3.9) rather than conjugate gradients applied to (3.11)

is to avoid any suggestion of deterioration in the condition of the problem

to be solved.

The possibility that now has to be examined is the one where r is

non-zero in (3.2), so that u, = o/B, £ R(A) . Section 2 then shows that
(2.10) must be the final state of the bidiagonelization procedure. Thus

solve

H

r+ Ax =10 =g,u, , Ar=290 (3.12)
using

La"4 ~H La 4 me

Ag = vE NV ERTANTATEE SL (3.13)

-13-



Suppose

x = Vy + w with viv = 0, (3.14)

then r + ULy + Aw = f,u, , but PAW = Wh =0 so Ly = 8, - Thy
giving r + Aw = rr gy wale 4 Jaa o | Aw 1° e WAUr = 0 , since
vial = 0 from the above.

Thus Aw = O , and a smaller solution is obtained by taking x = Vy

in (3.14). But from (2.1) v, € aA?) forall 1, and so this x is
orthogonal to 7A) and is therefore the minimum least squares solution,

The equations of interest are now

but since r is unknown a priori the i-th element LA of y apparcntly

cannot be found at the same time as us and v, ere produced—unlike (3.9).
However, suppose

H .

Ts t

\ Tit i"

then since from (3.13) and (3.12)

LU r = VARF = O ’ (3.27)

it follows on dividing by Y that

«1h-



Tt )" ae, where T =/p, . (3.18)\

%e Prey)
This can be solved, giving

Ty = Ty 194/84. ; i=1,...,k , where 1, % 1. (3.19)

Thus if y were known a priori , ur would be available in the i-th step

and so 1, could be found. On the other hand, from (3.15) and (3.17)

2 H

|r ||” = Byriuy =8,v (3.20)

so if y were known a priori, then || r || would be known a priori, which

seems unlikely.

Suppose now that vectors z and w are found from

Iz = B.e, Iw =| 1 , (5.21)
t

then taking

y=z-wWw (3.22)

gives

Ly = Be, Pr (3.23)

-15~



so that

XuVyasVz - yWw (3.24)

and Vz and VW may be formed as the bidiagonalization proceeds. In the

last step y may be found from the last element of the middle equation in

(3.15), equation (3.22), and (3.16).

Prarie = Brag (Cp — Yo) = -v7,

vhere Cy » Wb, are the i-th clements of z , w respectively. The solution

x is then given by (3.24).

If Vz and yVw vere large and nearly equal, then cancellation in

(3.22) would mean numerical instability. However, from (3.21) | z || <p9
where Oy is the smallest singular value of L , that is, the smallest

relevant (non-zero) singular value of A . Thus the subtraction in (3.22)

can at most introduce an (additional) error in x of 8 10(€)/ a , where

€ is the pachine precision. Such an error size is to be expected from

the condition of the probler, and so the step (3.24) appears acceptable,

With this approach the algorithm for solving either compatible or

incompatible systems of equations can be written

To i= 1 3 wy = 0 3; Co i= 13 vz :=0 ; vw := 0 ;

Byuyi= bj;

: -16-



H

av, i= Ay; i:=0 ;

general step: i=1+1;

PEL a TEL NAA ; vz i= vz + (Vv, ;

of t= (1yq = By Mags Wom roy,

PiagUiaq P= AVY - Oly

if B,,, =0 then (solution := vz ; residual := O ; stop) ;

Ty otm oTy@y/ Brgy

LITRATO TOI STURM

if Oy = O then

(y := BygCs/ (Byr® - T) : solution := vz = yvw ; stop);

go to general step ;

As before «a, , B, are chosen so that | vi ll = lu ll =1 . This requires
only 3 vectors of length n, i.e, v, vz , vw , and { vector of length m,

i.e, u j or if it were known a priori that y = 0 , then vw would not be

needed.

-17-



It can be shown using (3.13), (3.15), and (3.16), that after the i-th

step the residual is

1

Fy Bua (Cy mvogdug, vy > "5-1

but this is not available until y is known at the end of the process.

However, if r = 0 in (3.12) then y = 0 from (3.16) and so “By +161Y54q
is “he residual after the i-th step; this is just (3.10).

In practice the stopping criteria would be almost useless, and in }

fact it could happen that no @, or By was even small, The hope is

that both (., and w, become negligible, and that y in (3.25) attains

a stable value.

| -



L. Solution of the Linear Least Squares Problem IT

The bidiagonalization algorithm can be applied with AP interchanged

with A in (2.1) and (2.2), and then a different algorithm for solution

of equations will result, However, since the present bidiagonalization

algorithm has been analysed so fully in Section 2, it will be retained,

and the alternative solution of equations algorithm will be derived from

applying this same bidiagonalization algorithm to the problem

H
r+Ax=0b, Ar = 0, (4.1)

where, as before, A is an mbyn matrix, and b is given.

The most convenient choice of initial vector here is

u, = Ad/B, , By = | Ab || (4.2)

With this choice wu, € R(A) , and from the discussion in Section 2 the final
result of the bidiagonalization must be

Aly = vi? , AVeUL, UU=VVarL. (4.3)

Suppose now that

x=Uy+f, UfeoO,

then vale = hte = 0 , and

«1G-



Aly mally +Alz avidly +a ab = x

no Uyavip-r). (b.14)

Thus b -r = Wh (b -r) + Alle , giving with (4.3)

Bu, = Ab = Aber) = ui(b-r) + AaBe (4.5)

and on multiplying by a

B,ey= TF (b - x) (4.6)

since vials - hale = 0 , Finally substituting (4.6) in (4.5) gives

amis a0. Thus fen), and since Uy is orthogonal to (A) ,

X = Uy is the minimum least squares solution if y can be found from (4.4).

From (4.4) and (k.6) it follows that

ry -2Z, Iz = Bye » 2 = V(b -r). (4.7)

Clearly y cannot be found until the bidiagonalization 1s complete, but we

are really only interested in finding Uy , so

X=Uym 0) a = Wz , Ws uo (4.8)

and W can be computed a column at a time as the algorithm progresses, by

solving



In this algorithm

Aly = Ally = V

from (4.3), and so is orthonormal; what is more, if x, =Wz, ,
T H -H

which can easily be updated as the computation progresses. Without computing

r, the algorithm can be written as follows. Remember that ory cannot in

theory be zero,

1 :=1 3

pu, t= Ab ; or qv := Ally -11° ’ "1° 1»

vim ufag

Cii=By/oys Xx 1m Qawy3

general step: {i (= 1 + 1 ;

Buy tm Av, - oy. ; if PB, = 0 then stop ;

H ®
avy im Auy BV d

wy t= (ug - By Mays

=2)-



C = -(B a), 3  ximx+ wo;

go to general step ;

As usual the ao, and B, are chosen so that fvill=llug ll =1.
This algorithm requires storage space for the 3 veclors u, w, x of

dimension m , and v of dimension n.

This is apparently a new algorithm; its advantages are its simplicity

and economy and its direct relation to the bidiagonalization (2.1) and (2.2),

80 that the singular values relevant to the problem can be found easily

from IL . Good approximations to the singular values can also be found

after only a fraction of the full number of steps,

If this is used computationally, then it is unlikely that either Bp{

or oy will ever become negligible, but in practice the Cy eventually

do, and so the computation can be curtailed, giving as accurate a solution

as could be hoped for. A possible test is to check that Ar = A(afx - b)

is negligible, Computational experience shows that unless the condition of

the problem is too bad for the machine precision, the algorithm will converge,

but on problems with very close,very small singular values, far more than

n steps may be required,

«224



S. Comments and Conclusions

The very natural bidiagonalization algorithm of Golub and Kahan [2],

described here in (2.1) and (2.2), appears to be of significant theoretical

importance, First, it allows singular values and vectors of A to be easily

obtained, for instance by finding the singular value decomposition of the

bidiagonal matrix L using the QR-like method given in [3]. This was the

original motivation for deriving the algorithm. Now since the singular

values are nf such great importance in solving linear equations, it is

not, in retrospect, so surprising that this bidiagonalization turns out to

be very basically related to several methods for solving such equations.

Two solution of equations algorithms have been developed here using the

* idisgonalization algorithm as a basis; these have the important advantage

that the relevant singular velues can be found if needed.

A very important point that does not appear to be generally realized

is that the choice of initial vector for solution of equations in algorithms

such as these is computationally all important. Choices other than those

in (3.6) and (4.2) are perfectly satisfactory in theory, and just require small

alterations in the algérithms involving one additional inner-product. However,

the ones given seem to be the only ones that can be relied upon to give con-

vergence in practice. Note that when (3.6) is used it is assumed in the

algorithm that uh = Pye 2 and yet it is known that this is not usually
the case, that is, orthogonality is lost. If the true value of a is

used in the algorithm instead of 8184 it is found in practice that the

algorithm will not converge once orthogonality is lost. A similar result

holds for (4.2).

This does not mean that another initial approximation to the solution

cannot be used. Suppose r + Ax =D , Ally =0, and Xx, is a good

-23-



approximation to x ; then if r, = b - Ax, , it is clear we now want to

solve

r+ Ag =r, alr 20,

80 that x = x, + g . The method for solving this new problem can now

start with the necessary initial vector, e.g., B,u=r, In (3.6). Note

here that if x, = yg + 2, with zy € TA) ys Yo € ra) ; then X= y+ z,
| with y € (ad) , 50 that x is not the minimum least squares solution for

non-zero 2.

The computational importance of all the algorithms suggested here lies

in their application to very large problems with a sparse matrix A. In

this case the computation per step and storage is about as small as could be

hoped, and theoretically the number of steps will be no greater than the

minimum dimension of A . In practice, however, the number of steps required |

for a given accuracy can be much less or much greater than the expected |

number, depending, among other things, on the computer precision and the
actual singular values. Rounding errors usually cause orthogonality of the

vectors wu, and of the vectors v, in (2.1) and (2.2) to be lost, but the
singular values and vectors can still be accurately obtained, and the solution

of the given equations can be accurately computed. This is an exact parallel

to the computational performance of the Ianczos method for finding eigenvalues

of symmetric matrices [7], even as far as often obtaining several computed |
singular values of A corresponding to one actual singular value,

Although the bidiagonalization algorithm has been extensively tested,

only the solution of equations algorithm in Section 4 has been tested, it

2h



being more straightforward than the extension of Craig's algorithm given in

Section 3. The suggestions on computational technique come from experience

with the algorithm in Section 4 and cther algorithms closely related to

these here.

The methods described here are for a general matrix A ; if A is

hermitian, then these methods will be inefficient. The Lanczos algorithm

takes advantage of the symmetry of A for finding eigenvalues (singulr

values), while the method of conjugate gradients is suited to positive

definite systems of equations. A future paper by Paige and Saunders will

show how advantage may be taken of symmetry for efficiently solving systems

of equationc with an indefinite symmetric matrix by using the vectors from

the lanczos process.

An attempt has been made here to show that the bidiagonalization

algorithm introduced by Golub and Kahan is a very basic algorithm, and of

great practical importance for large sparse matrices. The same can be said

of the original Ianczos algorithm for tridiagonalizing hermitian matrices;

inp fact it could be argued that this latter algorithm is more basic, one

reason being that the former can be derived in a simple manner from the

tridiagonalization algorithm applied to the matrix B in (2.15).

«25«
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