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Bidiagonalization of Matrices

and Solution of Linear Equations

by

C. C. Paige?*

Abstiact

An algorithm given by Golub and Kahan [2) for reducing a general matrix
to bidiagonal form if shown to be very important for large sparse matrices,
The singular values of the matrix are those of the bidiagonal form, and these
can be easily computed. The bidiagonalization algorithm is shown to be the
basis pf important methods for solving the linear least squares problem for
large sparse matrices. Eigenvalues of certain 2-cyclic matrices can also be

efficiently computed using this bidiagoralization.

*Institute of Computer Science, University of London, England. This work
was done while Visiting Research Associate at Stanford University under
National Science Foundation grant, GJ 29988X.



1. Introduction

The singular value decomposition of an m by n matrix A is

A=xzY (1.1)
where X and Y are unitary matrices and §¥ is a rectangular diagonal
mby n matrix with non-negative real diagonal entries, the singular values
of A.

Golub and Kahan [2, equation (2.4)] suggest a particular method for
producing a bidiagonal matrix with the same singular values as A . This
method is related to the lanczos method of minimized iterations for tridia-
gonalizing a symmetric matrix [5], and like that method is ideally suited
for large sparse matrices. The equivalent bidiagonalization of a general
matrix and tridiagonalization of a symmetric matrix using Householder matrices
is more stable but cannot be applied to many large sparse problems because of
storage and time considerations.

Despite a certain numerical instability it is known that a particular
variant of the lanczos tridiagonalization algorithm still gives extremely
useful results [7], that is, the eigenvalues and eigenvectors are given as
accurately as could be hoped, but the convergence can be slower than the
theoretical rate, and often several computed eigenvalues can represent just
one tyue eigenvalue. The bidiagonalization algorithm of Golub and Kahan will be
seen to be numerically equivalent to this variant of the Lanczos method applied
to a certain matrix, and so will have the same sort of stability. Thus
singular values will be given accurately, but with uncertain multiplicity.

The bidiagonalization algorithm and its properties are given in Section 2



~

2. The Bidiagonalization Algorithm

Here | - || will denote th¢ f, norm, that is
2 H
fal]” = (uyu) =vha.

The algorithm suggested by Golub and Kahan [2] for bidiagonalizing A will now
be described in detail.

For a given m by n matrix A and a given initial vector u1 with
H u, | =1, the method produces m-dimensional Vectors u,,uy,..., and

n-dimensional vectors VisVoreess as follows; For 1i =1,2,...
a.v =AHu-av g, v, 20 (2.1)
ii i i'ie1? 10 ’ *

BiyqYieg = Av, - a.u, , (2.2)

where the real scalars oy and B:+1 are chosen to be non-negative and
&
such that || LI [l =1l vy || =1 . Suppose @, > By, 8re non-zero for

i =1,2,...,k , then the above process is fully defined for k steps,

and if

£ )
Us [u1,u2,...,uk] » Laje

Vs [v1,v2,...,vk] R




then (2.1) and (2.2) may be re-written
H H
Ay = VD', AV e UL+ B u 6 s (2.4)

where e

X is the last column of the k by k unit matrix I‘k s 50 that

v = vlup + BM,UHUW,{ - oy . (2.5)

If a,, is also non-zero and one more step.of (2.1) alone is executed,

~ ~ H H
with U = [U,uk+1] , LE[L Brs®] then

H~ ~H H A~~~
AU = VL' + 0 4V 11®csy @ AV = UL (2.6)
SR & H THAY
V' - PE 4 °'l(~v-1vj.l"l:4-1 Cgeq = L . (2.7)

It is now easy to show by induction that
AR (2.8)

This is certainly true for k = 1 , 8o suppose it is true for some k >1,
then from (2.5) UHuk+1 -0, =1, thus from (2.7) Vi, =0, and
so (2.8) is true for k + 1 .

This orthogorelity ensures that the process will curtail for some
value k no greater than the minimum of m and n with either Brwy gt ™ 0
in (2.4) or L 0 in (2.6). As a result there are two possible

final states of the algorithm, the first with the k by k matrix L

Y-



AHU=VLH,AV=UL,UHU=VHV=IK, (2.9)
and the second with the k+1 by k matrix i
A v, av =0T, ?‘ﬁ-rkﬁ,v‘\ulk. (2.20)

To understand which termination will occur, consider the singular

value decomposition of L in (2.10). 7. has linearly independent columns so
L=Pmﬂ,pHP=PPH=Ik+1,QHQ=QQH=Ik, c.11)
where M 1is k+1 by k and has elerents

m”,...,mkk)O; mij=0 for i#j .
Thus

aAlp = vol! , ave = Omm,
o AP = Umed , AMavq = voMin, (2.12)

and so when (2,10) results, A has at least k non-zero singular values
MygsecesMyy » and at least one zero singular value with the last column
of P being ‘he singular vector that lies in N(A") , the null space of
AH o

Now if for i =1 it is true that w, € R(A) , the range of A , then
it can be seen from (2.2) that this is “rue for all i . But n(AH) is

the orthogonal complement of R(A) , so if u, € R(A) then all u, are

i
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orthogonal to n(AH) , and from the previous paragraph this means that (2.10)
cannot be the final result, and so (2,9) must result. Next note that if
(2.9) is the final result, then since L is nonsingular U = avy™? , 80
that u, € R(A) for all i ; thus if u, £ R(A) then (2.9) cannot
follow and (2.10) must be the final result.

Note that if A has rank r =m, then u, € R(A) necessarily, and

(2.9) follows. If r <m , then (2.10) will result unless u, is# a linear

1
combination of some of the colamns of X in (1.1). Both final states

give k non-zero singular values of A , so the process must curtall with
k<r.

If the process halts with k < r , then it can be continued in an
obvious way until r orthogonal vectors v1,...,vr are obtained [2].
Then if u, is orthogonal to the null space of Al , the result (2.9)

can be written
AHUL'VB, UH'U=VHV=II‘. (2.13)
Otherwise the result follows from (2.10)

A=, =1 viy - 1. (2.14)

r+t ? r

Such continuation need not be considered here,
We will now relate the bidiagonalization algorithm to the Ianczos reduction

of a certain symmetric matrix to tridiagonal form. Defining
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2
0 v1 0 v2 0 vk
(2.15)
0 A 0] a1
B= H » T =
A" O 0
o, Bo
B 0 o

it can be seen for example that (2.%) is mathematically equivalent to

T
BN = WE + By Vo (€0 s W = L, » “H"’akﬂ =0, (2.16)

which is the result of applying 2k steps of the Ianczos process to B

using as initial vector ) the first column of W . Note that computation

and vector storage have effectively been halved by taking full advantage

of the structure of B . In the 2i-th step the successful variant of the

lanczos algorithm (7] forms

H
Buyy = (o Bup Moy - vy,



where the computed and exact values of "213‘21 are zero, giving

Biat¥aia = [Baa¥ang | = [ AV T Y .
o 0
Now since eiﬂ is found by normalizing this vector, the two methods can

be seen to be computationally as well as mathematically equivalent.

In practice neither algorithm will stop with either o or Bk Zero,
but for large enough k many of the eigenvalues of T in (2.15) will
approximate eigenvalues of B to almost machine precision., Now if

A is an eigenvalue of B such that

0O A y = Ay

AH 0 z z;l
then

Az = 2% ,

so that o = | A | 1is a singular value of A , and several singular
values of A will be given to almost machine precision by computing the

eigenvalues of T . However, with the permutation matrix

Ps= [e1,ek+1,e2,ek+2,...,ek,eak] s

LT 0o
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so that the singular values of L are the moduli of eigenvalues of T,
and thus we need only compute the singular values of L . These can be
accurately computed using the QR-like algorithm given in (3].

Finally, if o 1is a singular value of A , then vy t ¢ are eigen-

values of the 2-cyclic matrix

vI A

2
AH yI

so eigenvalaes of such matrices can be computed efficiently just by using
the bidiagonalization algorithm on A , and this is particularly important
for largec sparse A , which arisec from 21liptic partial differential equa-
tions. This result is parallel to that in [9], where Reid shows how the
computation and storage can be halved when the conjugate gradients algorithm
is applied to such 2-cyclic matrices.

In practice the bidiagonalization algorithm performed just as expected,
the largest singular values being given with remarkable accuracy very quickly,
while the small ones (which correspond to the middie eigenvalues of B in
(2.15)) were slower to converge, especially when there were several very
close, very small ones. If the process was carried far enough, the large

singular values would often appear several times.



3. Solution of the Linear least Squares Problem I

Given the m by n matrix A and an m-vector b , the problem is
minimize || Ax - % || (3.1)
or equivalently, find x and r such thaf
H

r +tAx=b , Ar=0 . (3.2)

Any such x is called a least squares solution., The x vwhich also mini-

mizes || x | is called the minimun least squares solution. The minimum

least squares solution is the unique solution orthogonal to N(A) , and

so will have the form Xx = Aﬂy . Thus if y is any solution of

H, H

aBally o Ay (3.3)
then x = AHy is the minimum least squares solution,

In order to motivate the methods that are about to be introduced

for solving such problems, suppose that AV = UL as in (2.9), and the
representation x = Vy holds; then since O = rHAv = rHUL and L is
nonsingular, UHr =0 . Also

ber+Ax=r +AVy = r + Uly (3.4)

thus y and x may be found from

~10-



INSUH'b » x-Vy‘ . (505)

It is now neces@ry to show thet for a certain choice of u1 in (2.1)
and (2.2) such a representation of x is possible. We must then consider
which of (2.9) and (2.10) results and what can be done in the latter case.

The ﬁost conventent choice of initial vector is the one to be considered

here

u, = b/51 ’ B, = ol (3.6)
’

this is convenient because Uﬂb =3, is then known a priori; this will
be discussed again in Section 5. The equations of the form (3.1) or (3.2)
now separate into two possible classes with corresponding slightly different
methods of solution, First, if the equation Ax = b is compatible, that is
if r=0 in (3.2), then b € R(A) and s0 u, € R(A) in (3.6), and from
Section 2 it follows that (2.9) must result., This compatible case will
be treated now in full; the case when r f O will be examined later in
this paper.

Here
AX=b=ﬂ1“1, AHU-VLH, AV = UL , ‘h‘ﬁ’l, (3'7)
and let x = Vy + w , where VHv-O. Then Ax-:UI‘y-l-Aw-91u1 ; but

UHAw = LVHH «0, s0o Lys= a1e1 and thus Aw = O , meaning that the solution

of miaimun norm is

x =Vy, (3.8)



gince from (3.7) Vy = AHUL'Hy ea(AH) , end so is orthogonal to 7M(A) .

The elements ‘ni of y are found from Iy = p1e1 » that is

Ny =8yfoy 5 Myyy==Bppiagy, - (3.9)

The method is an attractive one because the 2-norm of the error is
minimized in the i-th step over all possible approximate solutions which
are combinations of v1,...,vi . It is an excellent algorithm if A is
a large sparse matrix, since a means of computing ui= Av - u and storage
for 3 vectors is just about all that is needed. What is more, the residual
is available at each step with no extra computation, for if

v, * (1’(1,...,111,0,...,0)“ then the residual r, after the i-th step is

b - AVyy = Byuy ULy, = By Ti¥in (5.10)

M laguy - Avy) = BN, _u, - AV,
= 1‘1_1 - T]iAVi

where use has been made of (2.2) ond the expression for LI in (3.9).
From this expression it can be seen that residuals at different steps are
orthogonal.

This is not a new method as will be shown in the next paragraph. Its
importance here 1s the very simple derivation from the very nalural bidiagon-
alization algorithm (2.1) and (2.2), so that the connection between the

method and the relevant singular values of A is laid bare. As is well



known, these singular values are of vital importance in the solution of
linear equations.,

In fact, the method (3.9) is equivalent to Craig's method in the
computational form described by Faddeev and Faddeeva [1, p. 405, ecuations

N . ~ 7 2 2
(23)). 1In Craig's algorithm take X =0, a, = 1/a1 » by = [ui+1“i+1] /[ai‘ni] ,

2
gy = oy Myvy » and 1y = By MUy 2 @

Thus Craig's method is seen to apply to any compatible system of linear

nd the algorithm here will result,

algebraic equations. It has been pointed out in [1] that Craig's method

is mathematically equivalent to applying the method of conjugate gradients
(4] to

AAHy =b, x= Aﬂy . (3.11)

The purpose in using (3.9) rather than conjugate gradients applied to (3.11)
is to avoid any suggestion of deterioration in the condition of the problem
to be solved.

The possibility that now has to be examined is the one where r is
non-zero in (3.2), so that u, = b/p“( R(A) . Section 2 then shows that
(2.10) must be the final state of the bidiagonalization procedure. Thus

solve

r+Ax=b=pu Alr = 0 (3.12)
using

A%sViH,AV=IR,W=Ik+1,VHV=Ik. (3.13)



Suppose
x=Vy+w with Vwao, (3.14)

then r + ULy + Aw = B,u, , but Faw = v = 0 s0 E=a1e1 - ity
giving r + Avw = s y o vy + uiafay = || Aw “2 = vAr =0, since
wHAHﬁ = 0 from the above.

Thus Aw = O , and a smaller solution is obtained by taking x = Vy
in (3.14). But from (2.1) v, € aa) forall 1, and so this x 1is
orthogonal to M(A) and is therefore the minimum least squares solutionm.

The equations of interest are now
v+ Uiy =By, Ty =Be-Or, r=0r, (3.15)
but since r 1is unknowr: a priori the i-th element ‘ni of y apparcntly

cannot be found at the same time as w, and v, ere produced—unlike (3.9).

However, suppose

Y = “1}{’ s b '/ T \ s 1 Ei:"‘X.lr/Y ’ (3.16)
{ T t
\ Tt ™

then since from (3.13) and (3.12)
'f.HﬁHr = VHAHl' =0, (3.27)

it follows on dividing by Y that

-1k-



T/ty= -a,e, where T =/, . (3.18)
\"k) \
i
¥ Prsy

This can be solved, giving

Ty = Tyog@y/Byyy 0 1tyeeok, vhere o x 1. (3.19)

Thus if y were known a priori , uiﬂr would be available in the i-ih step

and so 1, could be found. On the other hand, from (3.15) and (3.17)
2 H
| r " =Byruy =8y (3.20)
so if y were known a priori, then | r |\ would be known a priori, which

seems unlikely.

Suppose now that vectors z and w are found from

Lz = p.e, m-( 1 ) ’ (3.21)
t
then taking
ymzo-ww (3.22)
gives
Iy =Beq- Ur (3.23)

-15-



so0 that

XuVy=Vz - yWw (3.24)

and Vz and VW may be formed as the bidiagonalization proceeds. In the
last step y may be found from the last element of the middle equation in
(3.15), eqaation (3.22), and (3.16).

PrarThe = Bieaq (Cx - ¥y ) = ¥my
oo ¥ = Byl By = 7y (5.25)

where Ci » W, are the i-th clements of 2 , w respectively., The solution
x is then given by (3.24).

If Vz and yVw were large and nearly equal, then cancellation in
(3.22) wou1d mean numerical instability. However, from (3.21) || z | <8 1/qk
where Oy is the smallest singular value of L, that is, the smallest
relevant (non-zero) singular value of A . Thus the subtraction in (3.22)
can at most introduce an (additional) error in x of 510(5)/ok , where
€ 1is the machine precision. Such an error size is to be expected from
the conditiﬁn of the probler, and so the step (3.24) appears acceptable.

With this approach the algorithm for solving either compatible or

incompatible systems of equations can be written

-16-



v, = AHu1; 1i:=0 3

general step: i =1+1;

gyt -Ci_1pj_/ui 3 vz im vz 4 (Vo

we

o, = (71_1 - aimi_1)/a1 VW = VW + Q.V,

i'i°?
BistUiaq =AYy - @Yy s

if 8,,, =0 then (solution := vz ; residual := O ; stop) ;

-ri 1= "1-1"'1/’1+1

H .
¥y pqViaq A Wy T PiygVy b

if °'1+1 = O then

(y := °1+1‘1/('1+1‘”1 - 1'1) ; solution := vz - yvw ; stop );

g0 to general step ;

As before a, , B, are chosen so that i v, | = i u, || =1 . This requires

only 3 vectors of length n , i.e,, v, vz , vw , and { vector of length m,
l.e, u ; or if it were known a priori that y = O , then vw would not be
needed.



It can be shown using (3.13), (3.15), and (3.16), that after the i-th

step the residual is

1
Tyom By (Cy - vogdug Y j§1 T5-1"

but this is not available until y 1is known at the end of the process.
However, if r = O in (3.12) then y = 0 from (3.16) and so -*5“1Ciui+1
is the residual after the i-th step; this is just (3.10).

In practice the stopping criteria would be almost useless, and in
fact it could happen that no @, or Bi was even small, The hope is

that both (., and o, become negligible, and that y in (3.25) attains

a stable value.

-18-



4. Solution of the Linear Least Squares Problem II

The bidiagonalization algorithm can be applied with AH interchanged
with A in (2.1) and (2.2), and then a different algorithm for solution
of equations will result., However, since the present bidiagonalization
algorithm has been analysed so fully in Section 2, it will be retained,
and the alternative solution of equations algorithm will be derived from
applying this same bidiagonalization algorithm to the problem

r+AHx=b, Ar = 0, (k.1)

where, as before, A is an mbyn matrix, and b 1is given.

The most convenient choice of initial vector here is
u, sAb/§1 , By = || &b || . (x.2)

With this choice u, € f(A) , and from the discussion in Section 2 the final

result of the bidiagonalization must be

Ay = vi? AVeUL, UU-VVaer. (4.3)
Suppose now that

x=Uy+f, Utao,

then VARt » 1Uflf = 0, and

-19-



Ay wallyy s Al avily s A2 e b - x
u‘i Lny = Vﬂ(h - r) . (h.h)

Thus b -r = VV‘“('b -r)+ alle , giving with (4.3)

B,uy = Kb = A{b-r) = ui(b-r) + aalle (4.5)
and on multiplying by U'
p1e1- Dln(b - r) (l‘-6)

since UhAAP? « faff « 0 . Finally substituting (4.6) in (4.5) gives

H

M2 .0, T™us fe¢ n(AB) , and since Uy is orthogonal to 'n(AH) ,

x « Uy 15 the minimum least squares solution if y can be found from (k.L).
From (4.4) and (k.6) it follows that

Lny-z 3 u'p1e1 F) ZEVH(b-r) . (hv?)

Clearly y cannot be found until the bidiagonalization 1s complete, but we

are really only interested in finding Uy, so
X=Uyw UL.HLHy = Wz , v suL™? (4.8)

and W can be computed & column at a time as the algorithm progresses, by

solving

«20-



M - l}{ . (u'g)
In this algorithm

A e iy oy

from (4.3), and so is orthonormal; what is more, if x, =Wz, ,

i

T H -H
Z; % (Gyseees Ggp Opessy 0) , then r, mb - Ak = b -AL e e - e,

i
which can easily be updated as the computation progresses. Without computing

r the algorithm can be written as follows. Remember that oy cannot in

theory be zero,

p1u1 :t= Ab aqvy = AHu1 H
vy ey

Cqi=Byfey

we
L]
e
|
LAl
-
£
-
we

general step: i := i + 1 ;

’iui = Av1_1 - a1_1ui_1 3 if ’1 = 0 then stop ;

H .
avy = Ay =BV g

wy o (g - Bgvy ey

-21-



€y = -8y ey )y,

X = X + Ci":l H
go to general step ;

As usual the o, and B, are chosen so that || v, = Nug [l =1.
This algorithm requires storage space for the 3 veclors u, w, x of
dimension m , and v of dimension n.

This is apparently a new algorithm; its advantages are its simplicity
and economy and its direct relation to the bidiagonalization (2.1) and (2.2),
so that the singular values relevant to the problem can be found easily
from L . Good approximations to the singular values can also be found
after only a fraction of the full number of steps,

If this is used computationally, then it is unlikely that elther By
or ay will ever become negligible, but in practice the ‘1 eventually
do, and so the computation can be curtailed, giving as accurate a solution
as could be hoped for. A possible test is to check that Ar = A(AHx - b)
is negligidble, Computational experience shows that unless the condition of
the problem is too bad for the machine precision, the algorithm will converge,
but on problems with very close,very small singular values, far more than

n steps may be required,

«22a



5. Comments and Conclusions

The very natural bidiagonalization algoritlm of Golub and Kahan {2},
described here in (2.1) and (2.2), appears to be of significant theoretical
importance. First, it allows singular values and vectors of A to be easily
obtained, for instance by finding the singular value decomposition of the
bidiagonal matrix L using the QR-like method given in [3). This was the
original motivation for deriving the algorithm. Now since the singular
values are nf such great importance in solving linear equations, it is
not, in retrospect, so surprising that this bidiagonalization turns out to
be very basically related to several methods for solving such equations.

Two solution of equations algorithms have been developed here using the
" idisgonalization algorithm as a basis; these have the important advantage
that the relevant singular velues can be found if needed.

A very important point that does not appear to be generally realized
is that the choice of initial vector for sclution of eguations in algorithms
such as these is computationally all important. Choices other than those
in (3.6) anad (4.2) are perfectly satisfactory in theory, and just require small
alterations in the algérithms involving one additional inner-product. However,
the ones given seem to be the only ones that can be relied upon to give con-
vergence in practice, Note that when (3.6) is used it is assumed in the
algorithm that U'b = pie, , and yet it is known that this is not usually
the case, that is, orthogonality is lost. If the true value of Uﬂb is
used in the algorithm instead of § 1% ? it is found in practice that the
algorithm will not converge once orthogomality is lost. A similar result
holds for (4.2).

This does not mean that another initial approximation to the solution

cannot be used. Suppose r + Ax =D, AHrso,and X, is a good

-23-



approximation to x ; then if ry = b - Axo s it is clear we now want to

solve
H
r+Ag-r°, Arso0,

80 that x = X, + g . The method for solving this new problem can now
start with the necessary initial vector, e.g., B,u =T, in (3.6). Note
here that if X, = ¥ + 2, with ZOE7I(A) y Yy € R,(AH) ; then X =y + zg
with y € a(AH) , S0 that x is not the minimum least squares solution for
non-zero zq o

The computational importance of all the algorithms suggested here lies
in their application to very large problems with a sparse matrix A. In
this case the computation per step and storage is about as small as could be
hoped, and theoretically the number of steps will be no greater than the
minimum dimension of A . In practice, however, the number of steps required
for a given accuracy can be much less or much greater than the expected
number, depending, among other things, on the computer precisioh and the
actual singular values. Rounding errors usually cause orthogonality of the
vectors u, and of the vectors v, in (2.1) and (2.2) to be lost, but the
singular values and vectors can still be accurately obtained, and the solution
of the given equations can be accurately computed. This is an exact parallel
to the computational performance of the lanczos method for finding eigenvalues
of symmetric matrices [7], even as far as often obtaining several computed
singular values of A corresponding to one actual singular value.

Although the bidiagonalization algorithm has been extensively tested,

only the solution of equations algorithm in Section 4 has been tested, it

Ol



being more straightforward than the =xtension of Craig's algorithm given in
Section 3., The suggestions on computational technique come from experience
with the algorithm in Section 4 and other algorithms closely related to
these here.

The methods described here are for a general matrix A ; if A is
hermitian, then these methods will bte inefficient. The lanczos algorithm
takes advantage of the symmetry of A for finding eigenvalues (singulr
values), while the method of conjugate gradients is suited to positive
definite systems of equations. A future paper by Paige and Saunders will
show how advantage may be taken of symmetry for efficiently solving systems
of equations with an indefinite symmetric matrix by using the vectors from
the lanczos process.

An attempt has been made here to show that the bidiagonalization
algorithm introduced by Golub and Kahan is a very basic algorithm, and of
great practical importance for large sparse matrices. The same can be said
of the original Ianczos algorithm for tridiagonalizing hermitian matrices;
ip fact it could be argued that this latter algorithm is more basic, one
reason being that the former can be derived in a simple manner from the

tridiagonalization algorithm applied to the matrix B in (2.15).
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