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SOME COMBINATORIAL LEMMAS

| by DonaldE. Knuth

- This report consists of several short papers which are completely

= independent of each other:

. 1. "Wheels Within Wheels." Every finite strongly connected digraph
| 1s either a single point or a set of n smaller strongly connected

digraphs joined by an oriented cycle of length n . This result

| is proved in somewhat stronger form, and two applications are given.

8 2. "An Experiment in Optimal Sorting." An unsuccessful attempt, to
~ sort 13 or 1h elements in less comparisons than the Ford-Johnson

1 algorithm, is described. (Coauthor: E. B. Kaehler.)|

RR "Permutations With Nonnegative Partial Sums." A sequence of s

| positive and t negative real numbers, whose sum is zero, can be
: arranged in at least (s+t-1)! and at most (s+t)t/(max(s,t)+1) <

2(stt-1)! ways such that the partial sums Xp been x, are non-
negative for 1 <j < s+t
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under grant number GJ-992, and the Office of Naval Research under

~ contract number N-00014-67-A-0112-0057 NR O44-402. Reproduction in
whole or in part is permitted for any purpose of the United States
Government.
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WHEELS WITHIN WHEELS

byDonaldE. Knuth | | |

"Their appearance and their work was, as it were, a wheel
- within a wheel." .

. - Ezekiel 1:16 |

| A strongly-connected digraph is a nonempty directed graph in which

an oriented path exists from any vertex to any other. The following
L lemma shows that all finite strongly-connected digraphs can be constructed

| in a fairly simple way .
: Lemma 1. Every strongly-connected digraph § is either a single

- vertex with no arcs, or it can be represented as follows for some n>1:
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| | Here bys cee ’ Br, are strongly-connected digraphs; Xs and y; are
| (possibly equal) vertices of Bb; 3 and e; 1s an arc from Ys to Xipq

The original digraph #8 consists of the vertices and arcs of

Bs ees plus the arcs €1rcees€ .

In fact, if 0 is any given oriented cycle of JB , there exists

- such a representation in which each of the e; is contained in oo .

3 (Since each of the Bb, can be further decomposed in the same way, |
every strongly-connected digraph essentially consists of "wheels within

_ wheels" .) |

_ Proof. Let—- e be an arc of JS, and let the relation

x oy [without e]

x mean that oriented paths excluding e exist from x to y and from

i | y to x . This is an equivalence relation which partitions the
vertices of # into components, namely the so-called strong components |

| of fH-e .
Suppose that e' = (x',y') and e" = (x",y") are distinct arcs

i such that x' « x" , x! oh yr, x" # y" [without e] . Let 5» , Bt, |
| - PB" denote the respective components of xf , vy! , and y" ; possibly

- bH' =F" . The shortest oriented path leading from a vertex of §' to a
. vertex of 5 involves no arcs leading from vertices in Py , hence

| b~e' contains an oriented path from gn to Fs . Since e" goes
| back from 5 to B' , we have

x" oy" [without e'] .

Furthermore

| Xx «yy [without e] implies x «+ y [without e'] ,
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| for all x and y , since x ey {without e] means that x and y
belong to the same component, and e'!' does not lie within any component.

i Thus Jp-e' has fewer strong components than p-e .

Two distinct arcs leading out of the same component, such as e!

and e" in the above discussion, may be called "mates". We shall now

” prove that there is an arc e in o .such that J -e contains no mates.

3 This will prove the lemma, since the components Br 5B, «e+ must then
} have the cyclic form shown, with e = e say, and with all the other
n ey belonging to o .

If 5 is finite we simply let e be the arc in o such that S-~e

L has the fewest components. This will imply the nonexistence of mates,
| since another arc e' of o¢ which is not included in some component

cannot have a mate, lest J/-e' have fewer components.

| If 5 is infinite the argument is slightly more tricky. We choose | |
r € 80 that the minimum possible number of arcs of o¢ fail to lie within

components of fH-e 3 if two arcs e are equally good by this criterion,

| we choose one that minimizes the number of arcs of o¢ that have mates.

Now Jp -e contains no mates; for if it did, there would be an arc e!

of o which has a mate e" . But this contradicts the choice of e ,

since e must not lie in a component of f-et , and H-e' contains

at least one less mated arc of o . [J |

If o contains an arc e such that #-e is strongly connected,

then n = 1 and the lemma holds rather tnivially. But if § contains

no such "redundant" arcs, then n > 2 and the same will be true for

the B; . |
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| The representation is not unique, even if o is specified to be

: a simple cycle and JH contains no redundant arcs; for example,

| has two representations with n = 3 when 0 is the outermost cycle.

3 Lemma 1 is sometimes useful when proving properties of strongly-
connected digraphs by induction, or when finding counterexamples to

. ~~ conjectures. We shall consider one application here, namely the free

route to Las Vegas problem:

| Theorem. Given a finite, strongly-connected network Lb of one-way
roads between cities, and a designated city called Las Vegas, it is

| possible to erect toll booths on these roads in such a way that the |
following three conditions are satisfied:

I (i) There is no toll-free cycle. (It is impossible to drive
: indefinitely without paying a toll.)

. (ii) Every road is part of a one-toll cycle. (It is possible to

| - start on any road and return to your starting point, paying
only one toll.)

(iii) There is a toll-free routefrom every city to Las Vegas.

~ (Condition (i) calls for comparativelymany toll booths, while conditions

(i1) and (iii) call for comparatively few. By (iii) and (1), every road

leaving Las Vegas must contain a toll booth.)

Proof. We argue by induction on the number of roads (i.e., arcs) in 5,

~ since the theorem is vacuously true when there are no roads. Using the
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| representation of J in Lemma 1, we can erect tollbooths in each 5,
| such that (i) and (ii) hold and such that there are toll-free routes

from x, to Yi for l<ign . Establishing one further toll-booth

- on e, makes conditions (i) and (ii) hold in the entire digraph.

Now the proof is completed by applying another lemma.

| Lemma 2. Using the terminology of the Theorem, if (i) and (ii) can
~ be achieved in JB , it is possible to modify the placement of toll

booths so that all three conditions are achieved.

| Proof. The following move operation preserves both (i) and (ii),

- because it neither increases the number of toll-booths on any cycle

i nor decreases that number to zero:
| "Let x De a city with toll booths on all roads leading into it.

| Destroy all these toll booths, and erect new ones on all roads leaving x ,
o ~ except on those roads which already have toll booths."

| | The proof will be complete if we can show that a sequence of move
| operations will produce condition (iii).

- Given an arrangement of toll booths in £, let BH be the
subnetwork consisting of all cities x from which there exists a toll-

~ free route to Las Vegas (including Las Vegas itself), and all toll-free

| roads between such cities. By condition (i), pA contains no oriented
| cycles, hence we can "topologically sort" the cities of JH into the

| order XyseoerX such that no road of H' goes from x, to x. |
for 1>J . (It follows that x is Las Vegas.)

| Now consider the grand move operation, which consists of successively |
“doing a move operation on vertices X13Xpsee +3X 5 in this order. We



must show that such a grand move is well-defined, in the sense that all

| moves are legal. After having moved toll booths past Xype Xs q 5
| the roads leading into x; are ‘of two kinds:

: (a) Those which had toll-booths before the grand move began.

(These toll booths are still present.)

) (b) Those which had no toll-booths before the grand move began.

- (These belong to p' , so they lead from x, for some i<j ;
they received toll booths when we moved past xX, 2) |

= ~ Therefore we can move past Xs . |
After the grand move operation, all the roads in HB are still

- ~~ toll-free, since the road from xX to Xs received a toll booth on |
| move 1 and it was eliminated on move j . Furthermore if SB did

not originally include all cities, there will be a road from some city x |
| | not in B' to some city Xs in fB' , since JH is strongly connected.
4 The grand move operation removes the toll from that road. Hence So owill

grow until eventually every city belongs to it, i.e., until condition (iii)

| holds. [OO J |

To It is plausible to guess that the theorem could be extended,

replacing condition (ii) by a similar one:

(ii') There is a one-toll route from Las Vegas to every other city.

But the following counterexample (obtained by considering Lemma 1) shows

that this cannot be done in general, since there is a unique way to

install the toll booths meeting conditions (i) and (iii):
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| Los Gatos

toll

} Las Cruces Las Vegas

3 toll

Los Angeles

Acknowledgments: I wish to thank Anatol W. Holt for originally

| ~ suggesting the toll-booth problem to me (without the Las Vegas constraint).
I ~~ This problem originated in his work on Petri nets.
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AN EXPERIMENT IN OPTIMAL SORTING

un by Donald E. Knuth and E. B. Kaehler

| Since Ford and Johnson published their "merge-insertion" method

} of sorting in 1959 [1], nobody has been able to discover a sorting

3 algorithm which uses fewer comparisons in its worst case. Their method |

has been proved optimal when 12 or less elements are being sorted,

_ . and it appears reasonable to conjecture that a better algorithm exists

| for 13 or 1h elements; but the possibilities are so enormous that

L | an exhaustive computer search appears to be out of the question. The
| | purpose of this note is to report the results of an unsuccessful attempt

| to improve on merge insertion when n = 13 or 14% , in the hope that

| our experiments might suggest a new approach to the problem.
4 The maximum number of comparisons needed by merge insertion is

known [2] to be |

| | F(n) = 3 Mog, ( £n)1 .
h 1<k<n

~~ Since F(n) -F(n-1) = [log nl when 12 <n < 16, or when ol, <n<?32,
or WB <n<6h, etc., the Ford-Johnson procedure is no better in its

| worst case than simply sorting n-l1 elements in F(n-1) comparisons,

then inserting the n-th element by binary insertion, for all such n .

Surely there must be a better way than this!

An independent confirmation of Wells's proof [4] that there is no

better way when n = 12 , revealed a particularly efficient line of

attack with respect to 9 elements. By combining this with efficient

8



| constructions for 4 or 5 elements, we hoped to come up with sorting
procedures for 13 or 14 elements.

Suppose that the elements to be sorted are Ky REED » and that

they are distinct. Let the relation " i < j " mean that K. has been

compared to X, and that K. < K, . Let S be a set of such relations,

- and let P(S) be the number of permutations K, Ky... XK Of the set
: {1,2,...,n} such that the relations of § are valid. For example, if

n=»4 and S={1<2,3<L,2<4} then P(S) =3 since there are

only three permutations K,KK;K) of {1,2,3,4} such that K, <K, <K

and Ky < KX; , namely 1234 , 1324 , 231k

- When P(S) = 1 , the sorting has been completed. When P(S) >1,

| we need to make another comparison, say between Ks and K, » and then
| | the two cases 5; =5 U {i < Jj} and S,=S U {j <1} must both be
i dealt with in the same way. When P(S) P= ok s» Wwe must have either |

| | P(S,) > KL or P(8,) > pk-1 (or both), hence at least k more
L comparisons must be made in some branch of the algorithm before the
| sorting is complete. Intuitively it seems best to choose i and J

so that P(S,) and P(S,) are each approximately half of P(S) .

| | Suppose 8 elements are to be sorted, and that the first four

comparisons are Ki: Ky» Kz: Ky Ks: Ke Ko: Kg + By renaming the
- . elements if necessary, we may assume without loss of generality that the

resultsare 1 <2, 3 <4, 5<6, T <8. Then we may compare

oo : Ky: Kx and K,: XK, » and assume by symmetry that 1 <3 and §5 <7 .

And then we may compare K,: Kg and assume that 4L <8 . A11 of these
comparisons split the number of possibilities perfectly into two equal

| parts, hence if s(T) is the set of seven relations known so far we

have p(s(T)) = 81/2 = 315 . |



If we now compare Ky: Kg we find 157 cases with 4 < 6,

158 cases with 6 <4 . Let's work on the latter possibility, since

| | ~1t is probably a little harder; if we compare Ky: Ke it turns out
| | that 1 <5 occurs 77 times but 5 <1 occurs 81 times, and again

we focus attention on the latter case. Introducing a new element 9 »
- it may be in any of 9 relative positions with respect to the original

: 8 elements, hence there are 9x81 = 729 cases to consider. In 372
of these, 7 <9, while 9 <T in the remaining 357 . The 372 cases

. can be broken into 192 with 4 <9 and 180 with 9 <L, -

Let's look at these 192 cases in detail. The eleven relations

L 5(11) = (1<2,3<k,5<6,7<8,1<3,5<7, b<8, 6<k, 5<1,7<9, h<9}
| can be diagrammed as follows:

2

| =L
=

| ~The symmetry between 8 and 9 implies that we can assume 8 < 9
. | without loss of generality; this leads to s(12) = g(11) U {8 < 9} »
with 96 possibilities. Curiously a perfect split occurs if we now

compare Ks with Ky . There are U8 possibilities with 2 < k ’
: i.e., with

| 1 . L

7 |

: By symmetry we may assume 2 < 3 , and then 6 can be inserted into
its proper place relative to {1,2,3} in two more comparisons; and



oo now we may compare K, with the middle element of {Ks Ks Ks 5 KH K .
The result is to produce one of the two configurations

a or re" Te.

each of which has 3 remaining possibilities.

In the other branch, the U8 possibilities in 5(12) U {4 <2} |
. can also be reduced to 48/16 = 3 in four more comparisons. Starting

with

~ . 1 3 y 2 | |

L h ” 8 9 ’

| we compare Kz with K - If 5 <7 we obtain the diagram |
i 6 2

iN
p

1 3 8 9
| 7

| which is symmetrical with resepect to 4 and 7 (1f we remove the
least element, 5 ); after three more comparisonswe obtain either

4 |
el] aa EE ——oe i) or J

- On the other hand of 7 < 3 , there is symmetry between 7 and 1, and
| again the reduction is straightforward. |

We have now worked out the "hardest" lines of a partial sorting

procedure; in each case considered,we discovered sa way to reduce the

9! initial possibilities to only > , after a grand total of 17

comparisons. This is remarkably efficient, since

11



17 102 |

is only slightly less than 5 5 in other words, each of the comparisons
- has split the possibilities very nearly in half.

Let us therefore assume that a 17-step procedure exists such that

R each of the sets s(17) that occurs-has at most 3 corresponding |
8 permutations. (We haven't proved this, but we have grounds to suspect

it is true since the lines not yet considered have fewer possibilities

3 and comparativelymore freedom.) It is plausible to suspect that this |
| fact could be used to discover a sorting procedure for 14 items. If

we add five more elements X10? REPD STN and sort them using seven
| comparisons, we obtain configurations s(2¥) which include

; Po 12 1 1h

| as one of the possibilities after 24 comparisons have been made. This

configuration represents 5) = 6006 possibilities; since 6006 is
) comfortably less than 12 = 8192 , it appears likely that the above

| configuration can be sorted in 15 more comparisons, for a total of
2h+ 13 = 37 < F(14) . |

Therefore an exhaustive search was programmed, based on the above

configuration. The following matrix shows » for each i and j , the
| value of p(s (2) U {i<j} :

12



| 0 6006 6006 6006 6006 6006 6006 6006 6006 3861 5346 581 5976 6003
oo 0 0 6006 hook 6006 6006 6006 6006 6006 2046 3996 5220 5788 5973 |

0 0 02002 6006 6006 6006 6006 6006 966 2604 4228 5348 5873

0 2002 Look 0 6006 6006 6006 6006 6006 1506 3300 472% 5568 5923
| O 0 © O 0 6006 6006 6006 6006 378 1428 3003 4578 5628

0 0 0 0 0 0 6006 6006 6006 168 T98 2058 3738 5250

: 0 0 0 0 0 0 060066006 63 378 1218 2730 4620 |

| 0 0] 0 0 0 0 0 0 6006 18 138 570 1650 3630

N 6 0 0 0 0 0 0 0 0 3 30 165 660 21k5
21k5 3960 5040 4500 5628 5838 5943 5988 3861 0 6006 6006 6006 6006

% 660 2010 3402 2706 4578 5208 5628 5868 5346 © 0 6006 6006 £006

165 786 1778 1282 3003 3948 4788 Su36 5841 © 0 0 6006 6006

i 30 218 658 L38 1428 2268 3276 4356 5976 0 0 0 0 6006
> 33 133 83 378 756 1386 2376 6003 oO oO 0 0 ©

The two median elements, Ks and Xo » can be compared, giving a
. |
L perfect 3005 to 3003 split. The next best choice is to compare

, K, to Ky 5 » giving 3276 to 2730 . Each of the 13 possible
comparisons such that both numbers are < L096 was pursued further.

The program was designed so that if, for example, the "large" .

3276 branch could be sorted, the "small" 2730 branch was tried too.

The two branches were often found to be isomorphic, in which case only

‘one was pursued. However, we discovered to our chagrin that it was

impossible to complete any of the "large" branches further than 9
levels; thus, the isomorphism test (designed to simplify the solution

we thought would be found) was never actually useful.

The program was written in IBM Assembler language and carefully

tested on smaller cases. In the above 6006-case example, 1b x 1b

matrices were generated a total of 1235 times » and the computation

took about 23.6 minutes on a 360/67.

15



| A similar experiment was tried on the 13-element configurations

which each represent 6435 permutations. But neither of these could

| be sorted in 13 comparisons. Hence merge insertion still is the |

champion.
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i Permutations with Nonnegative Partial Sums
: | by Donald E. Knuth

If X12Xps ees X are real numbers whose sum is zero, it is well

| known that we can find some permutation p(1) p(2) ... p(n) such that

each of the partial sums |

| (1) TT p(s) (1)

| is nonnegative, for 1 <Jj<n. In fact, there are at least (n-1)!t
. such permutations; for if p(l) p(2) ...p(n) is any permutation, it
| is not hard to see that some cyclic shift p(k+l) ... p(n) p(1) ... p(k)

will have this property.

i Daniel Kleitman [2] has conjectured that the number of such
permutations is always at most ent!/(n+2) , if the x's are nonzero.

| The object of this note is to prove the following sharpened form of
his conjecture:

J Theoren. Let X12Xpy ones X be real numbers, where Xp FE yt eee = 0 ;
and assume that s elements are greater than zero, t elements are

less than zero, and n-s-t elements are equal to zero. Let |

P(X 5X5 oop) denote the number of permutations p(1l) p(2) ... p(n)
such that each of the partial sums (1) is nonnegative. Then

nt

P(X)5%55 + ees) < max (s,t)+1 . (2)

Furthermore this bound is best possible, in the sense that equality

1s achieved for some x's whenever s,t,n are fixed values with
s+t <n.



| Proof. We may obviously assume that 5s and t are positive. Let ¢ |
be the smallest positive value such that the sum over a subset of the

X. 1s equal to € . For example, if n = 4 and

(x15 %5,%55%),) = (n,2-x,1,-3) , then the o_o sums over proper subsets
| of the x's are N

; X,2-, 2,1, 14m, 3-n,3,-3, 3x, -l-x, -1, 2, 2+, ~xx

The smallest positive value among these is € = =5+m . By symmetry, the

= largest negative value will always be -g , since Xp HX eet x = 0 .

Now let. Xy = =, and consider the n+l values BREE ER VEERTE |
} whose sum is ~e . A permutation q(0) q(1) .+.+q(n) of the indices
| {0,1,...,n} will be called special if each of the partial sums
| | Fa(0) TFa() tt Rg(y)
. | is nonnegative, for O <J<n. (When j =n, of course, this sum
} will be -¢ .)

The plan of the proof is to show first that there are exactly n!

special permutations. Then we shall map each of the P(Xy,%5 0 005% )
| ) permutations into t+1 distinct special permutations. This will prove

that

(t+1)P(xy,%,5 ++ 0x) <n! , (3)

and by symmetry the same will be true with S replacing +t , hence

(2) will follow. |

In order to count the special permutations, we shall use a

| cyclic-equivalence argument to show that exactly 1/(n+1l) of the
permutations are special. Tet q(0) q(1) ...q(n) be a permutation of

the indices {0,1,...,n} , and consider the quantity

14



. +1f = X + x MERISPINE a= L| | (3) a(0) ~ "q(1) a(d) = n+l (4) |

This function takes on n+l distinct values for © <J <n, since
- (Jj) = £(j* and j < j' imply that x ,. t...+x = (J-J')e/(n+1(J) (3*) J J Ply q(j+1) a(3") (3-3%) /( )

contrary to our choice of ¢ The permutation

| q(k+1) ...q(n) q(0) ... a(k) is special if and only if

x FaatXx , 0 >0 f j ;q(k+1) a(d) = or k<Jj<n; (5)

) - X + ...+ Xx + xX Teee*X ,.v >0 for 0<j<k. (6 || a(t1) a(n) * (0) a(s) 2 J (6)
L —-—

If J >k , we have f(s; > fi(k if and only if x tooo tx 00>| J ’ (3) (k) J q(k+1) a(j)
k=-j)e/(n+1 1T and only if x te. tx ov >0. And if(e=i)e/ (nr) VT XG (er) a(3) 2

| | J <k, we have f(j) > £(k) if and only if
ox, +... +X < (J=k)e/(n+1 if and only if || a(3+1) a(i) < (I-0)e/ (m1) y

X t iea +X +X toeootx \ > (k-j-n-1)e/ (n+l if and onla(t 1) a(n) * %q(0) a(3) > (emdmmbe/ (ma) y

r if x + ve. +X + x teeetx v0 > 0. In other wordsi q(k+1) a(n) ~ “q(0) a(j) = ’
a(k+1) ...q(n) q(0) ... a(k) is special if and only if

| f(k) = min £(3) ,
0<j<k

and this uniquely characterizes the value of k . It follows that

exactly n! of the (n+l) 3 possible permutations q(0) q(1) ... q(n)
are special.

| Now let p(1) p(2) +++ D(n) be a permutation of {1,2,...,n} such
that all of the partial sums (1) are nonnegative, and let i be one of

the t indices such that Xo(1) <0 . Then |

| 17



| p(1) ...p(i-1) 0p(i+l) ...p(n) p(i) (7)

Bn is a special permutation of {0,1,...,n} s» Since (4) < x, = =-€ .
Furthermore

p(1) (2) -.. p(n) 0 8)

= 1s obviously a special permutation. In this way we can construct |

: (B+) P(x 5%55 sx) special permutations, which clearly are all

B distinct. Therefore (3) holds, and (2) must be true.
To complete the proof of the theorem, we must show that (2) is |

best possible. This is equivalent to finding examples in which the |

L permutations constructed in (7) and (8) exhaust all the special
| permutations. Such examples obviously arise whenever X, = -¢€ for

| some 1 > 1 . Therefore equality holds in (2) when 1<s<t and-

1 xq = t-s+1 |
Xp = ee = X, = 1 |

X11 I Xt = =] |

| Kept SL" = 0

. (I'or these x's , € =1 . The fact that P(xy5 05%) = n!/(t+l) in
this case is well-known, since it is equivalent to other combinatorial |

problems 5 see, for example, Erdélyi and Etherington [11.) B |

If none of the 27-2 sums over proper subsets of the x's is

zero, it is easy to see by considering cyclic permutations that

P(Xy5%X5 0 ens) = (n-1)! . Conversely, if P(Xy5%5 005%) = (n~-1)1! ,
those partial sums must all be nonzero.

| In the general case the possible values of P(X15%X55 0005 ) seem
| to be spread out rather evenly between (n-1)! and n!/(max(s,t)+1) .

| 18 |



For example, let 21585507505, be positive numbers with

. aq +a, = Dy +b, + by ; the theorem tells us that |
2h < P(ag,a,,-by,-by,-b,) < 30 . In fact it is not difficult to

- | verify in this case that P(a),a,,-by;-by, -bs) equals 24 plus
twice the number of pairs (i,j) such that a, = b, . Thus,

P(5,1,-2,-2,-2) = 2k

= P(L,1,-1,-2,-2) = 26 | |

P(3,1,-1,-1,-2) = 28

) . P(2,1,-1,-1,-1) = 50 .

— Kleitman has used the above theorem to determine the asymptotic |

i number of different score sequences possible in an n-person round-robin
tournament, to within a factor of 2 .
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