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SOME COMBINATORIAL LEMMAS

by Donald E. Knuth

This report consists of several short papers which are completely

independent of each other:

1.

"Wheels Within Wheels." Every finite strongly connected digraph
is either a single point or a set of n smaller strongly connected
digraphs joined by an oriented cycle of length n . This result

is proved in somewhat stronger form, and two applications are given.

"An Experiment in Optimal Sorting." An unsuccessful attempt, to
sort 13 or 1h elements in less comparisons than the Ford-Johnson

algorithm, is described. (Coauthor: E. B. Kaehler.)

"Permutations With Nonnegative Partial Sums." A sequence of s

positive and t negative real numbers, whose sum is zero, can be

arranged in at least (s+t-1)! and at most (s+t) t/(max(s,t)+1) <
1

2(s+t-1)! ways such that the partial sums x 4-...4-xj are non-

negative for 1 <J<stt .

This research was supported in part by the National Science Foundation
under grant number GJ-992, and the Office of Naval Research under
contract number N-0001k-67-A-0112-0057 NR Ohk-Lo2. Reproduction in
whole or in part is permitted for any purpose of the United States
Govermment .
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WHEELS WITHIN WHEELS

by Donald E. Knuth

"Their appearance and their work was, as it were, a wheel
within a wheel."

- Ezekiel 1:16

A strongly-connected digraph is a nonempty directed graph in which

an oriented path exists from any vertex to any other. The following

lemma shows that all finite strongly-connected digraphs can be constructed

in a fairly simple way.

Lemma 1. Every strongly-connected digraph 5 is either a single

vertex with no arcs, or it can be represented as follows for some n >1:
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Here 'Bl’ ,,&n are strongly-connected digraphs; Xi and yi are

(possibly equal) vertices of by 5 and e; 1s an arc from s to Xiq -
The original digraph [/ consists of the vertices and arcs of
ﬁl"""&n plus the arcs el,...,en .
In fact, if o is any given oriented cycle of B , there exists
such a representation in which each of the e is contained in o .
(Since each of the _&i can be further decomposed in the same way,

every strongly-connected digraph essentially consists of "wheels within

wheels".)

Proof. Let- e be an arc of B/, and let the relation
X oy [without e]

mean that oriented paths excluding e exist from x to y and from
¥y to x . This is an equivalence relation which partitions the
vertices of B/ into components, namely the so-called strong components
of f-e .

Suppose that e' = (x',y') and e" = (x",y") are distinct arcs
such that x' « x" , x' ¢ y', x" 4y" [without e] . Let ,&O s B,
H' denote the respective components of x' , y' , and y" ; possibly

B =P . The shortest oriented path leading from a vertex of §' +to a

: o . . . . 0
. vertex of [/ involves no arcs leading from vertices in & » hence

-,B-e' contains an oriented path from H" +to ,BO . Since e" goes

back from _BO to H" , we have
x" « y" [without e'] .
Furthermore

x «y [without e] implies x « y [without e'] ,
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for all x and y , since x oy [without e] means that x and vy

belong to the same component, and e' does not lie within any component.
Thus JpJ-e' has fewer strong components than p-e .

Two distinct arcs leading out of the same component, such as e!
and e" in the above discussion, may be called "mates”. We shall now
prove that there is an arc e in o -such that b-e contains no mates.
This will prove the lemma, since the components _Bl,.&e, «e« must then
have the cyclic form shown, with e = e, » say, and with all the other
e, belonging to o .

If 5 ?Ls finite we simply let e be the arc in o such that bH~e
has the fewest components. This will imply the nonexistence of mates,
since another arc e' of o which is not included in some component
cannot have a mate, lest f-e' have fewer components.

If 5 is infinite the argument is slightly more tricky. We choose
e 50 that the minimum possible number of arcs of o fail to lie within
components of f-e ; if two arcs e are equally good by this criterion,
we choose one that minimizes the number of arcs of o +that have mates.
Now Jp-e contains no mates; for if it did, there would be an arc e!?
of o which has a mate e" . But this contradicts the choice of e ,

since e must not lie in a component of fH-e' , and BH-e' contains

at least one less mated arc of o . (O

If o contains an arc e such that p-e is strongly connected,
then n =1 and the lemma holds rather trivially. But if # contains
no such "redundant" arcs, then n > 2 and the same will be true for

the 'Bi .
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The representation is not unique, even if o is specified to be

a simple cycle and H contains no redundant arcs; for example,

L
S N

has two representations with n =3 when o0 is the outermost cycle.
Lemma 1 is sometimes useful when proving properties of strongly-

connected digraphs by induction, or when finding counterexamples to

conjectures. We shall consider one application here, namely the free

route to Las Vegas problem:

Theoren. Given a finite, strongly-connected network S of one-way
roads between cities, and a designated city called Las Vegas, it is
possible to erect toll booths on these roads in such a way that the
following three conditions are satisfied:
(1) There is no toll-free cycle. (It is impossible to drive
indefinitely without paying a toll.)
(i)  Every road is part of a one-toll cycle. (It is possible to
start on any road and return to your starting point, paying
only one toll.)

(iii) There is a toll-free route from every city to Las Vegas.

(Condition (i) calls for comparatively many toll booths, while conditions

(ii) and (iii) call for comparatively few. By (iii) and (i), every road

leaving Las Vegas must contain a toll booth.)

Proof. We argue by induction on the number of roads (i.e., arcs) in 5,

since the theorem is vacuously true when there are no roads. Using the

L



representation of H in Lemma 1, we can erect tollbooths in each ﬁi

such that (i) and (ii) hold and such that there are toll-free routes
from X to yi > for 1 <i <n . Establishing one further toll-booth
on e, makes conditions (i) and (ii) hold in the entire digraph.

Now the proof is completed by applying another lemma.

Lemma 2. Using the terminology of the Theorem, if (i) and (ii) can
be achieved in B , it is possible to modify the placement of toll

booths so that all three conditions are achieved.

Proof.  The following move operation preserves both (i) and (ii),

because it neither increases the number of toll-booths on any cycle

nor decreases that number to zero:

"Let x be a city with toll booths on all roads leading into it.
Destroy all these toll booths, and erect new ones on all roads leaving x
except on those roads which already have toll booths."

The proof will bé complete if we can show that a sequence of move
operations will produce condition (iii).

Given an arrangement of toll booths in § , let B be the
subnetwork consisting of all cities x from which there exists a toll-
free route to Las Vegas (including Las Vegas itself), and all toll-free
roads between such cities. By condition (i), ' contains no oriented
cycles, hence we can "topologically sort" the cities of §' into the
order xl,...,xn such that no road of H' goes from xi to xj
for 1>J . (It follows that x ~is Las Vegas.)

Now consider the grand move operation, which consists of successively

doing a move operation on vertices x.,x ces3X o, in this order. We
] 1’72 n

2
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must show that such a grand move is well-defined, in the sense that all

moves are legal. After having moved toll booths past Xl""’xj-l 5
the roads leading into Xj are of two kinds:

(a) Those which had toll-booths before the grand move began.
(These toll booths are still present.)

(b) Those which had no toll-booths before the grand move began.
(These belong to ' , so they lead from x; for some 1< ;
they received toll booths when we moved past X, .)

Therefore we can move past xj .

After the grand move operation, all the roads in /' are still
toll-free, since the road from x, to Xj .received a toll booth on
move i and it was eliminated on move j . Furthermore if B did
not originally include all cities, there will be a road from some city x
not in B' +to some city xi in 8" , since § is strongly connected.
The grand move operation removes the toll from that road. Hence b owill
grow until eventually every city belongs to it, i.e., until condition (iii)

holds. O 3

It is plausible to guess that the theorem could be extended,

replacing condition (ii) by a similar one:

(ii') There is a one-toll route from ILas Vegas to every other city.

But the following counterexample (obtained by considering Lemma 1) shows
that this cannot be done in general, since there is a unique way to

install the toll booths meeting conditions (i) and (iii):
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Los Gatos

toll

Las Cruces Las Vegas

Los Angeles

Acknowledgments: I wish to thank Anatol W. Holt for originally

suggesting the toll-booth problem to me (without the Las Vegas constraint).

This problem originated in his work on Petri nets.




r— r

[ Amnt

AN EXPERIMENT IN OPTIMAL SORTING

by Donald E. Knuth and E. B. Kaehler

Since Ford and Johnson published their "merge-insertion" method
of sorting in 1959 [1], nobody has been abie to discover a sorting
algorithm which uses fewer comparisons in its worst case. Their method
has been proved optimal when 12 or less elements are being sorted,
and it appears reasonable to conjecture that a better algorithm exists
for 13 or 14 elements; but the possibilities are so enormous that
an exhaustive computer search appears to be out of the question. The
purpose of this note is to report the results of an unsuccessful attempt
to improve on merge insertion when n =13 or 14 , in the hope that
our experiments might suggest a new approach to the problem.

The maximum number of comparisons needed by merge insertion is

known [2] to be

F(n) = L Tlog,(2n)1 .
1<k<n 2t 37

Since F(n) -F(n-1) = Flog2 nl when 12<n<16, or when 2k <n <32,

or 48 <n <6k, etc., the Ford-Johnson procedure is no better in its

~ worst case than simply sorting n-l1 elements in F(n-1) comparisons,

then inserting the n-th element by binary insertion, for all such n .
Surely there must be a better way than this!

An independent confirmation of Wells's proof [4] that there is no
better way when n = 12 , revealed a particularly efficient line of

attack with respect to é elements. By combining this with efficient
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_constructions for 4 or 5 elements, we hoped to come up with sorting
procedures for 13 or 14 elements.

Suppose that the elements :c.o be sorted are Kl’ ...,Kn » and that
they are distinct. Let the relation " i < j " mean that Ki has been
compared to KJ. and that Ki < Kj . Let S5 be a set of such relations,
and let P(S) be the number of permutations K1K2 Kn of the set
{1,2,...,n} such that the relations of § are valid. For example, if
n=»4 and S$=1{1<2,3<Lk,2<4} then P(S) =3 since there are
only three permutations K1K2K3Kh of {1,2,3,4} such that K, <K, <K,
and K, <K , namely 1234 , 132k , 231k .

When %P(S) =1, the sorting has been completed. When P(8) >1,
we need to make another comparison, say between Ki and K

J
the two cases 8, =8 U {i <j} and S, =8 U {j <1} must both be

» and then

dealt with in the same way. When P(S) > X s we must have either

or P(Sz) >2 (or both), hence at least k more
comparisons must be made in some branch of the algorithm before the
sorting is complete. Intuitively it seems best to choose i and j
so that P(Sl) and P(Se) are each approximately half of P(8) .
Suppose 8 elements are to be sorted, and that the first four
comparisons are Kl: K2 5 K3: Kh ’ KS: K6 3 K7: K8 + By renaming the
elements if necessary, we may assume without loss of generality tha‘b the
results are 1 <2, 3 <k, 5<6, T <8 . Then we may compare
Kl: K3 and KS: K7 » and assume by symmetry that 1 <3 and 5 <7 .
And then we may compare K, : Kg and assume that 4 <8 . All of these
comparisons split the number of possibilities perfectly into two equal

parts, hence if S(7) is the set of seven relations known so far we

nave p(s(T)) = 81/27 = 315 .
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If we now compare Kj: Ky we find 157 cases with L4 < 6,

158 cases with 6 <4 . Tet's work on the latter possibility, since
it is probably a little harder; if we compare Kl: K5 it turns out
that 1 <5 occurs 77 times but 5 <1 occurs 81 times, and again
we focus attention on the latter case. Introducing a new element K ’
it may be in any of 9 relative positions with respect to the original
8 elements, hence there are 981 = 729 cases to consider. 1In 372
of these, 7 <9, while 9 <7 in the remaining 357 « The 372 cases
can be broken into 192 with 4 <9 and 180 with 9 <k,

Let's look at these 192 cases in detail. The eleven relations
S(ll) = {1<§, 3<kh,5<6,7<8,1<3, 5<T7,4<8,6<k,5<1,7<9, 4 <9}

can be diagrammed as follows:

The symmetry between 8 and 9 implies that we can assume 8 < 9
without loss of generality; this leads té S(lz) = S(ll) ui{8<9l,
with 96 possibilities. Curiously a perfect split occurs if we now
compare K, with K, . There are L8 possibilities with 2 <k ,

i.e., with

By symmetry we may assume 2 < 3, and then 6 can be inserted into

its proper place relative to {1,2,3} in two more comparisons; and
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now we may compare K7 with the middle element of {Kl’K2’K3’Kh’K6} .

The result is to produce one of the two configurations
.<::::::::::,.___.___.___.;;-o or o—-o--o—-—o::::::::::ao-——o

each of which has 3 remaining possibilities.
In the other branch, the U8 possibilities in S(12) U {k <23

can also be reduced to 48/16 = 3 in four more comparisons. Starting

with
103, @
5@_,
~— )
7 8 9

which is symmetrical with resepect to 4 and 7 (if we remove the

least element, 5 ); after three more comparisons we obtain either

c::::::::::>o———o—-—o_—-o-—-o O &l 43<:::___.

On the other hand of 7 < 3 » there is symmetry between 7T and 1, and

again the reduction is straightforward.

We have now worked out the "hardest" lines of a partial sorting
procedure; in each case considered, we discovered a way to reduce the
9! initial possibilities to only 3 , after a grand total of 17

comparisons. This is remarkably efficient, since
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is only slightly less than 3 5 in other words, each of the comparisons

has split the possibilities very nearly in half.

Let us therefore assume that a 17-step procedure exists such that
each of the sets 8(17) that occurs-has at most 3 corresponding
permutations. (We haven't proved this, but we have grounds to suspect
it is true since the lines not yet considered have fewer possibilities
and comparatively more freedom.) It is plausible to suspect that this
fact could be used to discover a sorting procedure for 14 items. If
we add five more elements Klo""’th and sort them using seven

comparisons, we obtain configurations S(Eh) which include

as one of the possibilities after 24 comparisons have been made. This
configuration represents 5(ﬁ?) = 6006 possibilities; since 6006 is

comfortably less than 213 = 8192 , it appears likely that the above

configuration can be sorted in 13 more comparisons, for a total of

2h+13 = 37 < F(1h) .

Therefore an exhaustive search was Programmed, based on the above
configuration. The following matrix shows, for each i and j , the

value of P(s(el‘) Ufi<yg}) :

12



0 6006 €006 6006 6006 6006 6006 6006 6006 3861 5346 58L1 5976 6003
0 0 6006 40Ok 6006 6006 6006 6006 6006 2046 3996 5220 5788 5973
0 0 0 2002 6006 6006 6006 6006 6006 966 260k 4228 5348 5873
0 2002 Loolk 0 6006 6006 6006 6006 6006 1506 3300 4724 5568 5923

0 0 0 0 0 6006 6006 6006 6006 378 1428 3003 L4578 5628
0 O 0 0 0 6006 6006 6006 168 798 2058 3738 5250
0 0 0 0 0 0 0 6006 6006 63 378 1218 2730 4620
© 0 0 0 0 0 0 06006 18 138 570 1650 3630
© 0 0 0 0 0 0 0 0 3 30 165 660 2145

21k5 3960 5040 k500 5628 5838 5943 5988 3861 0 6006 6006 €006 6006
660 2010 3402 2706 4578 5208 5628 5868 5346 O O 6006 6006 6006
165 786 1778 1282 3003 3948 4788 5436 58k41 o) 0 0 6006 6006

30 218 658 U438 1428 2268 3276 4356 5976 O 0 0 0 6006
5 33 133 83 378 75613862376 6003 O O O O O©

The two median elements, KS and K12 » can be compared, giving a
perfect 3003 to 3003 split. The next best choice is to compare
!(7 to Kl5 » 8lving 3276 to 2730 . Each of the 13 possible
comparisons such that both numbers are < 4096 was pursued further.
The program was designed so that if, for example, the "large"
3276 branch could be sorted, the "small" 2730 branch was tried too.

The two branches were often found to be isomorphic, in which case only

.one was pursued. However, we discovered to our chagrin that it was

-fimpossible to complete any of the "large" branches further than 9

levels; thus, the isomorphism test (designed to simplify the solution
we thought would be found) was never actually useful.

The program was written in IBM Assembler language and carefully
tested on smaller cases. In the above 6006-case example, 1k x 1k
matrices were generated a total of 1235 times » and the computation

took about 23.6 minutes on a 360/67.

13



A similar experiment was tried on the 13-element configurations

-<:>~——~——~—-o—-—o'<:>~—+—+—o——o

~ and
which each represent 6435 permutations. But neither of these could

be sorted in 13 comparisons. Hence merge insertion still is the

champion.
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Permutations with Nonnegative Partial Sums

by Donald E. Knuth

Ir xl,xg,...,xn are real numbers whose sum is zero, it is well
known that we can find some permutation p(1) p(2) ...p(n) such that

each of the partial sums

Xp(l).k"'.kxp(j) (1)

is nonnegative, for 1<3j<n. 1In fact, there are at least (n-1)!
such permuté%ions; for if p(1) p(2) ...p(n) is any permutation, it
is not hard to see that some cyclic shift p(ktl) ... p(n) p(1) ... p(k)
will have this property.

Daniel Kleitman [2] has conjectured that the number of such
permutations is always at most 2nt/(n+2) , if the x's are nonzero.
The object of this note is to prove the foilowing sharpened form of

his conjecture:

Theoren. Let x.,X.,...,X be real numbers, where x. +x_+ ceae+ X
—_— 1’7’ ’"n ’ 1 2 n

and assume that s elements are greater than zero, t elements are

-less than zero, and n-s-t elements are equal to zero. Let

‘P(xl,xz,...,xn) denote the number of permutations p(1l) p(2) ... p(n)

such that each of the partial sums (1) is nonnegative. Then

n!
P(Xl,X_g,...,Xn) < m « (2)

Furthermore this bound is best possible, in the sense that equality
is achieved for some x's whenever s,t,n are fixed values with

s+t§n.

0

.
>
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Proof. We may obviously assume that s and + are positive. Let ¢

be the smallest positive value such that the sum over a subset of the
X. 1s equal to € . For example, if n = 4 and

(Xl’XE’X5’Xh) = (m,2-%,1,-3) , then the Qh—Q sums over proper subsets

of the x's are
T, 2"“;2;1,1"‘7{) 3"",5) —3) -3"‘“; -l_’[) "l) ~2) _2+]t) - .

The smallest positive value among these is € = =3+xn . By symmetry, the
largest negative value will always be -g , since xli-x24-...+-xn =0 .

Now let. Xy = <€, and consider the n+l values —e,xl,xe,...,xn
whose sum is -€ . A permutation q(0) q(1) ... q(n) of the indices

{O,l,...,n} will be called special if each of the partial sums
X +X + ...+x .
q(0) " "a(1) a(J)
is nonnegative, for 0<j<n. (When j =n s of course, this sum
will be -¢ .)
The plan of the proof is to show first that there are exactly n!

special permutations. Then we shall map each of the P(Xl’XQ""’Xn)

permutations into t+1  distinct special permutations. This will prove

that

(t+l)P(xl,x2,...,xn) <n! (%)

and by symmetry the same will be true with s replacing t , hence
(2) will follow.

In order to count the special permutations, we shall use a
cyclic~equivalence argument to show that exactly l/(n+l) of the
permutations are special. TLet q(0) q(1) ... a{n) Dbe a permutation of

the indices {0,1,...,n} , and consider the quantity

14



j+1
q(o)+xq(l)+...+xq(j) +IQ1$I€ . (ll-)

() =x

This function takes on mn+1 distinct values for O <J <n, since
£(J) = £(3° and j < j*' dimply that x . +t.o.+x = (J-3")e/(nt+1l
(3) = £(3") 3 <3 ply a(4+1) a(zn) = (3-30¢/(nr1) ,
contrary to our choice of ¢ . The permutation

a(k+1) ... a(n) q(0) ... q(k) is special if and only if

b4 teeetx | >0 j 3
q(k+1) a(g) = for k<j<n; (5)

Xq(k+l)+ ...+Xq(n)+xq(o)+...+Xq(j) >0 for 0O <Jj<k. (6)

-~

IT j >k, we have f(5 > f(k if and only if x teoatx 00>

k=j)e/(n+1 if and only if x teeotx 0 >0 . And if
(=i)e/ (ne1) Y a (k1) a(j) =

J <k, we have f(j) > f(k) if and only if

xq(j+l) + ... +Xq(k) < (J-k)e/(n*+1)  if and only if

X oo+ X +x toeeotx oy > (k=-j-n-1)e/(n+1) if and onl
a(k+1) a(n) ¥ *q(0) a(3) > (kdm-1)e/ (1) y
if xq(k+l) + "’+Xq(n) +Xq(0) + "'+Xq(j) > 0 . 1In other words,
a(k+1) ... q(n) q(0) ... a(k) 1is special if and only if

£(k) = min £(j) ,
0<j<k

and this uniquely characterizes the value of k . It follows that

exactly n! of the (m+1)! possible permutations q(0) q(1) ... q(n)

are special.

Now let p(1) p(2) ...p(n) be a permutation of {1,2,...,n} such

that all of the partial sums (1) are nonnegative, and let i be one of

the t indices such that Xp(i) <0 . Then

17



p(1) ... p(i-1) Op(i+l) ... p(n) p(i) (7)

is a special permutation of {0,1,...,n} , since xp(i)'S Xy = =€ .
Furthermore
p(1) p(2) ...p(n) 0 (8)

is obviously a special permutation. In this way we can construct
(t+l)P(xl,x2,...,xn) special permutations, which clearly are all
distinct. Therefore (3) holds, and (2) must be true.

To complete the proof of the theorem, we must show that (2) is
best possiblg. This is equivalent to finding examples in which the
pennutatiohs constructed in (7) and (8) exhaust all the special
permutations. Such examples obviously arise whenever X; = -¢ for

some 1 >1 . Therefore equality holds in (2) when 1<s <t and

X, = t-s+1

x2 = ee = xS = 1

Xs+l = .. = xs+t = -1
Rotgar T otee T Ky 70

(I'or these x's , € =1 . The fact that P(xl,...,xn) =n!/(t+l) in
this case is well-known, since it is equivalent to other combinatorial

problems; see, for example, Erdélyi and Etherington [1].) B

If none of the 2"-2 sums over proper subsets of the x's is
zero, it is easy to see by considering cyclic permutations that
P(xl,xg,...,xn) = (n-1)! . Conversely, if P(Xl’XE""’xn) = (n-1)! ,
those partial sums must all be nonzero.

In the general case thg possible values of P(xl,xg,...,xn) seem

to be spread out rather evenly between (n-1)! and nt/(max(s,t)+1) .

1R



For example, let al’aQ’bl’bE’bE be positive mumbers with

a;+ a, = b1+ b2+ b5 5 the theorem tells us that
ek < P(al’aQ’_bl’-be"bﬁ) <30 . 1In fact it is not difficult to
verify in this case that P(al’az"bl’—bg’_bﬁ) equals 24 plus

twice the number of pairs (i,j) such that a; = bj . Thus,

oL

P(S,l’ -2, ‘2’ _2)

P(k,1,-1,-2,-2) = 26

I

P(B,l, "’l’ ‘l’ "2)

e
s

P(2,1,-1,-1,-1) = %0

Kleitman has used the above theorem to determine the asymptotic
number of different score sequences possible in an n-person round-robin

tournament, to within a factor of 2 .
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