
STANFORD ARTIFICIAL INTELLIGENCE PROJECT |
MEMO AIM-169

STAN-CS-72-288

LOGIC FOR COMPUTABLE FUNCTIONS

DESCRIPTION OF A MACHINE IMPLEMENTATION

BY

| ROBIN MILNER

Co SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AND

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

MAY 1972

| COMPUTER SCIENCE DEPARTMENT
| School of Humanities and Sciences

| STANFORD UNIVERSITY

STeOF

H

Toes LS A hora .
a ie - . »

LF ’ Te

nn eo ley teAA 1 A A te ts lll in im ho lll. nial ee ce + =o om Mm bat.

. LOGIC FOR COMPUTABLE FUNCTIONS
DESCRIPTION OF A MACHINE IMPLEMENTA TION

by

C Robin M1} Iner

Co CONTENTS

| PAGE
i, I NTRODUCTI ON - ew == 5

\ 2, THE LOGIC LCF = = = = = =~ = = = :
3. THE MACHINE IMPLEMENTATION OF LCF - = 7

| 3.1 An Exgmple = e 2 2d ww a 73,2 pules of Inference + = = 11
3,3 Goal=orjented Commands - = 17
3,4 Mlsce|laneoys Commands - = 24

_ 3,5 Simplification Rules = = = 27
3,6 Syntax = a - d d - - 20
3:7 Commands for AXloms and Theorems 30

- 4, HOW TO USE THE SYSTEM LCF ® « © = = 34
4,1 Initialization and Termination 34
4.2 Errors and Recovery a a a 35

b

5, ACKNOWLEDGMENTS = = © ® « = = = 36

r

|

_

— 2

“ i. INTRODUCT]ON

LCF is based on a 109i¢ of Dana Scott, proposed by him at

Oxford in the Fall of 1969, for reasoning about computable functions,

In Section 2 we present this logic, essentially as Scott himself
| presentea It, but us i ng the typed X-calculus instead of the typed

combinetorsS end K, since the former |S nore famillar to computer
— scientists and is in any case easier to work With, Section 3 then

describes the machine implementation of a proof-checker for t he
logic, We refer to both the lo@le¢ and the Implementation as the typed

- logic for computable functions, or typed LCF, or Just LCF,
|

The |o3lc presupposes no special domain of computation (e,q.

| lists Or integers), However, particular domains can be axlomatized in
~~ Ig ; Scott gave en axiomatlizZation for arithmetic and we suggest a

partial axiomatization for lists In Section 3, But many Interesting
results ~ e,q, equivaienge of racursion equation schemata = are

| _- provable in the pure logic Without any proper (non-logical) axioms,

It is hoped that a potential user of the system ¢an, with the

_ he|n of the example of Section 3,1 and Wlth Section 4, get onto the
machine without reading the whole ¢f this document,

¢ Further discussion of LCF and exanples of its applications
— can ne found in the foilowing papers:

Milrer,R.s» "Implementation and applications of Scott's logic for

— computale functions”, Proe. ACM Conference on Proving Assertions
about Prodrams, New Mexico State University, Las Cruces, New Mexico,

¢ Jan 6=7,1472,

— Wevnrauch,R, and Mi |mer, "Program semantics and correctness in a
mechanized |ogic", Proc, USA-Japan Computer Conference, Tokyo, OCt
1972 (to appear),

i Miiner and WeyhrAaucCh, "Proving compiler correctness IN a mechanized

logic", Michine Ingelligence 7, ed, DO, Michie, Edinbygh Unive, giyy
— Prass 1972 (to appear),

Newey,M,, "Axioms and Theorems for integers, lists and finite sets in
LCF", forshcoming Al Mmo,, Computer Science Dept,, Stanford

Ta University, L972,

we give no further references here; they may be found in the above

— paners,

‘

‘

TE

a4

| 3

. ~ 2, THE LQGIC LCF

Tynes

|.

At bottom "tr" and "ind" are types, Further if Bl and B2 are types

ther (B182) is a type, We adapt the convention that = associates to
the right and fregugntiy Omit parentheses; thus we write BL R2aB3 for
(B1+(B2483)), With each term Of the logic there is an unambiguously
associated type, For a term t we Write

§
ERE

! to mean that the type Associated With t is [, Throughout we use
B,31,PB2,,,, as matavariables for types,

Terns (metavariableg s,tssirtls,..)

| The following are terms:
Identifierst(metavariables X,¥) =~ sequences of Upper or |OwWer

- letters and di3its. W assume that the type of each identifier
is Uniquely determined {PM some manner,

Applications = s(t) : 32 , where S:P1-032 and t:n1,

Conditionals = (s=tl,t2)* B , where sttr and tl1,t2:08,

A=@Xpressions = (Ax.5] ¢ B12B2 , where X:B1 and giBp,

- X=axXnressions - [Ex,s5] + B , Vhere Xss5:B,

This strict syntaxis relaxed [In the machine impleneritation (ses

Section 3) to allnw a saving ot Parentheses and brackets,

The intendsd interpretation Of the @=gxpresslion (af, sg] is the
miniral fixed-point of the functlon or functional denoted py C[Aaf.sl].
For &xarple:

Caf, [Ax, (ptx)=f(alx)),n(x))]]

denotes the function dafined recursively as fol lows:

fix) <= if pix) then f{a(x)) else b(x),

Constants

The identiflers TT,FF denote truthvalues true and false, (jy denotes
the totally undefined object of any type: in particular, the
undefined ¢trudthvalua,

Atomic hell-formed formulae (anffs)

The follown3 1g an awff:

s © t

where § and t are nf the same type, The intended interpretation of

sct 1S» roUldhly, tnat t Is at least a s well! defined as, and

consistent With, g,

Well=-formed formylaeg (Wffs) (metavarlian|as P,Q,P1,Q1,...,)

Wffs arc sets of zero Or more awffs, wrlttenas lists with separating

commas, Thay dre interpreted as conjunctions, W use

Ss 3

to abbreviate S&t, t€s

Sentences

-Sentences are implications between wffs, written

P |= Q

or, if P is empty, just

|= Q

Procfs

A wmeaof is a seguJenca of sentences, cach being derived from Zero or

more preceding sentences DY a rule 0f inference,

| — po)

~ Inference rules

Let us write P(s/x} or t{s/x} for the result of substituting s for
BN al | free oCcuUrrencaeg of x in P or t, after first changing bound

variables In P or t so that no variable free Insbecomas bound by
L the substitution, We have not stated comditions OR the types o f

identifiers and ter ms With each rule; any consistent assignment of
— types Is admissible,

C 2X XX" | - RULES Bde
| INCL rerceccen. (2 a subset of P)

Por. 3

FP I- Q1 P I- 22

COnNY WH mow mme om Wwe =o = we wm

bo Po l- Q1u02

{ P1 1- P2 P2 |= «3

| P1 | - P3

L

| EEX X = RULES EXE Y
APPL died addi dl EJ I el Ea Eo arpa.

I sl © s2 | = t{sl) c ¢(g2)
: REFL TOA SED Awan ™ gw

4 F | = S © s

| P | = s1 © s2 P | = 2 «<. S SJ

TRANS ° iether Ul
: P | - s1 © 53 |

1

RENE Ly SULES EEX X

MIN ECE ®w ew,

MINZ halted dh dl AI NE J Sa ’ |

| = UUs) « uu

6

 % Ha CONDITIONAL RULES Runn

CONDT dl Ball SA a 2 AB BF RN BN RB J J

|= TT =» s1t £ s —

CONDU TIDE PONE Wg a Ree

| = Ul =» g,¢ = UU

|= FF = st E ¢

EXER A RULES "TX XX

P l= set | . N

ABSTR =esceccecceccececmweawe-== (x not free in P)
P | = LAx,gJ c Chx.t] |

CONV OUR TAD WES WT ES Ga Tg Wa Wan OPT en NO a a Wwe

| = CAX,33(¢)= s{g/x)

ETACONV eerecmenccranancnan (x and y distinct)
l= Ixx,¥y(x)] = vy

#385 TRUTH RULE *3%8

- P, s=TT |= @ P, sz2UU |= Q Py» sSFF |= Q

CAgkg hadi odd BA A Sel Bl NEE KE EB Rall ol dl BEd dl Aldi dl ha diedh dl dl A dl dl LE
P |= gq

2X EX a RULES 2X XX |

FI XP EnteWg We We Ia Hy es Wee

|= [9¥x,s] = s{[ox,s)/x)

P |= Q{UuU/x) P, @ |= Q(t/x)

INDUCT w=emeccececancrcnacmcccanmccncnen-" (x not free in P)
P |= Q(Lex,tl/x)

| I
~ 3, THE MACHINE IMPLEMENTATION OF LCF

We now describe the machine version of the logic of Section

_ 2: and how t0 use lt interactively on the machine,

~ The user nas available four groups of commands!

— @ Rules of Inference - to generate new sentences or steps
from Zero Or more previous steps, (Seectlon 3.2)

_ ® Goal Oriented Commands =~ to specify and attack goals

C and subgoals, (Section 3.3)

® Misce|langoys = malnly to do with displaying or filing

parts or all of the proof so far, and the goals, (Section 3.4)

| ® Commands far axioms and theorems = to enable the user to create
= aXlom systemg: to Prove and fl le theorems in these systems, and

later to recall and instantiate those theorems, (Section 3,7)

i Before aescribing the commandsIn detal|, and the syntax of Wffs,
terns, etc,, it may de helpful to see an exanple,

{

L
+1 An Example

| Let us Introduce the macnine version of LCF by a simple
example Which, although short, exhibits many of the features, It Is
a prodf of a version of recursion Induction, which states that If F

recursive definition thanfFeG, Inother wards, weprove that F Is
r the minimal fixed point of Its defining equation,

. After Initial tzatlon (see Section 4), the system types 5
asterisks 2S a Signal to the user to Start a proof. Ir] fact8 5

| asterisks are always the signal for the user to continue his proof.
Thus, In what follows the user's contribution may be distinguished by
belirg preceded by s###ss, W explain each us®r and machine
contribution on the right of a vertical line,

xxx ASSUME Fz{aF ,FUN FJ, SSFUN G3

|The user agsymes a wff (a sequence of atomic wffs
|separatedoy commas, where each atomic wtf has ZI Or

leinfixed between two terms), Every user
lcommancendswith a semicolon, Detailed syntax is
lgiven later « but notein particular that application
Imay be represented (som3times) by Jjuxtaposition as In
| "FUN G" £0 save parentheses, Note also that F 0¢curs both
free and bgupnd (by 2) without confusion.

1 F=zCafF ,FUN(FYD] (1)

2 G=FUN(G) (2)

|The machine scparates the assumption into two sentencesO
giving each a stepnumber., Every sentence which the i
Imachine generates Will have a stepnumber, and wll] consist
lof a wWwff followed by a |ist of stepnumbers of assumptions
lon which the wff depends, A sentence

n P S

| where P is a wif ard S a list of stepnumbers is the
lanalogueI n LCF of the sentence

| C |= P
|

lof pure LCF, where Q Is the conjunction of assumptions
|deslgnated by S, Each of steps I and 2 above thus
|represents an instance of P |= P, which is a special
lcase of the inclusion rule of Section 2,

sana sCO0AL Fei

| The user states his goal, but does not attack it yet,
IlHe might| ist several goals before attacking any of them
lin each case the machine WII sinple glve a goal number:

NEWGOAL #1 Fel

Goal numbers are distinguished from stepnumbers by #,

sesuaaTRY 1 INDUCT 1;

; | The user wants to attack GOALl1 using the taeétlie of

I induction on Step 1 = which is (as it must bela
recursive definition = l,e, FzZ[aF,FUN(F)].

NEWGOAL #1#1 UlieG

NEWGOAL %1#2 FUN(F1)eG ASSUME F1¢G

| The machine Says that the Induction base and Step

Imust be established, For the step it pleks an arbitrary
| identifier not used previously (actually for mnemonic reasons
lit picks something whigh only differs from the instantiated
Ibound verifiable in Its numerical suffix),

IWe now have two goals generated by the machine, at

la lower level, The user need not * but probably Wii]=
lchoose to prove #1 by proving #1#1 and #1#2,

snuanTRY 1;

9

L |lUser chooses to attack #1#1 first, He need (and nust)
_ lonly refer to the goal bY the last integer In its goal

| number, This time he doesn't state a tactic= he knows
|lhow to prove it hinself = so the machine nerely steps down
la level in the goal tree-and waits. Actual |¥» he could

— |lus® the SIMPL tactic (see Seotion 3:3), since this
L | tactic notices Instances of MIN and would therefore

| save the user his next $¢WO commands,

- nenuaMINL G3

| The user notes that the subgoal UUSG can be proved

o Iby the firgt minimlity rule (see Section 2), so calls
| lit with the appropriate term = G * as paraneter,

— 3 UUeG

| The machine obediently generates the proper instance of

&— Iiminimatlity, Notice that this sentence depends on no
lassumptions,

saneeQED]

| The user can say QED to tell the machine that he has
ad Iproved cxactly the goal under attack,

GOAL #1#1 PROVED, BACK UP TO coaAL #1

| REMAINI NG SUBGOALS:

~ 2 FUN(F1)eG ASSUME F1¢6
$

| The machine agrees, Now in general It will baok up

= the goal tree until it finds a goal some Of Whosgsupgotls
| lhave not been proved, It will remain at that level and list

| these subgoals for the user to %r¥.

& snaneTRY 23

_ | Again, user gives no tactic,

4 FleG (4)

— |The machine mmkes the assumption Of the goal for him (note

(that goal #1#1 had no assumption), and wafts.

— wanna APPL FUN, 4d;

|"AppIY FUN to Step 4" = an Instance of application (see
- |Section 2),

5 FUN(FLISFUN(G) (4)

.

14

senunSYM 2;

| Turn step 2 around ready for an application of transitivity,

6 FUN(GIZG (2)

seueue TRANS 5,6;

INote that the parameters of inference rules are always

|stepnumbers or terns, separated by commas,

7 FUN(F1YeG (2 4)

sneneQED]

GOAL #1#2 PROVED, BACK UP TO GOAL #1. NO MRE SUBGOALS

8 Feb (2 1)]

| we==eThe machine hasn't fin/shed Yet, but not8 that it

Imakes an exp!l¢lt step to represent the proof of #1 (80
that the Whole sequence of steps, wth all the goal
structure stripped away, shall be a formal proof), Note

lalgso the assumptions of Step 8,

coAL #1 PROVED, RACK UP TO TOP LEVEL. NO MRE SUBGOALS,

| (There might have been more goals listed at toplevel,
since the yser can list many before attacking any),

sxuneSHOW PROOF RECIND:

|The user decides to keep his proof on a file called RECIND.
|The version kept |S shown below, Notice that not every-
thing which the user typed reappears; In perticular, the
Istatemant of a goal is not reproduced, only its terial,

| If the user wanted instead to display hls proof (at any

lpoint, not just at the end) he would just type "SHOy PROOF;"

PROOF

1 F = [oF ,FUN(F)] (1) ==== ASSUME.

2 G = FUN(G) (2) ==-= ASSUME,

|TRY #1 F © G INDUCT 1.

i oop ge WW SP ow OF op ar FP gp WH TF ap 0 ar Toon we

| | TRY #1#1 bu «6G
| 3 . UUeG ---- MIN1G.
| Dep gn as Esa gy ew re Ea ID TW aE dr EW

| gn egy Tae aa Waa Ey Wee Fes re

a 11

N | ITRY #1#2 FUN(FL) © G ASSUME Fl ec 6
— | | 4 F1 ¢ G (4) ---- ASSUME,

| 16 FUNCG)L)ZCGFUNIG)Y (4) ---- APPL 4 Fun,
(2) ==== SYM 2,

| | 7 FUN(F1) ¢ G (4 2) ==«~= TRANS 5 og,

. | 8 ecg (2 1) ---- INDUCT 3 7,

Lo 3.2 Rules of Inference
(@ US EADIE SW NPD ERIN an Ty War we

Let us assume for the moment the syntax classes <wtfd, <awffd

= (atcric wff), <termd, Details of these are In Section 3.6, but for
| now look only at the conventions given for syntax definitions at the

C start Of that Section,
We need for the present

i {stepnamred>i:= <intggerd! ------- 1 , Kidentifiep> 2((+=) <integer>)
{teprnamed> ::= ?{ :Gl:<stepname> } ?{ i<integer> } {(:LI|R)

b

L (range> ;:= <{stepnaned | ?<stepnamed !: ?<stepname>

| In a <stepnamed> "=" means "the |ast step", "+=«" peans t helast Step but one, et¢,, and for example ",ND~1" means the Step
preceding tnat labe| led DD, See Section 3,4, the LABEL g¢ommand, for

| how to label steps,
A <termname> my appearanywhere thata term can appear = for

, example as a subterm of a term = and frequently saves typing Ions
| formulae, We explain terrinames by a few examples (suppose the last
~ step was numbered 15) ,

t15:11¢R)
. . t=311R)

115¢R) al | designate the term which oOc¢cguUrs as

| ~:R) right hand side in the first <awffd> of Step 15.'R)

:.DD:2:L designates the Ihs of the second <awff>
of the steplabeliled DD,

tGiI2'R) designate the rhs of the second <awff> ot

the current doa} ~THISGQA|L (See Scction 3.3)

The <ranged>s 12, 23:30, i142, 59: denote respectively the
single step 12, the steps 20 to IJ inclusively, the stepsup tO and
including 40, and the stops from S50 onwards.

12

W now list the rules, with some exanples, Note that In the
machine Implementation there |S no type-checking whatsoever. W rely
on the USBF to use types consistently,

ASSUME wf fd;

Each <awff> Ai in the <wff> 18 given a new sStepnumber Ni,

| and the steps
nl Al1(nl)

ng A2(n2)

Lj $ J) L

are generated, Each one

is a tautology, since a step P(N) means @ l= P, where
Qis the <¢awff> at step number Ns Thus the purpose of
ASSUME Is only to Introduce references for <¢awffds,
See Section 3,1 for examples of ASSUME,

SASSUME <wffd;

L1ke ASSUME, but every <awffd> of the <wff> is henceforward
treated 2s a simplification rule (see Section 3,5),

INCL <stepname>, <integer”:

Picks out an <awff>, Exanple:

115 2=F(X,Y), A=B, [AX.XJ(Y)ec1d4 (13 7)
|e2ase INCL 15,2;
116 ASB (13 7)

CONJ estranged, ___ H

. Forms conjunction of all steps In the <range>s, Example:

145 Pe@,RES (12)
W- W

147 F=G (12 4)

|##usucONJ =o=)=;
118 pe, RSS, Fig (12 4)

CUT <stepname>, <stepname;

If the steps referred to are P{(mi,m2,,.) and Q{(ni,n2,.,)
respectively, where the ms and N’S are stepnumbers,
andIf every <awff> referenced DY the n's O0CCUrs 2s an
<awff> In P, then the step Q(mi,m2,,.)ls generated,
Example:

Sa 13

_ Wom Ww Wan mn na AGE A WW a
Co 17 F236 (7)
: - Wan wa -

112 scQ (7)
- en wm

Bh i115 F=6, GeH (14 2)
C |etnaacyUT 15,12;

16 Peg (14 2)

) HALF <stepname);

Rep laces "=n b y "e" 1, the flrst<awff>, and throws
L the rest away, Examples

L 16 XSG(X), YSH(Y) (1 3)
feduva ALF 6}

| | 7~ XeG(X) (1 3)
SYM <stepname);

| Interchanges the terms in the first <awffd (provided "2" occurs)
and throws the rest away, Example (continuing the previous):

. | ##eauSYM 6;
. 18 G(Xx)=x (1 3)

TRANS <stepnamed, <stepnamed}

Looks ,¢ the firstcawff> in each ¢Wff>., If (hese are sii{zlc)s2,
s2{=/c}s3 respectively, thenslcs3 or si1Zg3 Is generated, the

. assumptions being "unioned”, Example;

112 XZY(Z), PcQ (11 4)
*W-w-

| 143 y(2)ey(Xx) (4 9 8)
|#*%x#2 TRANS 12,13;
1144 XeyY(X) (11 4 9% 8)

APPL (<stepnamed>, ___,<termd>,__._. |<teormd>,<stepnamed};
In the first case, applies poth sides of the first cawffd of
{stepnamed (o the <termds in sequence, |
In the second case, applies the <term> to both slides
of the first ¢awff> of ¢stepnamed, Examples;

11d X=zY(Z), PeQ (9 4)

[erase APPL F,10;

14

l12 FOX) EFOY(#))Y (9 4)
| - gy Wm gy Ww

12% FLAX, X),PeQ (11 4)
| 2a upAFPL 22, !=22:R}

123 F(QYZCAX,X]1((Q) (11 4)

ABSTR <stepnamed>., ___.<Lidentifier>,___ 3
Does A~abstragtion 0 n 1st <awffy, The identifiers
must not occur free in any Of the assumptions oOo the step,
example(continuing the previous):

| #2548 ABSTR 22,F;

124 CAF, FIZDNFL.IXAXXI] (11 4)

CASES) ~ These are not present as inference rules, since it is
) less tedious to Use their goa| orlented versions (see

INDUCTION) Section 3,3),

CONV {(<stepname>i<term>}:

Does all X-conversions In the <term> or <stepname>, Exanple:

| -eep Weg >

114 BELAXXCX)IOAX.XY)

|#%esacONV =;
145 R=z=Y(Y)

Remark: the term in 14 violates the type structure, but the
system does not chack this,

© ETACONV <term:

Eta-converts the <term>, provided it has the form [AX.s(x)],
WithX not free in the term S$, Exanple (remember that
F(X,Y) abbreviates (F(X)IC(Y)

lesa aETACONV LAY, F(X,Y)J;
149 [XY. FOX, Y)ISF(X)

EQUIV <stepnamepy,{stepnamed;

Looks at the flprpst <awffd> In each <wff>, If these are slics2,

c2<sl respectively, then S12S2 is generated. Example:

| 116 XeY, PzQ (12)
| - yy "= gp WW

| 15

. 117 YeXx, HeG (1 2)
lesassbQUIV 16,17;

118 XzZY (12 1 2)

REFLL <term)>;

w Gives tZt Where t Is designated by the mterm, EXamrpliel

l#vanaREFL X(XX);
119 XXX} = X(XX)

=
NFL2 <Kteprmd;

| Like REFL1, but gives tet,
i

MINL <termd>;

| Gives UUct, Example! see Section 3,1
he

MINZ <term>;

| Gives UU(t)zUU, Example (continuing the previous):
r | eves aMINZ .|,
] 120 UUCX(XX)) = uu

CONDT <term);

1 Checks that the <termd> t hag form TT+s1,82 and |¢
30 generates t=sl, Example:

| - a» W qu

i 121 F(X) SZ TT=X,F(G(Y,X)) (12)
|##0auCONDT :R;

122 TT-X%, FOg(Y,X)) = X

CONDF <termd;

Checks that the <term> t has form FF=81,82 and if
so generates t=sd,

CONOQU <teprmd;

Checks that the mterm * has form UU»sd, s2
and !f so generates t E JU,

FIXP <stepname);

Checks that the first <awffd is a recursive definition
6,9, s83[eG,t), and 9enerates sZt{(s/G), Example:

16

| - - - - - - - -

123 F = CoG, HILCNF.G(F)1)])
| eeanuFiXP 23;

124 ¢ 2 H C(OXNFL rp) 1)

SUBST <stepname> ?2{ OCC ___,<integerd>,___ } IN {<stepname>|<term>}}
Let the first <stepname> have tl 3 t2 as Its first <awff>, where

| $ stands for 2 in case (1)» and for ZZ or © in case (2),

Case (i), If there is an <stepnamed> following "IN", then ¢2 is

substituted for all occurrences designated bY the <integerde
list (or al | occurrences, Vf no 1i8t) of tl in the <wff>,

Case (11), 1f there Is a <term> 5s following"IN" then

3% gv Is generated, where s’ is the result of substituting t2
for the appropriate occurrences (as in case (i)) of ti in a’.

Note that for tl to occur in a term 8 any occurrence of a free

varlable in t1 must not be bound In S, Also see the caution on
occurrence numbers IM Section 3.6.

Example?

125 [AX.F(X)] © GIF(X),F(X)) (2 3)
- awewe

|2€6 F(x) = X (5 1)

|wensuSUgST 26 Occ 1 IN 2%
127 CAX.p(X)] = g(Xep(X)) (2 3 5 1)
| wn u28SUn ST 36 IN 125¢R}

| 28 6 Gr UX) vp (OX) = g(X,X) (5 1)

SIMPL (<stepnamed>ictermd) 2___¢ (BYIWO) ___,<ranmged>,___)___ i

In the case of an <stepname), its <Wffd> is simplified
(see Section 3,5) using as simplification rules those In
" SIMPSET together with those designated by the <ranged=|list
following each "BY", and Without those designatedby the
{range>=list following each "WO", A <tepmd> ¢ is similarly
simplified, to tl sa¥, and tt = tl is generated, The SIMPSET
remains unchanged,

Example, continuing the previous (Section 3.5 giveamore detall):

| como

129 INP,P=F(X),YI(TT) < UU(X) (12)
|##neaSIMPL= 3Y 26;
130 Xeyu (12 5 1)

This happens because CONV, CONDT, MN2 are anong the

_ simplification rules,

'S

3¢3 Goal-Oriented Commands

Anything provable with the goal Oriented commnds [s provable

— in PURE LCF, but nost woofs would then be tedious (that’s why we
L only degeribe the INDUCTION and CASES rules in goalworiented form),

| Experience shows that With the goal-oriented commands the user has
| only tO type a smal| fraction Of what he would otherwise have to

type,

| The user may generate a subgoal structure of arbltrary depth.
he This structure Is represented DY three entities wOGOALTREE GQALLI ST

and THISGOAL, THISgOAL Is always the goal cuprently under trial all

| ts ancestors In GOALTREE are (Indirectly) also under trial; thesubgoals of THISGOAL are listed In GOALLIST, Each goal has a goal
number = e.g. #1#2#3 = which indicates its ancestors and (BY the
number of Parts) its evel In the tree, Here i% a sample goal

| structure,

| LEVEL @ o)

|)

LEVEL 1 #le Hoe #30)
|)

LEVEL 2 oR2¥%1) GOALTREE

| | |
LEVEL 3 o#2#1#1 SH2RINZ «===THISGOAL

UU I

o o GOALLIST
#oR1he#] B2#14242 #2R1#H2H#TI

FI GURE 1

tach goal has a status (Mot shown In diagram whieh Is either
“UNDER TRIAL" (only THISGOAL and Its ancestors have this status), or
"NOT TRIED' or "PROVED",

18

The user has flve goal oriented commnds available: we give
first thele syntax, then detailed descriptions,

GOAL <wff> ?2{ASSUME|SASSUME) <wff> i

TRY ?<integer> ?<tacticd ;

QED ?7<stepname>

ABANDON

SCRATCH <integer> }

<tactic> $3= CONJ |

CASES <termd>|
ABSTR |

SIMPL 2_._¢ (BYIWO) ___,<stepnamed>,___)___ 1
—~. SUBST <stepname> ?2{(0CC ___,<integerd,___ } 1

I NDUCT <stepname> ?2{0CC ___,<integer>,___.) I
USE <ldentifler> ?2___,<instantiation>,__.

<instantiation> :i= <identifierd> « <term

The GOAL command,

GOAL specifles a new goal to be added to GOALLIST, Its effect on the

goal structure of Figure 1 is as follows (FiQure 2)

- am -» - -)

. - - w = =) GOAL TREE

crema -FWe- Mm -)
| |)

® Op2#1#2 «=-=-=THISGOAL

I PU
| | GOALLIST
© ° ® °

#2#1#244

FI GURE 2

(Notlce that the new goal Isn't yet under trial)

A goal may or may not be given assumptions, The only difference
between ASSUME AND SASSUME is that In the latter case, when the goal

is trled), the assumption Wff Will be added to the set of

- simplification rules (See Section 3,5) for the duration of thls
SE goal’s trial, Examples:

|#snnuGOAL FeG;
oo INEWGOAL #1 FcG
\ |#enseGOAL F(X)ZG(Y) SASSUME F=G, XE=Y;

INEWGOAL #2 F(X)Zg(Y) SASSUME Fag, XZY

The only purpose of the systems reply is to allot the goal a nunber,

C

5 The TRY command,

TRY specifies one of the goals of GOALLIST to be tried (if the
EL <integer> 8 absent, the last goal specified is assumed), If the User

gives no tactic, the new GOALLIST will be null (Flgure 3),

- Oe we Ww =)

L_] LJ [J oy - }

| |)

] ® oH2#L #2) GOALTREE

- W-- W- - - emma eweme eno we)
bn)

® 0) ° °)
THISGOAL

|

(GOALLIST iInttially null)

FIGURE 3

But If the user 9iVes a tactic, the system Will 88t wp a new GOALLIST
for hls, Whose punber of mnenbers depends on the tactic, Tactles re
described later In this sectlon,put look at the Example Follow Ing
QED’s description below to see what happens without them

The QED command,

QED indicates that the <stepnamed> = or previous step if no <stepname>
= proves THISGOAL; the user W!I] normally say QED when he TRIED this
goal Withno tactic, Sometimes (he user has been able to prove a
contradiction, 1,8, any of the <awffds {tv>3Ctv>or <tvdeactvd Where
the <tV>8 are distinct nenmbers of (TT,UU.FF) and in the case of e the

2

first <tv> is not UU, QED wi|| accept a contradiction, since it

proves anythina, The effect of QED is to restore Figure 3 to Figure
2, With the difference that the status of #2#1#2#3 will become
"PRCVED"; further, if THISGOAL (of flgure 2) was TRIED with @& tactle,
and all subgoals generated by this tactic are now "PROVED", the
system will back further up the tree, Thi s may continue for many

steps; eventually the System will stop and tell the Usep whieh goal
has now become THISGJAL, and whichmembers of its GOALLIST remmin to
be proved,

The following example continues the onN® above, and

| lustrates TRY and QED:

118 F 2 G6 (13)) The system makes the assumptions,
114Xx = Y (14))
|

lessa APPL 13,X;)
15 F(X)sG{X) (13))
|)

| sss APPL G,14; ,

146 G(X)YZG(Y) (14)) The user Proves the goal,
|)

|eseuaTRANS 15,16)

117 FX)sG(Y) (13 14))
|)

| #n2nxQED;)

|GOAL #2 PROVED, RACK UP TO TOP LEVEL,) The system
|IREMAINING SUBGCALS:) backs up.
11 FeG

The ABANDON command,

ABANDON indicates that the user doesn't like his current telal of
THI S GOAL, The effect will be to restore Figure 3 to Figure 2 = but
the status of #2#1#2#3 becomas agaln "NOT TRIED", Thus no further

backing up can happen,

The SCRATCH command,

SCRATCH removes the indicated goal from GOALLJIST, However, the system

will refuse to scratch goals generated by tactics.

| 21

. Tactics

We now describe the tactiCs available, There 2r® six basic

ones, each based on a particular inference rule; in addition the user
may employ any THEOREM (see section 3,7) as a taectlc,

1 -

For CONJ, thesystem generates a separate subgoal for each
| Kawff> in the goa},

For CASES, if s is the {term> and P ig the <wffd of the goal,

- tne system generates the 3 subgoals P SASSUME s=TT,pr SASSUME sZUU,p
C SASSUME s=FF,

| For ABSTR, the system instantiates in each <awffd In the goal
- for as many bound variables as are pound by the outernost A In Its

left-hard side, thus generating a single new subgoal, New variables
| are chosen which -are not free In the proof so far, For example, | f
be the Joa] Is CX YJF(Y,X)1 2 [nB4G(292)) » and X is already free In

the Proof, the new goal wll] be F(Y,X1)2 G(X1,X1,Y),

| For SIMPL, the system generates a new subgoal by simplifying
the 80a] as far as possible, using a modified SIMPSET (if any "BY" of

| "WO" Is present) as explainedin Section 3.2 under the SIMPL rule.
| The moaifjied SIMPSET remains in force, but the old one wlll be
u reinstated when the new 90a] is either proved or ABANDONed (gee

section 345), If the system ais¢overs that all Cawff>s of the new
subgoal are identically true <= i.8, they are ail of the form §¢s or

u sZs or UUes = ft initiates the backing u Process described under QED
above instead of generating the subgoal, If some but not all of the
¢avff>s are identically true they aresimply omitted from the new

| subgoal,
For SUBST, the system generates a new subgoal by substituting

the rhs of ¢stepnamed for the lhs of ¢3tepnamed In the goai « either
throughout, Or at the designated occurrences when an <(lntegerd=list
is giver, (se@ the ¢aution On Occurrence numbers in section 3,6).

~ For 1 NDUCT, let P be the <Wff)> of the goal, The system checks
that <stepname> has the form szlay,t] - i,e, that It is a recursive
defirition, IM that case, It generates two new subgoals, The flrst
18

P{UU/s}

And the second Is

P{t{y’/y}/s) ASSUME P{y’/s)

wnere y' Is a variable not previously used free, and where the

substitution in P takes place at appropriate occurrences, exactly as
for SUBST above,

22

For USE, the <identifier> is a THEOREM nane, The system will
instantiatethe THEMREM by matching Its consequent to the goal,
taking Into account any instantiations supplied explicltiy by the
user, and Will generate tne appropriate instance of 1ts antecedent as
a newdgoal, See section3,” fcr a fuller discussion of THEOREMS,

We now give examplesof each tactic (except CONJ, which ig
easy to understand), Some are realistically 'conmbined.

INEWGOAL #1 PaX,PaY,Z2 = PaX,?

+>|nneeunxTRY CASES P3

INEWGOAL #1#1 PaX,P=Y,Z = PaX,Z SASSUME PSTT
INEWGOAL #142 PaX,FaY,Z = PaX,Z SASSUME P=UU
INCWGOAL #143 PaX,P=Y,% = PaX,Z SASSUME P=FF

“jueRY 1 SIMPL; |
125 PZTT (25)) Here SIMPL reduces goal
126 PaX,PaY,2 = PaX,? (25)) #1#1 to ldentity, using
GOAL #3m1 PROVED, BACK UP TO GOAL #1) 25 and also an instance

IREMATHING SUBRGOALS:) of CONDT as simp, rules,
|2 Po = = « « « «72 SASSUMEP = UU

|3 P+ = = « « - =Z gAgSUME P = FF |
|

+> |nnesaTrRY 2 SIMPL;

lcete,) |

The exanple looks 10ng@s but the users contribution (shown by
"a") jg short, (The system keeps reminding the user of what subgoals
remain,) The "hard ccpy" proof produced by the SHOW command will be
comparatively short,

The next example illustrates the remining tactics, and also

apnlication to a particular subject matter =- lists, The first four
steps are the result Of SASSUME by the User. Note also the
abbreviations YX Y, etc., a Ss explainedin section 3.6.

1 YX Y, HD(CONS(X,Y)) = X (1)

12 ¥X Y, TL(CONS(X,Y)) = Y (2) |
13 VY Y NULL(CONS(X,Y)) = FF (3)
14 NULL(UU) = wu (4)

|

+ |eeaneaSSUME AP = LaF AX Y NULL X-Y,CONS(HD X,F(TL X,Y));
15 AP 2 [ap [XX Y NULL(X)-Y,CONS(HD(X),F(TL(X),Y))1] (5)

|

_ - [asnnnaFXp 5;
oT 16 AP = [XX Y,NULL(X)=Y,CONS(HD(X),AP(TL(X),Y))] (5)

|

* |a®anuGOAL yX,AP(X,AP(Y,2)) 2 AP(AP(X,Y),2);
| NEWGOAL #1 VX AP(X,AP(Y,2)) = AP(AP(X,Y),Z)

« - |#x#eaTRY INDUCT 5 CCC 1,4;

INEWGOAL #141 VX,UU(X,AP(Y,2)) = AP(LUU(X,Y),Z)
INEWGOAL #182 vX., [MX Yo NULL CX) Y,CONSCHD(X),FLCTLIX),Y)))
J (Xs AP CY, 2))
IS AP (IDAX YA NULL CX) Y, CONSCHD(X) pFL(TL(X), YI) IX, Y), 2)

_ ASSUME yX. F1(X,AP(Y,2)) E AP(F1(X,Y),2Z)
L |

> |##2a02TY 1 ABSTR;

] I NEHSGLL #lei#1 UU(X,AP(Y,Zy) 2 AP(UU(X,Y),2
~jaeaeeTRY SUBST 6 OCC 2;

| INEWGOAL glpipiul UUIX,AF(Y,2)) =
re [AX YoNULL CX) »Y, CONSCHO(X) AP CTL CX)» YI) ICUUCX, YY), 2)

+ |[##swaTRY SIMPL;

| t7 UUCX,AP(Y,2)) = [XX Yo NULL (X)2Y, CONSCHD(X) s AP(TL(X),Y))]
| (UJU(X,Y),Z) (4)

: [GOAL #1#1#1#1 PROVED, BACKUP TO GOAL #1#1#1, NO MORE SUBGOALS
18 UUCX,AP(Y,2)) = AP(UU(X,Y),2) (4 5)

L GOAL #1#1#1 PROVE& EACKUP TO GOAL #1#1., NO MRE SUBGOALS
1 9 YX, UU(X,AP(Y,2)) = AP(UUIX,Y),2) (4 5)
|GOAL #1#4 PROVED, RACKUP TO GOAL #1,

| REMAINING SUBGOALS:
12 (Herefollowsarestatemanto f goal #1#2)

] Note that simplification (Using the built-insimpiification
rules CONV and MIN2 and CONDU as well as Step 4) reduced 90a]
#i#1#1l#%#1 to identity, and the system generated Step7 on thease
grounds, In backing up, it generates an ©8xXpligit flnal step,
identical to the goal statement in Its wff, to tie up the ppoofof
each goal proved,

Note also that the user's cortribution (Indicated by nan) is
short In the above example,

Finally, here is an eXamplie ofa THEOREM used as a tactic
(read sAaction 3,7 first?!), I¢ also shows how the user can make many
of t he inference rules inte tactics =~ 8ven using the sane nanes, Of
course, THEOREMS used As tactics will at least a s often be

substantial results previously proved and filed (consider t he
frequent Occurrence in informa | Proofs of "to prove X X X 1t is
sufficient, bY Theorem AAA, to Prove YYY and Z2ZZ"),

|

24

Firsts, to make a THEOREM out of the TRANS rule:

| ea 22% ASSUME XY, Y=Z; i
151 X=Y (51)

152 Y=Z2 (52)
|

| #2 % #2 TRANS ==, =;

153 XzZ2 (51 52)
|

ewes THEOREM TRANS: 53

| THEOREM TRANS: X=zZ ASSUME X:=Y,YZZ:;

“low t0 use TRANS as a tactic:

|+a2eaGOAL FCA, XISG(X);
INEWGOAL #1 F(A,X)SG(X)

| TRY USE TRANS YeH(X,A);
INEWCOAL #L1HL F(A, X)SHIX, A)
INENGOAL #1#2 H(X,A)=ZG(X)

Note that the X,Y,Z of the THEOREM are metavapiables which do not

conflict with the variatles of the proof,

5,4 Migcellarneoyus Commands

The SIMPSET command,

SIMPSET ___{ (+=) ___,<ranged,___ }.__ }

The steps desivnated are adoec to op removed from the Set of

simplification rules (See section 3.5),

i — 25

| The SHOW command,
SHOW i

{ AXIOMS 72((---1<igantifigr?s__.) } |
— THEQREMS 3((___.<identifier>,___ J) } |

_ GOALTREE ?___,<ranged,«_. |

THISGOAL |_ GOALLIST

PROCF 2 ___s€<range?)._1
STEPS ?2___,<ranged>,... |
SIMPSET ?2._.s<range>,___

C-. - LABELS ?...:€<range>,___)}
7{ <lidentifier> ?<integer>) ;

u If the final <Kidentjfijerdis presentthe material Is sent to the flle

named, otherwise itisdisplayed on the Console, The flnmnal <integerd
| if present denotesthe |line~=width,

h— [f a <range> Or <identifier>-1list [8 not present, the whole ia
shown, The Cldentiflerd>=-llist for AXIOMS or THEOREMS denotes the

| particular axioms or theorems required, The <ranged~]ist for GOALTREE
refers to levels (2 is top level), and for PROOF, STEPS, SIMPSET and

y LABELS refers to steonumbers, Thus

L SHOW STEPS :3, 8, 2P:23,30, 551;

:- Will show Steps 1,2,3,8,22,21,22,23,3p and 55 onwards ofthe proof,

N with no goal structure; SHOW PRGOF wlll show steps with goal
structiire, SO Isnormally used with a single <ranged>, or a Whole

| proof, On|Y the stepnumbers bound to LABELS are shown,
The FETCH command,

FETCH ___.,<identifier>,___:

The Cidentifierd=list names files, AXloms &Nnd theorens on those
files Wil} be brought in, In fact any adm ssible commis on these
files Will be treated eXactly as if typed at the console = @,%.
ASSUMptions may be made = so the us@r may prepare such flies other
than by SHOWING axioms or theorems, Much of what a user types ls
dependert on the stepnumbers that the system |g generating, fo) the
use of files prepared offline Isliimited.However, this difflculty is
somewhat alleviated by the LABEL command (seebe|ow),The files are
expectec t o be Simply sequences of commnds, so Severa|fi |83 my
eas! ly be concatenated without editing,

26

The CANCEL command,

CANCEL ?<stepname> ;

This steps back through the <stepname> given, otherwise Just the last

step+» Cancelled steps are removed from the SIMPSET, Goal trials
encountered will be ARANDONOd, It is not possible to cancel back Past

any steno which proves a goal,

The INFIX command,

INFIX _._,<identifierd>y___ 3

This causes all the <identifier»s named to be treated exactly as

<infix>es (see section 3.6). In particular, t he user mst
henceforward "!" them in non-infix contexts,

Tne PREFIX command,

PREFIX .__.<identifiar>,___ i

This revokes t he infix status of al | <identifier>s named, Standard

infiXx>es are immune from this, hOwever,

The LABEL command,

LABEL _._,<identifier> 2<stepnamed>,_.. }

fach-<lgentifiep> is attached es a label to the step indlcatedby the
{stephare> if present, otherwise to the next Step to be generated,

Thus after "ABE DQ « ;" the previous step and Its Predecessors and
successors mmny be later referenced bythe {stepname>s ",0D", ",0D~-1",
1] , Do+1" etc,

5.

 — 27

1 3.5 Simplification Rules,

At any stage in a proof, there is a Current get of
simplification rules, Steps may be added t© or removed from the
simplification rule set (SIMPSET) in five ways!

|

® By SASSUME (See Section 3,2)

— oe By the SIMPgET command (See Section 3,4),
oe By the goal tactic SIMPL (See Section 3,3),

% eo If the SIMPSET was mndified by attacking a @0al
_ with a SASSUMption(see section 3.3) or by

¢ using the SIMPL tactics then it Will be automatically
reinstated when the goal is Proved or ABANDONed,
oe By CANCEL (see section 3,4).

Simplification Is invoked only by the SIMPL rule, (3,2) and by the

| SIMPL tactile (3,3), The rules are then applied repeatedly to ail
be subterms of the apbProprlate awff or term until they oan be appliedno

further,

{ An application of a simplification rule s = t consiats t n
) finding all occurrence8 Of 8 and replacing them by t (so the user

, must be careful not to make something 1ike F(X)Z G(F(X)) a
\ simplification rule, or he will cause indefinite eXpansionl),In

addition, in the case of a simplification rule Vxvx'y ,., , 2 all
Instances of 8» gained by replacing X,¥,.+s by &rbltrary terms in s,

| will be replaced by the appropriate Instancges of t,
There are five bullt in rules: CONV (X- CONVERSION), MIN2

(UU(s) = UU) and CONDT, CONDU, CONDF (simplification of conditlonails)
4 (see these rules of inference in 3,2), Together With the previously

mentloned feature, this will allow the assunption

] VX Y,HD(CONS(X,Y)) 3 X ,

when used as a Simplification rule, to reduce

HD (CONS (s1,52))

| via CAX Y,X)(si,s2)

to si ,

Sueh formulae may usually be kept permanently in the SIMPSET. Others,
notably the SASSUMptions of the CASES tactic, Will come and go under
system contro, Still others the user Will need to handle himself} a

good example Is the result of FIXP on a recursive definition of form
Ss = [(¥X,t])] = the result has form § 2 t{s/X}) and so oan lead to
indefinite expansion as aSimp|lficatlion rule, but Will not do so in
the case that the recursive computation, which |t will carry Out,
terminates as a consequence of other nembers of SIMPSET,

STI fy cota yt vl h .

28

2.6 Syrtax

as well as the usua| BNF conventions we use the following:

f'}Yarefor grouping syntax patternss$
? before a pattern neans optional,

eel o.. means one or more instances of the pattern P,
ce=?®r___ Means ON2 cr more instances of P separated

by commas,

<wff> i= ___,<awff>,___

Cawffd> i= 2___(V ___s<identifier>,__ | <term:: }__._

<tepm> (= Ic) <term>

<termd> t= infixterm>|<conditionaltermd

<conditiona|termd ::= Cinfixterm> =» <term> , <term

<infixterm> :1= <Ksimpletarmd ?2___{<infix><{simpletermd)___

{simpletermd> ::= <closedtern> ?___{ <closedterm)|

(_o_s€term>, _)

Cclosedtermd ::= identifierd>I<hternd|<dterm>|i<termname|

(<Larmd>)

<termname> 1:3 ?2{ :Gl:¢steprame> } ?(i<integerd } {(:L]IR)

<hteem> i= [XN ___<Identifier>,,, , <term> J]

<aterm> t:= [a Cjdentifiard> , <term?> J]

Cidentifiard 1:2 <word> | 'Infix> | =~ | 8

<word> iz ...{(<letter>|<aigig2! |, , -

<infix> i! anyo fthe single characters

AUS | +-22AV/\@eS2{D Furi,
or any <word> with current INFIX status (3,4)

Spaces may occur anywhere except within a <word>, but are only

necessary to separate <worad>s Cr to separate "," from a digit
(e,g, in "vx, 2x = TT"), The latter Is because the MLI3P2
narser takes ".Jd" as a sinole elemen% or token,

The brackets round <(xtepmd>s and <aterm>s may De omtted when
no arbiguity arises,

Examples follow, with Intended interpretation!

<,
—

LC ® P<Q=X,Y,R=Y,Z is a <conditlonalterm)>, abbreviating

- Pa(Q=XsY)) (RnY, 2)

® AP(AP X Y,2) is a <simpletermd>, abbreviating

C AP(AP(X,Y),2) or APCCAP(X))Y,2)

ar (AP((AP(X))IY))2

(Thus the type which We should associate wlieh
. AP is (PB+(RBa4B)), whereB is the type of

CC individuals,)
© XX YJ.NULL X«Y,TL Xp is a <xterm>, abbreviating

AX, DAY, (NULL(X)=Y, TL(X))]]

. PX ZY is an <awff>, abbreviating

AXAFIXaXY) = AX.Y

¢

- m VX Y X=Y :: x = Y is an <awff>, abbreviating

xx Ya X=Y2X,UU 2 xx Y X=Y=Y,UU

® le I AX L, XsHD(L)»TT, XeTL(L)
¢

illustrates the "!"=ing (Which may pronounced "shrieking"
or perhaps "how! ing") of ¢infixyes, which is necessary

. whenever they are mentioned in a non-infixed context,

— Miny examples of (Wffds and <awffd>s occur throughout this paper,
C

Caution!!! Some commnds refer to OccUrrences of a <term> in a <Wffd,

Occurrences are counted from left to right after al | Ogccurrenges of
my ll (which |8 an abbreviation for legibilitY reasons Only) Rave been
expanded as indicated in the examples, and with <infix>es considered

L— as prefixed,

‘

C

3

J.7 Commands for Axioms and Theorems

We row describe how the yser may create,storeaway,and fetch axioms
and theorems, so that he can build upa file of results over 98Veéral
sessions on the computer, and does not have to start from 8¢ratch

each tine,

We startwithasimgle example, and then describe the new commands In
detail,

wena AXIOM LISTS: ,4,0...,0YX NULL xX :: X = NIL,.,,;

| The user creates an axiom consisting of several
| <awffds: the exanple uses only OnN®, 80 the others
lare represented by -- The system lists them
| for him « as new steps~ and Wi1 [I remember the

lcol lection by its name: = LISTS,

AXICM LISTS

) | [J - [|

2 - - -

3- VX NULL(X) 0 X = NIL
4 - |_J -

sxx uSASSUME NULL Y=TT:
5 NULL(Y)ISTT (5)

sensu APPL 3,Y;
6 [AX NULL(X)=X, Uud¢Y) = [AX NULL(X)-NIL,UUJ(Y)
sens uSIMPL 6;
7 YENIL (5)

INote that the SASSUMption 5 has been used, So

. | itappears as a condition for 7,

exes THEOREM UNJQUENULL: 7;

| The user wants to Keep the result 7 = he will be

lce able to Instantiate for Y in later US8, sot he

|systemreally treatsit as a metatheoprem, The
|system wepites It In full for nim, reminding him
lthat t4 depends on LISTS:-

THECREM(LISTS) UNIOQUENULL® YENIL ASSUME NULL(Y)STT

|SUppose that the user proves sone nor ¢ t heorems,

land then wants to Keep his axioms (there mMa&Y be

(others besides LISTS)andtheorems. He says:

— 31

| wx46" SHOW AXIOMS AXFILE}
i wens #8SHOQW THEOREMS THFILE;

IHe can actually select just some to be kopt (3,4), Also
l1f he omits the filename, they will not be kept

—- but di splayed,
«

| ~-e= NOW, ON SOME LATER OCCASION: wee

(» = ®o ww

L |The user decides h® now wants to talk about !lsts,
land would like the theorems that he previousiy proved,

Lo sesesFETCH AXFILE, THFILE;
AXICM LISTS

15 =~ --

| 16 - ® =»
17 VX NULLIX) 3! X 2 NL
18 - - -

| THEOREM (LISTS) UNIQUENULL: YENIL ASSUME NULL(Y)ETT
IRemember (here may have been other axioms and

9 theorems on these files (they should hava been
lat least represented by =~, but we didn’t

| Ibother),
|The crucial point is that all variables which
larefreelnthe theorem, but not free Im the axloms
ton WhieghI¢ depends, may be instantiated, and the_
luser can force an instantiation bY Using the theorem
las an Infepanmnce rule, Suppose later he proves (step 23)3

23 NULL(RD(Z))ZTT (15 18)

|Heapp| fies the theorem @&8% follows (and In thls
lcase the only free Instantiable variable Is Y)i

#xwaseUSE TUN QUENULL 233

24 HD(Z)SNIL (15 18)

l1t is Possible that not all the Instantiabie variables
loccurIn the hypothesis of the theorem the full
ldefinttion of the USE command shows how they my
Ibe Instanttated.

32

W nOW glve the new commands Which concern axioms and theorems,

The AXIOM command, }

AXIOM Cldentifier> : _._s{(<stepname>|<awffd},___ ;

The system Will remember all the <awffds, mentioned explicitly Of

designated by an <stepmamed, by the name <iagentifierd>; ltalso lists
then- - each With anew stepnumber, Thereafter, any THEOREM created,
and saved by the SHOW command, WIlll be tagged as dependent on this
exiom,

The THEOREM commma- nd,

THEOREM (<identifler> : {stepnamed> |

?((___,<ldentifier>,___ 1) }
<identifiap> : <Cwffd> ?2{ ASSUME <wff> } } ;

The first option is for naming a proved result =-designated by
¢stepnamre) = as a theorem The second oat ion iS for naming an
expliclt sentence = {i,8, ¢Wff> 2{ ASSUME «¢Wff> } = as a theorem, and
saying what @Xloms It depends on (the lists of ¢identiflerds is a
list Of axiom nanes),

In the first option, the system Wlll remenber the theorem by nane,
and tag it as dependent on al | axioms pr2@sent in the sYstem,

In the second option, the system Wl| I check that the axioms mentioned
are present (lf not 1t WII warn YOU) and in any Case wWi|| remember
the theorem by nane, and ta9 it as dependent on the axloms mentioned.

Thi s option is used bY the systemasfollows, when the user Saves a
THEGREM on afi le uging the SHOW command, What the system Writes on
the . file 18 precisely an instance of the second option, so that when
the user FETCHes the theorem on a later occasion he Will be warned of

any appropriate axioms t hat are not Present so that he can FETCH
ther, too,

| — 33

_ The USE command,

USE <lidentifier> ?2___,<stepnamed,;__ ?{ , __.,<Instantiationd,___ } 3

. C(instantiationd is <Cidantifler)d « {term

- The first <ldentiflerd must be a THEOREM nane, and the system cheeks
_ that all axioms on which it depends are present, The system treats

the theoremas a metatheorem in that al] its free variables, except
those whioh are free in axioms on which it depends, are treated as
metavariables t o be Instantiated, The user supp|les the

LT instantiation In pp a r tin two ways, Flrst, the |lst of {stepnamads
designates a (ist of <awff>s, and some or all of the metavariabjes
are bound bY matching this IIist to the antecedent list of the

- theorem

i Second (since there mmy be metavarliables which (Occur only In ¢he
he consequent Of the theorem) the user may give a |ist of instantiations

each of whieh binds a tern to a metavarlable.

| Any metavariabies not thus instantiated wi|| just be left a8 they
stand, After matching, the USE command will generate a new step
whichIs simply the appropriate instantiation of the consequent of

L the theorem, Exampi|e!

g | nnn pX]OM AX1l., X=Y;
L AXIOM aXi

11 XEY
|

| |sesns THEOREM (AX1) TH1: PSZ ASSUME 22R;jo » =

| » LJ an

- 115 F(Y)SG(X,Y) (2 6)

| enw wlUSE TH1 15, PeK(X);
116 H{X)=F(y) (2 6)

-. 34

w 4, HOW TO USE THE SYSTEM LCF

4,1 Initialization and Termination

“ R LCF

— The system returns wlth an asterisk: You are nowtalklngto LISP,

(INIT)

« CL
This wil] Initialize thesystem,whleh returns with 5 -asterlsks! you
are ready to generate a Proof by the commands of Section 3. 5

— asterisks is always the signal far a command. Remember, al I commands
end with a semicolon,

“__ To finish a proof (after maybe preserving lt on a file using
SHOW type

$;

ThesystemWl| ltype ENDPROOF and You ar8then randy to start another

LN proof With

(INIT),

_ It Is possible to save your ¢€ore Immge 80 as to resume the
proofatalater time, To do this type

.
tC

= SAVE <f| |gname>

-and you can then elther continue immediately by

« START
(RESUME)

= oratalatertime by

RUN <ff|lename)

C-— (RESUME)

Se

|
A_—

35

4,2 GErrors and RecCovery

There are threetypes ofeprormessage:

@lfyoucommitasyntax error in a command, the system Says

SYNTAX £RROR; TRY AGAIN

HEBER

® If your command Is semantically suspect = for example, you

try to @pplyY TRAYS (transitivity) to two steps for Whleh it is
ineppropr iate - you Will get something 1ike

NASTYTRANS: TRY AGAIN

PR

© [f you break the system somehnaw and Jet a LISP error,

usually something| ike

3246 1LL MEM REF FROM ATOM

%

* #3¥

then you can try something different (your flrSt commnd muy yleld a
syntax error, In which «case Just repeat It); however, this should
not occur and Malcolm Newey or|] would like to know how It occurred,

If the sYstem gets Intoa loon (the only known cause Is if
your SIMPSET allows indefinite expansion) then

tC

START

_ (RESUME)

will restore You, If Yeu thereby abort a (longo rr looping)

simplification invoked by the SIMPL tactic youwill als0 need to
ABANDON,

_ 5. ACKNOWLEDGEMENTS

The system is entirely basdd on the logic proposed by Dana
Scott at Oxford In 1969 but unpubilshed by him

« lam grateful to Rlchard Wyhrauch for designing a better

simplification algorithm which has proved indispensable, to Maico!m
Newey for undertaking the necessary bregramming for corrections and
inprovenents to the system= including thesimplification algorithm «
and to both of them for constructive criticisms and discussions which

Co have led to mmny improvements, I also thank John MeCarthy forencouraging ne to undertake thls work,

The programming of the system was eased enormously by the
o MLISP2 extendible parser due to Horace Enea and David Sml¢h, and by

the help they gave me in using It, Infact, extensions to the system
| will be simple for the sane reason,
N

Lenni

Cte

3

-

-

