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1. INTRODUCTION
LCH is based on a 103i¢ of Dana Scott, proposed by him at
Oxford in the Fall of 1969, for reasoning about computable functions,
In Section 2 we present this logic, essentially as Scott himsel f

presentea It, but us i ng the typed X-calculus instead of the typed
combinetors S end K, since the former S more famillar to computer
scientists and is in any case easier to work With, Sectlon 3 then
describes the machine implementation of a proof-checker for t he
jogic, We refer to both the lo@l¢ and the Implementation as the typed
logie for computahle functions, or typed LCF» or Just LCF,

The jo3lc presupposes no special domin of conputation (e,q.
lists Or integers), However, particular domains can be axliomatized in
It ; Scott gave en axiomatlzation for arithmetic and we suggest a
partial axiometization for lists In Section 3, But many Interesting
results -~ e,q, equivaience of recursion eaquation schemata = are
provable in the pure logic Without any proper (non-logical) axioms,

It is hoped that a potential user of the system ¢an, wlith the

hein of the example of Section 3,1 and WIlth Section 4, get onto the
machine without reading the whoje ¢f this document,

Further discussion of LCF and exanples of |ts applications
can ne found in the fojlowing papéers:!

Milrer,R.s "Implementation and appllications of Scott’s logic for
computable functions”, Froe. ACM Conference on ProvIing Assertions
about Profdrams, New Mexico State University, Las Cruces, New Mexico,
Jan 6=7,1472,

Wevnhrauch,R, and Mi |ner, "Program semantics and correctness in a
mechanized |Jouic", Proc, USA-Japan Computer Conference, Tokyo, OCt
1972 (to appear),

Miiner and WeyhrAaucCh, "Proving COmMpil@r correctness 1IN a mechanized
logie", Mchine Ingelligence 7, ed, 0, Michie, Edinby,.gh Uniye,gigy
Press 1972 (to appear).

Newey,M, , "Axioms and Theorems for integers, lists and finlte sets in
LCF", forshcoming Al Mo, , Computer Science Dept,, Stanford
University, 1972,

we give no further references here; they my be found in the above
paners,
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2, THE LOGIC LCF

Tynes

At  bottom "tr"™ Aand "ind" are types, Further if B1l and B2 are t¥Ypes
thern (B14B2) is a type, We adapt the convention that = associates to
the right and freguentiy omit parentheses; thus we write By «R2aB3 for
(B14(B2483)), With each term Of the logic there is an unambiguously
associated TtType, For a term ¢ we welte

L

to ”aan that t he t¥Ype assnciated With t is B, Throughout we use
B,31,B2,,,, as matavariables for types.

Terms {(metavariableg sstasiotl,, o)

The following are tarms:

Identifiers(metavariables X,¥) =~ sequences of Upper Or |Ower

letters and di3its. W assSun® that the type of ecach identifier
is uWniguely determined M some mnner,

Applications = s(t) : 32 , where S:P1-832 and t:ny,
Conditlonalg = (s2tl,t2) * B, where sitr and tl,%2:8,

A=expressions = [Ax.,s5] ! B1aB2 , where x:B1 and s:iB2,

) X=-expressions - [¥x,s5] ¢ B , Vhere X,s5:B,

This strict syntax is relaxead {n the machine implemeritation (see
Section 38) to allnw a saving ot Parentheses and brackets,

Tha intended interpretation Of the a=gxpression [af,s] is the
miniral fixed-point of the functlion or functional denoted by CAf.sJ.
For @&xampile:

Edf.Exx.(p(x)*f(a(x)),n(x));]
denotes the function dafined recursively as fol lows:

fix) <= if p{x) then fla(x)) eclse b(x),



Constants

The identiflers TT,FF denote truthvalues true and false, (jy denotes
the totally wundefined object of any type: 1Iin particular, the
undefined trJdthvalua,

Atomic hell-formed formylaa (awffs)
The follown3 s an awff:

s <t

where s and t are of the same type. The intended inteprpretation of
sct is» roughly, tnat t Is at least a s well defined as, and
consistent Wlith, s,

Well=formed formyjag (Wwffs) (metavariapjes P,Q,P1,01,...,)

" WP W GRS TS T e ™ W W W

‘Wffs arec sets of zero Or more awffs, welttenas lists with separating
commas, Thay are interpreted as conjunctions, W use

s 3 %

to abbreviate SSt, t€s ,

Sentences

- waw w W o -

~Sentences are impiicatlons between Wffs, wrlitten

P |l= Q
or, if P i5 empty, just
= Q
Procfs
A meoof is a seguence of sentences, ecach being derived from Z€ro or

more preceding sentences 9Y a rule 0f inference,
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Inference rules

Let us wrlte P(s/x)} or t{s/x) for the rasult of substituting s for
al | free occurrences of x in P or t, after first changing bouynd
variables In P o t so that no variable free Insg becomaes bound by

the substitution, We have not stated aomditions On the types o f
identifiers and terms With cach rule; any consistent assignment of

types s admissible,

rnw | - RULES AR
INCL meceemraan (3 a subset of P)
P o1- 3
P I- @1 P 1- Q32

CO:\‘J hdadad e R )

P |- Q1uQ@2
P1 1- P2 P2 fa «3

CUT W we WP E W W D e e

P1 |« P3

* R c RULES 3% 8 %

APPL it U

sl © g2 | - tisl) < t(g2)

REFL rermenmre_oa
P [ = s € s

P | - sl ¢ g2 P | - s2 ¢ 53
TRANS -‘-----G-o----—---—o--n-------------

P | - s1 © 53

L XX 2 Ly SULES L3 EX X

MINl Al R

I" UUCS

MINE e ® e

) - Uls) = uy



CONDT

CONDUY

CONDF

ABSTR

CONV

ETACONV

FI XP

INDUCT

SREuD CONDITIONAL RULES A XX

DD PPN W g W es W g e

j=  UU = g,4¢ = UU

l- FF" s'tz 't

L XX T2 DN RULES L2 XX 2

Pl s et
L R N e Y  E L L L (x not free 'n P)
P | = [Ax.gd ¢ [Ax.t]

= EAX,33(¢) = s{g/x)
i b Ll L - (x and y distinct)

|- IAx,y(x)] 2 y

* %N TRUTH RULE * %%

Py s2TT |- Q@ P, sEUU 1= Q Pr s3FF |= @
P = ¢
L2 2 2 2] a RULES I 2X2 X
I = Cax,s] = s{[ax,s)/x)
P l= QtuUrsx) P, @ 1= Q(t/x)
A R SRR L L ~emr-cesccea- “em- (x not free in P)

P |« Q{fax,tl/x}
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3. THE MACHINE IMPLEMENTATION OF LCF

WS s WD TSR R D D AN SR e W A e R WD e Wy R e W

We now describe the machine version of the Joglec of Section
2, and how 0 use It interactively on the machine,

The yser nag available four groups of commands?

® Rules of Inference - to generate new sentences or steps
from Zero Or more previous steps, (Sectlon 3.2)

® Goal Oriented Commands =~ to speclfy and attack goals
and subgoals, (Section 3.3)

® Mlisce|langoys = malnly to do with displaying or filing
parts or all of the proof so far, and the goals, (Section 3.4)

® Commands foar axioms and theorems = to enable the user to create
axlom systems, to prove and fl le theorems in these systems, and

later to recall and instantiate those theorems, (Sectlon 3,7)

Before oescribing the commands In detal|, and the syntax of wffs,
terms, etc,, it may oe helpful to see an exanple,

3.1 A Example

o emeRPPacaTaemw

let us Introduce the magnine version of LCF by a simple
examp e Wwhigh, although short, exhlbits many of the foatures, It Is
a orodf of a version of recurslion Induction, which states that If F
is oaefined recursively and G (another funotlion) Sat}sfies F's
recursive definition theanfFeG, Inother wards, weprove that F Is
the minimal fixed point of Its defining equation,

After Initial {zatlon (see Section 4), the system types 5
asterisks aS a Signal to the user to Start a proof. Irl fact8 5
asterisks are alWways the sSignal for the user to continue his proof.
Thus, In what follows the wuser's contribution my be distinguished by
beling preceded by we#xu, W explain each user and machine
cortribution on the right of a vertical line,

*****ASSUME  F2[aF,FUN FJ, GSFUN G;
IThe user agsuymes a wff (a sequence of atomic wffs
lseparatedoy commas, where each atomc wff has = Or
leinfixed between two terms), Every user
lcommancendgswith a semicolon, Detailed syntax |8
lgiven later « but note in particular that application
Imay be represented (som3times) by Jjuxtaposition asg In
I "FUN G" to save parentheses, Note algo that F occurs both
tfree and ogupnd (by 2) without confuslion.



1 FEleF FUN(F)D] (1)
2 GEFUN(G) (2)

IThe machine scparates the assumption into two sentencesO

lgiving each a stepnumber. Every sentence which the .
Imachine generates Will have a stepnumber, and Wwl!l| consist

lof a wff followed by a |ist of stepnumbers of assumptions
lon which the wi f depends, A sentence

I n P S

|where P is a wif ard S a |list of stepnumbers {s the
lanalogue I n LCF of the sentence

I @ |- P

\

lof pure LCF, where Q Is the <conjunction of assumptions
ldeslgnated by S, Each of steps 1 and 2 above thus
Irepresents an instance of P |= P, which is a special
lcase of the inclusion rule of Section 2,

sunaeGOAL FeGs

IThe user states his goal, but does not attack it yet,

IHe might | is¢ several goals before attacking any of them
I'in each case the machine WIl| sinple glve a goal number:

NEWGOAL #1 FeG

IGoal| numbers are dlistingulished from stepnumbers by #,
eszanTRY 1 INDUCT 1;

IThe user wants to attack GOALl wusing the tactle of

I induction on Step 1 = which is (as it nust bela
Irecursive ceflnitton = I,e, FZ[aF,FUN(F)],

NEWGOAL #1#1 LUleG
NEWGOAL #1#2 FUN(F1)eG ASSUME F1cG

IThe mmchine Says that the Induction base and Step

Imust be established, For the step |t pleks an arbitrary
lfdentifier not used previously (actuaily for mnemonic reasons
lit picks something whigh only differs from the Instantiated
Ibound veriable in Its numepical suffix),

IWe now have two goals generated by the machine, at

la lower level, The wuser need not = but probably Wil =
lchoose to prove #1 by proving #1#1 and #1#2,

waneaxTRY 13
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IUser chooses to attack #1#1 first, He need (and nust)
lonly refer to the goal bY the last integer In its goal
Inumber, This time he doesn't state a tactic = he knows
fhoW to prove it hinself = so the machine nerely steps down
la level in the goal tree-and waits. Actual '¥» he could
luse the SIMPL tactic (see Secotion 3+3)s since th]a_
|tactic notices Instances of MINl and would therefore

|save the user his next $¢WO commnds,

senneMINL G}

|[The user notes that the subgoal UU€G can be proved

Iby the firgt minimality rule (see Section 2), sc calls
it with the appropriate term = G *= as paraneter,

3 UUeG
IThe mmchine obediently generates the proper instance of
iminimatlity, Notice that this sentence depends on no
lassumptions,

sannaQED)

|The user can say QED to tell the mmchine that he has
Iproved cxactly the goal under attack,

GOAL #1#1 PROVED, BACK UP TO coAL #1
REMAI NI NG SUBGOALS:

2 FUN(F1)eG ASSUME F1e6

IThe maching agrees, Now in general It will baok up
lthe go@al tree wuntil it finds a goa&al sonme Of Nhosesubgoala
lhave not been proved, It will remmin at that level and list

lthese subgoals for the user to tr¥.
ananaTRY 23

| Again, user glves no tactic,
4 F1eG (4)

IThe machine mmkes the assumptlon Of the go0al for him (note
(that goal #1#1 had no assumptlion), and wafts.

snxne APPL FUN, 4

|"App Y FUN to Step 4" = an Instance of application (see
ISection 2),

5 FUNCFLICFUNCG) (4)



190
sunnaSYM 2;
ITurn step 2 around ready for 2an appllication of transitivity,
6 FUN(G)IZG (2)

seuuutTRANS 5,6

INote that the parameters of inference rules are always
Istepnumbers or terms, separated by comms,

7 FUN(F1YeG (2 4)

anuneQED;
GOal #1#2 PROVED, BACK UP TO GCAL #1. NO MRE SUBGOALS

8§ FeG (2 1)

| we==eThe machlne hasn't fin/shed Yet, but not8 that it

Imakes an exp!lcit step to represent the proof o0f #1 (8o
Ithat the whole sequence of steps, with all the g@oal
Istructure stripped away, shall be a forml proof), Note
lalso the assumptions of sStep 8,

coAL #1 PROVED, RACK UP TO TOP LEVEL. NO MRE SUBGOALS,

I(There might have been more goals |isted at toplevel,
Isince the user can list many before attacking any),

sxwuu#SHOW PROOF RECIND:

IThe user decides to keep his proof on a flle called RECIND,

IThe version kept IS shown below, Notlce that not every=
Ithing which the user typed reappears; In particular, the
Istatemant of a goal is not reproduced, only its trial,

I1f the usep wanted instead to display hIls proof (at any
lpolnts rot just at the cnd) hae Would Just type "SHOy PROOF ;"

PROOF
1 F 2 [aF ,FUN(F)]) (1) <==== ASSUME
2 G = FUN(G) (2) w==-== ASSUME,

ITRY #1 F € G INDUCT 1.

LR RN X E R LELELELE LR XX

i
i ITRY #1#1 uu ¢ G

I |13 . UUeG ---- MINLG.
|

I

R L E X R R R R R X )
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I ITRY #1#2 FUN(F1) © G ASSUME F1 ¢ ¢ .

| |4 F1 e G (4) ---- ASSUME,

I 16 FUNCGY)SCGFUN(G)Y (4) ---- APPL 4 FUN,
(2) ==== sSYM 2,

7 FUN(FL) ¢« G (4 2) ==~= TRANS 5 o6,

I8 e g (2 1) ---- INDUCT 3 7,

Lodadl L0 R RN R N R I S

3.2 Rules of Inferance

Let us assume for the moment the syntax clasgses <wffd, <awffd
(ateric wff), <termd, Details of these are In Section 3.6, but for

now ook only at the conventions given for syntax deflnitions at the
start ©Of that Sectiogn,

We need for the present

<stepnare> ::z= <integerd|l ------- I o <identifier> 2{ {(+|=) <integer> )
<terrnamped> ::= 7( :Gli<stepname> } ?2{ i<integerd> )} {:L]:R)
<range> ;:= <{stepnaned 1 ?<stepnamed ! ?<stepname

In a <stepname)> "=" ncans "the |ast step", "*«" eans the
last step but one, et¢,, and for example ",DD=-1" means the Step
preceding tnat labe| led DD, See Sectlon 3,4, the LABEL g¢ommand, for
how to labe| steps,

A <termname> my appearanywhere that a term can appear = for
example as a subterm of a term = and frequently saves typlng Tons
formulae, We explain terrinames by a few cxamples (suppose the last
step was nunbered 15) ,

$15:1:R )
. s=311R )
115:tR ) al | designate the term which oOccurs s
~-:R ) right hand side In the first <awff> of Step 15.
'R )
:,0D:2.L designates the |hs of the second <awff>
of the steplabelled DD,
{Gi2:R ) designate the rhs of the second <awff> ot

the current 9Joa| ~THISGOA_(See Section 3.3)

The <rangeds 12, 29330, 1402, 50: denote respectively the

single step 12, the steps 20 to 2 inclusively, the stepsup t0 and
including 4@, and the st2ds from 50 onwards..
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Note that In the

W now list the rules, with some exanples,
whatsoever, W rely

Implementation there IS no type-checking

on the US®F to wuse types <consistently,

ASSUME <Kwffd;

SASSUME

tach <awff> Af in the <wff> I8 given a new stepnumber ni,
and the steps

ni A1(nl)

n2 A2(n2)

are generated, Each one

is a tautologys since a step P(N) means QI= P, where
Qls the ¢awff> at step number N, Thus the purpose of
ASSUME Is only to Introduce references for <awffds,

See Section 3,1 for examples of ASSUME,

<wftd;
Like ASSUME, but every <awffd of the <wff> is henceforward

treated 3s a simplificatlon rule (see Segtion 3,5),

INCL <stepname>, <integer>;

CONJ _._,<ranged>,___ ;

CUT <stepnamed>, <stepname>;

Picks out an <awff>, Exanple:

115 23F(X,Y), AZB, [AX.XJ(Y)ci4d4 (13 7)
|&*Q*§INCL 15,2;
116 AZB (13 7)

Forms conjuncgion of all steps In the <range>s, Examp|e:

115 Pe@,RES (12)

| W - W

117 F=6 (12 4)
|#*peucON) ===)=;

118 pP<Q@, RZS, FZg (12 4)

- T WA TG T S e ™

1f the steps referred to are P(mi,m2,,.,) and Q(Nl,n2,.,)
respectively, where the mnis and N’S are stepnumbers,
and If every <awff> referenced DY the n's OCCUrs 2s an
<awff> In P, then the step Q(mi,m2,,.) Is generated,

Exampl e:
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7 F26  (7)

112 PcQ (7)

115 F26, GSH (14 2)
I#euaacyT 15,12;
116 pPeg (14 2)

----0-0-----—-----u---n--—----

HALF <stepname);

Rep |aces "2 b y "e" 1, ¢the flrst<awff>, and throws
the rest away, Example}

6 XSG(X), YSH(Y) (1 3J)
|eeneuqALF 63
7~ XeG(X) (1 3)

-O-------.------on—ncot.u-----

SYM <stepname);

Interchanges the terms inthe first <awff> (provided "2" oeccurs)
and throws the rest away, EXxample (contlnuing the previous):

------—-u.-------------v-----.

| ##euuSYM 6
I8 G(x)zx (1 3

------.------------.---------.

TRANS <stepnamed, <stepnamed}
Looks 4t the firstcawffd>in cach ¢<Wff>, If (hesc are sii{z|c)s2,
s2{Z/<}s3 respectively, thensics3 orsiZs3 !s generated, the
. assumptions being "unioned”, Example;

112 XZY(Z), PcQ (11 4)
[ *W-w-

143 yY(Z)ey(x) (4 9 8)
I#*x%8TRANS 12,13;

114 Xeyv(X) (11 4 9 8)

—-----------------—-.-.------.

APPL (<stepname>, ___,<term>,___ |<term>,<stepnamed>};
In the first case, applies poth sides of the flrst cawffd> of
<stepnamed> (o the <termds in sequence, _
In the second case, applies the <term> to both slides
of the first ¢awff> of ¢stepname>, Examples:

------—----.--h-.---.------q-Q

[1d XEY(Z), PeQ (9 4)
lesanaAPPL F,10;
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F12 FUX)EFCY(EY)Y (9 4)

] - ™

12% FEIAX . X),PeQ (11 4)
'***“*APPL 22p:'12 R;

123 FOQ)ECAX.XJ(Q)Y (11 4)

o ™ qn WP v GT Gp TR D A TP GE e P ap A YR G W W W W

ABSTR <stepname>., .Lidentifier>, ;

- e ? _——- !

Does \~abstraction 0 n 1st <awff>, The identifiers

must not occur free in any Of the assumptions o the step,
example(continuing the previous):

|##auaABSTR 22,
124 [AF,FIZDNF, [XX Xl (11 4)

- w -

CASES ) _ These are not nresent as inference rules, aince it s
) less tedious to use their goa| orlented versions (see
INDUCTION ) Section 3,3),

CONV (<stepname>i<term>}:;

Does all X-conversions |In the <term> or <stepname>, Example:
J - g™
114 BELAXXEX)IIOAX.XCY)]
|#sassacONV =;
145 RQzy(Y)
Remark: the term in 14 violates the type structure, but the

system does not chack this,
ETACONV <term:

Eta-converts the <term, provided it has the form ([AX.s8(Xx)],

wWith X not free in the term S, Exanple (remembar that
F(X,Y) abbreviates (F{X)ICY) )¢

T e M T gy R e W W

|a%wuwETACONV [NY, F(X,Y)3;
149 [XY. FOX,Y)ISF(X)

EQUIV <stephame),{stepnamed;

Looks at the flpst <awff> In each <Wff>,

If these are sic<s2,
s2<sl raspectivelyY, then S1282 is

generated. Exanple:

16 XeY, PzQ (12)
|
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- 117 Yex, HeG (1 2)
lesassEQUIV 16,17;
118 XY (12 1 2)

--.----‘-“-----.Q-..--‘------

REFLL <term>;

w Glves t=t whera t Is designated by the mteerm, Exampiet
i lewanwaREFL X(XX);
119 X¢(XX) = X(XX)
-
NFL2 <termd;
. Like REFL1, but gives tet,
1
MINL <term>;
‘ Gives UUct, Example: see Section 3,1
W
MINZ <term>;
L Gives UU(t)=zUy, Example (continuing the previous):
. ’ iesasaMIN2 e b
L 120 UUCXEXX)) = uUu
E CONDT <tarmd>;

Checks that the <term> t has form TT+g1,82 and |t
30 generates tZsl, Exanmple:

l - - W

. 121 F(X) = TT=X,F(G(Y,X)) (12)
|#*828CONDT :R;
122 TTex, Flg(Y,x)) = x

-

il Al St LA L L E E R X R X T g i

CONDF <termd;

Checks that the <term t has form FF=81,82 and if
so generates tZsa,

CONDU <term>;

Chaecks that the mterm

* has form UU=»si, s2
and !f so generates t Z

Ju,
FIXP <stepname);

Chegks that the first <awffd is a recursive

definition
6,9, sz[aG,t]), and generates sZt{s/G),

Example:
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Wy WS TP W WD WG WG W -

l - - - - - - - -

(23 F = CaG,HILAFG(F)1)]
|neazuFixXP 23; :
124 ¢ 2 H (OXNFLF(F1D D)

SUBST <stepname> 2( oOCC ___r<integer>,___ )} IN (<stepname>L§teém>);
Let the first <stepname> have tl1 ¥ %2 as its first <awff>, where
$ stands for =2 in case (1), and for % or € in case (2),

Case (i), If there is an <stepnamed> following "IN"™, then ¢2 is

substituted for all occurrences designated bY the <integerd=
list (or al | occurrences, |f no 1i8t) of tl1 in the <wWff>,

Case (11), 1f there Is a <term> s following"IN" ¢(hen

s $ ¢ Is gemerated, where s’ is the result of substituting t2
for the apppropriate occurrences (as in case (i)) of t1 in s’,

Note that for t1 to occur in a term 8 any occurrenge of a free

varlable in t4 must not be bound In S, Also see the caution on
occurrence numbers IM Section 3.6,

Example!

e e e L L L E X X E X R X XX XX XX

125 IAX.F(X)) e G(F(X),F(X)) (2 3)

] o wgw

|26 F(x) = X (5 1)

|#sseaSURST 26 Occ | IN 2%

127 XX piX)] = g(Xyp (X)) (2 3 5 1)
|#*u2aSlUg ST 36 IN $25¢R}

|28 G(F X)»F(X)) = g(X,X) (5 1)

SIMPL (<stepnamed>|cterm>) ?2___¢ (BYIWO) ___,<ranged>,___ )___ i
In the case® of an <stepnamed, its <WFffd> ig simpl!ﬂed
(see Section3,5) using a s simp|ification rules those In
" SIMPSET together with those designated by the <ranged=|ist
following each "BY", and Without those designated by the
<range>=~ljst following each "WO", A <term> ¢ is similarly

sinplified, to tl sa¥, and t 5 t1 is generated, The SIMPSET
remains unchanged,

Example, continuing the previous (Section 3.5 givesmore detall):

129 CAP,P=F(X),YI(TT) < UU(X) (12)
|e#aeaSIMPL = 3Y 26;
138 Xeyu (12 s 1)
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This happens because CONV, CONDT, MN2 are anong the
simplification rules,

3.3 Goal-Oriented Commands

PO TSR YWD S A gy W o e

Anything provable with the goal Oriented commnds }s provable

in PURE LCF, but nost woofs would then be tedious (that’s why we
only deseribe the INDUCTION and CASES rules in goaleoriented form),
Experience shows that With the goal-oriented commmnds the user has
only to0 type a smal | fraction Of what he woul d otherwise have to

type ,

The user may generate a subgoal structure of arbltrary depth.
This structure Is represented BY three entét’asi wG0ALTREE, GQALLI ST
and THISGOAL. THISgOAL /s always the goal cuprently under trialy all
its ancestors !n GOALTREE are (indjrectiy) also wunder trlal; the
subgoals of THISGOAL are !isted In GOALLIST, Each goal has a goal
numper = e.g. #L#2#3 = which indjcates its ancestors .nd (BY the

number of  Parts) its Tevel In the tree, Here iS a sample goal
structure;
LEVEL @2 e )
-------- ]--'--". )
. l l )
LEVEL 1 #1e 400 430 )
| )
LEVEL 2 oR2#1 )  GOALTREE
- i ) ]--’--.-- )
| | )
LEVEL 3 ox2H141 opZ#1#2 «===THISGOAL
]
o T
o o e  GOALLIST

##1#2%#1 R2#14#242 #281#2#3

FIGURE 1

Each goal has a status (not shown In diagram) whiech Is elther
“UNDER TRIAL" (only THISGOAL and !ts ancestors have thisg status), or

"NOT TRIED' or "PROVED",
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The user has flve goal oriented commnds available: we @give

first the

lr syntax, then detailed descriptions,

GOAL <wff> 2({ASSUME |SASSUME) <wff> i

TRY ?<integer> ?<tacticd ;

QED ?<stepname>

ABANDON

SCRATCH <integer> 3}

<tactic> $i= CONJ |

CASES <termd |

ABSTR |
SIMPL 2___¢ (BYIWO) ___,<stepnamed>,___ )}___ 1
- SUBST <stepname> ?2{(0CC ___,<integer>,___ ) I

I NDUCT <stepname> ?2{0CC ___,<Iinteger>,___. ) I
USE <identifler> ?2___,<Instantiationd>, __.

<instantiation> ti= <identiflerd> « <term

The GOAL

command,

GOAL spec

ifles a new goal to be added to GOALLIST, Its effect on the

goal structure of TFigure 1 is as follow (FiQure 2)3

- - - - - )
- . e - - ) GOALTREE
T ————- L okwe - mr - )
l l )
® OH2#1L#2 ~===THISGOAL
T-----“-I-------T----__'T GOALLIST
® . ® [
H2#LH2#44
FIGURE 2

(Notlce that the new goal Isn't yet under trial)

A goal may or may not be given assumptions. The only difference

hetwean
is trle

ASSUME AND SASSUME is that In the latter case, when the goal
dr the assumption Wff WIII be added to the set of
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simplification rules (See Section 3,5) for the duratlon of thls
goal’s trilaf, Exampies:

[#ss2uGOAL FcGy
INEWGOAL #1 FcG
|eexseGOAL F(X)EG(Y) SASSUME F=G, XZY;
INEWGOAL #2 F(X)=Sg(Y) SASSUME Fzg, XEZY

W Py Tam e e®e e W W wm e - o

The only purpose of the systemls reply is to allot the geal a number,

The TRY command,

TRY specifles one of the goals of GOALLIST (o be trled (If the
<integer> |8 absent, the last doal specified Is assumed),, If the uUser

gives no tactlc, the new GOALLIST wWill be null (Flgure 3),

- - - - - )
- ® - - - )

cevecens! comemnon )

1 1 )

[ ) eH2HRLR2 ) GOALTREE
S )
1 1 1 1 )
) [ . o )

THISGOAL

I
(GOALLIST Initlally nuil)

FIGURE 3

But If the yser 9iVes a tactic, the system Wi}l 8@t wp a new GOALLIST
for hﬁﬂr, Whose npunmber of nenbers depends on the etlec, Tact cs T ]
described later In this sectlom,put look at the E&.mpl ¢ follow

QED’s description below to see what happens without them

The QED command,

ALK R R K R R R % N X 3% X 34

QED indicates that the <stepname> = or previous step if no <stepname>

= proves THISGOAL; the user wllil normally say QED when he TRIED thls
goal With no tactic, Sometimes (he wuser has been able to prove a
contradiction, 1,e, any of the <awffds <tv>3<tvd>or <Ctvdectvd Wwhare
the <tVD>s are dlstlnct nenbers of (TT,UU,FF) and in the gase of e the
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first <tv> is not UUY, QED wi|| accept a contradiction, since it
proves anythlina, The cffect of QED is to restore Figure 3 (o Figure
2, with the difference that the status of #2#1#2#3 will become

"PRCVED"; further, if THISGOAL (of flgure 2) was TRIED with & tactle,
and all subgoals generated by this tactic are now "PROVED", the
system will back further up the tree, Thi s may continue for many
steps; eventually the system will stop and tell the Usep whieh goal
has now become THISGJAL, and whichmembers of its GOALLIST remmin to
be proved,

The following exanple continues t he one above, and
i1 lustrates TRY and QED:

113 r 26 (13) ) The system makes the assumptions,
114 x = Y (14)

|

|eswssAPPL 13,X;

115 F(X)sGiX) (13
|

lesnanAPPL 5,14

16 G(X)SG(Y) (14) The user Proves the goal,
lesnanaTRANS 15,16

117  FAX)SG(Y) (43 14)
I

| ennneQED; )

IGOAL #2 PROVED, RACK UP TO TOP LEVEL, ) The system
|IREMAINING SUBGCALS: ) backs up.
11 FeG

L R I RN IS e e B R R R R N X K X

The ABANDON command,

ABANDON indicates that the wuser doesn't like his current trial of

THI SGOAL, The effect will be to restore Figure 3 to Figure 2 = but
the status of #2#1#2#3 becomas agaln "NOT TRIED", Thus no further

backing up can happen,

The SCRATCH command,

- e NG e e W w g

SCRATCH removes the indicated goal from GOALLIST, However, the system

will refuse to scratch goals generated by tactics.
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Tactics

We now describe the tactics availabie, There 2re six basic

ones, each based on a Particular inference rule; in additjon the user
may employ any THEOREM (see section 3,7) as a tactlc,

For CONJ, thesystem generates a separate subgoal for each
<awff> in the goat,

For CASES, {f s is the <term> and P is the <wff> of the goal,

tne system generates the 3 subgoals P SASSUME s3TT,r SASSUME s3UU, p
SASSUME s=FF,

For ABSTR, the system instantiates in each <awffd In the goal

for as many bound variables as are bound by the outernost N In Tts
left-hard side, thus generating a single new subgoal, N8W variables
are chosen which -are not free In the proof so far, For example, I
the goal Is ThX Y.FCY,X)] = [N G(2y2)) » and X is already free In
the Proof, the new goal Wwlll be F(Y,X1) = G(X1,X1,Y),

For SIMPL, the system generates a new subgoal by simplifying
the 80al as far as possible, using a modiflied SIMPSET (if any "BY" or
"WO" Is opresent) as explalned in Section 3.2 wunder the SIMPL rule,
The roaified SIMPSET remalins in foree, but the old one wlll be
refnstateq when the new Jo0a]l is elther proved or ABANDONed (gee
section 3.5), If the system aisg¢overs that all <awff>s of the new
subgoal are identically true = i.8, they are ail of the form 8€s or
sZs or UUes =~ It initiates the backing w Process described under QED
above instead of gemeratlng the subgoal, If some but not all of the
<awff>s are identically true they aresimply omltted from the new
subgoal,

For SUBST, the sy3tem generates a new subgoal by substituting
the rhs of ¢stepnamed for the lhs of ¢3tepname) In the goai « either
theroughout, Or at the deslignated occurrences when an <lntegerd>=|ist
is giver, (see the ¢aution ©n Occurrence numbers in sectfom 3,6).

. For INDUCT, 1let P be the <Wff> of the goal, The system checks

that <stepname> has the form sZlay,t] - i,8, that It is a recursive
defirition, IM that case, It generates two new subgoals, The first
is

P{UyY/sg)}

and the second Is
P{t{y’/y}/s} ASSUME P{y‘/s)

wnere y’ Is a variable not previously wused free, and wher®e the

substitution in P takes place at appropriate occurrences, exactly as
for SUBST above,
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For USE, the <identifier> is a THEOREM nanme, The system Wil |
instantiate the THEQCREM by matehing Itts consequent to  the goal,
taking Into account any instantiations supplied explicltly by the
user, and Wwill genarate tne appropriate instance of 1ts antecedent as
a new9oal, See section3,7 fcr a fuller giscusslion of THEOREMS,

We now 4give exampies of each tactic (except CONJ, which g
easy to understand), Some are realistically 'conbined.

2| waeen0AL PoX,nY,z I P=X,Z;
INEWGOAL #1 PaX,P=Y,Z2 T PaX,?
|

+|#%wexTRY CASES P
INEWGOAL #1#1 PaX,PaY,?Z
INEWGOAL #1#2 PaX,FaY,Z
INEWGOAL #143 PaX,P=Y,#

PaX,2 SASSUME P=TT
PaX,Z SASSUME PzUU
P+X,2 SASSUME P=FF

HY I8y

+jnnnasTRY 1 SIMPL;
125 PETT (25)
|26 PaX,PaY, 2 = PaXx,? (25)
|GOAL #1311 PROVED, BACK UP TO GOAL #1
[REMATHING SURGOALS:
j2 Pa = = =« « « =72 SASSUME P
|3 P+ = « -« « - =% gAggUME P
|

+|enesaTRrRY 2 SIMPL;
lcege,)

G G W e T g T e g W e PR W TP R e G W e e

Here SIMPL reduces goal
#1#1 to ldentity, using
25 and also an instance
of CONDT as simp, rules,

Ju
FF

The exanple 1looks 10ng@s but the users contribution (shown by
"+") s short, (Thg system keeps reminding the user of what subgoals
remin,) The "hard copy" proof produced by the SHOW command will be
comparatively short, ‘

_ The next exampl€ illustrates the remining tactics, and also
apolication to a particular subject matter = lists, The first four

steps are the result O f SASSUME ©y the User. Note also the
abbreviations YX Y, etc,, a s explainedin section 3.6.

1 YX Y. HD(CINS(X,Y)) = X (1)
12 ¥X Y, TL(CONS(X,Y)) = Y (2)
I3 VY Y NULLC(CONS(X,Y)) = FF (3)
4 NULLC(UU) = uu  (4)

|

+ |wean8iSSUME AP = .@F ,AX Y,NULL X=Y,CONS(HD X,F(TL X,Y));
15 AP = [aF ,[AX Y, NULL(X)=Y,CONS(HD(X),F(TL(X),Y))1] (5)
|
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Y

[ennnaFIxXp 5;
16 AP = [XX Y. NULLCX)=Y,CONS(HD(X) ,AP(TL(X),Y))] (5)

¢

|
la®auuGOAL yX,AP(X,AP(Y,2)) 2 AP(AP(X,Y),2);
| NEWGOAL #1 VX.AP(X, AP(Y,2)) = AP(AP(X,Y),2)

|
jewsexTRY INDUCT 5 0CCC 1,4
INEWGOAL #1#1 VX, UU(X,AP(Y,2)) = AP(UUCX,Y), )
INdeOAL#l#Z YX EAX Y NULL(X)=Y, CONS(HD(X),F1(TL(X), YN
(X, APCY,2))
z Aw(txx Y NULL(X)=Y,CONS(HD(X X), 1(TL(X).Y))J<XaY).Z)
| ASSUME VX.Fl(X,AP(Y,Z)) S AP(FL(X,Y),2)

¢

|
+ |#x322TY 1 ABSTR;
INEWGOAL #1#1#1 UU(X,AP‘Y,Z)) z AP(UU(X,Y),Z
|
+|#euaneTRY SUBST 6 OCC 2;
INEWGOAL #1g1s1#1 UUCX,AP(Y,2)) =
| [aX Y,NULL(X)»Y,CONS(HD(X)pAP(TL(X).Y))J(UU(X.Y);Z)

+ |###saTRY SIMPL;
7 UUCX, AP(Y,2)) 2 EXX Y NULL (XD =Y, CONSCHD(X) s AP(TL(X),Y))]
l (WU(x,Y),z) (4)

IGOAL #1#1#1#1 PROVED, BACKUP TO GOAL #1#1#1., NO MORE SUBGOALS

I8 UUCX,AP(Y,2)) = APCUU(X,Y),2) (4 5)

IGOAL #1#1#1 PROVE& EACKUP TO GOAL #1#1., NO MRE SUBGOALS
1 9 VX, UU(X,AP(Y,2)) = APCUUCX,Y),2) (4 5)

IGOAL #1%1 PROVED, BACKUP TO GOAL #1,

IREMAINING SUBGQOALS:

l2 (Herefollowsarestatemanto fgoal#1#2)

I(ete,)

L e e e - e o en e, T caerTern.

Note that simplification (Using the built-in simpiification
rules CONV and MIN2 and CONDU as wel]l as Step 4) reduced 9oal
#i#1#l#1 to identity, and the system generated Step 7 on these
grounds, In backing up, it generates an ©8xplicit flnal step,
identical to the goal statement in Its wff, to tie up the ppoofof
each goal proved,

Note also that the wuser's cortribution (Indicated by "a") is
short In the above example,

Finally, here is an example of a THEOREM used as a tactic

(read smction 3,7 first!), It also shows how the user c an make many
of the inference rules into tactics =~ @ven using the sane nanes, Of

course, THEOREMS wused As tactics Will at leastas often be
substantial results previously proved and filed (consider the
frequent Occurrence in informa | Proofs of "to prove XXX it is

sufficient, by Theorem AAA, to Prove YYY and Z2ZZ"),
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Firsts to make a THEOREM out of the TRANS rule:?

|asnewASSUME XZY, YZZ;

|51 X=Y (91)

152 vyzZ2 (52)

|

| #2 %82 TRANS ==, =;

|53 Xz (51 52)

|

jerwaeTHEQREM TRANE: 53

JTHEOREM TRANS: X=Z ASSUME X=Y,Y=ZZ:

Now to use TRANS as a tactlic:

[##ws#G0AL F(AZX)ZG(X);
INEWGOAL #1 F(A,X)ZG(X)
ITRY USE TRANS YeH(X,A):
INEAGCAL #1#1 F(A,X)ZR(X,A)
INEWGOAL #14#2 H(X,A)=G(X)

T P S I n D S e Ty e T O Ay e

Note that the X,Y,Z of the THEOREM are metavariables which do
conflict with the variatles of the proof,

SIMPSET ___¢( (+|=) y{range>, } ;

- e - - - - - -

The steps desivnated are adoec to or removed from the Set of
simplification rules (See section 3.5),

not
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The SHOW command,

SHOW
¢ AXIOMS 2{ ¢ ---s<igentifigrds___ ) } |
THEQREMS 3¢ ¢ ___,<identifiee>,___ ) } |
GOALTREE ?___,<ranged, ... |
THISGOAL
GOALLIST
PROCF 2 ___.1€range>y.._ 1
STEPS ?2___,<rapged>, ...
SIMPSET ?2._.,<range>, ___
- LABELS ?...:<range>, ___ )
?2{ <identifier> ?<Integerd> ) ;

If the final <lidentifier>is present the material Is gsent to the flle

named, otherwiseitisdisplayed on the Console, The flnal <integer>
if present denotes the |lne~widtgh,

If a <range> ©Or <identifier>-list [8 not Dresemt, the whole |Is

shown, The <ldentifler>=-llst for AXIOMS or THEOREMS denotes the
particular axioms or theorens required, The <ranged>=~]ist for GOALTREE
refers to levels (g is top level), and for PROOF, STEPS, SIMPSET and
LABELS refers to steonumbers, Thus

SHOW STEPS :3, 8, 2@:23,30, 55;3;

will show steps 1,2,3,8,27,21,22,23,39 and 55 onwards ofhe proof,
with no  goal structure; SHOWPRCOF wlll show steps Wwith goal
structlire, SO Isnoprmaily used with a single <ranged, or a Whol e
proof, On|y the stepnumbers bound to LABELS are shown,

The FETCH command,

FETCH ___,<identifier>,

The <identifliepd=|jst names files, Axloms &nd theorems on those
files WIll| be brought In, In fact any admissible commambds On these
files Will be treated eXactly as {f typed at the cOnsole = 2.,%.
ASSUMptions may be made = so the usa@r may prepare such flles other
than by SHOWING axioms or theorems, Much of what a yuser types ls
dependenrt on the stepnumbers that the system |[g Qgenerating, so the
use of files prepared off(lne islimited.However, this difflculty is
somewhat @alleviated by the LABEL commnd (geebe|ow),The files are
expectec t o bLe Simply sequences of commands, so Sevepra| fil8s my
eas! Y be concatenated without editing,
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The CANCEL commnd,

- WU O WS> .-~

CANCEL ?<stepname> ;

This steps back through the <stepname> given, otherwise Just the last

step » Cancelled steps are removed from the SIMPSET, Goal trials
encountered Wi ll be ARANDONed, It is not possible to cancel back Ppast
any sten which proves a goal,

The INFIX commnd,

INFIX _._,<identifier>,___ i

This causes all the <identifier»s naned to be treated exactly as

<infix>es (see section 3.6), In particular, t he user nmus t
henceforward "!" them 'n non-infix contexts,

Tne PREF]IX command,

PREFIX ___s<identifiar>,___

This revokes t he tnfix status of al | <identifier>s naned, Standard
<infix>es are immune from this, however,

The LABEL command,

LABEL _._,<identifier> 2<stepnamed, .. }

Fach-<lgent!fier> is attached @s a label to the step indicatedby the
{stephamre> if bpresent, otherwmise to the next step to be generated,

Thus after " ABE_ DD = ;" the previous steép and Its Predecessors a&nd
successors may be later referenced bythe <stepname>s ",00D", ",DD=~-1",
", DD+1" etc,
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3.5 Simplification Rules,

Ladiad A L RN R PN ey

At any stage in a proof, ther® is a Current get _of
simplification rules, Steps may be added t© or removed from the
simplification rule set (SIMPSET) in five ways

® By SASSUME (See Sectlion 3,2)

e By the SIMPgET command (See Section 3,4),

e By the goal tactic SIMPL(See® Section 3,3),

o If the SIMPSET was nodified by attacking a goal
with a SASSUMption (see section 3.3) or by

using the SIMPL tactlcy then it WIill be automatically
reinstated when the goal is Proved or ABANDONed,

e By CANCEL (see section 3,4).

Sinplification Is invoked only by the SIMPL rule, (3,2) and by the
SIMPL tactfie (3,3), The rules are then applied repeatedly to ail
subterms of the appProprlate awff or term until they oan be appliedno
further,

An appllecation of a simplification rule s = t consiats t n
finding all occurrence8 Of 8 and replacing them by t (so the user
must be careful ot to mmke Something 1ike F(X)IE G(F(X)) a
simplificatlon rule, or he will cause indefinite expansion})., In
addition, in the case of a simplifleation rule Vxvx'y 4.y , &2 sall
Instances of $» gained by reéplacing X,¥,.,., by a&rblitrary terms in s,
will be replaced by the appropriate Instances of t.

There are five bullt in rules: CONV (X- CONVERSION), MIN2

(UU(s) = UU) and CONDT, CONDU, CONDF (simplification of condltlonals)
(see these rules of inference in 3,2), Together With the previously
mentloned feature, this will allow the assunption

VX Y, HD(CONS(X,Y)) 3 X,

when used as a Simp|iflcation rule, to reduce
HD(CONS(sl1,s2))

via CAX Y, X1(s1,82)

to si ,

Suech formulae may usually be kept permanently in the SIMPSET. Others,

notably the SASSUMptions of the CASES tactic, Wll| come and go under
system contro|, Still others the user Will need to handle himself} a
good example Is the result of F{XP on a recursive definigfon of form
s = [“xotJ * the result has form § £ t{s/x) and SO oan |aad ¢t o
indefinite expansion as asimplIflcation rule, but Will not do so in
the case that the recursive computation, which [t will garry Out ,
terminates as a consequence of other mnembers of SIMPSET,

. pn"--\ . ‘.t Cor by I I
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$,6 Syrtax

As well as the usua| BNF conventions we use the following:

€)Y arefor grouping s¥ntax patternss$

? pefore a pattern neans optional,

eeelen. means one or mMore instances of the pattern P,
2, means on2 ¢r nmore instances of P separated

——ew? ---

by commas,
<wff> 1= ___,<awffd>,___

Cawff> 1:= % (Vv ___s<identifier>,___ | <term>:: }
<tepm> (2 lc) <term>

<termd> :1:= Cinfixterm>|<conditionalterm>
<conditi0nélterm>::= <infixterm> » <term> |, <term>

<infixterm> i:= <simpletermd> 2 ___{<infix><simpletermd)_

<simpleterm> ::= <closedtern> ?___{ <closedtermd>|
( ___s<term>, ___ ) )

<Cclosedtermd ::= <identifier>I<iterm>|<eterm>|<termname>|
(<tarmd)

<termname> ::s ?2( :Gl:<stepname> } ?( :<integerd> } {(:L]|IR)
<hteem> 1= [ N ___<Identifier>,,, , <term> ]

Coterm> ::= [ @ <jdentifier> , <term> ]

<identifier> 3t= <word> | ! KInfix> | =~ | 3
<word> ii=z ...{<lettesr>|<aigieo! I, , -

<infix> (1= anyo fthe singie characters
nu$|+-9%AV/\@~52<>¢=“?&e
or any <word> with current INFIX status (3,4)

Spaces may occur anywhere except within a <Word>, but are only
necessary to Separat® <word>s Cr Lo 5eparate "," from a digit

(e,g, im "Vx, Z€x = TT" ), The latter Is because the MLI3P2
narser takes ".,d" as 3 sinole elemen* or token,

The brackets round <Xxtermd>s and <e¢term>s nmany be omtted when
no amrbigulty arises,

Examples follow, with Intended interpretation:



e
5. 29
C ® PeQ+X,Y,RaY,Z is a <conditlonalterm)>, abbreviating
- P+(@=XsY)) (RaY,Z)
® AP(AP X Y,2) is a <simpleterm>, abbreviating
C APCAP(X,Y),2) or AP((AP(X))Y,2)
ar (APCCAP(XD)Y))Z
(Thus the type which we should associate W!th
AP is (PB+(Ba4PB)), where B is the type of
- individuals,)
© XX Y NULL XaY,TL Xp is a <\teerm>, abbreviating
CXAX,OXY CNULLCX) =Y, TL(X))]]
P .. XY is an <awff>, abbreviating
C_ ~
PaX,UU = P=Y,UU
® VX, F(X,X) = ¥ is an <awff>, abbreviating
AXGFIXaX) = AXWY
¢
- m VX Y XsY :: x =Y is an <awff>, abbreviating
xx Y.X3Y=*X,UU = xx Y. X=Y=Y,UU
) ® e I AX L, X=HD(L)»TT, XeTL(L)
¢
illustrates the "}"=ing (Whic¢h my pronounced "shrleking"
- or perhaps "howling") of ¢infix)>es, which is necessary
. whenever they are mentioned in a non-infixed €ONtext,
— Miny examples of (Wffd>s and <awffd>s occur throughout this paper,
¢

Caution!? Some commnds refer to OCCUrPENCOS of a <term> in a <wffd,

Ocgurrences are counted from left to right after al | Occurrences of
"1t (which |8 an abbreviation for |€gibilityY reasons Only) have been
expanded as indicated in the examples, and with infix>es considered

- as prefixed,
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3,7 Commands for Axions and Theorems

We row describe hnow the yser may create,storeaway, andfetch axioms
and theorems, so that he can buwild up a file of results over 98vera]
sessions on t he computer, and does not have to start from 8S¢ratch
each tine,

We startwithasimgle example, and then describe the new commnds In
detall,

senasAX]OM LISTS: ,,,,...0YX.NULL X :: X = NIL,.,,:

IThe user creates an axiom consisting of several
I<awff>s: the exanple uses only OR@, 80 the others
lare represented by ===, The system lists them
|for him - as new steps= and %l 1 I remember the
lcollectian by its nanme: = LISTS,

AXICM LISTS

3 UXJNULLIX)Y @ X NIL
4

#xuusaSASSUME NULL Y=TT:

5 NULL(Y)ISTT (5)

sannwAPPL 3,Y;

6 XX G NULL(X)=X,Uuld¢Y) = IXX,NULL(X)-NIL,UUJCY)
seunuSIMPL 6

7 YNIL (5)

INote that the SASSUMption 5 has been used, So
. litappears as a condition for 7.

exre s THEOREM UNIQUENULL: 7;

IThe user wants to keep the result 7 = he will be

lce able to Instantiate for Y in later US8, sot he
Isystemreally treatsfit as a metatheorem, The
Isystem weites It In full for him, reminding him
lthat 't depends on LISTS:-

THECGREM(LISTS) UNIOQUENULL®® YENIL ASSUME NULL(Y)ETT

ISuppose that the uSer proves sone nor e theorens,

land then wants to Keep his axions (there maAY be
(others besides LISTS)andtheorems. He says:
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x4 SHOW AXIOMB  AXFILE}
s#s#8SHOW THEOREMB THFILE;

IHe can actually select just some to be kept (3.4), Also
Iif he omits the filenane, they will not be kept
Ibut displayed,

=«~ NOW, ON SOME LATER OCCASION: ===

- - e o

IThe user decides h®8 now wants to talk about !lsts,
land would like the theorems that he previousiy proved,

sesaeFETCH AXFILE, THFILE;
AXIOM LISTS

15 = --

16 = = =

17 VX NULLOX) 88 X
18 = = =

THEOREM (LISTS) UNIQUENULL: YSNIL ASSUME NULL(Y)ETT

N L

IRemember (here may have been other axioms and

Itheorems on these flles (they should hava been

lat least represented by ===, but we didn‘t

Ibother),

|

IThe crucial polnt is that all varlab|es which
farefreelnthe theorem, but Mot free Inm the axloms

ton wWhich It depends, mMay be instantiated, and the

luser can force an instantiation bY uUslng the theorem

las an Infepangce rule, Suppose Jater he proves (step 23)3

- w o

- o o=

23 NULL(HD(Z))ETT (15 18)

IHeapp|ies the theorem a8 follows (and In thls'
lcase the only free Instantiable variable Is Y)i

#xe#*USE UNIQUENULL 23}
24 HDC(Z)ESNIL (15 18}

1t is Possible that not all the Instantiabie varlables
loccur In the hypothesls of the theorem the ful]
Idefinttion of the USE command shows how they my

Ibe Instanttated.
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W nOW give the new commnds Which concern aXlioms and theorems,

The AXIOM command,

AXI10OM <idengifier> : _._»{<stepnamed|<awffd>},___ ;

The system Will remenber all the <awff>s, mentioned explicitly of
designated by an <stepnamed, by the name <iaentifierd>; ltalso lists
then- - each With anew stepnumber, Thereafter, any THEOREM created,

and saved by the SHOW command, WIllI|l be tagged as dependent on this
axiom,

The THEOREM commm-nd,

W PR DR RERTCEEWR e T,

THEOREM {(<jdentifler> : {stepnamed> |
20 ¢ o<identifier>,___ ) )

Cidentifiapd : <Cwff> 2( ASSUME <wff> } } 3

The flrst option s for naming a proved result =-designated by

¢stepnarey = as a theorem The sccond oat ion S for naming an
expliclt sentence = {,e, ¢Wff> 2{ ASSUME «¢wff> ) = as a theorem, and
saying what @Xloms It depends on (the |ists of <¢identiflerds is a

list Oof axiom nanes),

In the first option, the system WII| renenmber the theerem by nane,
and tag it as dependent on al | axioms Dr@sent in the sYstem,

In the second option, the s¥Ystem wl| I check that the axioms mentioned

are present (I1f not it WII warn YOu) and in any Case Wji|| remember
the theorem by name, and ta9 it as dependent on the axloms mentioned.
Thi s option is wused by the systemasfollows, when the wuser 8aves a
THEGREM on aflle uging the SHOW command, Wwhat the system Writeés on
the . file |8 precisely an instance of the second option, so that when
the user FETCHes the theorem on a later occasion he Will be warned of
any appropriate axioms that are not Ppresent so that he can FETCH
ther, too,
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The USE command,

USE <ldentifier> ?___,<stepnamed>, __ ?( ., ___,<Instantiatliond,___ ) 3
Cinstantiation> !i= Cidentifler> « <termd

The first <ldentiflerd must be a THEOREM nanme, and the system chegks

that all axloms on which it depends are present, The system treats
the theorem as a metatheorem in that all| its free Varlaplo;, except
those whioh are free in axioms on which It depends, are treated as
metavariables ¢t o be Instantiated, The user supp|les the
Instantlfation In p a r t|ntwoways, Flrst, the |lst of ¢stepnameds
designates a [ist of <awff>s, and some or all of the meatavariables
are bound bY mmtching this ISt to the antecedent |ist of the
t heorem

Second (since there muy be metavarlables whigh Occur only In the

consequent Of the theorem) the user may give a list of Instantlations
each of Which binds a tern to a metavarliabie.

Any metavarlablies not thus Instantiated wi|| just be left a8 they

stand, After matching, the USE command will generate a new step
which Is simply the appropriate instantiatlon of the ¢coOnseguent of
the theorem, Examp|e!

--O-----------O--.--w—---‘...-ﬂ’-------.--.----.

|essauaX]OM AX1, X3Y;

[AXIOM AXi

i1 XEY

|

|ewaneTHEOREM (AX1) TH1: P32 ASSUME 2:R}
I - - -

115 F(Y)SG(X,Y) (2 6)

|
|##wasaUSE TH1 15, PeH(X);
116 H(X)ZF(y) (2 6)

---’--O--O-.-----—----------.--.-—-u----------n.-
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4, HOW TO USE THE SYSTEM LCF

L R X X PR R LR X R R e e LT

4,1 Initlalization and Termination

WP W WP ®E ST WSO RN P D™ e W ww

R LCF
The system rcturns with an asterisk: You are nowtalklngto LISP,

(INIT)

This  wilI Initialize thesystem,whleh returns with 5 @asterlsks: you

are ready to generate a Proof by the commnds of Section 3. 5
asterisks is always the signal far a command. Renmenber, al I commands
end wlith a semlicolon,

To finisn a proof (after maybe preserving It on & file usling
SHOW type

$;
ThesystemWllltype ENDPROOFand Yo u ar@then randy to start a&nother
proof wWlth

(INIT),

1t Is possible to save your core Immge So as to resume the
proofatalater time, To do this type

+C
SAVE <fl |gname>

-and you can then elther continue immediately by

START
(RESUME)

oratajlatertime by

RUN <f! |ename
(RESUME)
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4,2 Errors and Recgovery

There are threetypes ocferrormessage:

@lfyoucommitasyntax ereorina command,the systemsays

SYNTAX E£RROR; TRY AGAIN

* * 3% #

® If your command s semantically suspect = for exampl®, you
try to @applyY TRAYS (transitivity) to two steps for Whlch it is
ineppropr iate - you will get something 1ike

MASTYTRANS: TRY AGAIN

RN

¢ If you break the system somehow and 3t a' LISP error,
usually something™|ike

3246 1LL MEM REF FR0M ATOM

*

RN
then you can try something different (your flr8t command my yleld a
syntax @rror, In which case Just repeat It) 3 however, this should
not occur and Malg¢co|m Newey or ] would like to know how It occurred,

If the sYstem gets Intoalood (the ©On!Y known cause 8§ if
your SIMPSET allows indefinite expansion) then

+C
START
) (RESUyE)
will restore You, If Yecu thereby abort a (jlong o looping)

simplification invoked by the SIMPL tactic youwill alse need to
ABANDON,
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