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~ Abstract

These notes are based on a course of lectures given at Stanford,

and cover three major topics relevant to optimization theory. First

~ an introduction 1s given to those results in mathematical programming

which appear to be most important for the development and analysis of

practical algorithms. Next unconstrained optimization problems are

“ considered. The main emphasis is on that subclass of descent methods

which (a) requires the evaluation of first derivatives of the objective

function, and (b) has a family connection with the conjugate direction

- methods. Numerical results obtained using a program based on this

material are discussed1n an Appendix. In the third section, penalty

and barrier function methods for mathematical programming problems are

> studied 1n some detail, and possible methods for accelerating their

convergence 1ndicated.

\ This research was supported in part by the National Science Foundation
| under grant number 29988X, and the Office of Naval Research under contract

number N-00014-67-A-0112-00029 NR O4k-211 . Reproduction in whole or in
part 1s permitted for any purpose of the United States Government.
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Introduction

These notes were prepared for a course on optimization given 1in

the Computer Science Department at Stanford University during the fall

quarter of 1971. In part they are based on lectures given during the

year of study in numerical analysis funded by the United Kingdon Science
“-

Research Council at the University of Dundee, and on courses given at the

Australian National University.

The choice of material has been regulated by limitations of time as

well as by personal preference. Also, much material appropriate to the

development of algorithms for linearly constrained optimization problems

was covered 1n the parallel course on numerical linear algebra given by
“

Professor Golub. Thus, despite same ambition to cover a larger range,

the course eventually consisted of three main sections. These notes

o cover these sections and have been supplemented by brief additional
comments and a list of references. A more extensive bibliography is

also included. This is an amended version of a bibliography prepared

« by my former student Dr. D. M. Ryan.
The first section 1s intended to provide a solid introduction to

the main results in mathematical programming (or at least to those results

4 which appear to be the most important for the development and analysis
of practical algorithms). The main aim has been to characterize local

extrema, so that convexity and duality theory are not treated in any

« great detail. However, the material given is more than adequate for the

purposes of the remaining sections. Opportunity has been taken to

prevent the recent results of Gould and Tolle which provide an accessible

C and rather complete description of the first order conditions for an
extremum. The second order conditions are also considered in detail.
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The second section on unconstrained optimization 1s largely restricted

to that subclass of descent methods which (a) requires the evaluation

of first derivatives of the objective function, and (b) has some

family connection with the so-called conjugate direction methods. This

1s an area 1n which there has been considerable recent activity, and

here an attempt 1s made both to summarize significant recent developments

and to indicate their algorithmic possibilities. An appendix (prepared

with the help of M. A. Saunders) summarizes numerical results obtained

with a program based on this material. One significant omission from

this section 1s any detailed discussion of convergence. However, the

convergence of certain algorithms (those that reset the Hessian estimate

periodically or according to appropriate criteria) 1s an easy consequence

of the material given.

In the third section, penalty and barrier function methods for non-

linear programming are considered. This turns out to be a very nice

application, in particular, of the results of the first section. These

methods have advantages of robustness and simplicity but carry a definite

cost penalty. However, attetnpts to remedy this situation show some

promise. The material presented in this section has important connections

with other areas: for example, with the method of regularization for

the approximate solution of improperly posed problems.
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I. Introduction to Mathematical Programming
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1. Minimum of a constrained function.

Consider a function f(x) on S CE — Ey where S 1s a given
\

point set.

W*

Definition: x is the global minimum of f£ on S if

“ %
f(x ) < f(x) TVxeS. (1.1)

* [] [] [] [] [] []
Remark: x exists, for example, 1f S 1s finite, or 1f S 1s

~ compact and f(x) continuous on S .

*

Definition: X 1s a local minimum of £f on S 1f ¥ & > 0 such that

*

. f(x*) < f(x) ¥x eN(x ,8) (1.2)
where

+

N(x) = (6380 bs 6-x <8) . (1.3)
. w

~ If strict inequality holds in either (1.1) or (1.2) whenever x £ X

then the minimum is said to be isolated.

C Definition: S 1s convex if x, ,X%, ES = ox, + (1-0)x, eS for 0 < eo <1 .

Example: If S is convex all finite combinations of points in S 1is
m m

again in S . That 1is Y AX, €8 where X; €5 ’ L A = 1,
~ i=1 i=1

Ns >0, 1l<m<=.

Definition: f(x) 1s a convex function on the convex set S 1if

- fox; +(1-6)x,) < of(xy)+ (1-6)£(x,) , 0 <_0 <1 . (1.4)

+/ n 2

itll = (53° , the euclidean vector norm of t .
= i=1

-

“



If strict inequality holds when 0 < 0 < 1 then f is strictly convex.

Say g(x) 1s concave (strictly concave) if —-g is convex (strictly

convex).

Lemma 1.1: Tf f(x) 1s a convex function on the convex set S then

a local minimum of f 1s the global minimum. If f is strictly convex

then the minimum 1s unique.

Proof: It 1s necessary to consider only the case f bounded below.

*¥

If x* 1s a local minimum but not the global minimum 3 X such that

Hee * |
f(x) < f(x) . Now, by assumption, 3 6 > 0 such that" f(x) > f(x*)

X-

for x eN(x ,8) . Choose © > 0 sufficiently small for

*% w »

ox + (1-8)x eN(x ,8) then

¥*¥ * * oo
(i) f(x*)< f(6x + (1-8)x) as x is a local minimum, and

Hn Ma oe *
(ii) f(ex + (1-8)x ) < 6f(x ) + (1-8)f(x ) by convexity

* ¥* EE
< f(x) unless f(x) = f(x ) .

* KX oo
Now assume x , X both are global minima and that f 1s strictly

convex. Then

* Ho X XK

flex + (1-6)x ) < of(x) + (1-8)f(x ), O<6 <1

which gives a contradiction. J

Definition: A set C 1s a cone with vertex at the origin 1f

XxeC=>NxeC, AN>0. CC is a cone with vertex at p if

-[x-p 3xeC} is a cone with vertex at the origin.



Definition: x 1s 1n the tangent cone 7(8,%,) to S at Xn if

3 sequences th] > 0, tx, } ~ X, , tx} C S such that

lim {iN (x -X -xll = 0. (1.5)1m p(x, x0) <x]

(ii) S-xslx-wl] < r} . T(8,%,) = E if X; in interior of S ,
T

otherwise T(8,%,) _ (x ; x (% ~w) < 0}.

“ Lemma 1.2: T(8,%,) is closed.

Proof: Consider a sequence {t. eT(8,%,) such that [t,t] - 0, 1-a.

It is required to show that te 7(8,x,) . Now te 7(8,%,) = 3
- . . ~~ ~T.. ~ ~

i i : i, i
A : lim {INJ(x, -x.) -t.|l = 0 . Prescribe
Pg}z 0, fj) cS such that Lim ffs - xg)
{e -. Select t, such that It, - %| < £,/2 , and j = i(j) such

i, 1 i, 1 _ t S,X.) .
that [5 (5 - X,) -t | < e /2 . Then [In (x - %5) t| < gm e I( 1X0)

-

Lemma 1.3: (Necessary condition for a local minimum.) If f(x) ¢

and if x, is a local minimum of f£ on S then vi(x,)x >0 ,

¥x T(8,%,) :

Proof: Let x be defined by sequences {] ’ {x} . As £9 is a local
o a ~ ~

¥

minimum 3 & > 0 such that f(x) > £(xq) vx eN(x,,8) . Consider now
| - ~ ~~ ~

| the restriction of the sequences th) ’ {x} such that Xo e N(x,8) .

- Yopect at x, if £(x) = £(xg) E(x.) (x - x) + o([x- x, |). Higher0 OM Oo. 0 ~ LON
2

order continuity classes are defined similarly. For example, eC

if the of ) term can be estimated in the form
1 T 2 2
= - - Wx =

w 5 (x=x0)" 97800)(x = x0)+ olf = x17)

8

.



g We have

0 < 1x) - f(x)
: - lx =x |

< VEE) (3 =X) + olf, =x,10)

i whence (note 1t is sufficient to consider x such that |x|F 1 )

: 0 Swix)(x = x0) + orlx, = 21)

i S vE(xg)x+ o(1) as now =

lxample : ( 5.) Il x 8, (the interior of Ss ) then T(8,%,) = E_.

Thus x can be chosen arbitrarily- so that E(x) = 0 .

| (ii) If S = {x;|x-wl = r} then T(85%,) = (x sx (x, -w) = 0} .
In particular if x eT(8,x,) then -x e T(8,%,) . Thus we must have

T

vE(x,)x = 0 ¥x such that x (x, -w) = 0 . Thus v(x) _ a(x, -w)
for some «@ .

(iii) If 8 = {x ; |x -w|| < r} and =, -w|| = r then

7(8,%,) = {x ; x (x, -w) < 0} . In this case we have vE(x,)x >0
¥x such that x” (x, - 0) <.0 . Thus v(x) = ow - %) for some
nonncyrative «x

Let A be a set in E .

Definition: The polar cone to A is the set A* = (x; xy <0 ¥y eA} .
x ~ ~
A has the following properties.

| *
(1) A is a closed convex cone.

. A * *
(11) If 1 © Ay then A, C Aq .

(iii) A** = A if and only if A is a closed convex cone.

9



*

(iv) A* = (A%) —— the polar cone of the closure of the convex hull

of A . The convex hull of a set 1s the smallest convex set

containing 1t. Thus AS = NX, AcX , X convex.

(Vv) If A 1s a subspace then At = ax

*

Remark: Lemma 1.3 can be restated: ' if x 1s a local minimum of £

* * *

on S then =-vf(x )eT(S,x) '.

*

Lemma 1.4: If v ¢ T(8,%,) then =-y is the gradient of a function

having a local minimum on S at X .

Remark: It is sufficient to consider the case ||y}j=1, x, =0 .

Proof: Let Co = {x; xy < — }] e=12... . We first show that

for each e , 3 e(e) >0 such that N(0,e(e)) C, . For assume this is

not the case. Then 3 x, c E_-C_ with x, €N(0,1/p) y P= 1,200.
~ such that

xT Ni
~ ~ 1

LN
« ~P

X

The sequence =P 1s bounded and therefore contains a convergent
Ic,

subsequence ( —=*— Y - z . By-definition z eT(8,0) , but, by (1.6),
1%,|

T 1

~ z y > = > 0

*

which contradicts ye T(S,0) .

w

10
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Now let & = sup{e,N(0,¢)  C,} . We define

cod "

ep = min(3 e108) 5 k>1,
and

P(z) = ef z ||, [lz] >e,

zl zi en 2hdl ep - led zla a.rT 3 3

k-1 &x - Ertl k Ey = €rt1 ’ ~ k+1’ *k°’

o , Hf o .

It 1s clear that £1 > 0 and £1 monotonically decreasing. Further

P(z) > 0, P(z) is an increasing function of |z || + and

2li z II
lzll Se =» P(2) <3

Thus P(z) = of|| z ||) so that vP(0) = 0 .

Now let z = x - xy) y . We show that, under appropriate conditions,

xy <P(z) . It 1s sufficient to consider ~y > 0 , and in this case

T T

Ixli-xy < llzf] < [Ixli+xy | (1.7)

rx
If X eC, then X'y <~% - Using (1.7) we have

-1 etl

= xl < lz = = xl (1.8)

Now assume x € N(O, €) , ¢ < ey Then || x || e [ £1417 €,] for some k > 3
whence x ely . This gives

11



.: x lz |] 1.9)XY = Tx 0S Tx1 (1-9

.

However | z | > KL € > ge whencenl =k k+l k+2

2||z |
bs

so that, combining (1.9) and (1.10)

T kt1 |

Xy < —v P(z) <P(z) . (1.11)o ~ 2(k-1) ~ ~

Thus the function

LT T
f(x) = -x"y+ P(x - (xX ¥)y) (1.12)

- ~ ~~ ~~ me

has a local minimum on S at Xx = 0 . Further feC at 0 , and

vf(0) . . . O

h

2. Some properties of linear inequalities.

Definition: The set H(u,v) = {x suTx = vy} 1s a hyperplane. Note that

“ the hyperplane separates BE into two disjoint half spaces
T T

Rt = {x3ux>v}, R_ ={x;ux<v}.

Lemma 2.1: (lemma of separating hyperplane). Let S be a closed convex set

Le

in El , and let X £8 Then Hd a hyperplane separating Xx and S .

X € ~ or

The function |jx-x,l| is continuous on the closed set S {x5 |x -x,|l < r}
*

and hence the minimum is attained. Let this point be x . From

Figure 2.1 it 1s suggested that

 -
* *

(x =x y (x - %) = 0 (2.1)
| —

12
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VASES T(x =x.) =0~~ ~ 0

Figure 2.1

is an appropriate hyperplane. To verify this, note that X eR so

that it remains to show that S C R, . Let xed then for 0 <6 <1,

W 2 * 2

lox+ (1-0)x -x || > |x -x,|~ ~ 0 - v.00

so that

» * Ww

6x -X 124 20(x -x )T (x -X,) > 0

and, letting 6 -» 0 ,

* w

(x -x VT (x - X,) > 0

whence xeR, . 0

Definition: C 1s finitely generated 1f

P [] []
C = 1x 5x = Y Men NM >0, i=1,2,...,p} . It is clear that C

1=1

1s a cone. It can be shown that C 1s closed.

Lemma 2.2: (Farkas Lemma). Let A be a pxn matrix. If for every

solution y of the system of linear inequalities

Ay > 0 (2.2)

15



it 1s true that

. aly > 0 (2.3)

T

then 3 x > 0 such that AX= a .

“ Proof: Let C be the cone generated by p; (A) , 1 = 1,2,005p

Then the result of Farkas lemma is that if (2.2) =» (2.3) then aeC .

We assume a fC and seek a contradiction. By Lemma 2.1 there exists
*

. a separating hyperplane. To construct it let X be the closest point
*

. in C to a. Then |x - all? has a minimum at AM = 1 . Differentiating

and setting AN = 1 gives

m x

~ (x -a)ix = 0 . (2.4)

By (2.1) the equation of the separating hyperplane 1is

* %

~ (x - x) (x - a) =x (x -a) = 0 (2.5)

which shows that it passes through the origin.

9 By Lemma 2.1 C c R, whence
*

VEA(x -a)>0

for arbitrary v > 0 so that

| -~
w :

A(x -a) >0 , (2.6)

but a eR whence

*

- al (x - a) <0 (2.7)

which gives the desired contradiction. O

~ 13.1
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Remark: Another way of looking at this result 1s that at most one of

the following pair of systems can have a solution.

(ii) ay so, vy<o .

This is an example of a 'theorem of the alternative.

5. Multiplier relations.

We consider now the mathematical programming problem (MPP)

min f(x) subject to

h, (x) = 0, ic, .

We assume that f , i , 1e¢ = , and hy , 1¢ Ly , are 1n c? and that
the constraints on the problem are not contradictory. This corresponds

to the problem discussed 1n Section 1 with S given by

s ={x;g(x>0, ie I; , h(x) = 0, ell. (5.1)

At any point X ES let By be the index set for the constraints

satisfying 8; (x4) = 0 . If icB, we say that g, is active at x,

Definition: S 1s Lagrange regular at X 1ff for every ff such that

(1) f£ has a minimum on S at Xn , and (11) feCt at X (1.e.,

feF,) 3 u , vsuch that

(1) 98x) = L uve (x) + L v.vh, (x) (3.2)~0 : 1771.0 : 1771iN.0
1€B 1cl

0 2
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C

This can also be written

= +« (1) vE(x,) Lye; (x) L vhs (X50)
lel iel

1 2

. T

(ii) u g(x) =0 , and

~ (111) u >o

where zero multipliers are introduced corresponding to the inactive

constraints.

~

Remark: If (3.2) holds for ref, , then f satisfies the Kuhn-Tucker
conditions.

©

Example: It 1s important to realize that (3.2) need not hold. Consider

the MPP

. min f = TX

subjectto g, =x, 20,8, =x, >0, 8, = (1-x )° - x > 01 1=" 7 °2 2 =" 7%3 1 g~-">

From Figure 3.1 1t 1s clear that the minimum 1s attained at X, = 1,

he X, = O , and here 21 and gx are active. We have

while

.

Vi = 4

so that a relation of the form (3.2) 1s impossible.

| Xn

ve,

L X
of 1 Figure 3.1

Vez

¢ 1



Let

Ho = fxs vn(xg)x = 0, ier},

Gy = {x ve, (%,)x >0 , ie3B,] :

¥

Lemma 5.1: S 1s Lagrange regular at x 1ff -VE(x,) € (Gy N Hy)

for all Tel, .

P f: If £( = (G * throof: ~v X,) € (Gy N Hp) then

Ty such that

-vh, (%,)y >0 , iclI,

ve, (x)y > 0, 1c¢B

Thus, by Farkas Lemma, vE(x,) is a linear combination with nonnegative

weights of ve, (x5) » 1 €B, , and vh, (%) , -vh, (x) , 1eI, . Thus

(3.2) holds. On the other hand, if (3.2) holds then vE(x)y > 0 for

all yc Gy N Hy 3

Remark: Lemma J>.1 shows the difficulty with the above example. Here

4 = {x = ae,, @ > 0}, Gy N Hy = {x = Qe,; & unconstrained] . We have
* *

T = right half plane , (Gy nN Hy) the x, axis. By Lemma 1.4 for
*

every x c¢J there is a function with a minimum at (1,0) and such that

-yf = x . Thus the conditions of Lemma 7.1 are not met in this case.

16



H ) S *Lemma 3.2: (Gy N Hy) © T( 2%) :

Proof: This result follows if we show that 7(8,%,) CH, NG, . If

xeT(8,x)) 3 {x} -x , x) cs, {> 0 such that

n(x -%5) } » X . We have

0 = h(x) = By (x) + hy (x) (x - x) + o (lx, = 56M) 5 Ee,

and |

~ .

0 < g(x) = g(x) + vey (xg) (x, = x0) +o (Ey =%pll) 5 1eBy

Multiplying by MN and repeating the argument used in Lemma 1.) we have

-. _ . .
vh,(x )x = 0, ieI, , vg; (xy)x > 0 , ieB ,

so that xeGy N Hy . -

- Theorem J .1: The set S 1s Lagrange regular at Xn 1ff
* ¥

Ir 7(8,x.) — (G 2)" th x. Proof: 7(8,%,) = (Gy n Hy en -vf(xy) € (Gy, N Hy) VEeF, by
Lemma 1.3. Thus (3.2) holds by Lemma 3.1. If S is Lagrange regular at

* :

Xe thenbyLemma3.l -vf(x,) € (Gy, N Hy) Vek, . .. , by Lemma 1.4,

T(S,x )' (a NH ) Thus T(S,x ) = (G. N H ): by Lemma 3.2. O. 207 =10 o'r 7.0 M0 0

Remark: Conditions which ensure that S 1s Lagrange regular at Xo

are called restraint conditions. Theorem 5.1 gives a necessaryand

“ sufficient restraint condition.

| Corollary 5.1: (Kuhn Tucker restraint condition). If ve, (xt > 0,

« ieBy , and vh, (%,)t = 0 , ieIl, = t is tangent at X, to a once

17



differentiable arc x = x(6) , x(0) = X, contained in N(x.,8) for

some & > 0 then S is Lagrange regular at Xo

Proof: It 1s clear that t cT(8,x%,) for consider a sequence e. } 1 0
1

and define x3 = {x(e,) 3, { = Bs then
ax (0)

A - — ——
Ph G5 30)3 wo = etx)

Thus the Kuhn Tucker restraint condition implies (Gy N Ho) C T(8,%,)

The result now follows from Lemma 3.2 and Theorem 35.1. [J

Lemma J.J: Let (x) cC™ , k(x ) = 0 , and vk, (x Yt = 0,

i 1,2,e..8 <n . We assume He > 0 such that the vk, (x) ,

il, +... arc linearly independent for [Be - X | < e€. Then 4H
¥

a smooth arc x = x(8) , x(0) = x , such that k, (x(8)) = 0,

i, 1,2 . «8, for |x(@) -x || <e and = =t.~ de ~

T T, -1

Proof: Let P(x) = K(K K') © K where p; (K) = vk, (x) , 1 = 1,2,...,8 .
Then x(8) can be found by integrating the differential equation

dx

J Se — - 2

0 (I -P(x))t (3.3)

subject to the initial condition x(0) = x , [J]

Remark: Let the Ks be as given in the statement of Lemma 3.3. Then
*

the linear independence of the vk. in a region containing x is a
*

consequence of the linear independence at x . For consider the matrix

¥

KK . At x = x this matrix 1s positive definite as K has rank s .

oo 18



Thus the smallest eigenvalue is positive. Clearly it 1s a continuous

~ function of x so that 1t remains positive in a small enough neighborhood

*

of x , and 1n this neighborhood the vk, (x) are linearly independent.

Lemma J.4: (Restraint condition A). S is Lagrange regular at X

if the set of vectors ve, (x5) , IR vh, (x) , ieI, are linearly
independent.

| ~ Proof: This is a consequence of Corollary 5.1 and Lemma 3.3. For

let t cGy N Hy , and let B(t) be the index set such that

ve, (x) = 0 , ieB(t) . Then by Lemma 3.3 a smooth arc can be constructed

~ such that x = x(Q)) , g,(x(8)) = 0 , ieB(t) , h, (x(8)) , lel, ,

dx (0)

a, (x(8)) > 0, icI,-B(t) , %x(8) eN(x,8) for some 8 > 0 , and “5 = t .

~ Lemma 3.5: (Restraint condition B). If vh, (x) , lel, are linearly

independent, and if ¥ t such that ve; (%,)% > 0 , ieB, , vh, (%,)t =0 ,

ict, , then S is Lagrange regular at Xy
|

Proof: Assume Ww € Gy N Hy but w £T(8,%,) . Prescribe le, ] ! O and

set wy, =w+ eb. Then vg; (Xhwy, >0, 1eBy, vhxn =0, iel,.

Now construct x = x, (8) such that x, (0) = X35 Tag Vg

h, (x, (6)) = 0 ,ieI, , for x, (6) is some neighborhood of x, . By

continuity there will be a subneighborhood (say N(x,:8,) for some

ax,(0)
8, > 0) such that (i) ve; (x, (8)) 55— 20 , 1eBy , and

| (ii) g; (x,(0)) 2 0,1¢I;-By for x, (8) eN(x,8,) . The argument

of Corollary 3.1 now gives we € T(8,%,) . But, by construction,

- {w,3 -w . Thus We T(8,x,) as J 1s closed. [O
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4, Second order conditions.

In certain cases 1t 1s possible to further characterize local minima

of £ on S by looking at second derviative information.

Lemma 4.1: Let w(x) c 0° , WwW have a local minimum on S at Xx ,
and vw (x) = 0 . Then £9 w(x, t > 0 Vt e T(8,%,) . I f
T 2

tv w(x,)t > 0 Vt ce T(8,x,) then 48 >0, m >0 such that
2

w(x) > w(x) + mlx - xl , Xe N(x,,8)

Proof: Let {x J , {r be defining sequences for teT(8,x,) . Then

for n large enough we have, as w(x) =0,

1 T 2 2

0 swlxy) w(x) = 5 (x =X) Tw 0x0)(x, 350) + oxy = %,[1%)

: 2 1. T2

LOS hel) w(x) = 5 tT u(xg)ero(l) as xy — x,

T 2

Now assume t°V¢ w(x )t > 0 vt € 7(8, x) and 3 no m>0 such that

w(x) > w(x.) + mlx - x ||° for x in any neighborhood of X . This

implies that for any integer q , d X, © S such that (i) x, eN(x,,1/q) ,

(11) w(x) -w(x.) <3 x ~-x 1° . Select a subsequence of the x such
~q ~07 gq ug LO ~q

%q ~ 20 T 2

that Ta - t e€T(S,x,) . Then (ii) =» t°vw(x.)t < 0 whichX =X ~ 0 ~ ~07 «
~q 0

gives a contradiction. [J

Definition: The Lagrangian function associated with the MPP is given by a
$(xu,v) = £(x) - L we(x) - L v(x) | (4.1)

- TT ~ iel ~ iel ~
1 2
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It will frequently be convenient to suppress the dependence of £ on u

~ and v 1n the case where these are implied by the Kuhn Tucker conditions.

In this case (3.2) becomes

- i

Lemma 4.2: Let S be Lagrange regular at Xo f(x) have a local

minimum on S at Xo and 8; = {x ; xeS , g; (x) = 0, ieB,} then
-

T 2 ntT0C8(x)t > 0 . Vb e T(S,,%.) (4.3)~ 070 = 17.0

-~ Proof: Note that £ =f on $$; so that £ has a minimum on 5,

at xX ve.ns =. +18 Lagrange regular at Xo ve(x,) = 0 . Thus

the result follows from Lemma 4.1.[]

~ T 2

Remark: If Sq 1s Lagrange regular at X, then tv £(x,)% > 0 VG

such that ve, (x,)t = 0 , ieB, and vh, (x) = 0 , ieI, .

-“ Example: Consider

= 2 +1)° -1 > 0 - 1-%° - (x -1)% >081= FT Vo ZV 8 = 17 Ve Zz

- S is illustrated diagramatically in Figure 4.1. At Xy =X, = 0,

vg, = V8, = (0,2) . However S 1s Lagrange regular at the origin --

for example, €, satisfies Xo
vg.e, > 0 , vg.e, > 0 so — 8; >0 g =0

- 1.2 2.2 - 2

"that restraint condition B |

Xq ~
applies. In this case Sq 1s

- the single point X = © so that g, =0
T7(8,58) is null.

3 ~ Figure 4.1

21
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Lomma b .q: If ty £(x,)% > 0 Vt c T(8,x,) such that ve; (X,)t = 0

| Vi « By guch that ui > 0 then dm, 8 > 0 such that

>

£(x) > f(x) +nllx = x ||”, xeN(x,,8) (bb)

Proof: Assume ¥ no m , 8 > 0 such that (4.4) holds. Then for each

integer gq  x_ such that (i) xe N(x.,1/a) , (ii) f(x) - f(x.)
~Q ~q ~0 ~q 0

<= x. =x. . Select a subsequence of the x such that
q ~a 0 ~Q

x TXnc Sy I - (x). Then G > 0 on S

~q 0 1€B,

G(x) = 0, and f = £§+G . For the subsequence defining t we have

flix) - g(x G(x |

(x) - 3x) Glx) N _.
lx, = 5 lx, =o

Thus

G(x)

£97 5(x,)b + lim sup —= < 0 (4.6)
i} qe px, = Xl

A: G(x) > 0 ,the second term is bounded and nonnegative. Therefore

G(x)

0 = lim — = 1 wwe, (x,)t (4.7)on Trl Tp TT
Thus

= 4.8ve; (x,)t 0 , VieB, such that Ug > 0 ( )

so that (4.6) states that te T(8,x5) such that t satisfies (4.8) and

that £77 s(x) < 0 . This gives a contradiction. O
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Consider now the system

T

vE(x,)” = 0

u, 8, (x) = 0 , i = 1,2,¢0e,m ,

h(x) = 0, i =1,2..0,p (4.9)

where explicit enumerations of I, "and Is are assumed.

Definition: I(x) is the Jacobian of the system (4.9) with respect to

2 T T T T
xX - . - -— -_ vo E(x) vey (x) +. . -vg(X,) vhy (x)... -vh(x)

uv8; (X,) 81 (%o)

~ 30x) = | 78,05) Ea (0)

vb, (x)

vh(x5)

(4.10)

-

Lemma 4.4: If I(x) is nonsingular, then Xy is an isolated local
minimum of f£f on S .

Remark: Note that the condition J(x,) nonsingular imposes strong

conditions on the problem. For example,

- (1) the active constraint gradients must be linearly independent, and

25

.



(ii) if g; (x) = 0 then u. > 0 (this condition is called strict

complementarity) .

In particular 8; 1s Lagrange regular at Xx .

J

Proof: If J 1s singular there 1s a vector a satisfying

b

|
J a = 0 . oo (4.11)

b

This relation gives

(1) vh, (x.)y = 0, 1=12,..0,0,

(ii) uve, (x )y +a. (x) = 0, i=1,2yee0,m , and
m

aay 2 7 i T
i=1 1=1

From (ii) we see that u, > 0 = ve, (%,)y = 0 while u. = 0 = a. = 0 .
Now consider the problem

. T 2

2

subject to ve. (%,)y = 0, iB, , vh, (x4)y = 0 , iel, , and|| y ||" = 1 .
Clearlythe constraint ‘gradients are linearly independent as

oy = vy IEE) is in the orthogonal complement of the set spanned by the

other constraint gradients. Thus the set of feasible y is Lagrange

regular at eve-gq point by restraint condition A. Let Yo minimize the

objective function (the minimum exists as the constraint set is compact),

then the Lagrange regularity ensures that ¥ multipliers A , a; ieB, ,

bs 5 lel, such that

2h



> T i

8 2 S(%,)¥ = My= 1 2598; (x0)T = YL buh, (%)7 = 0 (h.12)
ieB 1el

« 0 2

whence

T 2 TD

| = 7 EY = min YH x0)y > 0

: Now if AM = 0 , (4.12) shows that conditions (i) -(iii) above are

| satisfied and hence J(x,) singular. Thus if J(x,) nonsingular,
; then A > 0 . In this case Lemma 4.3 shows that the minimum of the MPP

is isolated. O

i 5. Convex programming problems.
| ~~

If g, (x) concave, iel, , then the set S = (x; 8, (x) > 0 , iel,}
1s convex. The problem of minimizing a convex function on S is called

a convex programming problem. In this section certain properties of this
|.

problem are studied. We require the following characterization of convex

| functions.

| | 1 | |
. Lemma 5.1: If f(x) €C then f(x) 1s convex on S 1ff

f(x) +vf(x)(y-x) < f(y) » XY €5 (5.1)

~

Proof: If f convex'then, for 0 < AK 1,

£(x+ (1A) (y-4) < £(x) + (10) (£(y) - £(x))
.

whence, if AN < 1 ,

f(xt (1-h) (y-x)) f(x)
—E—=<f(y) f(x).

-
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The necessity follows on letting AM» 1 . Now if (5.1) holds then

f(x +(1-N)y) + WE(Ax+(1-N)y) (v-x) <_ f(y) (5.2)

F(ax+ (1-A)y) - (I-MvE(Ax+ (1-h)y) (yx) <f(x) (5.3)

Multiplying (5.2) by (1-h) , (5.3) by AM and adding gives (1.4) which

demonstrates sufficiency. [O

Lemma 5.2: If S = {x38,(x)>0 , 9. concave, ieI,} has an interior
¥

point xX , then every point of S is Lagrange regular.

Proof: Consider X€S . Let ieB, then Lemma 5.1 gives

( * * Lve, (x5) (x -x) > g(x) >0 (5.4)

as g; (x) = 0 , ieB, . Thus restraint condition B is satisfied. [J

Lemma 5.5: If £f convex satisfies the Kuhn Tucker conditions at X,

then £f has a minimum on S at X

Choose In this case (3.2) gives

v(x.) = )) u, veg. (x.) , ulg(x)) = 0 , u, >0 .~0 . 1 "1.0 ~ = 0 1 —
lel,

le

Let x be any other point of S , then

£(x) > £(x) - L wg(x) = £(x) (5.5)
~ ~ diel or ~

1

where g(x) is convex on S as the g, (x) , iel,, are concave. Thus

f -(x) >£(x) + v(x) (x - x)

. f(x) Co
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Remark: If f has an interior the Kuhn Tucker conditions are both

- necessary and sufficient for a minimum of the convex programming problem.

Definition: The primal function for the convex programming problem 1s

w(z) = inf f(x , S, = {x;g(x) >2 (5.6)
“ ~ xeS TT ~

Note that if 2; > 2, then 52, - 52, so that (24) > w(z,) and that
if S has an interior then S, nonempty forz > 0 and small enough.

| -

Lemma 5.3: w(z) 1s convex.

| Proof: If Xye 8 ,x, eS then, by concavity of g, , lel, ,
~~ 1 ~ 2

ghey +(1-Mx,) > Mz+(1-N)z, , O=sAhsl.

~ Thus Mo+ (1-M%5 5805 (1-0), © "NOV

w(r zy +(1-N)z,) < inf f(xy + (1-N)x,)
~ ~= x ES X85 ~ ~

= 1° 2

< inf (M(x) + (1-7) £(x,)) by convexity
x.ES _ ,%X.ES ~ ~
~L Zq 2 Zs

i <M inf f(x)+ (1-h) inf £(x,)
x €8 = X ES ~
~ 1 ~ 2

< Moz)+ (IM) e(z,) 0
‘- ~~ ~~

Definition: The dual function 1s

* *

N P(z ) = inf f(x) - oe (x) 2 ,  z*¥ > 0 (5.7)
xeQ ~~ 7 7 7 ~

- where (Q 1s the region on which f , 8. , lel, , are convex.

~- =f



, Lemma 5.4: @(z ) is concave.

a Proof: Let 0 <A<1l, and z,,%2, >0, then

drag + (1-N)z,) = inf (f(x) - & (x) (ay + (1-07)
i ~1 ~2 SMV Zo

| * *

= inf {ME - ga) + (1-h) (f - g'2,))

5 > MA inf (£-g'2,) + (1-h) inf (f - gz)
: X ~ X ~~

| * *

>A Bz) + (1-MP(z) Cl

Lemma 5.5: Let T ={z ; 3 xe such that g(x) > z} . Then

| #(z") = inf (w(z) - 22) . (5.8)

Proof:

| f(z) = inf (f(x) -g(x)7z) ,

*

< inf (f(x) - — )
| Xess ~~ 07 ~

) ~ Z

%*

| = w(z) 21,

* T *
© Bz) < inf (o(z) -Z2) . (5.9)

| ~ ze ~~ 7 =

Now let g(x) = 2, . Then
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<

T * *
f(x.) -g (x,)z > inf (f(x) - gt )JUN RASA BO RO “1

Xen,
-

T  %

> w(z)) -2; 2

*

> inf (u(z) -2'2 )
| zel ~ ~ ~

: : T * : T * (5.10)= inf (f(x) -g (x,)z ) > inf (w(z) -z"2 ) 5.
X ~ ~omT ze ~~ 2° =
1 ~

-

The result follows from the inequalities (5.9) and (5.10). O

[1] ] a * [1]
Theorem 5.1: (Duality theorem). (i) sup f(z ) < inf f(x) .

7%>0 ~ XeS ~
. ~ —— ~

(11) If S has an interior, and 3 Xs such that the Kuhn Tucker
* *

conditions are satisfied, then 3 z maximizing P(z ) and equality

. holds in (1).

Proof: From Lemma 5.5 we have that

*

| A(z) < w(®) = inf f(x)
‘ ~ XCS ~

X

holds for each z > 0 . Thus

* [1]
“ sup P(z ) < inf f(x) . (5.11)

x

z >0 xed

If 3% such that the Kuhn Tucker conditions are satisfied then Xq

minimizes f on S . Defining z = {uy {dvd37 where the u, > 0

are the multipliers in the Kuhn Tucker conditions we see that

x

|
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Corollary 5.1: (Wolfe's form of the duality theorem). Consider the

primal problem minimize the convex function f(x) subject to the concave

constraints g; (x) > 0, i=1212,.e.y,m , and the dual problem maximize

g(x,u ) subject to v,£=0, u>0. If a solution to the primal exists

then the dual problem has a solution and the objective function values are

equal.

Remark: (1) The linear programming problem

min a’x subject to Ax-b >0 (5.12)

1s a special case of a convex programming problem as linear functions have

the special property of being both convex and concave —-- this 1s an

immediate consequence of Lemma 5.1. This property of linear constraints

permits the previous discussion to be extended to permit linear equality

constraints. Note that if the linear equality constraints are not to be

contradictory, then thelr gradients must be linearly independent.

(11) If the restraint condition B 1s satisfied at X , and f(x) has

a minimum on S at Xq then Xn also solves the linear programming

problem

min £(x)) 4 vif x5) (x, - x.)

subject to

(13) hy (xp) +h; (x5) (x -%0) > 0,

-h; (X5) -vh, (x4) (x -%5)> 0, iel,

as the Kuhn Tucker conditioms are both necessary and sufficient for a
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solution to the linear programming problem. That the converse need not

C be true is readily seen from the example min -x subject to
1-x%x° pC > 0 which has a minimum at Xx =1, y = 0 . The associated

linear programming problem is min -X subject to 1-x > 0 which

« has the solution (1,y) for any _ . Thus additional conditions are
required if the converse is to hold (for example, Lemmas 4.3 or 4.4

could be used). |

- Example: (1) (Duality 1n linear programming). Consider the primal

problem

minimize alx subject to AX =D >0 .
“-

The corresponding dual 1s

maximize bru subject to Au -a ac - u >0 .

he If the primal has a solution then so does the dual and the objective

function values are equal.

(11) (The cutting plane algorithm).

“ (2) Consider the set S = {x3 g, (x) 2 0 and g, concave, iel,} .

Tf x £5 then g, (x) < 0 for at least one 1 . Let @ satisfy
g(x) < g(x) , eI, . Consider the half space

~ U = {x; g(x) + THCHICTES > 0} . Then x fu . Now if g, (x) > 0
then, as g, concave,

g(x)+ vg (x )(x-%x) >g, (x) >0 .
“ ~ ~~ ~ |

Thus g, (x) > 0 = XeU so that |

N 8, ={x35g,(x) >0} CU . |
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* we *
We have S ¢ 8, cU . Thus the hyperplane g(x) + vg (x) (x -x)=0

* TT
separates XxX and S.

(b) The convex programming problem minimize f(x) subject to xeS is

equivalent to the problem minimize X,1 subject to xeS , X q- T(x) > 0

where X41 1s a new independent variable (note that the new constraint

1s concave). This equivalence follows from the Kuhn Tucker conditions

by noting that the new constraint must be active. Thus a convex programming

problem can be replaced by the problem of minimizing a linear objective

function subject to an enlarged constraint set.

(c) Consider the problem of minimizing cx subject to xeS and S
bounded. In particular we assume that S C Ry = {x jAx =b > 0) . We

can now state the cutting plane algorithm

(0) i=0.

(1) Let X, minimize cx subject to XeR,.

(ii) Determine « such that 8 (%;) < 8 (%;) , Jel

(iii) If 8 (%5) > 0 go to (v).

(iv) Set Ry q = Ry N{x;gy(x;) + vgy(x;) (x - x) > 0},
i:= i+l , go to (i)

(v) stop. _

Note that step (1) requires the solution of a linear programming problem.

(d) The cutting plane algorithm generates a sequence of points Xo with

the property that

Tx < ctx < eee < cx, < ... <min ctx
| xesS

as Ry 2 Ry D eee i) S . Thus the sequence {c x. } 1S 1ncreasing and
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* 1 1 1
bounded above and therefore convergent. Let x be a limit point of

*

C the {x.} . Then x eS and therefore solves the convex programming
I

problem. To prove this, assume x £S . Then

* *

min g.(x ) =g.(x) =-N<0 .
“ i 1. ar.

*

Let a subsequence x5) -»X , then, 3 k such that

. * A

. (1) be -x | < Zand

A

(11) 8%) < =

“ where C > ve, (x) |] } XeR ’ lel .
Let

“

A * im] * NR
Then g(x) <-%. Now x a limit point of {x;} = x € NR, . In

x

particular, X €Ryyq whence |

~ oc (x) + ve (x) (x -x) >0 .8\“k pg lk/ NE Th) 2

But

* A A
- _ _—

-

so that

* A *

g(x) + vgs) (x =m) < oF + [leg (x - x)

~ < 0

which gives a contradiction.

-
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Notes

1. For properties of tangent cones, see Hestenes. Luenberger discusses

polar cones (which he calls negative conjugate cones) on pp. 157-159.

Lemma l.t is due to Gould and Tolle. The proof is due to Nashed

et al.

2. Hestenes 1s a good general reference for this section and includes

a proof that a finitely generated cone is closed. The proof given

here of Farkas Lemma is standard (see for example Vajda's paper).

An extensive list of alternative theorems 1s given in Mangasarian.

De The main result is due to Gould and Tolle. The treatment of the

other restraint conditions follows Fiacco and McCormick.

Lh. The treatment of second order conditions 1s based on Hestenes.

Similar material 1s given 1n Fiacco and McCormick.

5 The treatment of duality 1s based on Luenberger. A related treat-

ment is given by Whittle who is good value on applications. Vajda

1s a good reference for the mathematical programming application.

Wolfe's papers 1n both the Abadie books discuss various aspects of

the cutting plane method.
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II. Descent Methods for Unconstrained Minimization
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1. General properties of descent methods.

™ The class of descent methods for minimizing an unconstrained

function F(x) solve the problem iteratively by means of a sequence

| of one dimensional minimizations. The main idea is illustrated in

Co Figure 1.1. At the current point X. a direction bt. 1s provided, and
1 the closest minimum to X. of the function

| ((N) = P(x, + Nt,

| sought. At X41 We have

| ' — = 1.1GIN) = v(x, 0); = 0 (1.1)

= + .where xiii = X3 +MY

VE(%5,1)® 4 X41

«
t.

; ~1

| X,
| ~1

Nl oo IR(xy)

| Figure 1.1

" Definition: A step 1n which X:1 1s determined by satisfying the above

conditions 1s said to satisfy the descent condition. We consider t.

| a profitable search direction 1f Fx, + NG) decreases initially as A

increases from zero. This condition 1s formalized as follows.
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Definition: (i) The vector t 1s downhill for minimizing F at x

if gF(x)t < 0 . (11) The sequence of unit vectors i$.3 is downhill

for minimizing F at the sequence of points {x3 if 48 > 0 ,

independent of i , such that VF(x,)t, < -B||vF (x, ) |.

Example: The sequence of vectors {-vF(x;) / IVF (x) {| satisfies the

downhill condition with & = 1 . In this case we say that vt. is in the

direction of steepest descent.

An estimate of the value of A minimizing Gs 1s readily given.

We have

0 = vF(x, bt. = gF(x.)t, + A, t- 9OF(Z.)%
~it17 i ~17 1 i <i ~17 Th

where x, =X. + Nts 1s an appropriate mean value. Thus

MT Ten 2 Ey (1.2)
tb; v0 F(x), TWF (x) |

*

Theorem 1.1: (Ostrowski's descent theorem). Let R = {x; F(x) <F },
m0 o

and assume that F bounded below and t* VvF(x)t < K||t ||©, xeR .

Define

B||VEF(X.

~i+t1l Li K ~1 7

VF(x)t, < -8llvE(x)| 5 fitsll = 1,

for i = 1,2,... where 3 > 0 . Then {F(x,)} converges, and the limit

points of {x } are stationary values of F .
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Proof: As tt. } downhill then x, } C R . Expanding by the mean
- value theorem we obtain

lve (x) | LEE L ,
Flrgeg) = FO) + —= 0) 5 Te) BY FEDS

-

where X, 1s a mean value. We have

> 2
Bllvr)HIN" 4 BllvF(x,)]]

| F(x, .) < F(x,) = ———=2 4 =| —0x2 |g
- ~ itl’ = ~ 1 K 2 K

2 2

olor (x) |

“

Thus the sequence {F(x,)} is decreasing and bounded below and therefore

convergent. Further, from (1.3),

- IVF (x) || < Ly fox (F(x ) = F(x...) (1.b)SeAOR LI ES TS ’

— O J) 1 — © .

* | ¥*

Thus ©VF(x) = 0 if x is a limit point of {x} . Od

L Remark: By (1.2) the step taken in the direction t. underestimates

the step to the minimum of G,.. Thus (1.3) holds if the descent

condition 1s satisfied so that the conclusions of the theorem are valid

also in this case.

Theorem 1.2: (Goldstein's descent theorem). Let R = {x ; F(x) < F*)
—_— , ~ ~
be bounded, and assume FeC and bounded below on R . Define
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AN) = - +AxgsN) = F(x) ~Fx; +A)

A(x, MN)
V(x,N) = - =F

=i’ MWEF(x)t,

where {t.} downhill, and the {x,} are generated by the algorithm
~ ~

(1) Xopq =» if A(x, 5M) = 0 .

(ii) If V(x,,1) <o where 0 <a <1/2

then choose A, such that o < (x 0) < l-o ,

else choose Ns = 1.

a. _ +LiL) Xi = Xv NT

Then the limit points of x, } are stationary points of F .

: LN) = =N JT. + .Proof B(x 5M) VE(x,)t, o (h)

Thus A(x, 5N) = 0 = IVE (x) = 0 as (t.] downhill so that x, is a

stationary point. Otherwise VF(x,)t, < 0 so that U(x, 5M) = 1+ o(1)

whence ¥(x. 0)= 1 . Also the boundedness of R implies that

NEIPYS < 0 for some AM large enough so that, as b(x;5M) 1s continuous,

As can be found to satisfy condition (11) of the algorithm. Note that

{x} c R . We have

F(x) =F(X5,9) = MxMVF(x);

> Mod|loF(x)|| (1.5)

Thus {F(x,)} decreasing and bounded below and therefore convergent. To

show that the limit points of {x} are stationary values of F consider

Lo



* | *

the subsequence {x } - X and assume ||vF (x )] > € > 0 . Then
“ T )

oF (x "o> e for i >i. . This implies that inf A = MN > 0 as
~My O i M3

otherwise sup ASH o») = 1 contradicting (x50) < l-a . Thusi ~Bg My ~

~ -

Te) (1.6)lvr(x Ill <- maamndi =

« The right hand side -» 0 as i -» eo which establishes a contradiction. [J

Remark: There are two aspects of this theorem which are of particular

1

interest. (1) It 1s necessary to assume only that feC in R .

> However, the boundedness of R is used explicitly. (11) The algorithm

for determining the step length Ne 1s readily implemented. A value of

AN satisfying condition (ii) of the algorithm will be said to satisfy

-
the Goldstein condition.

Theorem 1.5: (1) Let the vector sequence in the Goldstein algorithm

. be defined by

1 1= m= = . S., ofs, = ~AVF(x)T 5 ty = 8g / isl (1.7)

A. (AL)

j i t 1 finite, bounded and X(4,) = = = >w>0,lw where A, 1s positive definite, bou , i Noo (A) =

i=1,2,.... Then {t,} is downhill with constant & = w .

W" -1 2
(11) Assume that {X,} -» x , and that 144 =v F(x) |] = o(1) , then

- ~

No = Is, | satisfies the Goldstein condition for i large enough.

(111) The ultimate rate of convergence of the algorithm 1s superlinear

le for this choice of Ns :

| i —-

Ll



Proof: (1)

_. OF (x) A, F(x)"vF(x.)t. = - = =~

oui) lor (x) I
— A (A)

max

< - of[vE(xy) |] (1.8)

F(x.) -F(x.+ At.)

(ii) W(x HN) = - SEE~ ~17 ad

AVF (x, )t. + A tT 9° P(X, )tIR LO SR gii
MWE(x)Y,

where x. 1s a mean value dependent on A . Now, writing

2. ,= -1

v F(x) =A, +E,

and noting that IE; II - 0 as 1 =» ®» , we have

T
t. E. t

A 1 i171 i
aN) = 1 - = —_— fr=V(x; 0) 2 7 Soa)

so that

\ NARA

I

no IE [A]
Soe Te (1.9)2134 w

ho



In particular

=; Nayl
1 1 1 it _—

lls) 21 < 3 two, i=.

(111) Another application of the mean value theorems gives

T VE
= - = =- . R - VF X )8; = = AVR(x,) A; (vF(%;) (x)

2) * %
= - - + . =XA (VF(x)(xg =x) + of]lx; -x |)

* *

== (x,-%x). oa |x=-x 1) (1.10)

Thus

Ry N *-— — -
Kien TE TIT 75 70

* ¥*

= (1-7) Gy =x) + off =x) (L11
-

From (1.11) the choice 75 = 1 (My = 5:11) gives superlinear
convergence. Cl

Remark: Theorem 1.5 shows that 1i1f vv F 1s positive definite in the

neighbourhood of an unconstrained minimum, then it 1s possible to have

algorithms with superlinear convergence without the necessity of satisfying

-

the descent condition.. It 1s not generally considered economic to compute

the second partial derivatives of F , and considerable emphasis has

been placed on developing approximations to the inverse Hessian using

= only first derivative information. Although the steepest descent

direction 1s 1nitially in the direction of most rapid decrease of the

function 1t gives 1n general only linear convergence.

-
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2. Methods based on conjugate directions.

The problem of minimizing a positive definite quadratic form 1s

an 1lmportant special case of the general unconstrained optimization

problem. In particular 1t 1s frequently used as a model problem for the

development of new algorithms. It 1s argued that in a neighborhood of

the minimum, a general function having a positive definite Hessian at

the minimum will be well represented by a quadratic form so that methods

which work well in this particular case should work well 1n general.

Let F be given by

1 T

F(x) _ a+bix ts Xx Cx - (2.1)

where C 1s a positive definite, necessarily symmetric matrix. We have

vF(x) = b+ xe. (2.2)

Consider now a descent step from X. in the direction t. . The

descent condition gives

_ T

0 = CE = to (C(x, + NE.) +b)
whence

t post
A (2.3)

t. Ct.
~1 <1

where g; = vr (x, ) . To calculate the change in the value of F in
a descent step we have

hh



T T 1.2.7
- = + A + =A, t.CtT,Flog+ ME) =F(xg) = Mbt + A, XC SA, 0,08,

L -

EN NE rE]
iciei 2 1.1 <1

T 2

, (8 55)
=- 5 ee . (2.4)

t. Ct.
~1 0 1

~ Example: (Linear convergence of the method of steepest descent).

Let F = Bo) Xx Cx . Then (2.4) gives

2

1 (x; 0 x)"
- - om mm ew

F(x50) -P03) > TT 3
x, C7 x,
~1 i

T 2

(wy wy)
« —- = oom

: wr Cw.
~1 0 1

where w. = Cx, .
~1 ~1

- 1 T.-1

We have F(x) = sw. C vs so that

T 2

1 wy W3)
Pp) =| 1-2 7 7 1 |F0)

W. cc .w W., c WwW.
- ~1l 1 1 ~L

The Kantorovich 1nequality gives

T 2

- (w W) S h 9 n
- chew cow Bl (0 + 0)

where Oy and o, are the smallest and largest eigenvalues of C

~ respectively, whence

L5

-



| v

2

Re! |
Pre) | 57a, ) Fx)

n 1

which shows that the rate of convergence of steepest descent 1s at least

linear.

To show that it 1s exactly linear consider the particular case in

which

1 1

oe TTA He

where vy and v, are the normalized eigenvectors associated with Tq

and O, respectively. We have

itl i+l i 1
= = - v.t+t (L=-.0 )O VvXp =O Vt = (Leagop)oypt (Lone) Ty

with (from (2.3))

i,2 2 ie 2
+

ara)i 1,2 1,2 ?
+(2)2 2+ (@)

so that

i,2 2

ot 3 (a) (0, -09)9, or
1 i,2 i,2 1

+(0h)? 2+ (dD)
and

, AN2 2

+l (aq) (0,- 07) 03 i
n - 0 d\2 i, 2 no

(5) 77 + (0) o,

In particular

i+1 2 i 1-1

Yq _ _% “n_ B il
+l 2 1 i-1

a 94 Qq x

L6



so that the ratios oy / oC assume Just two values for all i (depending
on 1 even or odd). Now

( ) VER ilo +1 | > \1--9~ t= log)1 1 i\2 1
o] (a)n

and

2 i\2
: o o (og) :+

Cal I (2) (3) 5 = 1%]n n (a) + (2)

so that

2 i i
of of a.

it+1 i+1 1 1 ln 1 i
SE Rl CS I 5 rtp (ogl+ lag

n n (a7) + (a)n

v) 0] 21 1 i i

n n |

1 i+1

21 a||
- or ait

where yy = min 3 , one] < 1, and y 1s independent
Xy @q

1+ |— 1+ ETS]at at
n n

| -

of 1 . This inequality shows-that the rate of convergence of steepest

descent 1s linear.

id Definition: Directions 1t,,t, are conjugate with respect to C if

fot. = 0 (2.5)~L 2 )

~ In what follows it will frequently be convenient to speak about a

kT



"direction of search* without intending to imply that its norm 1s

unity. However, the null vector 1s excluded from any set of mutually

conjugate directions. It 1s clear that any set of mutually conjugate

directions are linearly independent.

Example: The eigenvectors of C are conjugate. The property of being

both conjugate and orthogonal specializes the eigenvectors.

Lemma 2.1: Let tq5e.4% be a set of mutually conjugate directions

(with respect to C ). Starting from xy let XpsXgy ee es X q be points

. produced by descent steps applied to (2.1). Then

T : .

Proof: The descent condition gives g, tq = 0 so 1t 1s necessary
only to verify the result for j < 1-1 . We have

T T
= +gs ts (Cx; b) ts

= (Cx_,. +b+ An Ct.) t
~Stl K=oh1 kk _s

i-1

T I- .
~stl _.s ws k ks

Corollary 2.1: The minimum of a positive definite quadratic form can

- be found by making at most one descent step along each of n mutually

conjugate directions.

oC 48



Proof: From Lemma 2.1 we have . t.. 8 , 1i=12,..4yn .tooo n+l i

Thus Bil is orthogonal to n linearly independent directions and

therefore vanishes identically. 0

Remark: A method which minimizes a quadratic form in a finite number

~ of steps is said to have a auadratic termination property.

Example: The sequence of vectors

« 1°78

lel’

L, -- 8 PEt y, 1 = 2y4e4yn (2.7)~i-1

“

are conjugate. The algorithm based on this choice 1s called the method

of conjugate gradients.

o We now consider the generation of sequences of conjugate directions
to provide a basis for a descent calculation. To do this we note that

the minimum of (2.1) is at x = <p so that if we minimize in the
o direction t = Gh (Cx, + b) = <hr(x,) then the minimum is found in a

single step. In general 1 1s not known in advance, so that we are

lead to consider processes in which each step consists of two parts

o (i) a descent calculation in the direction

5, = Hyg (2.8)

where H1 1s the current estimate of ¢? , and (11) the calculation

~ of a correction to Hi which serves both the purposes of making the

t. conjugate and m&king Hi approach cl . It 1s convenient 1n what
| follows to assume that the H. are symmetric. This seems a natural

v condition given the symmetry of C but 1s in fact not necessary.

49
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If we assume that t » S <1, are mutually conjugate then the

condition that each be conjugate to Cs is

T T :

tC Bb gH; Cty = 0, S <1,

and, by Lemma 2.1, this 1s certainly satisfied if

We write this equation in the equivalent form (multiplying both sides

by Ag)

Hi¥s = pgdg 7 8 <1, (2.9)

where

dy TX 7% Ve5 B18; (2.10)

Consider the symmetric updating formula

T T T T
. = . + . . o + . . . . « = . . . o + . . .frag = Ht EGGME YE CGYEE,8) (2)

where £4 ’ Ts ’ Cs are to be determined (or prescribed). We have

Hip Ve = He Vg = pg d s» Ss < 1 , provided (2.9) holds as

T B T T 3 L _ T B
dV = Ay Ag b5 Cts = 0, and yi Hi Vs = Ag ys HC ts ~ Pg hs Yi 9s -

p hgh; Cd =0 . Thus (2.9) is satisfied for i := i+l if

0 = +0, (v:H, ¥,;) - C;(d: ¥,) 2.12)iviTidi ivli Ji ?

and

T T

py = 850d; v3) ~C(Hy vy) (2.15)

If €. and T. are expressed in terms of p;, and Cs from (2.12) and

(2.13) we have

50



T

n= 1 a. 4 3i ~ 7 i _T ?
| Yi Hi Vy ViHiYs

| -

and To
03 Viti dy

E. = m+ C0, Tm
i at i ar

| “i 93 on A

~ so that equation (2.11) becomes

- _ OH, +p ~i i a ii+l i "i T

- iY: Yass

T T
vs. H. ¥. d. vy. | T
ps tsWn JF ~i ond T _ T - a

ECE Na eT pe BERA RaPAERa BR
or Rk i393

|.

1° 1 i101 =i

where

-.

vo. od - =H. oy. , (2.15)
0 EE § T, 1 A

and

- v H. vy.
Ee a (2.16)

i ar
bor RR

Example: Theparticularcase p; = 1, Cs =0, 1 =21,2,600 gives

the variable metric or DFP formula which is the most frequently used

member of the family.
-

The class of formulae described by (2.14) generate recursively a set

of conjugate directions so that the first of our aims 1s satisfied. It

-1

~ still remains to show the relationship between the H. and C . To do

51



this note that (2.9) can be written (introducing the symmetric square

root 1/2 of the positive definite matrix C ).
1/2 1/2 1/2

1 ~S S ~S

or, more briefly,

Hot, = pgby s = 1,2,00.,1i=1 . (2.9a)

A ~ t
Defining the matrix T by K.(T) = —"~——~, i =12,...,0 , and the

1 T 1/2(t7 ct.)
~5  ~8 — a

diagonal matrix P by P,, =p. , i = 1,2,...,0n, we can write (2.92)
in the case 1 = ntl 1n the form

3 _ ] 2.9bHT =TP (2.9b)

Now T is an orthogonal matrix so that

" A _ AT

whence

- A AT =1/2

H = C 1245 pal 1/ . (2.17)n+1

In particular, if P = pI ,

i = oc} (2.18)
ntl P

Remark: Remember the motivation for developing the recursion (2.14) 1is

the search for efficient descent directions. Specifically we are looking

not only for conjugate directions but also for good estimates of the

inverse Hessian. This indicates that p = 1 1s the natural choice (or

at least p = constant ), and almost all published methods use p = 1.

However, from (2.17), the choice ofp variable may well have scaling

advantages in the initial phases of a computation with a general objective

function. Presumably the strategy for choosing p should make

p = constant to ensure a fast rate of ultimate convergence.
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Lemma 2.2: Provided the descent condition 1s satisfied,

|

AY Hyp1850 Ys or null.

Remark: In what follows 1t 1s convenient to drop the 1 subscripts.

“ Quantities subscripted itl will be starred. In what follows we assume

p 1s constant.

Proof: We have (using the descent condition, the definition of t ,

“-

and d = tt)

adr Hy vy Hd
* ~~ = We

D(p,H)g = (H+ pF ~ 7.) &
dy y Hy
~~ Pod ~~

T
Hyy H(y +g)

= Hy + Hg -— nd.
JT HS K

y Hy

.

T

1 ya
cm- (a - ===Hy)

y Hy 7

“

Whence

* * m *

Hg = - (5 + CTv eg )v cl (2.19)
.

[] [] [] * x []
Remark: (i) The condition that Hg = 0 when v # 0 gives a

condition which determines { . We have

~ T * 1 *T 1 *7
vg =--8 Hy=-2-8 Hg

so that (from (2.19))

~

C= x (2.20)
Ag HE

53

-



Provided this value of { is excluded from consideration.then * 1s

independent of { . Note that this result is true for a general

function as no properties specific to a quadratic form have been used

in 1ts derivation.

(11) We can only have v = 0 with d and g nonnull ifH is
singular, and in this case Ho 1s also singular and the null space of

q 1s at least as large as that of H . This follows from (2.15) which

can vanish only if (a) Hy > = 0 and 1+ = = 0 , or (b) Hg and
He are parallel. Now if H is singular ¥ w , WH = 0 . Thus

wd = 0 , and hence WE = 0 . ]
Clearly 1t 1s important that He positive definite = Heiq positive

definite, 1 = 1,2,... in order that premature teminaton should be

avoided (H*g* =0 and 0 positive definite 2g = 0 whence x 1s

a stationary point). Conditions which ensure this are given in the

following lemma (due to Powell).

Lemma 2.3: If 0 <p, <®, H positive semidefinite, and

HE v =v (where H is the generalized inverse of H ), then 0 1s
positive semidefinite, and the null space of H 1s equal to that of H

provided

ya

Proof: We first note the identity

D(p,H) = (T+uy")H(T+yu") (2.22)
where

] - 54



a V(@y) (vy HY)

| and

det (I + uy) = 1+ yu = \V = (2.24)
T | T

| so that, by the assumptions, I+uy is nonsingular. Now y v = 0
¥

| so that H can be written

BN * T T T
H = (I+uy )(H+ tv )(I+yu) . (2.25)

| Thus the problem reduces to considering H+ CTV . We have
BY

+

H+ 1vve = H(I+ CTH vv) :

* + TT

| The null spaces of H and H will agree provided I+ (TH VV is

= nonsingular. The condition for singularity is

| +
| 0 = det(I+ (TH vv)

g +

h - 1+ (Tv H vo.

| + + +
Noting that HH H = H , and HH v = v= HH 4d = d we have

| T T
~ dy y Hy

T_ + T_ + ~ - pl

Lygrv dH v= 1egr(d fd - 25s Sp)
| T \2

| 7 + (dy)
N - 1+ (T(E d-F—)

” © Yy Hy

and this vanishes provided

A T.2
(a5 a) (y ay) - (7a)
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The stated result 1s a consequence of this and the observation that

*

decreasing { below this value will make H indefinite. 0

Remark: (i) The condition on Tt 1s automatically satisfied if

H 1s positive definite and the descent condition 1s satisfied for then

T T T
dy ==-gd = )g Hg . However the lemma does not require that the

descent condition be satisfied and remains valid even though the exact

minimum in the direction t is not found. In this case the condition

on T 1S necessary.

Corolary 2.2: If H, positive definite, and H,, = D{p,H;) ,

i=1,2,... then provided the descent condition is satisfied for

i =1,2,... then Heiq 1s positive definite.

Proof: This is a consequence of (2.22) and the above remark which shows

that if H is positive definite, and if the descent condition 1s

satisfied, then I+ uy" 1s nonsingular. cl

Theorem 2.1: (Dixon's equivalence theorem). If (1) the formula (2.14)

is used to generate descent directions, (ii) ; satisfies (2.21) for

1 = 1,2,... and Hy is positive definite, and (iii) the descent

condition 1s satisfied in each descent step, then the sequence of points

generated by the algorithm depends only on F , Hy , Pp , and xy and

1s independent of Cs ;, 1 = 12,060

Remark: It 1s 1mportant to note that F is not restricted to be a

quadratic form in this result.
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Proof: Let D, = Hy, D, = D(p,D; 1) ry 1 =12,%5 ee. . . We show that
7 T

- = + = +

if H, D; ad, d, , then Hig D.rq Pd. dy . By Lemma 2.2 we
* »

1 have H = D(p,H)+7y4d ar . Now

| aa’ m+add) yyr (D+adadd) T
0 D(p,H)= D+p = - — == >= == + add

T T T ~
i dy y (D+add)y

| aa’ Dyy D+ aly a) (Dyd+dy D) +o (ay) adr 7
xe =D+p Fm ~- == ~~ we 0 ~~ ~~ + add
j T T T.\2 ~
| dy y Dy+a(y d)

| T (va) ° T T T T T
S Dyy DA ==—+ ay d)(Dyd +dy D) -a(y Dy) dd
| « y Dy a ~

I YE
y Dy+a(yd)

CT T 7 T| ” aly” Dy) yd ya 7
i =D +mF (d - === Dy)(d - 5 Dy) (2.26)
| y Dy+a(y’d)” - y Dy ~ ~ y Dy~~~ ~~ ~

FT ¥* ¥ * * ¥
| By Lemma 2.2, d |[D(p,H)g . By (2.26) D(p,H)g || Dg . Thus

at ~~ ~~ od

| d. HL , J = 1,25 000,12 d.,1 11 D441 Bi . But the case j = 1
| . [9
 . is a consequence of Lemma 2.2 so the result follows by induction. (J
|
;

i Example: Equivalence results for a wide class of conjugate direction
| algorithms applied to a given positive definite quadratic form can be
~

demonstrated by noting that at the i-th stage we find the minimum in the

| translation to xq of the subspace spanned by Ciseeest, , and that this
| subspace is also spanned by H18ps eves 8s . Thus X41 depends only on

of



X. ,..0X, and not on the particular updating formula for the inverse
~1 1 .

Hessian estimate. If H, = I this equivalence extends to the conjugate

gradient algorithm (2.7).

Lemma 2.4: If the descent condition is satisfied at each stage then

T

the sequence g; Dg; , 1 =1,2,... is strictly decreasing provided Dy

1s positive definite.

Proof: We have (as 7 Ta = 0)

*T 2

*¥T_* % x0 x (87DY)
g Dg = 8g Dg -“F—— ,

Yy Dy

*T *, 2

XT % (g "Dg)
= g Dg - —_—— J

*T  * T
g Dg +g Dg

*T _ * , T
(g "Dg )(g Dg)

TS ¥T_ ¥ TT )
g Dg +g Dg

Thus

1 1 1 (_ . 2.27)
®[ _* ¥ = ¥T_ ¥ 4T
g Dg g Dg g Dg

By Corollary 2.2, the Ds are positive definite so that the desired

result follows from (2.27). O

Remark: This result indicates a potential defect of the DFP algorithm.

For 1f the choice of Dy 1s poor in the sense that it leads to too

small a value of g; D, 8; then the algorithm has no mechanism to correct
this, and must initially generate a sequence of directions which are

nearly orthogonal to the gradient. This must also happen 1f, for any
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reason, an abnormally small value of J Dg is generated at some stage.

| A possible cause of such behaviour is poor scaling of the problem.

Lemma 2.5: Corresponding to the formula (2.14) for updating H there

| is a similar formula for updating it. Specifically we have

*- -

| Hot = D(p,H) Leg pwwt (2.28)

: where
T

| ES | Jy 1 TT. -1, -1_TD(p,H) ~ = H + (= +p) “= - (yd&"H “+H “dy ) (2.29)
| Po dy dy 7

| fata
ay

| woo. Y-— L ta " (2.31)
| ~ ~ PB ~

| and 7 1s related to ( by
_ I 2.52. y (2.32)

l1+¢Ttv H ~v

| Proof: From (2.22) we have

- Ty ..-1 T I

D(p,H) h = (1 - [= yu) H (1-\= uy)

| and (2.29) follows from this by an elementary calculation. From (2.25)

i *- [© -1 [= .THoT = (I- JZ yul) E+ gv) (IT -\/Z uy) >

_ - - T T

a1 -yEyuhat - ——rtvm Th Sey yyVere =rr Te

| (2.33)
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Now

(I -\/—= yuu ty -uta- (= += wate - 2 oF ¥)y
p= ~ ~ ~ Pp ~ ~ Vor ~ IZ

—nla-uy

so that (2.28) is a direct consequence of (2.33) and (2.34). 0O

Remark: If we take y = - yg in (2.28) then we obtain
y da

oT mplagl gl
-1 -1 1 27 ~

G(p,H ™) = H YS TL TT Toa.
y a d"H ~d

= (T+ zaDa (z+ a 2) (2.35)

where

2 = - +r (Fr &a) . (2.36)(@(ala We Vu
We have

-1, -1 -1 T
D(p,H 7)" = G(p,H™) + =-ww

yda~©~©

= (I+ z AYE+ Hw wD) (1+2) (2.37)
~ via ~ ~ -

as dw = 0 .
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To summarize these results we have the following:

« T T(1) D(p,H) = (I+ uy )H(I + yu’) ,

-1 Ty..~1 T

G(p,H 7) = (I+ zd YH (I+4s)

pu -1 -1
(11) D(eE) T= GlpE) + Hp ww

ya~~

Gp E TD) = D(p,H) + 7 vv

~ update formula update formula for inverse

add Hyy'H 11 vy’ 1 T 1 _-1. T
D( psH) H+p SH - —5=— H+ (+p) FF -5=— (y&'H "+H dy’)T T 0 T T ~ ~

“ dy vy Hy iy day ~

2 4 pw Etad wt ad® :
G(ppH 7) | HW + == — —== H4 (p+7) SF - = (dy H+Hyd)

o P va aH™ d dy dy ~~ ~

D(p,H) , G(p,H 7] have been called dual formulae by Fletcher.
fr

Lemma 2.6: Let A be a symmetric matrix, A = TAT! where A diagonal
*

(Ay =A 0 10 1,2,...,n) , and T orthogonal. Let Aor 1 1,2, een

o be the eigenvalues of A+oaa’ , then either ¢ > (0 and
* *
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Proof: We have

T : “1, Ty oT \T
det{A+0aa -AI} = TT (v2) det {T+ 0(A~NI) (Ta) (T a)" )

~ i=1 ~ ~

3 T \T 1, T
= TT (A-N(1+0(T7a)"(n-AT) "(T7a))
i=1 ~ ~

yi

= TT(AM {1+o0 L oh Yo, V3 FT ps (T )a ’
i=1 i=l "i

and the desired result 1s an easy consequence of this expression. [

In the following theorem we consider specifically the minimization

of a positive definite quadratic form. We assume that the initial

estimate of the Hessian Hy is positive definite, and we make use of

the following sequences of updates for the current Hessian estimates

(a) Hein = D(psH,) >» 1 = L,2,..., and
~ -1 -1 '

Further we do not assume that the descent condition 1s satisfied.

Theorem 2.2: (1) Let Ks = cV/2g, c*/? , and let the eigenvalues of
Ks ordered 1n increasing magnitude pe At , J = L,2,.04yn . Then

ENS > p then Ne 21,2) . +. . 2p, while 1f AY <p then

AH <P <. . .<p for j=12..,n. (11) Let K, = M2, cH? '
- and let the eigenvalues of K, be Al", j 1,2, ¢eeyn . If j 2°

then A) >a?) > eee > p , while 1f Ne < p then

NS <2) <.. .<pfor J=DL2.yn .
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Remark: This result 1s important because 1t shows that we have a

'weak'! convergence result for these Hesslan estimates when minimizing a

positive definite quadratic form even when the descent conditions 1s

not satisfied at each step.

Proof: Noting that cq = cz, = a , we can write the formula for

updating K as

x sal Kaa K
K =K+p os a =

ala 2 Ka

We can break this into the two operations

Kaalk

J =K - — 5 ’ and
a Ka

T

* ore
| ~— K =Jd+p 7 .

a a

Note that J has a zero eigenvalue, and that a is the corresponding

o eigenvector. By Lemma 2.6 we have A (39) = 0 , and Ny < ns (9) < A
for j =2,3,..49n. The rank one modification which takes J into
* :

K changes the zero eigenvalue to p and leaves the other eigenvalues

_ of J unchanged. Assume that Mi (3) <p < Mop (9) then reordering the
*

eigenvalues in increasing order of magnitude we have A = My1(9)
: * * _

K = 1,2,00053-1 Ms =p, A = (9) , x = JtL..on . This
o establishes the first part of the theorem. The second is demonstrated

. K-1 Ce _
in similar fashion by noting that satisfies a formally similar

~=-1

update relation. This establishes the result for the eigenvalues of K

o and hence for their reciprocals. O
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| Remark: Note that both H. and H, are positive definite 1 = 2,5...

if Hy 1s positive definite. In this case the result does not depend

on the descent conditions being satisfied.

Theorem 2.3: Let H be positive definite, and consider a step d in

¥ A =1 -1
| the direction -Hg . Let H = D(p,H) , H = G(p,H ) =

D(p,H) + —— vv, and H. = e+ (1-6)H = D(p,H) + ST vv. Let
T. ~~ o Lo oo

yd y a

| .

K = cl/2y cl? , and define K , XK, Ky similarly. Let the eigenvalues
* oa * a 0

of K, K , K, Ka be A. R Ar Mo , and * respectively,
| A *

| j = 1,2,..0,n , Let 0 <6 <1 . If Aj 2p then Ay >A >A >A > 0
; * e _2 e

| while if A; <p then hs < Ms SNS Ms <p. If 6f[0,1] then MS

| need not lie in the interval defined by i and p.
| * a

Proof: It follows from the definition of H , H , and Hy and
* N

Lemma 2.6 that A, <M <A; , 3=12..,n, provided 0 <0 <1 .
The first part of the result 1s now a consequence of Theorem 2.2. To

show that A; need not lie in the interval defined by M and p ,
consider the example

Je € ~ 1

1

We have A = 1M, NM, = 1+2e -7 where | = 3 (1+ 2¢ -N1+pe) . Thus

| - Tf 1s positive and 0(e) . In this case we have
T

a” Ka 1/2

K=C [4 T = TF =¢€ c™/? -a-2xa --
~~

6l



|

| It is readily verified that K - 0 : , SO that K__ = E 0 | ’
| K = BS 2] . In both cases €lgenvalues lie outside the1+€ oO 1

prescribed interval. In the first case we have 0 <1 , and in the

| second 1+2e > 1+2e -17 .

| Remark: This result shows that H gives the best improvement in the

eigenvalues < p , while Hq has a similar property for those > p .

| This suggests an algorithm in which a choice 1s made between updating

H to # or H depending on some appropriate criterion. Fletcher

suggests that if = > 1 (that is, y HY > y' ¢'y) then H should
be used, while if tr <1 then # is chosen. He has used this criterion

| in an implementation of Goldstein's algorithm, and has reported satisfactory

| results.

h
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Notes

1. For Ostrowski's theorem see his book 'Solution of Equations

(2nd edition) or Kowalik and Osborne. Goldstein's theorem 1s from

his paper 'On steepest descent' in SIAM Control, 1965. Theorem 1.3

1s abstracted from Goldstein and Price, ‘An Effective Algorithm

for Minimization', Num. Math. 1967.

2. For background material see Kowalik and Osborne. The form of the

update for the inverse Hessian 1s due to Powell 'Recent Advances 1n

Unconstrained Optimization' to appear in Math. Prog. It 1s a

specialization of a form derived in Huang, 'Unified approach to

quadratically terminating algorithms for function minimization',

JOTA, 1970. The form (2.14) and the result of Lemma 2.2 are

probably due (in the case p = 1 ) to Fletcher ‘A new approach to

variable metric algorithms', Comp. J., 1970, and Broyden, 'Convergence

of a class of double rank minimization algorithms', JIMA, 1970.

Lemma 2.3 1s due to Powell (to be published). The product update

form (2.22) 1s due to Greenstadt (to be published). Dixon's paper

containing Theorem 2.1 1s to appear in Math. Prog. The significance

of (2.27) for the successful performance of the DFP algorithm was

noted in Powell's survey paper already cited. Attention was drawn

to the dual updating formulae by Fletcher. This material together

with Theorems 2.2 and 2.3 are included in his paper already cited.
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APPENDIX Numerical Questions Relating to Fletcher's Algorithm

1. Implementation

In this section we consider two questions relating to the implemen-

tationof Fletcher's algorithm. These are

(1) an appropriate strategy for determining A to satisfy the

Goldstein condition, and

(11) the use of the product updating formulae for the inverse Hessian

estimate.

In his program Fletcher uses a cubic line search to determine A . Here

we use a somewhat simpler procedure which has the advantage of requiring

only additional function values. Also we work with the Choleski decompo-

sition of the inverse Hessian estimate. This has certain numerical

advantages which have been outlined by Gill and Murray. In particular,

1t 1s possible to ensure the positive definiteness of H, , and this can

be lost through the effect of accumulated rounding error when direct

evaluation of the updating formulae is used. Another possible advantage

of the Choleski decomposition 1s that we can work with an estimate of

the Hessian (that 1s gt ) rather than with H as division by a triangular

matrix does not differ greatly in cost to multiplication. We felt this

could well be an advantage in problems with singular or near singular

Hessians, 1in which case H would be likely to contain large numbers.

To 1mplement the line search we note that by Theorem 1.2 we should

test first if (x,t 154) = y(x;,s,,1) satisfies the Goldstein condition.

This requires the evaluation of F(x, +s.) and this, together with the
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known values F(x,) and Fr (x,) = VF(x,)s, , gives sufficient information

to determine a quadratic interpolating polynomial to I? . We write this

.
as

2

P(N) = F(x,) +F' (x )M+ AN (A.1)

. where A is to be determined by setting P(1) = F(x, +s.) . This gives

= 4 - .) =F (X.A= F(xg+s;) ~Flxy) =F" (x;)

\

The minimum of P(h) 1s given by

F(x.)
1 1

| o> 2(l-y(x.,8.,1)) .. 2A (xy 8551))

To test if this is an appropriate value we compute ICIPLIPLY « This
gives

~ 1
= 1] + Nu

a, 5 F(x* Ns) \¥(x;585N) = 5+ 3 \ Ta (AL)
O where A is a mean value. Thus, if F is quadratic and

¥(X,58:51) < g then NM given by equation (A.3) satisfies the Goldstein

condition for any allowable o (normally ¢ 1s chosen small --

- say 107% ) : For nonquadratic F the test 1s satisfied if the relative
1 = :

error in estimating 3 F(x, + NS.) by A is not too large.

This analysis provides the basis for our method which is given below.

.

Algorithm

(1) Calculate Isl , set w = min(1, |[s, ||) y AM=1.

(ii) Evaluate ¥ = y(X.,s.,N) .
« ~i’2i
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(111) If NM <g then begin pA = A,

go to (11), end.

(iv) If A <1l-o gotO EXIT .

If A >1 then begin if AN >1/w go to EXIT,

AN =2N, end.

else N = .5(MN+DpN) .

go to (11).

Remark

(1) Numerical experience has shown that the value of AN predicted in

(111) can be too small, and that an additional instruction

If A < s¥pA then AN = s*pA

should be included. A value for s of about .1 has proved

satisfactory (1/8 was used 1n the numerical experiments reported

in the next section).

(11) It is readily verified that Lm V(x;58,,N) = 1 . Thus the
algorithm can be expected to return a value of A satisfying the

Goldstein condition unless V¥ exhibits rather pathological

behavior.

We write the Choleski decomposition of H as

H = RR (A.5)

where R 1s an upper triangular matrix. Thus we require to find rR

such that

RR =H (A.6)

where 5 1s given by either
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(i) H = (I+uy )RIR(I+ yu) »y Or

T T

(ii) HY = (T+uy ){RR+ LT vv J(T+yu)

The second case can be reduced to the first if we write

BR = RR+ET vw (A.7)

To calculate R note that

R |

T

“ RIR+ £1 vv = [R | VET v] |
JET >

R

_ = [rR [Ver viIQ'Q
JT

where Q 1s orthogonal. Thus we seek an orthogonal matrix Q such

~ that

R R

« -

Let W(i,J,{p,a}) be the plane rotation such that W(i,Jj,{p,a})A

combines the i-th and j-th rows of A , and reduces Apg to zero. It

is necessary that p be either i or 3 . Then Q is given explicitly

by

1

0 = | w(i,n+t1, (o+1,1}) (A.10)
1=n

“

It is readily verified that the zero introduced by each transformation

1s preserved by the subsequent transformations provided they are carried

. out 1n the order indicated.

T1
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Consider now the problem of constructing the Choleskl decomposition

of stg where S = T+ab’ , and T is upper triangular. This corresponds

to our problem with the identifications T = R or R ,

a = Ry or RY , and _b=u. In this case the decomposition 1s done in
two stages. Our method uses ideas due independently to Stoer, Golub,

and Gill and Murray.

(i) We determine an orthogonal matrix Qy such that

Qa = lafle . (A.11)

If we set

n-

Qy FT win, {1,%}) (A.12)
i=1

where the * 1ndicates that the rotation 1s defined by being applied

to zero an element of a vector, then Q,8 = Q T+ [alle differs from
an upper triangular matrix only in having possible nonzero elements 1n

| the last row.

(11) To complete the determination of Rowe sweep out the elements

in the first (n-1) places 1n the last row of Qy° by plane rotations.

Thus R* 1s given by

T

R* = Q,(Q,T+ |lajle,b7) (A.13)

where

1

Q, = Il W(i,n,{n,i}) . (A.14)

It will be seen that the updating of the Choleski factorization can

| be carried out very cheaply. Depending on the update formula used, the

major cost is either 2n or Jn plane rotations. It should be noted that

|
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| Fry = |Ryl® =a) (4.15)

BE is required in the update formula. Thus a can be already available
for S .

~ 2. Numerical Results

| In this section we report the results of numerical experiments

: carried out to test some of our techniques. We consider four line search

~ strategies:

(1) a standard cubic interpolation procedure with A = 1 as initial

| search interval,

j (ii) a standard cubic interpolation procedure with MN given by the

step to the minimum in the previous line search,

| (iii) a strategy for satisfying the Goldstein condition in which A

 ~ is reduced by the factor 1/8 if ¥ <o¢ , and
(1v) the method for satisfying the Goldstein condition given in the

| previous section.
[
i Product form updating for the Choleski factorization of both H and

| gt = G has been implemented, and the results obtained for each are

| given.
| The problems considered include:

| (1) Hilbert: Minimization of a quadratic form with matrix given by

N the Hilbert matrix of order 5 . Here

| = X.-

i=1 Jj=1

and the starting point 1s given by

“ [=



|

(11) Banana(n) : The Banana function in the cases n = 2 (the

Rosenbrock function) and n = 8 . Here

n-1
B 2,2 2

F = YX {100(x,, ; = %,) + (1-x,) 1,
i=1

and the starting point 1s given by

X4 = =1-2 if 1 odd, otherwise X= 1 .

(111) Woods: Here

_ 2.2 2 252

+ (L-x )e + 10.1((1 -x )° + (L-x )2)3 2 I

and the starting point 1s

T

X ={-3, -1, -3, -1} .

(1v) Singular: Powell's singular function 1s designed to test the

performance of algorithms on a function with a singular Hessian

at the solution. Here

2 2 Lt L
— + - - -

F (x4 10x) +5(x4 x),) + (x, 2X) +10(x; =x)

and the starting point 1s

T

(v) Helix: Here we define

2 2,1/2

R = (2 + x2) ’
1 %o

T = if x, > 0 then.,— arctan —
1 = 21 X

0 1

1 %o

1f Xy < 0 then —parc-tan x + .5 ’
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and set

3 F = 100( (x4 10m) + (R-1)°) +x :
The starting vector 1s

| x’ = {-1,0,0} .

Shae

Numerical results are given in Table A.l. For historical reasons,

the test for terminating the calculations was based on the size of Is, |

LL ( Is;1 < EPS/n with EPS = he ). This proved reasonably satisfactory
for all cases except the singular function -- 1n fact in all other cases

| the ultimate convergence was clearly superlinear, and the results were

accordingly only marginally affected by the size of EPS. In the case

| of singular the convergence test proved difficult to satisfy 1n most

| cases (indicated by * 1n Table A.1l), and these computations were

Co terminated by the number of iterations exceeding the specified limit.

However, 1n all cases the answers were correct to at least six decimal

| places. There is some variation in the H and G columns. This shows
RN the effect of rounding error, as these would be identical in exact
; arithmetic. The most interesting case 1s the H column in both cases

of the Banana (8) when satisfying the Goldstein condition. In these

- cases both H and G formulae produce very similar results until the

10-th iteration at which point-the H formulae produce much larger

reductions in F than do the G . However, this progress 1s not main-

xe tained and at the 20-th iteration (in the case of the line search

| algorithm of Section 3) the H matrix becomes singular and the iteration

is terminated. A restart procedure could have been used at this stage.

The numerical results indicate that the new algorithm is promising.

In general, although more iterations are required, we make significantly

| >



fewer function evaluations in comparison with the routine using a

standard line search. As only one derivative evaluation 1s required in

each iteration, the real saving can be considerable. We note that on

the basis of the evidence presented 1t 1s not possible to draw conclusions

as to the relative values of the H and G algorithms. However, that

both manage to produce very comparable results provides some evidence of

their stability.

The program which gave the results presented here 1s coded in

AIGOL W for the IBM360/67 at Stanford University. The calculations

were carried out using long precision (14 hexadecimal digits).

A FORTRAN version of the program has been developed at the Australian

National University.
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1. Basic properties of barrier functions.

HN Consider the inequality constrained problem (ICP)

| min f(x)

| subject to g(x) >0, 1 =1,2,...,m (ieI,) ,
~ |

where we assume (as before) that I+, 8: , ie, , are 1n c? . We also
assume that S = {x; g; (x) > 0 , iel,} is compact, has a nonvoid interior

E ~ 5) and satisfies the regularity condition that every neighborhood of points4

| of S contains points of So (this precludes S having 'whiskers'). If

| xcS and 8, (x) = 0 for some 1 then it 1s assumed that X£S :
«

| Definition: P(g(x)) is a barrier function for S if the following

| conditions are satisfied.

2

~ (1)  >0, x8. If X closed set, X c So , then @eC on X .

(ii) pow, g~0, del;. .

(111) z < 0 1f 8: < Ps where the Ps > lel, , are fixed positive constants.

| (iv) - | bounded on N(x,s) if g: > 0 on N(x,8) .

] m

~ Example: (1) 1) = ). 1/8; (x) (inverse barrier function),
i=1 ~

m

(11) § =}, (log(1+ g,(x)) - log g(x) .
i=1 = -

.

Remark: In the second example the term with argument 1+ g; (x) merely

ensures that the positivity condition is satisfied. It could be

e replaced by a bound k; for log(l+ g; (x)) on S if this is known. In
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practice it 1s of no consequence. The barrier function

m

Pp = ). (k, - log g; (x) is called the log barrier function.
i=1 =

Definition: T(x,r) is a barrier objective function if

T(x) - 2(x) + p(x) (1.1)

where r >0 .

Lemma 1.1: 8 x = x(r) eS, such that T(x(r),r) = min T(x,r) .
~ ~ ~ XeS ~

Proof: T(x,r) is bounded below on S , and T(x,r) -+® as x - 3S .

cl

Lemma 1.2: Let ir} | 0 , and let x(x) =X, Then

(1) (T(x557,)]} is strictly decreasing,

(ii) (£(x,) } is nonincreasing, and

(111) B(x) } is nondecreasing.

Proof: Let r. < r, then

£(x;) + r;P(e(x)) < £(x5) + ,0(e(x,)) ,

< f(x.) +r. X.(x) +=B(e(x,))

< 20x) +7Ble(x,)

This demonstrates (1). Subtracting the inside and outside inequalities

gives

(r; = r)P(a(x;)) > (x; - r;)P(e(x,))
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which gives (ii). From the first inequality we have

o f(xy) < £(xy) + rv; (P(elxy)) - Ale(x;)))

< £(x,) . Od

- | Remark: If T(x,r) 1s strictly convex, then all 1nequalities are

strict.

Theorem 1.1: The sequence {T,(x57:) 3 converges, and
« = _.

lim T(x.,r.) = min f(x) .
: “1771 ~
1—w Xes

« Proof: By Lemma 1.2, T(x ,r;)} is decreasing and bounded below and

hence convergent. Let f* = min f(x) , then
XED ~

¥*

T(x,r.) > f(x) > f
“ |

whence

*

lim T(x.,r.) > f . (1.2)
: J RO RAE
1-e

by *
Now let ¢ > 0 be given. Choose Xe, such that f(x) -f < ¢/2 (this

is possible because of the regularity condition on S ), and choose r.

such that r.p(e(x)) < ¢/2 . Then
[ ~ re

min T(x,7,) < T(%,1;) < f*+ ¢€
x Pe ~~

~ whence

3

lim T(x,,r,) < f .0O (1.3)
joe Th

~ Corollary 1.1: The limit points of {x; } are local minima of the ICP.

81

“



Remark: The generality of these results should be noted. For example,

we have not required S to be Lagrange regular at the limits points

of 1x, } .

Definition: Q(x,r) is a separable barrier objective function if

1 T

Q(x,r) = £(x) +), vp. (8. (x) = £(x)_+ r B(x) (1.5)
- - i=l ~~ ~ Ts"

where r >0 , and P. is a barrier function for 8; = {x g; (x) > 01,

The previous results are readily extended to this case and are

summarized in the following theorem.

Theorem 1.2: Let ry > Tq » 1 = 1,2... , and So Ty = © . Then

(i) min Q(x, r) is attained for same X; €85,
XeS

(ii) Q(x, 7.) ] is strictly decreasing, (£(x,) ] is nonincreasing, and
¥

(iii) lim Q(x, 1) =f , and the limit points of {x} are local
k =o ~ ~

minima of the ICP.

Remark: Given a sequence of positive vectors tending to zero then it

1s possible to select a subsequence which 1s strictly decreasing.

Conclusions (i) and (iii) remain valid in this more general case.
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2. Multiplier relations (first order analysis)

W

In this section we assume sequences {r} {0 , {x} =X . The
“ : ~

condition that T(x,r,) is stationary at r. gives

m

venom) = veg) + Ly = ve;(xy)
. i=l 1
~ |

© _k
_ - = 0 2.1

k J kK
_— m= = -0 —where u. re a (g(x) . Note that us 0(r,) , kK © ,

if 1 £8, » and uf > 0 for 1eBy and k 2k, by the conditions
- defining barrier functions. Equation (2.1) 1s formally similar to the

multiplier relations given earlier (MP(3.2)), and it is comparatively

straightforward to deduce these relations from (2.1) 1n certain special

hes cases. We assume that By = {1,25 e001} , that the rank of the system
* * *

of vectors vg; (x) , 1eB, is <t , and s=oe vg, (x Ys 0 v8 (X)

are linearly independent. We define matrices c,(x) , C(x) by
T T

. ks (Cy) = ve, (x) , 1 =1, , ® _*,S , and k;(C,) =V8.,4(%),
k)T k ky k)T k k

|.

Lemma 2.1: If (u’} "1s bounded then the Kuhn-Tucker conditions hold
¥*

at x .

~ Proof: From (2.1) we have

T (k) (k) 2.2
vE(x)" = C(x Jur +Co(x ug + 0(ry) (2.2)

Ww .
- The linear dependence of the set of vectors veg, (x) , 1eB, r 91lVES
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C(x) = Ci(x)R (2.3)

so that (2.2) can be written

T _ (k) , po, (kK) (k)
vE(x)” = Ci(x) {u™ + Ruy 3 +{C (x) - Co (x )Rluy™ + O(ry) . (2.1)

Provided k 1s large enough the rank of C, (x) will be s (see

MP Remark following Lemma 3.3). Thus

CG (k) py (RK) T, - T T 3 (k)Cup emg = (03 05)70, (5)17 05) TRE) + (C500) - CyGRIT Holm) Ye
(2.5)

As ne bounded we conclude from (2.5)

(1) u{F) bounded, and
* ¥. = XT _ *

11) im ur ralE) Lele (x) 178 (5) Tee")
k—e

(k) (k)
As {u, }, {uy } are bounded and nonnegative (at least for k large

enough) this property 1s shared by the limit points of the sequences.

¥ *

Consider subsequences tending to 4, , Uy respectively. From (2.2)

we have

¥ YW *, *

VEX)" = C(x Ju + C(x),

or

* * ¥*

vf(x) = y u. ve, (x) i (2.6)
~ ieB ~

0

Thus the Kuhn-Tucker conditions are satisfied. O

#

Corollary 2.1: If the Kuhn-Tucker conditions do not hold at x ,

then us) , (ur) are unbounded.
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Corollary 2.2: If restraint condition A holds then the ve, (x)
. xq.

“ are linearly independent for 1€B In this case {us} is null,

and (ur) converges. If restraint condition A holds then the multipliers
in the Kuhn-Tucker conditions are uniquely determined.

“ | oo (k). |
Lemma 2.2: If restraint condition B holds then {us} 1s bounded.

CC imols (kK) for th
Remark: By MP Lemma 5.2, this implies that {us } is bounded for the

I~ convex programming problem provided S has an interior.

| Proof: If restraint condition B holds then ¥ 4 such that ve, (x)ad > 0,
| i=12,...,t . From (2.2) we have
“

uk (2.7)= + 2.7Lou ve(x)d = vi(x)d+0(ry)
i=1

k

~ As vg; (x)d is a continuous function, we must have Us > 0 and

vg (x)d > 0 , 1 = 1,2,.00,t , provided k large enough. Thus (2.7)

gives

“ t vi(x )a+ 0o(r,)
Lov < vee (2.8)

k

This relation shows that the U.; are bounded ask -® . O

Remark: The results of the first section showed that convergence of

barrier function algorithms can be proved under very few assumptions.

“

The results of this section show that valuable structural information

on the problem is available as a by-product of the computation. Note

that the conditionthat the uf be bounded 1s a weaker restraint condition
\.

than either A or B.
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5. Second order conditions.

Consider now a barrier function § and a sequence {r } 40 such
* *

that {x} -X {wu} —-u . It is convenient to assume the following
properties which are satisfied by all barrier functions of practical

interest.

(i) uf=-r 2 (x) >o0 rx) 50 i= 1,2 Yk1 iT k g. x y k 2 Lx J 1 = 359 oeeylly .
i og.

i

y Op
(ii) ry = x( )o+® , k oe, ieB (But see Example W{ii)p. 100

Sg ~ 7 Co
1 for qualification.)

(iii) a-$&- =0 if i £3 .
i 3

Lemma J.l: If the matrices T(x, ) are positive definite for
*

k > kX and the ve, (x ) , ieB, , are linearly independent then
¥ *

vle(x yU)V>0, Yv #0 such that ve, (x Jv. = 0 , VieB, .

Proof: Differentiating T(x,1,) gives

(xr) - Polrgn) + 7 bn 2B vee)Tg, (5) (541)VAT= V AEel)+ Fy 2 VE) V8 x
i=l og;

which can be written

Prem)= Palen) +0 0s) D0 (0+ Tm 28 vg, (x) vg, (x)VIX Te) = 3X) TR Pkt BT kN 2 veilXk/ V8; Xx
ieI. -B og.

170 i

Where

(D,) = EN. ( i= 1,2 tk’ii ~ Tk § 2 x) Comg.
i
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Let

| + (3.2)P= Cp (x0, (x)
«

then, for arbitrary nonzero v such that (I -P JV # e

| T

0 < v (I - PVT (x,,r,) (IT -P)v

_ vi (I-P )ves(x u, )(I-~P )v+o(l)

as

.

The desired result follows from this on letting k =e . [

~ Corollary J.l: If in addition to the conditions of Lemma 3.1 we have

also strict complementarity then the second order sufficiency conditions
*

(the conditions of MP Lemma 4.3) hold at X .
“.

Remark: The problem of generalizing this result to the case where the

active constraint gradients are not linearly independent 1s the following.

CL In general, when k < o , rank[C (x,){C (x) ] > s . Thus

Vie = {v ’ ve, (x) v = 0, VieB,} < Up = {viv = (I-PJu, uel } .

~ We have

* * .

lim U, = V = (vive.(x )v=0, Vie By} :at 1 ret ad
k—e

oT It 1s not difficult to construct examples in which aii Vie cv .

C ider C.(x) = e CA ) =e, +es(x-X )e Thonsiger 1\ 5% = © o\Ey) = € Col = /% en

~

|



T T * T

Vy= {vseyv =eyv =0} = lim V, © V = viel v = 0} . The
K-e

T 2 *  *argument of Lemma 3.1 shows only that F% £(x ,u)v > 0 for

velimV, .

k oo k

Lemma 3.2: Let

w=Uty VW ,

v= sll 1, v= 0),

M={u;flull =1,ueny ,

vy =mintT Ut > 0 , Oo =minu © Uu , w=min |Mll >o0
teN~ 7 ueM© © ueM ©

T .
MN = min tt" Uw , p = min(0,7)

teN, ueM =~ ~

then W 1s positive definite provided

2. 2

0 + -0

VU

Proof: Any unit vector w can be written

2, 2
wW=0au+pgt where ueM, teN , and a +p =1 .

Thus

-

WWW = oful Uns 20B ul Ut + Bo tT Ut+ yu ©
2 1/2

> df (0+ 7 =v) + 2]a](1 - oF) / pt v
2

> (0+ 9 -v) +2]ajp+v (3.4)
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as p <0 . Provided y > Yo (a weaker condition than (3.3)), the
Lb

=P

right hand side has a minimum at @ = — 5 — ~ O . The value at
0+ -v

this minimum is — V which is positive if (3.3) holds. O
C+ 7% =v

Corollary 3.2: If w =U+ VD V where D diagonal, and if the

conditions of Lemma 3.2 hold, then W is positive definite provided

2, 2 _
min D.. > Kill Ak If D 1s positive definite the result holds

provided the smallest eigenvalue of D satisfies this inequality.

Proof: We have

2 T 2 & 2
wr VDVw= au VDVuw = a YD, (po, (Vu)
~ ~ ~ ~ i=1 ~

| ~~

2

> min D,. O&°||Viull®
- il ~

i

‘ The result now follows as fram equation (3.4) above. UO

*

Lemma 3.3: If the second order sufficiency conditions hold at Xx

then VT (x,,7,) is positive definite for k large enough.
o ~

Proof: We have

* * #* i *
V cU = {v; ve, (x )v = 0 , Vi ¢B, such that u, > 03}.

L

Thus the second order sufficiency conditions imply that

* * *

viv? g(x au )v>0, YweV such that Vv £ 0 . From Corollary 5.2
TT ~ oO ¥* % * * * %,

it follows that 3 D, such that ¥ £(x,u’) + [C3(x") [C(x )IDIC,(x )|C(x )]\ ~~ ~- ~~ ~~ ~
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1s positive definite for D 2 Dg . By continuity this implies that the

corresponding matrix evaluated at Xx 1s positive definite for k large

enough. The desired result follows from this as (Dy) 44 + ®

Lemma 3.4: If U 1s nonsingular, D diagonal, and V of full rank,

then the system of linear equations

[U+VDV]x = Vy (3.5)

has the solution

xX = uTv(z +m) Tuy (3.6)

whereM = (vv uty) "pt provided I+M 1s nonsingular. A sufficient

condition for I+M nonsingular is [IM] |< l which is satisfied if

a Ds | 1s large enough.

Proof: The result follows on substituting (3.6) into (3.5). O

Remark: From (3.6) it follows that

X  ~ vivir utv)y Tio ly (3.7)

as min ID. . | —- ®il
i

Corollary 3.3: If the right hand side of equation (3.5) 1s z ,

a general vector, then the solution 1s given by

X = u(r + M) “hav? ut V) Lute

-1 -1 = -
+ U (1-v(Vu V) vu Ya : (3.8)

0



4, Rate of convergence results.

In this section, rate of convergence estimates for barrier function

algorithms are considered. Unless stated otherwise the conditions

imposed in Section 3 are assumed, together with the condition that
*

lve, GO £0, sem.

Lemma 4.1: Provided tu, is bounded then

f(x) -265) = To g(x)(x)- £(x = LY 8: \ Xk
¥*,,2 *

+ o(max{llx-x ||”, r [x -x|}) (41)
|

Proof: The result follows by taking the scalar product of (2.2) with

»

X, =X and identifying with terms in the Taylor series expansion. O

Definition: We say that Uy 1s s0(v,) (strict order Vie ) provided

(i) ou = 0(v) , and

(ii) Fk, <® and pu >0 such that lu,| > wiv| for x > ky

Remark: (4.1) gives an error estimate provided the remainder term 1s

small. A sufficient condition for this 1s

* *

f(x) -£(x)..so(llx -x|) (k.2)
k *

This implies that for at least one 1 , 4 g; (x) = S0({lx, =X i) :

If (4.2) does not hold then for i = 1,2,..s,t either

(i) uf = 0, k -® , or

E ) = olllx, =x |)(11) gg) =ollin-x I
~~
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*

If (11) holds then the approach of x to x is tangential to the
*

surface g; (x) = 0 at x = x .

Lemma 4.2: If the ICP is convex, then

(i) x,, Ware dual feasible, and
5k

1 - *(11) 20x) - £(x)<  } ue (x)
i=1

Proof: The dual feasibility 1s a consequence of (2.1) and assumption

(1) of Section 3. This follows directly from Wolfe's form of the duality

theorem (MP Corollary 5.1). We have

8 k Gl *

50m) = £05) - Lf 8,05) < 30) = 26) 00x) (4)

which demonstrates the second part of the desired result.

* *

Example: For ieB, let g; (x) = S0(||x,. - x ]) , uy > 0.

(a) inverse barrier function. We have

k 2

uy =r / es (g)

whence

k

This gives .

* 1/2

lx,-x = ox?)

~ (b) log barrier functions. In this case

k

by = ry/ ey (x)

which gives
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8

k

8; (5) = 1/04

and

>

Thus the strict order condition permits us to deduce a rate of convergence

result. We now show that the SO condition 1s equivalent to the

condition of strict complementarity for the inverse and log barrier

functions. In these cases the remark following Lemma 4.1 gives us a

geometric interpretation of strict complementarity.

To discuss this equivalence, consider the following system of

equations which define x and a, as functions of ry -

=k
v(x) - LL we (x) = 0,

i=1

and

i gs *k k ’

If the Jacobian H(x,u) of this system with respect to Xx ,u or an

appropriate transform of it 1s nonsingular then we can study the behavior

of x(r) , u(r) as a function of r by integrating the system of

differential equations

ax }

ar 0
H(x,u) =~ (4.5)

du

dr s

T
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Vso) Sve E00)

OEE&1

xu) = (4.6)

—u_ 2

2Y » ve, (x) %Em

Let D be the diagonal matrix

E

D = | "1 (4.7)
where

2

Wis 2 8+ (3%VE (4-5)
then

0° gxu)  - vg, (x)" os - ve, (x)"

[3°
uve, (x) - &/Di = “1 3; (1.9)

2

0 ve, (x) y kei. w

ol



El)Provided A 5 O , kK ow, 1€B, then DH will be non-
8i/ gS

i

“

| *

singular for k large enough provided J(x) is nonsingular (see MP

Lemma 4.4). This implies

2 (i) the second order sufficiency conditions hold,
a

| (11) the active constraint gradients are linearly independent, and

| (iii) strict complementarity holds.

bo In this case

ar 0
DH _ (4.10)

. qu

| whence

N N

x TX Tk L[o
| = -[ (oH) dr (4.11)
] a -un 0 v

~K

provided the components of Ww are integrable.

Example: (1) inverse barrier function.

- We have

| [3° g; $Y / 3% 1
1 — - 5 Pp) - .

: 1 1

In particular, 1t follows that DH(x,) 1s nonsingular for k large enough,

while -w, = Sau, [x . We have
~
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dx |

= —7z (00) (1.12)= DH — tel?

. du ort © fu,

mn

1/2
whence, changing to rr as 1lndependent variable,

| 1/5 0
i a(r™") 1] —
! = (oH) “| (4.13)
! du - 1

1/2 .| Be ) Von| m

|
Thus we have

| xX (r) x Y
EE Ca = |" o(rt/?) (4.14)
u(r) u hl

4]. om

(ii) log barrier function. In this case

2 2 2,

2/8, (2Y/82&/ d° + &1 3g"
81 | i

so that (4.10) becomes

dx

ar I
| = J . (4.15)
: du

| = E
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In particular, x(r) , u(r) inherit the differentilability properties of

ff and 8s , 1 =1,.eeym for r small enough (if £,g eC then
“

x,ue CPt). Thus

*

x(r) -x
~~ x, -1| © 2

= r J(x) + o(r) (L.16)
- * ~ o

u(r) -u ~

. Remark: These results can also be derived by differentiating (2.1) with

, respect tor . We obtain

dx m
AAT

Pr(x(r),r) = = - Lo ve, (x(x))T (4.17)Tr k g.. ic1. i=1 i

2 CL
In this case Lemma 3.5 guarantees that ¥ T(x(r),r) 1s positive

definite for r small enough, and Corollary 3.5 can be used to give
. du

the solution to (4.17). Note that (4.17) results if ir 1s eliminated

j from (4.10).

2 We can now proceed to the main result.
Co

| | _ | |
| Theorem 4.1: Provided J(x ) is nonsingular, then the strict

| complementarity and strict order conditions are equivalent for the

~ inverse and log barrier functions.

Proof: The argument 1s essentially the same for both barrier functions,

N but is simplest for the log function. Thus only this case 1s considered

| here.

kK
i = so that

For the log penalty function uj r,/8; (x)

|
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r

* k ¥

Pee) = £0) = 1 gay 8 (8) + o(llx,- x |)
1eB, 1k ~

* 1= tr, +o(llx, -x nn. (4.18)

If strict complementarity does not hold then for at least one 1€B,

"x
lim = 0 .

koe 8505)

A x x x, - x ) is O(}] x ||)S g(x) = ve, (x) (x, -x ) + o( 1% | Xe | at most, 1it
x ]

follows that r, = o(lx, -x ll) and hence, from (4.18), that
x w Co

fx)- f(x) . o(llx, -x 1) . Thus the SO condition does not hold.

If strict complementarity does hold then asymptotically for small r

—————— ~ < zEy ~ Yi > 0» ick)
lex) {| x(x) -x| 5102

* *

Thus r = O(||x(x)-x ll) . As J(x ) is nonsingular (4.16) holds and this

w

implies (as r = O(llx r) -x |})) that

¥

lx(r)-x || < Kr + 0(r%)

*

for some K > 0 . This shows that r = SO( |jx(r) - x ||) so that, by (4.18),

the strict order condition is satisfied. [OI

- Remark: The above argument shows that 1f strict complementarity does

not hold then the strict order condition cannot. The condition that

*

J(x ) be nonsingular is required only for the second part of the theorem.
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Example: (1) minimize xq tx,

fo

« subject to “Xqt X, >0, xy >0

*2
~~

~~
1. ly

~~ oo
~- 1.

| rd

LF Se |
rd

| X

| VE, 1

| vf

<

ff = xX, Xy = 0

Figure 4.1

-

From Figure 4.1 it is clear that the minimum is £f = 0 at X) =X, = Oo,

and that strict complementarity holds.

~ (a) inverse barrier function

1 1
— —— fp —

T =x +x,+7r 2 x,
2 1

NY BsBE 8
x,~ 07 T D2 22 1 1

- ak — |
s—=0=1+r{—7%o (- - x.) }2 1

“

29

-



This gives a pair of equations for X, and x, as funct ion:;

> ro. We have

xX, = 1/2 -r+ o(r>/?) ,

X, = $2, r+ o(x! 3) :

(b) log barrier function

T = x, +x, -r{log (x -x°) + log x. }1 2 2 1 1

-2

i] ) ) X er *1
2 1

dT 1 |
3x, =0=1-r 2 .

2 1

Solving for xq and X, as functions of r gives

xq = r - 27° + 0(z°) ,

X, = r+ e+ 0(r”) :

(ii) minimize X,

biect to X. -x° > 0 X, > 0subjec oO X, 1 pr Xq 2 .

In this case the minimum 1s again f = 0 at Xy =X, = 0 . However,

vf(0) = e, 1s orthogonal to vg, (0) = er . Thus, as both constraints
are active at zero, strict complementarity does not hold. Note that

the constraint g, = x; > 0 is redundant, and that the barrier function

trajectory is tangential to the constraint surface g, = 0 . Note also

that the rate of convergence 1s reduced, and that ry >5 does notg

tend to « for the constraint with the zero multiplier.
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(a) inverse barrier function.

“ 1 1

om Mh

i O=r a =
3x. 2.2 2

1 (x, - X,) xq

OT -1=0=1+r{ ——————
) 2\ 2
£5 (x, - X,)

whence

1/3 og 2
x, = (r/2) , ug= 1, NIV ’

Sq I

), 1/3 Fp
3g,

(b) log barrier function.

2
— - - XT =x, r{log(x, x;) + log 1}

CL - O = -r a + =
ox. | © 2 XxX

1 Xn = Xq 1

oT _ _ 1
ox, Shs xX -%°2 1

whence

0,

BN 1/2 B XP _ 1
0 = (r/2)77 , my = 1,vr =5=7

1/2 20
x, = 3r/2 , YU, = (2r) ,T—5= 2.

Og,
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(iii) minimize -x,

| subject to (1-x.)° -X. >0, X, > 0] 1 pZ Vr Fp ZF

This is the example used in MP Section 3 (see Figure 3.1). The

: optimum 1s £ = -1 at Xq = 1, X, = 0 . The Kuhn Tucker conditions
do not hold at this point.

(a) inverse barrier function.

| 1 1
T= x. +pf—mm———— + —| 1 5 X )| = - X, 2

| ME REY ni J

| SA NY J
x. YT 3 5" D

| 2 ((1-%) - X,) X,

| whence

x, = 1012 51/4 LAH

| x, _ 1/2 53/% 3/%
| 1

In this case u, (r) = u(r) = JE 1/2
2 «3 - Tr

(b) log barrier furé&ion.

| I = x. - rflog((1-x.)° =x.) + log x.)

)

S00 ier
1 (L-x.)7 -x1 2
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3 -1 1
— 0 = ep —m4 =

| 2 (1-x,) - X, 2

; whence

xX _ 1-6r ,

| x_ = 108r° |
2

| (x) =up(r) =In this case u (Tr) =u,lr) = .

1 2 108r

| The above examples confirm the predictions of our analysis, and for

a given fixed sequence of ry values effective convergence is attained

more rapidly (i.e., for earlier members of the sequence) with the log

: barrier function.

Now let § be a barrier function. Then

p, = log(o+@) , 0 >1 (4.19)

is a barrier function. Let X minimize f+r. ’ X, minimize

f+r.0, Then comparing corresponding Lagrange multiplier estimates

| gives

a 5)
=~ by Ty 0

(0 +B) = (x,)
whence

= X s r_  =-0 .| on (x) =o (2 3) as Ty

| Essentially this says that g; (x) -+ 0 more rapidly than g; (x) ; SO
that a faster rate of convergence 1s anticipated for the py barrier
function.
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Consider now the sequence of barrier functions defined recursively

by

1

i) ) = log( k. - log(g,(x))
J J J ~~

| i-1

ptt = Log( +8 )) , 1 = 2,5,00e, 0 > 1,
. 1m .

gD _ ¥ gH (1.20)
J=1

In this case the error estimate 1s

f(x, 7) = £(x*) = -r g.(x) = —_

~k k fc] 8 J ®x 57 5 log(g. | Sop Ts
(h.21)

The right hand side of (4.21) tends to zero as 1 =» ® , and this suggests

that increasingly rapid rates of convergence can be obtained by using

barrier functions associated with large values of 1 .

However, an even more interesting result is possible. This shows

that in certain circumstances 1t 1s possible to choose a barrier function

having the property that the solution to the ICP 1s approximated

arbitrarily closely by the result of a single unconstrained minimization,

without requiring Tr to be taken arbitrarily small. Let

. ii .
i i

rr) 22) +r Ve (0), ana
J=

m

Q(x,N) = £(x)+ ¥ A (k.-log(g.(x))) .
J=

10k



Theorem 4.2: Let Q(x,MN) have a unique stationary value (necessarily

“ a minimum) 1n 3 for each AN >0 , and let (1) minimize r(1) (x,r)
for i = 1,2,... and fixed r . Then the limit points of (33
are local minima of the ICP.

“

Remark: Note that r does not have to be small in this result.

Proof: If ney minimizes p(1) (x,r) then

m 1-1 .

(1) - 1 1 1 (i)ve(x 7) -r } [1 ~— vg.(x' 7)
71 k, - loge. (x) s=2 o+g.% (eg. (x\)) ex)

J J ~ J Jd ~ J ~

and this expression has the form

NCNM = 0 (4.23)

where NS has the numerical value
i 1-1

J k.-log(g.(x*77)) s=2 o+p) /(g.(x*7"))

(k.2k)

(1) NU \ (2)Thus the {x'/} also correspond to a sequence minimizing Q(X, ) by

the assumed uniqueness of these stationary values. Now, as 0 > 1 ,

plo) 0 , s = 1,2yee.,1i=1, A) can be made arbitrarily small for
~ each j by choosing i large enough. The desired result is thus a

consequence of the remark following Theorem 1.2. (J
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Remark: The conditions of the theorem are satisfied if f(x) convex,

g; (x) » 1 =1,2,...ym concave, and strict convexity / concavity holds

for at least one of these functions.

In what follows 1t 1s convenient to use the superscript 1 to

indicate the appropriate member of the log barrier function sequence

(L.20).

Lemma 4.3:

I.

2D) Sg) el)
og, J J

J

where

(1) _ (3-1)4 og (1-1). = ‘. . < . .

Ps p., 2; : P ’ (4.26)
and

(1)
Ps —- 1 P) &5 -» 0 . (4.27)

/ Proof: Let $(0) = -log a then

of > = = (4.28)
og J J

J

so that (0) = 1 . Now, differentiating the relation
(i+1) (1)

°3 o+ gt U8;

gives

2p (++) (1) 24(1)
9p L , 1 BY

2 - (1). 2 g. (1) 2
Og; (c+) J c+ og
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o

so that

= itl i+1 2 (1) (1)

3 e; 2 36° 3

+1_ aw, 5p) 1) |
- AERJ J

This demonstrates (4.25) and (4.26), (4.27) follows on noting that

“ (0) = 1, and that, from (4.29),
(1)

g Ed O 9 g. —- 0 3 1 = 1,25 e000 . Od
J g + J

J

L-

*

A consequence of this lemma is that, provided J(x) nonsingular,
) : *

then p(H)g(3) is nonsingular for x(r) sufficiently close to X .

Lemma 4.4: Let J(x) be nonsingular, and I, = B, , then the *Y

| condition 1s satisfied.

~ Proof: We have from (4.29) that

(DF [3240 8 apd)
J gs dg”

J €3 Pj J

| so that He -0 as r -» 0 for jeBy . Now
| *

xX, -X I 0~ ~ 3 3 -1

~ < | (x) ] k| a -u¥ p(1) uy 8
N.S

k
u

: om mn
| + smaller terms
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where pt) is diagonal, and pl) = 1/o{M -1, r -0,
J = 1,2,.ee,m . This result implies that for k large enough

by = =< x Tf og0e)
| J€B ~

The SO condition is an immediate consequence of this inequality. O

Remark: Tf By - 1, then wih) need not tend to zero for JFB, .
Thus eventually the largest components of (3) will be those associated

| ~ with the inactive constraints. This implies that [|x -x | = 0(r,) .
| But O-Y J€B, , 1s o(r,) which suggests that, in general, the SO

condition does not apply. This case should be contrasted with the log

and inverse cases where the contributions of the inactive constraints

| do not dominate in w (ln the inverse case the active constraints
dominate). We note that the SO condition is only sufficient for (4.1)

| to provide an error estimate and numerical experience indicates that it

1s applicable in the calculations with the log sequence. However, the

above discussion suggests that to attain the maximum rate of convergence

with the members of the log sequence, the inactive constraints should be

identified and discarded. A possible way to do this automatically is by

the use of a separable barrier objective function

m

Wn) = £6) + 1 Fou fle (0) (4.32)

where = Tr Kd r 1s the usual barrier parameter, and u kl 1
A k rT b p18

the multiplier estimate obtained from the previous minimization. This

objective function has the property of forcing the multiplier estimates
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for the inactive constraints to zero at a very fast rate. We have

Lyx. (x, .)1 Bb k+1 i og, k+l

k+1

k k+1 O m<Tpq Py See < py | x u, (L.33)
J=1

where <i 1s a bound for Z (x) y k = 1,245.00.
i ~

This choice can also be favorable in the case of nonstrict comple-

mentarity. Consider the previous example

biect to x. -X° > 0 Xx, >0min x, subjec 0 X, -%Xy 2 , 12 .

2 _

Set Q =., - r,{1og(x, - x7) tu, log x} . Then vQ = 0 gives

2 2
| - = u

~ Xp =X; _ Tyo xq roe1 0?

so that

u

. xk-1 1/2 fe 1/2
aS k = X - 'k k-1 °

1

-k Px
Setting r, =a, u,/2 = a reduces this to

~ 1 k

By = 3 Py1 73

The solution to this difference equation satisfying the initial

“ condition Po = 0 1s
1.k

From this it follows that w_ = o(r,) , and hence that x; = o(r,) :A -

Thus, for this example, we are able to obtain results as favorable as

those in which strict complementarity holds.

Example. Show that the error estimate (4.1) 1s valid in this case.
Ly
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There 1s a penalty to pay for the generality of the barrier

function algorithms, and this is a significant burden of calculation

associated with each of the successive unconstrained minimizations.

This can be explained (at least 1n part) by looking at the Hessian of

the barrier objective function. Experience (in part supported by

theoretical results) indicates that the condition number of the Hessian

1s a good indicator of the degree of difficulty of an unconstrained

optimization problem when 1t 1s solved by descent methods.

On the assumptions that the second order sufficiency conditions

hold at x , and that the active constraint gradients are linearly

independent, then it is possible to deduce fairly complete information

on the eigenvalues and eigenvectors of v(x) from (3.8).

(1) There are n—-t eigenvectors associated with eigenvalues of

T(x, 7) that are O(l) as r, = 0 . The smallest eigenvalue tends
to

Vts(x ul) v %
m = min =——F—=—= , ¥v such that ve, (x )v = 0 , VieB, .

v vv

(11) There are t elgenvectors associated with eigenvalues of

T(x, ) which tend.to ® as r, - 0 . These elgenvectors are
asymptotic to vectors of the form ¢, (xy, where Ys are eigenvectors
of the problem

[ey(x)Cy (x) -pyhly; =O

where A 1s a diagonal matrix, Ass = 2 Ci sy 1 = 1, quae
og; / 13 <t Og
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| The corresponding eigenvalues tend to = like p.Tr, max Ci
| List Oe;

ut

| -- that is, like by Enea) where O 1s the maximizing index.

| This shows that the condition number of 7 I(x) tends to

| like 1/g. (x) or like 1x, =x | if the SO condition is satisfied.
In this latter case we have shown that our measure of the cost of a

barrier function calculation depends in the main on the accuracy desired

| rather than on the choice of barrier functions. However, our estimates

| for the log family indicate that these will be somewhat more expensive

than the above estimate except when all constraints are active.

Note that the device introduced to force more effective elimination

| of the inactive constraints does not force the Hessian to be worse
conditioned in the case that strict complementarity does not obtain, at

| least in the examples that have been worked out. The use of this

| device would appear to be an important improvement in barrier function

| algorithms.

| 5. Analysis of penalty function methods.
Consider now the equality constrained problem (ECP)

| min f(x) , S = {x 5h, (x) = 0,1 = 1,2y¢.05Q (ieI,)} . (3.1)
XeS =

| It 1s assumed that S 1s nonempty, and that (3.1) has a bounded minimum

(say fT ).
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Remark: The inequality constraint g(x) > 0 can be written as the

equality constraint

| h(x) = min (0,g(x)) = 0 (5.2)

so that formally the ICP 1s a special case of an ECP. However h(x)

given by (5.2) can have discontinuous first derivatives.

Definition: F(x,N) is a penalty objective function if

q

FGM) = 2x) +h Yuh (0) (5.3)~ ~ 1S ~

where (h) is a monotonic increasing function of |h| , and (0) = 0 .

1+
Example: Let y(h) = In| then ¥ 1s a penalty function if &@ > -1 .

If g(x) is concave then, from (5.2), so is h(x) , and ¥(h) is

convex provided & > 0 . If & < 0 then lis unbounded as h -0 .

Theorem 5.1: Let ial te , and x, minimize F(x, ) . Then

{£(x.)]} nondecreasing, F(x, M1 strictly increasing unless x e§ .

. } * W

and (£ Ving) nonincreasing. If {x} - Xx then x solvesi=1 ~ ~ = ~

the ECP.

Proof: Let A, < A  . Then, provided X sX és ,

Flxoh) < F(x,M) < F(x,h) < Fx ,N)

Thus (compare Lemma 1.2) the results for the sequences follow as before.

We have

min F(x,\) < min F(x,N) = min f(x) = Fo. (5.4)
X ~ xeS 7 xeS 7
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x .

Thus the F(x ,N,) are bounded, and hence x €S . Now
* * -

x eS = f(x) >F,

but, by (5.4),

Fx) < Flaps h) st

so that

lim f(x.) < fF .
row ~F 7

- *

Thus f(x*) =f , and x solves the ECP. [J

Remark: In the more general case in which fx} 1s bounded it follows,

by restricting attention to convergent subsequences, that all limit

points of {x} solve the ECP.

W

Theorem 5.2: Let {x} - X and assume ¥(h,) continuously differentiable,
¥

and vh, (x) , ieI, , linearly independent. Define u, by

1 7 |b, i ’ 2 = b 41

*

then fu} —-u , the vector of Lagrange multipliers for the ECP.

Proof: Define the matrix B(x.) by k.(B(x.)) =vh, (x),

i=1,2,...,4 . The condition that xX, minimize F(x,N) gives

of S ‘
0 = TEN) = 92x) an, 3 Sa] ET) 20

so that

v(x)" = B(x )u (5.7)
~T ror °
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Now B(x.) has full rank for |x, -x | small enough. Thus

T -1 T T

uy, = (B(x,)" B(x) © B(x)” vf(x,)

*T ¥.\ -1 * 7 ¥.T w
-» (B(x)" B(x)) "Bx) vf(x) =u .0O (5.8)

Wr

Remark: (1) If strict complementarity holds so that Ju, | > 0 ,
i=1,2,...,q4 , then the convergence of the Lagrange multiplier estimates

implies (from (5.5)) that sgn(h, ) is constant for i large enough as

sol > 0, xeS . Thus the minimizing sequence approaches S 'from one
[11 ~

side'. In this sense S acts like a barrier.

(ii) Note that h(x) = min(0, g (x)) = 0 identically in a neighborhood
* * * oo

of x if 8, (x }) > 0 . Thus vh, (x ) = 6 so that, in this trivial
sense, the constraint gradients are not linearly independent. However,

if strict complementarity holds, then a multiplier result can be proved

for the active constraints (do this!). In fact, the strict complementarity

restriction can be relaxed somewhat.

Theorem 5.3: If the conditions of Theorem 5.2 hold, and, in addition,

* a=ywu} ->u , and N\, —%5 -» eo, i=12...59, as r -® , then the
~ dL ~ XL dh-

ht

*

second order sufficiency conditions hold at x 1f and only if

F(x ,N) is positive definite for r sufficiently large.

Proof: This is essentially the same as that of Lemmas 3.1 and 3.2. OO

Example: Derive the analogues of Lemmas 3.1 and 3.3 which apply when

the ECP is obtained by transforming an ICP by means of (5.2).

11k



C

2

u Co d :
Remark: The condition that A 5 ~® 1s related to strict

| i

. 1+
complementarity. Consider { = In. | , @ > 0 . Then

d o ay _ LT

« Sk = (1+0) |n,|” sen(ny) , - A, oh, uy (5.9)1

so that

nn SY (1+a)aln,| = t- (5.10)
Tan + In, |

~ i x

ac
Thus M CV , h. -0 if lw. | >0 . Strict complementarityTr 2 1 L

dh

~~ 1s of particular importance for equality constraints derived from

inequality constraints by (5.2). In this case, the one sided convergence

implied by the multiplier relations 1s needed 1f we are to be able to

~ talk about second derivatives at all.

The parallel development of the treatment of the ECP by penalty

function methods and the treatment of the ICP by barrier functions can

~ be completed by discussing convergence rates of penalty function algorithms

in much the same way as we treated the barrier function case. [OT example,
#

multiplying (5.6) by X, -X gives

* x *,,2 11

£(x ) - £(x,) = EENCRN (x, - = n° (5.11)

“ The assumption that the SO condition is satisfied can now be used to

provide estimates. From (5.9)

(1+) |b, |” san(n,) = - uyri 1
pp -

so that
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: , 1/a

: Pil = Ton, (5-12)
1\1/a

This suggests a rate of convergence of o((5) ) , which contrasts
| T

| favorably with the estimates obtained for the barrier function algorithms.

In particular as a - 0 , (5.12) suggests that the convergence rate

becomes arbitrarily great. However, the results of the previous section

2 also indicate that the condition number of the Hessian will become

| . arbitrarily large as &@ - 0 . The next result provides information on

the limiting case & = 0 .

: Theorem 5.4: In the ICP let f(x) be convex, and g; (x) oo ieIp

concave. Let w be an infeasible point, Xy an interior point of S ,
| | *

a = min g; (x) , b = f(x) - f(x*) , and No = (b+1l)/a . Then x
| ieT ~ ~ ~ ~
| 1

minimizes

p

F(x,N) = f(x) -A Y min(0, g.(x)) (5.13)k ite
i=1

providedA > Ny

Remark: It 1s necessary to demonstrate the result only for AN = Ny .

For all larger MN it ‘is then a consequence of Theorem 5.1.

Proof: Let v be the boundary point of S on the join of w and % ,

and B. be the index set of constraints active at v . Define

s(x) = £(x) =A, Le. (x) , (5.14)
~ ieB ~

v

then
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s(xy) = 20x) =A, Lg. (x)
~0 ~0 Oj 717-0

\s

“

< f(x) - (+1)
*

= f(x )-1

- < £(v) = s(v) = F(vsN). (5.15)

As s(x) is convex and V is on the join of Xn and WwW, 46,

0 <8 <1, such that
~

s(V) _ os (xy) + (1-0) s(w)

< 0s(v) + (1-6)s(w)

Ny

whence

s(v) < s(w) (5.16)

|

’ Now s(w) < F(w,N) so that, from (5.15) and (5.16)p - ~ - ~~

F(v,h) SF(nA)

- Thus min F(x,M) must be attained at a feasible point. U
x ~

LS 6. Accelerated penalty and barrier methods.

The problems of poor conditioning of the camputational problem and

(comparatively) slow convergence make 1t worthwhile to search for methods

“ for accelerating the convergence of the penalty/barrier function

algorithms. Consider the (generalized) penalty objective function

4 +
P(x,W, MN) = £(x) +} Woyh,(x) +N) (6.1)

.~ ~~ ~ i=l
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where W 1s the diagonal matrix of penalty parameters, and the m,

are further parameters to be used in the acceleration process.

At a minimum of P , x(W,T) satisfies

q

vf (x) - L u, (W,Mvh,(x) = 0 (6.2)i= ~ ~

where u.(W, T) = - W oy Provided ||x(W,n) -x || and
iv? ii ah. ) RANA
*

uw, TM -u || are sufficiently small, the second order sufficiency
* ¥

conditions hold at x , and vh, (x ) iel, , are linearly independent,
W

then (by Theorem 5.3) x also solves the ECP

min £(x) , Sy oo = {x 5 h(x) = bh,(x(W,M)) , 1eI,} .
Xe~ s

*

One sequential strategy for making x(W,M) - Xx is to force

A = min W,. Te . However, the parameter vector | 1s also available,
: ~

and we ask 1s it possible to adjust it to make

h, (x(W,M)) =0 |, icl, . (6.3)

3X ox

Let 37 be the matrix with components 3, sy 1 = 1,ee.yn ,
J = 1,2,...,q . If 9 P(x(W, TM) ,W, TN) is nonsingular, then, by the

implicit function theorem, we can solve (6.2) for x = x(7) holding

W fixed. We have

Rp XE _ $y > on?
on )N ii oh,oTm, ¥ ii= i 1

where all quantities are evaluated at x(W, MN) . Defining the diagonal
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= W > = W oy i=12 and the
| matrix V by V.. = ii 32 © ii Om,om, ’ = dy2y. . Q ,. i i

a“ 1

matrix B by k, (B) = oh; i = 1,2, 00a], then (6.4) can be written

2 Ty Ox
V £+BVB - -BV . (6.5). ( ) &

2 T CL CL

Choose A to make U = ¥ £+BV,3B positive definite, and set

V, = V-V, . Then, by (3.6), if min V.; is sufficiently large
« it

x yulsEtute tro) (6.6)
on

| This relation can be justified if
Sy.

*

(i) the second order sufficiency conditions hold at xX and vh, (x) ,~ =

lel, , are linearly independent,

[ [ * * [ [
~ (11) x - x | and Iu -u | are sufficiently small,

(111) min Vier -»® 35 min w.. —-® for TT =6, and
i i ~~

N (iv) min W,, sufficiently large.

Consider now the use of Newton's method for solving (6.3). This

suggests that a correction ©T to TM be found by solving

|-

ox T dx
= 9) = =- ® 6.BSoN =F FHon= ch (6.7)

But, by (6.6),
-

T ox -1 6.8~~ - + hdB® 5p I+0(V) (6.8)
so that

- 5 = h+0(VTY) (6.9)
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Thus we expect the simple correction 81 = h to approximate arbitrarily

closely to a second order process provided V 1s sufficiently large.

Algorithm (ECP)

(1) Initialize n() , (1)

(11) Minimize p(x, w(K), n(K)y to determine x , u, .
CL k(iii) IF 7 u, h, (x) < TOL THEN STOP.i Tite

i=1

(iv) FOR I =1 STEP 1 UNTIL Q DO

*

IF ABS(h, (x) < DECR ABS(h, (x, _4))
kt1 k

THEN T, = = mM; +h, (x)

prse WED - mop xu)
ii ii

k

Hl -1 C0
i | oh, LI) fT

+ ii

(v) K := K+l.

(vi) GO TO (ii).

Remark: The idea behind the algorithm is that the correctim (6.9)

1s used whenever the convergence of hy to zero 1s satisfactory.

Otherwise 1t 1s assumed that Wes 1s too small and it 1s increased

accordingly. Ms 1s modified at the same time to ensure that

uf ou h 0 CRE indicates the inverse function to; 4, as h, . Sh indicates 5

For the ICP we consider the modified barrier function

m

(k) (kK)y _ (k)  &-1 k

R(x W507) =f (x)+ L Wi us Ble(x) +n) (6.10)
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where u, 4 is the vector of multiplier estimates from the previous

minimization, and (E) 1s now the diagonal matrix of barrier parameters.

We note that, in the particular case in which all constraints are

active, the previous analysis 1s applicable, at least formally, and

suggests a correction

on) = 1) + gx) (6.11)

| with order of magnitude departure from a second order iteration of
2, =»

o((= Wik) uf +) ) . However, we require automatic selectioni 0g,

| of the active constraints 1f we are to make use of this result, and it

| 1s important to note that this 1s provided naturally 1n the algorithm

by the options

| (i) if g;» 0 at a satisfactory rate then US n+ g; , and

| (11) 1f the convergence rate 1s too slow, then decrease the barrier

| parameter.

This second option can be expected to apply to the inactive constraints,

| and will drive the contribution to (6.4) from this source rapidly to

| zero by (4.33). Note that the boundedness of the barrier terms requires

that g; + Ns be positive. If 7H 1s set to zero then (6.11) ensures
| that this condition will be met initially. Provided strict complementarity

holds, the convergence of the multiplier estimates will ensure that it

must hold ultimately. Of course, the calculation must be started from

a feasible point.
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Algorithm (ICP)

(i) Initialize ne , ey uy

(11) Minimize R(x, 8) (Ey to determine x, , Uy .
no

(111) IF Lv g, (%,) < TOL THEN STOP.
(1v) FOR I = 1 STEP 1 UNTIL M DO

| *

IF ABS(g, (x,)) < DECR ABS(g, (x, _4))

| +

THEN WE 1) 1/2 ,11 g.
i

(kt1) _ (k)

+ k
ELSE wlE 1) = DECR *W.. ,

ii ii |

(k+1) EE] t/a1 - g. (k+1) ’
i W..

il

(v) K := K+l.

(vi) GO TO (ii).

op —1

Remark: As 1n the previous algorithm f =) denotes the inverse

function to ns For example, if § = - log g then | = W .
Consider now another modified penalty function for the ECP

T T
s(x) = f(x) -u(x) h(x) +h(x)” Wh(x) (6.12)

where the matrix W 1s positive definite.

¥

Lemma 6.1: If the second order sufficiency conditions hold for x = x ,

*

and the vh, (x ), ie€I2 , are linearly independent then S(x) has a
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* * *

local minimum at x =X provided u(x) —-u as X +X and the

“ smallest eigenvalue of W is large enough.

Proof: We have

W* * %* TT
vS(x ) = vf(x ) -u(x)” Vh(x*)

*.T #* ¥*
- h(x)" (vu(x') -2Wvh(x ))

* *T ¥*
= gf(x ) -u “vh(x )

= (

*

as u is the vector of Lagrange multipliers for the ECP. Thus S

~ *

has a stationary point for x = x . Now

2) * AEE *.T *
ve (x) =v &x,u)- vu(x ) vh(x)

“ ¥*,T W
- vh(x ) w(x)

* *

+ 2vyh(x )T W vh(x ) (6.13)

\ ¥ |
where terms which vanish at x have been ignored. Corollary 5.2 can

*

now be applied to show vos (x ) is positive definite. We set
* ¥ ¥ *,T * *, T *

V = vh(x yt ,U —9° g(x ,u ) -yu(x ) vh(x ) -vh(x )"vu(x ) , and note
— ~~ ~~ ~~

that

0 * ¥
min tut = min £7 vo f(x,u)t =m>0

_ vt=0, |[t|=1 vt=0, |j6]=1

¥

as the second order sufficiency conditions hold at x .

“
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| Theorem 6.1: Let the conditions of Lemma 6.1 hold at x and set

.

u(x) = B(x)+ v(x) (6.14)

T _ *
where B(x) = vh(x)” . Then (6.12) has a local minimum at x provided

| the smallest eigenvalue of W 1s large enough.

Proof: This result 1s an immediate consequence of Lemma 6.1. As the

* ] | | ¥*, +

vh. (x ) ieI,, are linearly independent, B(x ) is a bounded
w * *

| operator for |x -x || small enough. Thus u(x) -u as x -x . [J

Remark: (1) By using (6.14) we can construct a penalty function which

¥

1s differentiable in a neighborhood of x (contrast with (5.13)) and

x

which has a local minimum at x = Xx for sufficiently large but finite

values of the penalty parameter. However, (6.14) requires first derivatives

of the problem functions so that minimization of (6.12) with a method that

requires first derivatives of S will require second derivatives of

| the problem functions. Two cases have been considered (Fletcher).

: T + T 2

(1) 8(x) = f(x) -h(x)"B(x) vf(x)" + oh(x)||" , and (6.15)

CaN T + T +

(11) 8(x) = £(x) -n(x) B(x) v(x)" + of|(B(x)") n(x)||* , (6.16)

where o 1s a penalty parameter.

(11) There 1s a close connection between the penalty function (6.15) and

2
the algorithm based on (6.1) in the case §(h) = h  . At aminimumof P

~ we have (as VP = 0)

+

2W(h+e) = - B (vf) T : (6.17)
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Thus the correction formula corresponds to updating the Lagrange

multiplier estimate by (6.14) at the end of each unconstrained minimiza-

| tion rather than continuously which the use of S requires.

(iii) Note that S(x) can be interpreted as a Lagrangian. For

example, in the case S(x) is given by(6.16),

5(x) = £(x,w(x)) (6.18)

where

+ T + +. T
w(x) = B(x) vf(x)” - oB(x) (B(x) ) h(x) . (6.19)

| Lemma 6.2: w(t) defined by (6.19) is the vector of Lagrange multipliers

for the problem

Co 0 2

minimize f(t)+VEf(t) (x-t) + 7 |[x-t|| (6.20)

subject to the linear constraints

| h(t) +vh(t)(x-t) = 0 , (6.21)

provided this minimum exists.

Proof: Any point satisfying the constraints (6.21) has the form

_ |
x = t - (B(t)") h(t) +A(t)z (6.22)

| where B(t) TA(t) = 0 . The multiplier relation for (6.20),(6.21) is

VE (£) + o(x=t)T = ulB(t)’ (6.23)

so thatu can be taken as (substituting (6.22) into (6.23))

+ T T+
u = B(t) {v£(t)” - o(B(t)") h(t)} . O
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If (6.22) 1s substituted into (6.20) the problem becomes one of

minimizing w.r.t. z

VEAzZ +5 2 Txt Az
whence

1 -1

z= - 2 (AA) TA gr (6.24)

Thus o plays a role in ensuring that x(t) , the minimum of (6.20),

cannot deviate far from t (cf. remark (ii) following MP Corollary 5.1).

Example: (i) The Lagrangian interpretation provides a method for

generalizing the above discussion to inequality constraints. Consider

the problem min g(x,w(x))where w(t) is the vector of multipliers for
N ~ ~~

the problem

o 2

min f(t)+vE(t) (x-t) + 3 |jx-t||
X ~ ~ ~~ ~~

subject to g(t) + vglt) (x-t) > 0 .

_ %

Under what conditions does § have an unconstrained minimum at x .

What role does strict complementarity play in this problem?

(11) (6.12) can be generalized to other penalty functions and to

barrier functions (cf. Remark (ii) above). How much of the above

analysis goes through? What modifications are required? Evaluate the

resulting algorithms.
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| Notes

“

le, 2. See Fiacco and McCormick's book. Also the paper 'Penalty

function methods for mathematical programming problems’,

J. Math. Anal. and Applic. (1970), by Osborne and Ryan.

N 3. Fiacco and McCormick were the first to draw attention to the

importance of these (as they were to much of the material in this

section).

A

4, The log family 1s due to Osborne and Ryan. The importance of the

conditioning of the Hessian to Walter Murray. Rate of convergence

formulae have also been developed by F. A. Lootsma, (Thesis, also

N survey paper at Dundee conference).

5. Fiacco and McCormick. The exact penalty function 1s due to

Zangwill.
-

6. The algorithm for the ECP 1s due to Powell in the case § = n°

(Harwell report, also Procedings of Keele Conference). The exact

penalty function S(x) 1s due to Fletcher who has developed it

y together with his student Shirley Lill and described it in several
Harwell reports. The extension to inequality constraints (example (1))

1s also due to Fletcher.

| | -
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