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Abstract

These notes are based on a course of lectures given at Stanford,
and cover three major topics relevant to optimization theory. First
an introduction is given to those results in mathematical programming
which appear to be most important for the development and analysis of
practical algorithms. Next unconstrained optimization problems are
considered. The main emphasis is on that subclass of descent methods
which (a) requires the evaluation of first derivatives of the objective
function, and (b) has a family connection with the conjugate direction
methods. Numerical results obtained using a program based on this
material are discussed in an Appendix. In the third section, penalty
and barrier function methods for mathematical programming problems are
studied in some detail, and possible methods for accelerating their
convergence indicated.
This research was supported in part by the National Science Foundation
under grant number 29988X, and the Office of Naval Research under contract

number N-00014-67-A-0112-00029 NR Okk-211 . Reproduction in whole or in
part is permitted for any purpose of the United States Government.






Introduction

These notes were prepared for a course on optimization given in
the Computer Science Department at Stanford University during the fall
quarter of 1971. 1In part they are based on lectures given during the
year of study in numerical analysis funded by the United Kingdon Science
Research Council at the University of Dundee, and on courses given at the
Australian National University.

The choice of material has been regulated by limitations of time as
well as by personal preference. Also, much material appropriate to the
development of algorithms for linearly constrained optimization problems
was covered in the parallel course on numerical linear algebra given by
Professor Golub. Thus, despite same ambition to cover a larger range,
the course eventually consisted of three main sections. These notes
cover these sections and have been supplemented by brief additional
comments and a list of references. A more extensive bibliography is
also included. This is an amended version of a bibliography prepared
by my former student Dr. D. M. Ryan.

The first section is intended to provide a solid introduction to
the main results in mathematical programming (or at least to those results
which appear to be the most important for the development and analysis
of practical algorithms). The main aim has been to characterize local
extrema, so that convexity and duality theory are not treated in any
great detail. However, the material given is more than adequate for the
purposes of the remaining sections. Opportunity has been taken to
prevent the recent results of Gould and Tolle which provide an accessible
and rather complete description of the first order conditions for an

extremum. The second order conditions are also considered in detail.



The second section on unconstrained optimization is largely restricted
to that subclass of descent methods which (a) requires the evaluation
of first derivatives of the objective function, and (b) has some
family connection with the so-called conjugate direction methods. This
is an area in which there has been considerable recent activity, and
here an attempt is made both to summarize significant recent developments
and to indicate their algorithmic possibilities. An appendix (prepared
with the help of M. A. Saunders) summarizes numerical results obtained
with a program based on this material. One significant omission from
this section is any detailed discussion of convergence. However, the
convergence of certain algorithms (those that reset the Hessian estimate
periodically or according to appropriate criteria) is an easy consequence
of the material given.

In the third section, penalty and barrier function methods for non-
linear programming are considered. This turns out to be a very nice
application, 1in particular, of the results of the first section. These
methods have advantages of robustness and simplicity but carry a definite
cost penalty. However, attetnpts to remedy this situation show some
promisc. The material presented in this section has important connections
with other areas: for example, with the method of regularization for

the approximate solution of improperly posed problems.
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Introduction to Mathematical Programming
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1. Minimum of a constrained function.

Consider a function £(x) on S c B - B, where S is a given

~

point set.

*
Definition: X 1is the global minimum of £ on S if

~

£(x) < £(x) VxeS. (1.1)

*
Remark: x exists, for example, if S is finite, or if S is

~

compact and f(x) continuous on S

*
Definition: x is a local minimum of f on S if 4 & > 0 such that

f(x*) < £(x) ¥x eN(x*,S) (1.2)
where

N(x,8) = {t58n {t; \\E-f\\f/ <s8}} . (1.3)

*
If strict inequality holds in either (1.1) or (1.2) whenever x ;é X

then the minimum is said to be isolated.

Definition: S is convex iffl’)fe ES = O}fl+ (:|_..g)§2 €8 for 0 <6 <1

Example: If S is convex all finite combinations of points in S 1is
m m

again in S . That is iz—:lki}fies where fieS s iz_l%.i =1,

xigo, 1<m<eo .

Definition: f(x) 1s a convex function on the convex set S if

£(ex) +(1-0)x,) < 0f(x)) + (1-0)£(x,) , 0 <0 <1 . (1.14)

\t\\ 2’02}1/2 , the euclidean vector norm of t



If strict inequality holds when 0 < 0 < 1 then f is strictly convex.

Say g(x) 1is concave (strictly concave) if -g is convex (strictly

convex) .

Lemma 1.1: If f£(x) is a convex function on the convex set S then
a local minimum of f is the global minimum. If f is strictly convex

then the minimum is unique.

Proof: It is necessary to consider only the case f bounded below.

If x* 1is a local minimum but not the global minimum 3 x** such that
K * ,

f(x ) < f(x') . Now, by assumption, 3 6 > 0 such that" f(x) > f(x*)

~ ~

_x_
for x e¢N(x ,8) . Choose 6 > 0 sufficiently small for

*% % *
ox + (1-8)x" eN(x ,8) then

*% * *
(i) f(x*) < f(6x + (1-6)x ) as x is a local minimum, and
*% * % *
(ii) f(ex + (1-8)x ) < 6f(x ) + (1-8)f(x ) by convexity
* *
< f(x') unless f(x ) = f(x )

* O ¥%
Now assume X , X both are global minima and that f is strictly

convex. Then

* FH X *¥
flex + (1-8)x ) < ef(x )+ (1-8)f(x ), O<e <1

which gives a contradiction. O
Definition: A set C is a cone with vertex at the origin if

xeC = \xeC , AN>0 . C is a cone with vertex at p if

-[x-p ;xeC} 1is a cone with vertex at the origin.



‘ (-

Definition: x 1is in the tangent cone T(S,XO) to S at X%, if

~

3 sequences {%-n} >0, {}fn} - X, {}jn} c S such that

Lm N () -x0) -x|| = 0 . (1.5)

n-—o

Exemple: (1) 8 = x5 |pe-wl = 2}, 7(S,%)) = {x 5 x4y -w) = 0} -

7

(i1) Sz{x;\\x:w\‘LS r} . T(S:fo) = E, if X, in interior of s ,

. T
otherwise T(S,Jjo) ={x; x (’fo -w) <03 .

~ ~

Lemma 1.2: T(S,xo) is closed.

Proof: Consider a sequence {ti} e.:r(S,xO) such that Hti—tH -0, 1i-a.

It is required to show that t eT(S,XO) . Now tiej‘(s,}go) > 3

i i . i, i .
N, . im o (xS -x.) -t.|l = 0O . Prescribe
320, x;} < s such that = 5 Gy - %0) -84 )
{e.}) . . select t, such that |t, -t| <e,/2, and j = i(J) such
i ~1 ~i i
i i i i - t S, X .
that W\j(f,j -},,{,O) -'Ei\\ < Ei/e . Then H?\J.(}fj —}fO) EH <e; =t eT( ’,,-O)
a
L &t
Lemma 1.3: (Necessary condition for a local minimum.) If £(x) €
and if x, 1is a local minimum of f on S then vf(xo)x >0 ,
Vx C T(S")fo) .
Proof: Let x be defined by sequences Q’n} ’ {Xn} - As X, is a local
. ¥
minimum 3 & > 0 such that f(x ) > f(xo) VX*EN(XO,S) . Consider now

the restriction of the sequences {%’n} ’ {Xn} such that x GN(Xoys)

i/ feCl at x

o if f(x) = f(}fO) Vf(’fo) (f - :Nco) + o(\\}j - }fO“) _ Higher

2
order continuity classes are defined similarly. For example, feC

if the o( ) term can be estimated in the form

3 ()T 978 0,) G- 30) + ol - )



We have

- | -
< vE(xy) (5 = %) + ollfx - x,11)
whence (note it is sufficient to consider X such that|P<”= 1)
0 < vE(x A (%, - %) + o(n [lx, - x,]])

< vf(ico))NH o(l) as n - = . 0

lixample : (5.) Ir Xy € SO (the interior of S ) then I(S,XO) = En

Thus x can be chosen arbitrarily- so that vf(x0)= 0

~

(ii) If s = {x;\\f-w\\ = r} then T(S,xo) = (x ;};T(x -w) = 0}

~

In particular if x:eT(S,xO) then -x eT(S,x.) . Thus we must have
vf(x,)x = 0 ¥x such that XT(X -w) =0 . Thus yf(x.) = a(x. -w)
Z0’% ~ 2o ViZo) = HEp W

for some « .

(iii) If S = {x; ||x -w|| < r} and on -w|| = r then
7(8,x,) = b{} f?(xo -w) < 0} . In this case we have vf(xo)x >0
¥x such that xr(xo—w) <.0 . Thus vf(xo) = Q(w -x.) for some

nonncyrative o

Let A be a set in En

Definition: The polar cone to A is the set A* = {x ;XTy <0 VyeAl .

*
A has the following properties.

1 * I
(i) A is a closed convex cone.

* *
then A2 c Al .

(iii) A** = A if and only if A is a closed convex cone.

(i1) TIf A C A,



*
(iv) A* = (Ac) —-- the polar cone of the closure of the convex hull
of A . The convex hull of a set is the smallest convex set

containing it. Thus A = NX, AcX, X convex.

(v) If A is a subspace then At = Ax

*
Remark: Lemma 1.3 can be restated: ' if x is a local minimum of £

~

*
on S then -vf(x) e:r'(S,x*)* r

*
Lemma 1.4: If v e j’(S,xo) then -y is the gradient of a function

having a local minimum on S at x

~0 7
Remark: It is sufficient to consider the case ||y||=1, x, =0
o xl |
Proof:  Let C_ = x;xy < — 1} e =12.... We first show that

for each e , 3 e(e) >0 such that N(0,e(e)) C, . For assume this is
not the case. Then 3 {xp} C E -C,_ with xpeN(O,l/p) ;D= 1,25...
such that

T

S Y 1
€

L =~ , po= L2 ... . (1.6)

I,

X

The sequence =P is bounded and therefore contains a convergent
|
~D

~

X.
~L

e,

subsequence - - 2z . By-definition z e7(8,0) , but, by (1.6),

zTy>—]e'—>O

*
which contradicts ye T(S,0) .

10



Now let Ek = sup{e,N(0,e) < C, } . We define

I

£, = min(1, “gl) s

.1 ~
€ — mln(-é- €-17 Ek) s k>1,

and

P(z) = 2| z || , Hf“ 2 €5

2lz |l 12l ey . ol e -2
k-1 e - Epil k € ™ Erq b H E H el €11’ Ek] >
o , 1z|~|=|= e}

It is clear that g, > 0 and g monotonically decreasing. Further
P(z) >0, P(z) is an increasing function of |z ] » and

2liz I,

HE“SEK = P(z) -< k=1

Thus P(z) = o(|} z ||) so that vP(0) = 0

Now let z =x - (xy) y . We show that, under appropriate conditions,
xTy <P(z) . It is sufficient to consider xTy > 0 , and in this case
T T
Izl -2y <zl < lxli+xy | (1.7)
=l
If XeCe then xy <- e . Using (1.7) we have
e-1 e+l
= =l < =zl = = lIi=ll - (1.8)

Now assume x ¢ N(0, €) , ¢ < ey - Then || x || € [ €417 sk] for some k > 3

whence xeCk . This gives

~



. x|l Iz |l .

XY X Tk S T k1 (1.9)
However Hz\\>~]-5-:-L € > whence

P2 S T kel Ext2
2| z ||

P(Z) > S (1.10)
so that, combining (1.9) and (1.10)

T k+1

Xy < pre1y F(2) <P(z) - (1.12)
Thus the function

£(x) = -x"y+ P(x - (xX'y)y) (1.12)
has a local minimum on S at Xy = 0 . Further feC" at 0 , and
vf(0) . . . O
2. Some properties of linear inequalities.
Definition: The set H(u,v) = {x ;uTx = v} is a hypsrplane. Note that

the hyperplane separates En into two disjoint half spaces

={x;uTx<v}.

Lemma 2.1: (lemma of separating hyperplane). Let S be a closed convex set

in En , and let XO}éS * Then 4 a hyperplane separating Xy and S

Proof:  Let X; be 8NY point in S .Then mins\\ic -XO\\ < Hxl-xo\\ =1 .
Xe ~ R

The function Hx-—xOH is continuous on the closed set S N b{;]h{-xoﬂ < r}

and hence the minimum is attained. Let this point be x* . From

Figure 2.1 it is suggested that

(x-x"T (X -x)) = 0 (2.1)

=~

12



¥ T, ¥
(x-x )" (x -xo) =0

Figure 2.1

is an appropriate hyperplane. To verify this, note that X, eR so

that it remains to show that S < R+ . Let xeS then for 0 <8 <1,

T
> lx -x

oll

o+ (1-0)x" - x|

so that

@2Hx —x*|]2+ 20(x —x*)T(x* -xo) >0

and, letting © - 0 ,

*

*
(x -x )T(x -X5) >0

whence xeR_ . O

Definition: C is finitely generated if

P
C = {}f,}i = ;,_Z_l)\ic;"l A>0, 4= 1,2,...,p} . It is clear that C

is a cone. It can be shown that C is closed.

Lemma 2.2: (Farkas Lemma). Let A be a pxn matrix. If for every

solution y of the system of linear inequalities

~

Ay >0 (2.2)

13



-~

it is true that

T
then 3 x > 0 such that A x = a .

Proof: Let C be the cone generated by piUQ , 1= 1,2,..0p
Then the result of Farkas lemma is that if (2.2) = (2.3) then gec .
We assume afC and seek a contradiction. By Lemma 2.1 there exists
a separating hyperplane. To construct it let Ef be the closest point
in C to a. Then “Kx* - §“2 has a minimum at M = 1 . Differentiating

and setting A = 1 gives
* T %
(x -a)fx =0 . (2.4)
By (2.1) the equation of the separating hyperplane is

(x-x*)T(x*-a) = XT(ii*—a) =0 (2.5)

which shows that it passes through the origin.

By Lemma 2.1 C c R, whence
VTA(X* -a)>0
for arbitrary v > 0 so that
a(x" -a) 20 : (2.6)
but ae€eR whence

al(x - a) <0 (2.7)

which gives the desired contradiction. O

13.1



Remark: Another way of looking at this result is that at most one of

the following pair of systems can have a solution.

(1) AX =b , x>0

(ii) aly >0 , bdy<o

~

This is an example of a 'theorem of the alternative!

N

Multiplier relations.

We consider now the mathematical programming problem (MPP)
min f(x) subject to
g..L(x) 2 0 2 ic I v

hi(’ic) =0, icI,

We assume that £ , g. , 1ie I

5 1 and hi , 1e 12 , are in C2 and that

the constraints on the problem are not contradictory. This corresponds

to the problem discussed in Section 1 with S given by
s={x;g(x>0,1icI; , h(x) =0, ieL}. (3.1)

At any point X ES let BO be the index set for the constraints

satisfying gi(}fo) = 0 . If icB, we say that g, is active at x,

Definition: S is Lagrange reqular at x iff for every f such that

(1) £ has a minimum on S at }fO s and (ii) feCh at XO (i.e.,

feFO) 3 u , vsuch that

(1) ve(x)) = L uve(x) + L v,vh, (x) (3.2)
~ iEBO ~ iCI2 ~

=}

1L



This can also be written

(1) vi(x,) = .Z uivgi(ico)fz v;vh, (X))
iel iel
1 2
(ii) uTg(xo) -0 , and
(iii) u >o

where zero multipliers are introduced corresponding to the inactive

constraints.

Remark: If (3.2) holds for feF then f satisfies the Kuhn-Tucker

O}
conditions.
Example: It is important to realize that (3.2) need not hold. Consider
the MPP
min f = X
subjectto g, =%, >0, g, =%x,>0, g = (l-x)B-x >0
J 1% 2V 8 =% 2V 8 1 T2

From Figure 3.1 it is clear that the minimum is attained at Xl =1,

x2 =0 , and here g1 and g5 are active. We have

while

VE = -&

so that a relation of the form (3.2) is impossible.

Figure 3.1




Let

o=
Il

0 {X 5 Vhi(i{o)}f =0, ieIe} ’

(@]
|

o= s ve(x)x >0,1e3.} .

*
Lemma 3.1: S is Lagrange regular at X, iff —Vf(xo) € (GO nHO)

for all feFO

P f: If £ G * h
roof: -y (>~co) e ( o N HO) then
i)Y 2 0

Yy such that

C
-

. ~
vhy (5)y =
-vhi(fo)¥ >0 , ic I,
ve (%)Y >0, 1cB

Thus, by Farkas Lemma, Vf(XO) is a linear combination with nonnegative
weights of Vgi(}fo) » 1 €By , and vhi(ico) s 'Vhi(}fo) , ieI, . Thus
(3.2) holds. On the other hand, if (3.2) holds then vf(xo)y_> 0 for

N H,.3

all jZ'CG 0

0

Remark: Lemma 5.1 shows the difficulty with the above example. Here
4 = {x = ey, O > 0} » GO N HO = {x = aeq, o unconstrained] . We have

*

T = right half plane , (G. n H the x axis. By Lemma 1.4 for

)*
0 0 2
*
every x«c¢T there is a function with a minimum at (1,0) and such that

"-yf = x . Thus the conditions of Lemma 3.1 are not met in this case.

16



* *
Lemma 3.2: (GO N Ho) c T(S;fo) .

Proof: This result follows if we show that T(S,XO) CHy NG, . If

xeT(8,xy) 3 {x} ~x ,{fn} cs, 1> 0 such that

D’n(,}fn "fo)} ~ X . We have

0 = hy(x,) = hy () +vhy (x0) (x5 - x)+ o, - %ol > 2Ty s
and
0 < g;(x,) = 8;(5) + ey (x) (x, - %) + 0 (lp=%l) 5 TeBy

Multiplying by )\.n and repeating the argument used in Lemma 1.3 we have

Vhi(’fo)’f = 0, ieI, , Vgi(}fo)ijZ 0 , ieB ,
so that iceGo n HO . O

Theorem 3 .1: The set S is Lagrange regular at X iff

* *

* * *
Proof: If T(S”fo) = (Go n HO) then -vf(}jo) € (Go N HO) ¥feF. by

0
Lemma 1.3. Thus (3.2) holds by Lemma 3.1. If S is Lagrange regular at

* .

Xy thenbyLemma3.1 -Vf(XO) € (GO N HO) vfeF, . ., by Lemma 1.4,
T(S,x )*C(G NH )* Thus T(S,x )* = (G, N H )* by Lemma 3.2. O

707 =10 (O 220 - 0 0
Remark: Conditions which ensure that S is Lagrange regular at Xy
are called restraint conditions. Theorem 3.1 gives a necessary and
sufficient restraint condition.
Corollary 3.1: (Kuhn Tucker restraint condition). If vgi(xo)t~>_0 ,

ieBO , and Vhi(fo)z= o, :'L(—:I2 = ‘b~ is tangent at },EO to a once

17



differentiable arc x = x(8) , x(0) = X, contained in N(»Xo,é) for

some & > 0 then S is lLagrange regular at X,

Proof: It is clear that t c7J(S,x.) for consider a sequence {ei} 10

o)

and define {}Ncn} = {)j(en) 3, {Xn} = {Gi} then
n

ax(0)
POy -%)Y = Fg— = t eT(Sx)

Thus the Kuhn Tucker restraint condition implies (GO N Ho) C T(S,xo) .

The result now follows from Lemma 3.2 and Theorem 3.1. O

. 2 * *
Lemma J.5: Let 1<.i(x) cCc™, ki(x ) =0, and vki(x Yt =0,
i 1,2,4..58 < n . We assume H e > 0 such that the vki(x) ,
il, © ...t arce linearly independent for |jx - x | <e. Then 7

*
a omooth arc x = x(8) , x(0) = x , such that ki(x(e)) =0,

ax(0)
de

" *,
i.:15,2, . .8, for |x(8) -x | < e and =t.

Proof: Let P(x) = KT(K KT)-l K where pi(K) = vki(x) , 1= 1,2,004,s8

Then x(8) can be found by integrating the differential equation

dx
~ _ - P
5 = (I -P())t (5.3)
*
subject to the initial condition x(0) =x ., O
Remark: Let the ki be as given in the statement of Lemma 3.3. Then
*
the linear independence of the Vki in a region containing x is a
*
consequence of the linear independence at x . For consider the matrix
%
KKT . At x = x this matrix is positive definite as K has rank s

18



Thus the smallest eigenvalue is positive. Clearly it is a continuous
function of x so that it remains positive in a small enough neighborhood

*
of x , and in this neighborhood the vki(x) are linearly independent.

Lemma 3.4: (Restraint condition A). S is Lagrange regular at X,
if the set of vectors Vgi(i‘o) , Iel.%,o, Vhi(’fo) , ieIl, are linearly

independent.

Proof: This is a consequence of Corollary 3.1 and Lemma 3.3. For

let t eGO N HO , and let B(t) be the index set such that

vgi(xo)t = 0 , ieB(t) . Then by Lemma 3.3 a smooth arc can be constructed
such that x = x(Q)) , gi(x(e)) = 0 , ieB(t) , hi(x(e)) , ieI,

dx(0)
Si(X(G)) >0, ic—:Il-B(t) , x(8) eN(x,8) for some 8 > 0 , and 5_9 =t

Lemma 3.5: (Restraint condition B). If Vhi(xo) , i612 are linearly
independent, and if ¥ t such that vgi(xo)t >0, 1ieBy, vhi(xo)t =0,

icIQ , then S is Lagrange regular at x

Proof: Assume w €Gy N Hy but W;éT(S,xO) . Prescribe {sk} { O and

set w, =w+et . Then vg;(Xpwy >0, 1eBy, vhy(x)w =0, iel,.
x,(0)
Now construct x, = fk(e) such that )fk(O) = X5 B =k

hi(ick(e)) = 0 ,ieI, , for :jk(e) is some neighborhood of X, . By

continuity there will be a subneighborhood (say N(XO,SK) for some
dx, (e)
de

& > 0) such that (i) vgi(xk(e))

K >0, ieBO,and

(ii) gi(ick(e)) >0,1c¢eI,-By for >~ck(9) eN(,}fO’ak) . The argument
of Corollary 3.1 now gives W € T(S,XO) . But, by construction,

{w3 -w . Thus weT(8,X)) as 7 is closed. O

19



L, Second order conditions.

In certain cases it is possible to further characterize local minima

of £ on S by looking at second derviative information.

Lemma 4.1: Let w(x) 602 , W have a local minimum on S at X'O s

and vw(xo) =0 . Then tTvgw( )t >0Vt eI(S,XO) LI f

%o
T 2
t w(xo)t >0 ¥t ej’(S,xO) then 38 >0, m >0 such that

w(x) > w(x) + ffe - x |®

%o % € Nxy®)

!

Proof: Let {Xr} , {?xn} be defining sequences for 'te:r(S,xO) . Then

for n large enough we have, as Vw(xo) =0,

0 S wlxy) ~Wlx) = F (5, - 50) Wu ) (35 =) + oy =5/

- 2 1,T2
0 S M) mwlg)) = 5 W) re(1) 0 = %

Now assume 'tTvgw(xO)t >0 ’d‘tej’(S,xo) and 3 no m >0 such that

w(x) >_W(xo)+m”x—x for x in any neighborhood of x. . This

2
OH ~0
implies that for any integer q , & qu € S such that (i) Xq eN(xO,l/q) ’

.. 1 2
ii) wix ) -w(x.) <=|x =-x . Select a subsequence of the x_ such

~

X =-X

that ”ﬂ—'ﬁw ~ % eT(S,x) . Then (ii) = tTv%(x.)t < 0 which
xq =% ~ ~0 ~ ~07 <

gives a contradiction. (O

Definition: The Lagrangian function associated with the MPP is given by
Hxuyv) = £x) - L owe(0) - B ovn(x) (2-1)
R - ieI1 - i€I2 ~
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It will frequently be convenient to suppress the dependence of £ on u

and v in the case where these are implied by the Kuhn Tucker conditions.

In this case (3.2) becomes

vs(x,)) =0 . (L.2)

Lemma %.2: Let S be Lagrange regular at Xy f(x) have a local

minimum on S at Xy and Sl = {x~;}£€S 5 gi(ézc) =0, ieBo} then
T 2 N
t 9 L(x)E > 0 . Vb€ T(5,%,) . (4.3)

Proof: Note that £ = £ on Sl so that £ has a minimum on Sl

at se.o= =. +1s Lagrange regular at Xy 0 V.S:(xo) = 0 . Thus

% .

the result follows from Lemma Y4%.1.0]

T 2
Remark: If Sl is Lagrange regular at X, then tv £(Xo)t >0 V‘E
such that Vgi(EOZE = 0, ieB, and Vhi(fo)f,= 0, ieI,
Example: Consider

2 2 2 2
gl=x1+(x2+l) -1 >0, g, —l-xl-(xe-l) >0

S is illustrated diagramatically in Figure 4.1. At Xl = x2 =0,

Vg, = V8, = (0,2) . However S is Lagrange regular at the origin --

for example, €5 satisfies a2
>0
vg.e, > 0 , vg.e, > 0O so &1 g, =0
1.2 2.2 2
& >0,
" that restraint condition B
Y
applies. In this case Sl is
the single point x = 6 so that -
~ gl—o

:r(Sl,O) is null.
~ Figure 4.1
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mon B
Lemma b .. IT tlv"‘_s:(xo)t >0 Vt ej’(S,xO) such that vgi(xo)t =0

Vi ¢ 130 guch that ui > 0 then ¥ m, 8 >0 such that

£00) > t(x)+nlpx - x |7, xen(x ,8) . (4.1)

0

Proof: Assume d no m , 8 > 0 such that (4.4) holds. Then for each

integer q 4 Xy such that (i) X, € N(?jo:l/Q) , (i) f()fq) - f(}jo)

<= lxo-x ”2 . Select a subsequence of the x such that

q '~a 0 ~Q

Xom %y

i -t = .(x). Then G > O on S
T beT(Sx) . set G o= ), ug;(x). > .
~q 0 ieB

0

)= 0, and f = £+G . For the subsequence defining t we have
=0 ~

£x ) - LX G(x
() -3ly)  Glx)) g )
2 2 q , - .
Ik - % Il =%l
Thus
G(x,)
£7975(x )t + Lim sup —=L— < 0 (4.6)
” B q - X - x|l
A G(xq)jz_o ,the second term is bounded and nonnegative. Therefore
G(x,)
0 = lim ——ﬂ—ﬂ = L uve(x)t (%.7)
q - qu"fo i€BO R
Thus
Vgi(}fo)E = 0, VieB, such that u > 0 (4.8)

so that (4.6) states that @t e 7(8,%,) such that t satisfies (4.8) and

that tTv2£(xo)t < 0 . This gives a contradiction. O
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Consider now the system

i

)T =0

ve(x,

uigi()j) = O ’ i = 1,2,-..,111 )

1,2, 005D (4.9)

h(x) =0, i

where explicit enumerations of 7I. "and IE are assumed.

1
Definition: J(XO) is the Jacobian of the system (4.9) with respect to
(f}‘j:f) .
- 2 T “
T T T
v E(x,) 78, (%) - . "ng(fo) -vhy (x))" . .. 'Vhp(ffo)
ulvgl(},f ) gl(i‘co)
Txg) = | upve, (%) &n(%o)
vh, (%)
vh, ()
(4.10)
Lemma 4.4: If J(xo) is nonsingular, then X, is an isolated local
minimum of £ on S
Remark: Note that the condition J(xo) nonsingular imposes strong
conditions on the problem. For example,
(1) the active constraint gradients must be linearly independent, and
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(11) if gib9Q = 0 then u. ﬁ_O (this condition is called strict

~

complementarity) .
In particular Sl is Lagrange regular at Xy
y -
Proof: If J is singular there is a vector a satisfying
. b |
E
J| a = 0 . (b.11)

1o

This relation gives
(1) Vhi(}j )Z =0, 1=5L2,...,p,

(ii) uivgi(fo)zi-aigi(fo) =0, 1=1,2y0..,m , and

m
- T f T
(ii1) v75(x,)y - Z_?_ivgi(xo) - fivhi(xo) -0

From (ii) we see that u; > 0 = vgibc)y = 0 while u. = 0 = a. = 0

Now consider the problem
. T2
min vy £(x0)y

subject to vgi(fo)Z = 0, icBy , Vhi(f )Xﬂf 0, iel, , and || y H2 =1
Clearlythe constraint ‘gradients are linearly independent as

2y = v(\\g'ue) is in the orthogonal complement of the set spanned by the
other constraint gradients. Thus the set of feasible y is Lagrange
reqular at eve-q point by restraint condition A. Let zb minimize the
objective function (the minimum exists as the constraint set is compact),
then the Lagrange regularity ensures that ¥ multipliers A , ai ’ ieBO R

bi B i612 such that
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2 T T
2 8(50)¥o - M, - T ag98; (%)) T - L bvn (%) = 0 (k.12)
ieB iel
0 2
whence
T 2 .. T2
M= YV (%)Y = min ¥V L( X))y > 0

Now 1if A =0 , Uh12) shows that conditions (i) -(iii) above are

satisfied and hence J(xo)singulai. Thus if J(xo) nonsingular,
then N > 0 . In this case Lemma 4.3 shows that the minimum of the MPP

is isolated. O

5. Convex programming problems.

If gi(x) concave, ieIl , then the set S = {x;gi(x) >0, ieIE}
is convex. The problem of minimizing a convex function on S is called

a convex programming problem. In this section certain properties of this

problem are studied. We require the following characterization of convex

functions.
Lemma 5.1: If f(x) eCl then f(x) is convex on S iff

£(x) +vf(x)(y-%) < £(y) » %V €8 (5.1)

Proof: If £ convex'then, for 0 < A< 1,

£(ct (1N (v-a) < £(x) + (1N (£(z) - 2(x))
whence, if A < 1 ,

£(x+ (1-h) (y-x)) -£(x)

TR < _£(y) ~£(x)
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The necessity follows on letting M- 1 . Now if (5.1) holds then

f(ct (1-0)y) + WP +(1-M)y) (v=x) < f(y) (5.2)

~ o~ ~

Fx+ (1-M)y) - (L-A)vE(x+ (1-h)y) (y=x) < £(x) (5.3)

~ o~ ~

Multiplying (5.2) by (1-h) , (5.3) by M and adding gives (1.4) which

demonstrates sufficiency. O

Lemma 5.2: If S = &c;gibﬂ >0 , g. concave, iel,} has an interior

*
point x , then every point of S is Lagrange regular.

Proof: Consider xbeS . Let ieBO then Lemma 5.1 gives
* *
ve; (%) (X -x)) > g, (x) >0 (5.1)
as gi(xo) =0, ieBO . Thus restraint condition B is satisfied. O
Lemma 5.3: If £ convex satisfies the Kuhn Tucker conditions at X5
then f has a minimum on S at XO
nnnnnn In this case (3.2) gives
ve(x) = L wve(x) , ulg(x) = 0 , u, >0 .
~ . i"=i.0 20 i =
ilel,
L
Let x be any other point of S , then
£(x) > £(x) - L ue (%) = 5(x) (5.5)
~ T eI - ~
1
.where g(x) is convex on S as the g, (x), ieI,, are concave. Thus

£00) > 5(x) + valxe) (x - x.)

f(f )
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Remark: If f has an interior the Kuhn Tucker conditions are both

necessary and sufficient for a minimum of the convex programming problem.

Definition: The primal function for the convex programming problem is
w(z) = inf f(x , 5, = {x;8(X) >2 (5.6)
~ xeS - -

Note that if 2, > 2, then SZl c SZ2 so that ‘”(fl) > ‘”(Eg) and that

if S has an interior then Sz nonempty forz > 0 and small enough.

Lemma 5.3: w(z) is convex.
Proof: If X, € Szl,}j2 € SZ2 then, by concavity of g 1 iel,

g(}\}fl+(l->\.))f2) > 7\.314-(1-7\,)52 , O<AN<K1.

Thus M.El+ (1-%.)}}2 ES7\.21+(1—?\.)22 . We have

w(7\21+(l->-) z2) < inf f(?\.X + (l-)\.)xe)
~ ~e T X ES ,%,€8,
~ e B
< inf ()\f(xl) + (l-%.)f(xe)) by convexity
X ES ,KZES ~ ~

<N inf f(xl)+ (1-h) inf £(x,)
leSZ x2ES
1 %o

< hw(zg) + (1-Mo(zy) - O

Definition: The dual function is
* *
P(z ) = inf f£(x) - gT(x)z , z¥ >0 (5.7)

where (Q is the region on which f , -gi , ieIl , are convex.
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T

Lemma S.h: ¢(Z*)

is concave.

*

*
Proof: Let 0 <AN<1, and Z95%5 2 0 , then

B(rzs + (10

Lemma 5.5: Let T

p(z') =

Proof:
B(z) =

IN

B(z) <

Now let g(Xl) = z

2)

* *
inf {£(x) - gT(ic) (Mzq + (1-M)z,))
% =

inf {x(f-gzl)+ (1-h) (f -gze)}

X

~

v

* *
N inf (f—gTzl)+ (1-h) inf (f - gTze)
~ o~ X ~ o~

~ ~

N Bl + (1NB(z) 0

v

={z ; 3 xe0 such that g(x) > z} . Then

~

inf (w(z) - z z 5

zeF

~

inf (£(x) -g(x) Z)

X
*
inf (£(x) - 27 )
XeS ~ - =
*
w(z) —sz

28
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*
f(>~cl) 'gT(fl)E > inf (f (x) -z

o~

xeSZ
~ 1

T *
> w(zy) -2y z

v

zel

e (10) - £ ()2 2 8nf (ufe) 22T

poul zeT

The result follows from the inequalities (5.9) and (5.10).

- *
Theorem 5.1: (Duality theorem). (i) sup f(z ) < inf f(x)
z*>0

~ —

~

(ii) If S has an interior, and 3 XO

T
1

z*)

*
inf (w(z) P )

such that the Kuhn Tucker

(5.10)

* *
conditions are satisfied, then 3 z maximizing @(z ) and equality

holds in (i).

Proof: From Lemma 5.5 we have that

B(z') < w(9) = inf £(x)

XCS
X
holds for each z > 0 . Thus
* 0
sup #(z ) < inf f(x) (5.11)
% <
z >0 fes
If 3xo such that the Kuhn Tucker conditions are satisfied then %0
* A
minimizes f on S . Defining z = ﬁﬁf@@.w%3 where the1ﬁ.> 0

are the multipliers in the Kuhn Tucker conditions we see that

*

p(z) = f(xy) - O
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Corollary 5.1: (Wolfe's form of the duality theorem). Consider the

primal problem minimize the convex function f(x) subject to the concave
constraints gi(x) >0, 1i=24L2,...,m , and the dual problem maximize
g£(x,u )  subject to VL = 0, uw>0 . If a solution to the primal exists

then the dual problem has a solution and the objective function values are

equal.

Remark: (1) The linear programming problem

min a’x  subject to AX -b >0 (5.12)

~ o~

is a special case of a convex programming problem as linear functions have
the special property of being both convex and concave -- this is an
immediate consequence of Lemma 5.1. This property of linear constraints
permits the previous discussion to be extended to permit linear equality
constraints. Note that if the linear equality constraints are not to be
contradictory, then their gradients must be linearly independent.

(ii) If the restraint condition B is satisfied at x and f(x) has

~0 7
a minimum on S at Xq then X, also solves the linear programming
problem
min £(x.) 4+ v£( X)) (x - %)
subject to

(1) (%) + 985 (%) (X -%5) > 0, ieI, , and
(11) n, (x5) +vh, (x ) (x-%5) > o ,
by (%) - vh; (%) (x “X5)> 0, ieI, ,

as the Kuhn Tucker conditions are both necessary and sufficient for a
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solution to the linear programming problem. That the converse need not

be true is readily seen from the example min -x  subject to

1.-x2 -y2 > 0 which has a minimum at X = 1, y=0. The associated
linear programming problem is min -x subject to 1-x > 0 which
has the solution (1,y) for any . . Thus additional conditions are

required if the converse is to hold (for example, Lemmas 4.3 or 4.4

could be used).

Example: (1) (Duality in linear programming). Consider the primal
problem
minimize a x subject to Ax-b >0

The corresponding dual is

~

. T
maximize by subject to Au-a . . u>0

If the primal has a solution then so does the dual and the objective
function values are equal.
(ii) (The cutting plane algorithm).
(a) Consider the set S = &C;giﬁQ > 0 and g, concave, ieIl}.

*
If x £S then gi(x*) < 0 for at least one i . Let @ satisfy

* *
gd(x ) < gi(x ), 1eI, . Consider the half space

* * * * .

U = {x;ga(x ) + Vga(x Y(x-x) >0} . Then x U . Now if g, (x) >0

then, as g, concave,
* * *
g (X ) +vgy(x ) (x-x7) >g,(x) >0 -
Thus g, (x) > 0 = xeU so that

S, = {x58,(x) >0} cU .
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* * ¥
We have S € §, cU . Thus the hyperplane ga(x )+ vga(x J(x-x)=0
* ~ ~t ~* ~
separates x and S.

(b) The convex programming problem minimize f£(x) subject to xeS is

equivalent to the problem minimize X+l subject to }E.ES roo Xt f(x) >0

where x +1 is a new independent variable (note that the new constraint

is concave). This equivalence follows from the Kuhn Tucker conditions

by noting that the new constraint must be active. Thus a convex programming
problem can be replaced by the problem of minimizing a linear objective

function subject to an enlarged constraint set.

(c) Consider the problem of minimizing %_ subject to xeS and S

N m;x;'_]

bounded. In particular we assume that S RO=={X ;AX -b_f 0) . We

can now state the cutting plane algorithm

(0) i=0.

(i) Let X; minimize cTx subject to XeR,

~ o~

(ii) Determine « such that ga(fl) < gj(}ji) , JeIy
(iii) If gd(fi) > 0 go to (v).

(iv) Set Ry =Ry N{x ;g (%) + vgy (%) (x - x,) >0} ,

~

i:= i+l , go to (i)

(v) stop. —

Note that step (i) requires the solution of a linear programming problem.
(d) The cutting plane algorithm generates a sequence of points Xy with
the property that

ST SSTf < ves SST}f' < ..o <min ch

0 1 i- xe§ ~ ~

T . . .
as RO 2 Rl D +e+ D S . Thus the sequence {c Xi} is increasing and
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*

bounded above and therefore convergent. Let x be a limit point of

*
the {x.} . Then x €5 and therefore solves the convex programming
*
problem. To prove this, assume X fS . Then
_ * *
mlin g;(x7) = gy(x) = -2 <0

*
Let a subsequence {xj}—ox r then, 3 k such that

@ lgexll < x o an
(1) g (5) < - &

where C > vai(x)H . xeRy , iel;
Let

min g, (x,) = gB(fk) )

*.
Then gB(}fk) < -% . Now X a limit point of {351} = }5* € ﬂRi . In

*
particular, f eRk&l whence

*
op(x) + 78 () (x - %) 20
But
A A
vas(fk)(f*-fk)ll < 7FC < &

so that
*

gyl *+ vg() (& - 1) < - 5+ gl) (2 - %)
< 0

which gives a contradiction.
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Notes

1. For properties of tangent cones, see Hestenes. Luenberger discusses
polar cones (which he calls negative conjugate cones) on pp. 157-159.
Lemma l.4 is due to Gould and Tolle. The proof is due to Nashed
et al.

2. Hestenes is a good general reference for this section and includes
a proof that a finitely generated cone is closed. The proof given
here of Farkas Lemma is standard (see for example Vajda's paper).

An extensive list of alternative theorems is given in Mangasarian.

5 The main result is due to Gould and Tolle. The treatment of the
other restraint conditions follows Fiacco and McCormick.

L. The treatment of second order conditions is based on Hestenes.

Similar material is given in Fiacco and McCormick.

5 The treatment of duality is based on Luenberger. A related treat-
ment is given by Whittle who is good value on applications. Vajda
is a good reference for the mathematical programming application.
Wolfe's papers in both the Abadie books discuss various aspects of

the cutting plane method.
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II. Descent Methods for Unconstrained Minimization
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1. General properties of descent methods.

The class of descent methods for minimizing an unconstrained
function F(x) solve the problem iteratively by means of a sequence
of one dimensional minimizations. The main idea is illustrated in
Figure 1.1. At the current point X, a direction Ei is provided, and

the closest minimum to Xi of the function

Gy (A) = F(x; + Aty)

sought. At iyl We have
t — —
Gi(hy) = TR(xy,)t; = 0 (1.1)
= +
where x;.p = X T AT, -
Figure 1.1
“ Definition: A step in which X1 is determined by satisfying the above

conditions is said to satisfy the descent condition. We consider ti

~

a profitable search direction if F(Xi4'Kti) decreases initially as M

increases from zero. This condition is formalized as follows.
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Definition: (i) The vector t 1is downhill for minimizing F at x
if gF(x)t < 0 . (ii) The sequence of unit vectors T:’LG,.3 is downhill
for minimizing F at the sequence of points {Xi} if 48>0,

independent of i , such that vF(xi)‘ti < -6“vF(xi) .

Example:  The sequence of vectors {-VF(Xi) / \\VF(Xi)“] satisfies the

downhill condition with 8 = 1 . In this case we say that Ei is in the
direction of steepest descent.

An estimate of the value of A minimizing Gi is readily given.
We have

2

.
0 = VF(x;, )ty = VE(x)E; Ay 8y TE(x)Y

where Xi :X'i+ }\'iti is an appropriate mean value. Thus

~

-9F(x.)t. 8 |V (X,
MT T V2(§1)~1 2 “Z (-1) ” ' (1-2
ty v F(x)t, T VT (X)) |

*
Theorem 1.1: (Ostrowski's descent theorem). Let R = {x; F(x) < F },

moQ o
and assume that F bounded below and t“ v F(x)t < K[|t ||° , xeR .

Define
8||vF(x.) ||
~1
v = 5T —— Ei s and
()t < SlvrGe)] L gl = 1,

for i = 1,2,... where 8 > 0 . Then {F(xl)} converges, and the limit

points of {xi} are stationary values of F
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Proof: As {ti} downhill then b%} C R . Expanding by the mean

value theorem we obtain

B||vF (x,) | 8llve(x,) ||\
FOrg) = Flg) ¢ ——F— Wt i('—K—‘U 6V REY

where Xi is a mean value. We have

2
(llorx)N? SHVF(fi)H)
A\ /K

F(X341) < Fxy) - K
o%lor () |°
< P(x,) - ——— (1.3)

K

Thus the sequence {F(Xi)} is decreasing and bounded below and therefore

convergent. Further, from (1.3),

FGe) || < BVRR(FGE) - F(xy, ) (1.4)

* *
Thus VF(x ) =0 if x is a limit point of {Xi} . O

~

Remark: By (1.2) the step taken in the direction ti underestimates

the step to the minimum of Gi" Thus (1.3) holds if the descent

condition is satisfied so that the conclusions of the theorem are valid

also in this case.

Theorem 1.2: (Goldstein's descent theorem). Let R = {x ;F(x) < F*)

1
be bounded, and assume FeC and bounded below on R . Define
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Mx M) = F(xy) ~Fx; + M)

V(xgoh) = - )\vFiniti
where {t.} downhill, and the {x,} are generated by the algorithm
o~k ~d

(1) xppq = ay AF A(xN = 0
(ii) If qf(xi,l) <o where 0 <a <1/2
then choose A, such that o < q;(xi,?\.i) < 1l

14

else choose }\i =1 .

ii1 X, = X, +N.t. .
( ) ~i+l ~1 1.1

Then the limit points of {Xi} are stationary points of F .

: HN) = -
Proof A(}fl, ) KVF(ici)Ei+ o (h)

Thus A(}fi,)\.) =0 = ”VF(}fl)H = 0 as {EJ} downhill so that X is a
stationary point. Otherwise VF(}fi)‘Ei < 0 so that \lf(}:.i,}\) = 1+ o(1)
whence \jr(~x1_.,0)= 1 . Also the boundedness of R implies that

A(in,%.) < 0 for some M\ large enough so that, as ﬂ;(}:.i,h) is continuous,
)\i can be found to satisfy condition (ii) of the algorithm. Note that

{xi} ¢ R . We have

F(Xi) -F(x

~

1) = MV MIIR(E)E,
> Mod|oR(x,)|| . (1.5)

Thus {F(xi)} decreasing and bounded below and therefore convergent. To

show that the limit points of {xi} are stationary values of F consider
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.

-

-

-

-

(@]

*
the subsequence {x } - % and assume |[vF(x)|| > ¢ > Then

lvF(x )l > ¢ for i > i_ . This implies that inf A = Ay > 0 as

~Hy 0 i By

otherwise sup y(x ,7\-“) = 1 contradicting w(xi,hi) < l-a . Thus
i ~H g My ~

(5, ) -FGx, )

e ) € s - (2.6

The right hand side -» 0 as i - = which establishes a contradiction. O

Remark: There are two aspects of this theorem which are of particular

1
interest. (i) It is necessary to assume only that feC in R
However, the boundedness of R is used explicitly. (ii) The algorithm

for determining the step length Xi is readily implemented. A value of

N satisfying condition (ii) of the algorithm will be said to satisfy

the Goldstein condition.

Theorem 1.5: (1) Let the vector sequence in the Goldstein algorithm

be defined by

- T = 1.7
s, = oA UF(G)T 5ty = s /sy (1.7)
N . (A)
. o o min> i o s
where A, 1is positive definite, bounded, and X(A&,) = N Z W ’
i 1 max\ i

i =1,2,... . Then {ti} is downhill with constant & = w .

* =1 2
(ii) Assume that {xi} - x , and that “Ai -V F(fi)H = o(1) , then

N = Hsiﬂ satisfies the Goldstein condition for i large enough.

(1ii) The ultimate rate of convergence of the algorithm is superlinear

for this choice of Xi .
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Proof: (i)

T
VF(x,)A,vF(x,)
VF(x,)t,. = - o T
SRR AgﬁvF(xi)Ai“
Myin(Ay) I9EGeo) ]
= A (B)
max
< - ollveiz) |l -
F(x.) -F(x. +At.)
(ii) ¥(xgoN) = - ("1ivF(i"§t =
~ ~i7 i
AN T2 -
COME(x)E + B OR(x)E
ME(x; )ty
where ii is a mean value dependent on A . Now, writing
2.,= -1
VE(x;) =A;THE,

and noting that “EiH'* 0 as i » @ , we have

T
t, E. t
A 1 1711
N =1 - = + = =
so that
x B syl

A
W™ - Q- P < ) aferGo

a BN Al

sziﬂ W

IA

42
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In particular

L el Iyl

1 :
sl -5 < 3 —5—— =0, 1-= .

(iii) Another application of the mean value theorems gives

T * 3T
= - = - - F x
55 A;9F(x,) Ai(VF:(}f,i) v (~) )
2 * *
== A (VFCxy) (g -x0) + ol -=7)
*
c e e ke ) (1.10)
Thus
* .\ *
Xiep TE TETYiS 7T
* *
= (1—71)(}.{1 -X )+ o(“}fi'}f . (1.11)
From (1.11) the choice 7, = 1 (Ki = ”Ein) gives superlinear

convergence. Cl

Remark: Theorem 1.3 shows that if VQF is positive definite in the
neighbourhood of an unconstrained minimum, then it is possible to have
algorithms with superlinear convergence without the necessity of satisfying
the descent condition.. It is not generally considered economic to compute
the second partial derivatives of F , and considerable emphasis has

been placed on developing approximations to the inverse Hessian using

only first derivative information. Although the steepest descent

direction is initially in the direction of most rapid decrease of the

function it gives in general only linear convergence.
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2. Methods based on conjugate directions.

The problem of minimizing a positive definite quadratic form is
an important special case of the general unconstrained optimization
problem. In particular it is frequently used as a model problem for the
development of new algorithms. It is argued that in a neighborhood of
the minimum, a general function having a positive definite Hessian at
the minimum will be well represented by a quadratic form so that methods
which work well in this particular case should work well in general.

Let F be given by

F(x) = a+ bTx +l§ ;E Cx - (2.1)

where C 1is a positive definite, necessarily symmetric matrix. We have

gF(x) = bl+xC . (2.2)

Consider now a descent step from X in the direction ti . The

~

descent condition gives

i T
0= vF(xi+l)'Ei = Ei(c(’fi+ }"Ei) + 1)

~

whence
tlT‘ Iy
R (2.%)
t, Ct.
~17 21
where gr = vF(xi§ .  To calculate the change in the value of F in

a descent step we have

L



T T 1.2,7
; - - + + 22%¢Tct,
Flreg i) =F(g) =M bty 4 A, X, 08+ S M 8,08
- n et =2l
iZici 2 ici <1

Example: (Linear convergence of the method of steepest descent).
1 % .
Let F = 3 X Cx . Then (2.4) gives
2
CAENS
F(x, ,)-F(x,) = -3 =
~itl ~i 2 xTCBX.
~i7 i
2
_o-1 (Yl Yi)
- 2 T
wiCvy
where w. = CX.
~1 ~
We have F(Xi) = %wic'lw so that
T 2
1 (s w3)
Flg) = 1-3 T -1 F(x;)
W. ¢ W, ¢ w
~1 1 i ~1
The Kantorovich inequality gives
T 2
(1{ vi) Ly Gl 0’n
T -1 T 2
Voo Tuwocw (ol+ cn)

where o0, and Gn are the smallest and largest eigenvalues of C

1

respectively, whence

1
2

T \2
(g5 t;)
T

t.Ct.
~17 L

k5
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! -
Fr) s | o790, ) T
n 1

which shows that the rate of convergence of steepest descent is at least
linear.
To show that it is exactly linear consider the particular case in

which

where vy and v, are the normalized eigenvectors associated with a

and o, respectively. We have

1, i+l i ) 1
Xa1 =0 Vit Yy = (Toagopdey iy (Loayo)e
with (from (2.3))
i\2 2 i\2 2
r. = (al) 014.(05) n
i i\2 1,2 ?
(@)% o+ ()" o
so that
i\2 2
Gt (o)~ (0 - 9)) 9 o
1 - i\2 i2 1
@)% g+ @)°
and
L AN2 ) 2
L (29) (9, - 09) 9y o
n - T 42 i,2 n
@) g+ @)
In particular
i+l 2 i i-1
I T |
itT 2 1 i-1
%y % %

L6



b g

so that the ratios ai,/ai assume just two values for all (depending

on i even or odd). Now

N
12
- 1 - 0._ 12 % 1
|oz1+1| > 1 1) + )_(ozi)2 | s
n n
and
2 i2
1 % % (@) i
ol 2 (1-— G T3 17 %l
n n (al) + ()
so that
2 i i
o] o] a; o
i+l i+l 1 1 1l n i i
n n () + (o)
1 n
(o] o 2
1 1 i i
2 1- o )( o 7( |al‘+ |an|)
n n
(" 3
i i+l
el !
ol ST
where vy = min 7 5 1 ? < 1, and y 1is independent
(07
1+ —i 1+ }
ot i+l
. n R,
of i . This inequality shows-that the rate of convergence of steepest
descent is linear.
Definition: Directions tl,‘t2 are conjugate with respect to C if
tTCt, =0 . (2.5)

In what follows it will frequently be convenient to speak about a

k7



'direction of search* without intending to imply that its norm is
unity. However, the null vector is excluded from any set of mutually
conjugate directions. It is clear that any set of mutually conjugate

directions are linearly independent.

Example: The eigenvectors of C are conjugate. The property of being

both conjugate and orthogonal specializes the eigenvectors.

Lemma 2.1: Let 'tl,...,tn be a set of mutually conjugate directions
(with respect to C ). Starting from fl let §2’§5’°"’~n+l be points
produced by descent steps applied to (2.1). Then

T . .

gi tJ =0 > J = 1’2}"',1_1 . (2'6)
Proof: The descent condition gives gg ti-l = 0 so it is necessary

only to verify the result for j < i-1 . We have

T
= +
g ts = (Cx+ 1) &g
£ s
= (Cx_,. +b+ M Ct )Tt
~s+t1 Kk=Si1 k™ kK s
i-1
T %_ .
— g t + z )\. C‘t s S = l,2,ooo’l"2
~stl 2 kst k ks
=0 . 0
Corollary 2.1: The minimum of a positive definite quadratic form can

- be found by making at most one descent step along each of n mutually

conjugate directions.
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T . .
Proof: From Lemma 2.1 we have §h+1.t;i £ , 1=12..4n .
Thus el is orthogonal to n linearly independent directions and

therefore vanishes identically. O

Remark: A method which minimizes a quadratic form in a finite number

of steps is said to have a aquadratic termination property.

Example: The sequence of vectors

18 >
2
lle |l - 2
L. _— - §i +\_2t:i-l_ [} 1 = 2,..-,1‘1 ( '7)
llg; 1l

are conjugate. The algorithm based on this choice is called the method

of conjugate gradients.

We now consider the generation of sequences of conjugate directions
to provide a basis for a descent calculation. To do this we note that
the minimum of (2.1) is at X = -C_lg so that if we minimize in the
direction E = 451(0514-3) = —C-lVF(fl) then the minimum is found in a
single step. In general C_1 is not known in advance, so that we are
lead to consider processes in which each step consists of two parts

(1) a descent calculation in the direction

t, = - H (2.8)

v 184

where Hi 1is the current estimate of C_l , and (i11) the calculation
of a correction to Hi which serves both the purposes of making the
Ei conjugate and m&king Hi approach C_l . It is convenient in what
follows to assume that the H, are symmetric. This seems a natural

condition given the symmetry of C but is in fact not necessary.

k9



If we assume that ts » 8 <1, are mutually conjugate then the

condition that each be conjugate to ti is
T T .
£0% = EHCY = 0, s<i,
and, by Lemma 2.1, this is certainly satisfied if

H,Ct, = pt

We write this equation in the equivalent form (multiplying both sides

by A )
Hiyg = pdy » 8 <1, (2.9)
where
G TXypyE Ve 5 Byt 8y (2.10)
Consider the symmetric updating formula
Hipp = By ¥ &4y d N H VLY l-g (4. nyl H.y.th) (2.11)
~l ~15 isii
where Ei 3 ni 3 gi are to be determined (or prescribed). We have
Hi+l Zs = Hizé = ps,gs » s <1, provided (2.9) holds as
,C}?.Zs Al)‘stﬂiCE 0, and ZzHlys = Ag ZE.HICES_DS )‘sjﬁﬁ'sz
Pq )‘s)‘ d Cd =0 . Thus (2.9) is satisfied for i := i+l if
0 =1+ “i(i’?Hi ¥i) - Qi(ch v (2.12)
and
Py = gi@g vs) 'gi(ﬁHiﬁ,’i) - (2.13)

If éi and ﬂi are expressed in terms of P and Qi from (2.12) and

(2.13) we have
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: @ v
o= - T oGy T, ’
Vit Yy ity Y3
and
0- THy
1 b R o
&, = 7T —t& T ’
Sl,i },{1 ~1 Xi
so that equation (2.11) becomes
- _oH+ gi El _ Hizizl Hl
i+1 C HiUPy I TH.y
~1 21 :Xi idi
T T
v. H. ¥. a, vy.
LiTisi ST 0 s B T _ T - dT
Y\ g d; 4; + T, By y; 9 Hy -4y vy, -H y5 95
4 Y5 %Yy
T
= D(p.,H.) + C. (2.1%)
(p.» 1) QlTiniXi
where
£ 2.1
Vi - Y T.lHi:Zi’ (2.15)
and
T
v. H. y.
T = ————'~1 1~ . (2'16)
i T
4 Y3

Example: Theparticularcase p; = 1, C’i =0, 1=212,.c0 gives
the variable metric or DFP formula which is the most frequently used

member of the family.

The class of formulae described by (2.14) generate recursively a set
of conjugate directions so that the first of our aims is satisfied. It

-1
still remains to show the relationship between the Hi and C . To do
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this note that (2.9) can be written (introducing the symmetric square

root Cl/2 of the positive definite matrix C ).

Cl/eHi 2s1/2, _ pSCl/E ts

~

1 S =l,2’ooo,i“l 7

or, more briefly,

Hi'ES = pSES E] S = 1’2,0-0,:1."1 . (209&)
~ A %
Defining the matrix T by Ki(T) =T i=1,2...yn , and the

~S
T 12’
(£ o %)

diagonal matrix P by P.; =p; , 1 = 1,2,...,0 , we can write (2.2a)

in the case 1 = ntl 1in the form

H T =TP . (2.9p)

>

Now T is an orthogonal matrix so that

~

Hn+l

whence

H _ ¢ YehpaTol/2 (2.17)
ntl

In particular, if P = pI ,

o=t (2.18)

Remark: Remember the motivation for developing the recursion (2.14) is
the search for efficient descent directions. Specifically we are looking
not only for conjugate directions but also for good estimates of the
inverse Hessian. This indicates that p = 1 is the natural choice (or

at least p = constant ), and almost all published methods use p = 1.
However, from (2.17), the choice of p variable may well have scaling
advantages in the initial phases of a computation with a general objective
function. Presumably the strategy for choosing p should make

p = constant to ensure a fast rate of ultimate convergence.
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Lemma 2.2: Provided the descent condition is satisfied,
Hiy 18141 I v; or null,
Remark: In what follows it is convenient to drop the i subscripts.

Quantities subscripted i+l will be starred. In what follows we assume

p 1s constant.

Proof: We have (using the descent condition, the definition of t ,

and d = At )

~

. ai’ Hyy'H .
D(p,H)g = (Ht p 55~ 7 ) &
3y yHY

T
Hyy H(y+g)
= Hy+Hg -———=—=—=

m

v oHY
1 yd
cm-1 (a4 - 2= ny)
' N Hz ~
Whence
* * m *
Heg =-(%+QTvg)v. cl (2.19)
* *
Remark: (1) The condition that Hg = 0 when v # 0 gives a
condition which determines { . We have
* 1 *T 1 *T ¥
VT% =-78 I{z =-78 Hg
so that (from (2.19))
C = ——3ﬁ$L—f¥ . (2.20)
A " Hg
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Provided this value of { is excluded from.consideration.then'§ is
independent of { . ©Note that this result is true for a general
function as no properties specific to a quadratic form have been used

in its derivation.

*
(ii) We can only have v = 0 with d and g nonmull if H is

~ ~

*
singular, and in this case H is also singular and the null space of

*
H is at least as large as that of H . This follows from (2.15) which

can vanish only if (a) Hg* =o and l+-—iz= 0, or (b) Hg and
*
Hg are parallel. Now if H is singular 4 w , WTH = 0 . Thus

YTQ = 0 , and hence YTH*= 0
Clearly it is important that Hi positive definite = Hi+l positive

definite, i = 1,2,... 1in order that premature temiation should be

avoided (H*g* = and H* positive definite = g* = 0 whence :i* is

a stationary point). Conditions which ensure this are given in the

following lemma (due to Powell).

Lemma 2.3: If 0 <p,7<®, H positive semidefinite, and

+ + *
HH v =v (where H is the generalized inverse of H ), then H 1is

*
positive semidefinite, and the null space of H is equal to that of H

provided
- de
¢ > 1+ T, = TP (2.21)
(CH d) (y Hy) - (dy)
Proof: We first note the identity
T T
D(p,H) = (I+uy )H(I+yu") (2.22)

where
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u = L Joa- = Hy} . (2.2%)

~ T T ‘v~
V@D @ uy) \

det(I+uyT) = l+yTu = \/-% (2.24)

T . , T
so that, by the assumptions, I+uy is nonsingular. Now y v = 0

~e~ o,

and

x
so that H can be written
* T
B = (T+uyh) (@ (Tt )(T+yd) . (2.25)

Thus the problem reduces to considering H+ g'rva . We have

+
H+Crvvt = H(I+CTH vid)

* , ) + T
The null spaces of H and H will agree provided I+ (7TH VvV is
nonsingular. The condition for singularity is
+
0 = det(I+(7H ny)

l+gTvTH+v

+ +
Noting that HH+H =H , and HH v = v= HH d = d we have

~

T T

dy ¥y Hy
+ ~ o~ -~ ~
Legrv B v =1+ gr(TH 4 -2 %2+ 2
T_\2
o+ (&)
=1+ ¢r(dH d-—F—)
I

and this vanishes provided

55



The stated result is a consequence of this and the observation that

*
decreasing { below this value will make H indefinite. [

Remark: (i) The condition on T 1is automatically satisfied if

H is positive definite and the descent condition is satisfied for then
E?z = -§T§ = ngIIg . However the lemma does not require that the
descent condition be satisfied and remains valid even though the exact
minimum in the direction t is not found. In this case the condition

~

on T 1s necessary.

Corolary 2.2: If Iyl positive definite, and Hi+l = D(p,Hi),

i=1,2,... then provided the descent condition is satisfied for

i=11L,2... then Hi+ is positive definite.

1

Proof: This is a consequence of (2.22) and the above remark which shows
that if H is positive definite, and if the descent condition is

satisfied, then I+ uy'T is nonsingular. ¢l

Theorem 2.1: (Dixon's equivalence theorem). If (i) the formula (2.14)
is used to generate descent directions, (ii) Qi satisfies (2.21) for
i=122... and Hl is positive definite, and (iii) the descent
condition is satisfied in each descent step, then the sequence of points
generated by the algorithm depends only on F , Hl , p , and fl and

is independent of gi ;, 1= 1,250

Remark: It is important to note that F is not restricted to be a

quadratic form in this result.
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Proof: Let Dy =H, , D, = D(Q,Di 1)+ 1 =23,.e. . . We show that
. _ T ~ T
if Hi = Di+a§i?'.i , then Hi+l = Di+l+ ﬁ.c}i+l§i+l . By Lemma 2.2 we
* *
have H = D(p,H)+7yd 3T . Now
aar (D+add:)yf%D+add$) P
JNmH)=D+p’E - }~ == T —— + add
ay v (D+add)y T

ad’  Dyy D+ a(y d)(Dydl+dyt D) +of(dly)Cadt
e = e e +addT

1
g
+

O
1
14

I

T T 2
dy v Dy+a(yd)

(va) @
T y T T T T T
Dyy DA ———+ oy d)(Dyd +dy D) -a(y Dy)dd

T . T .2
y Dy+a(y d)

T T
% a(y” D y) v d v .
D + == (d-T~-=—Dy)(d-~,I,—~—Dy) ) (2.26)
y Dy+a(y d) - ¥y Dy -~ y Dy ~

~

X- % * * %
By Lemma 2.2, & ||D(p,M)g . By (2.26) D(p,H)g || D g . Thus

. . . .
d’dl)ﬁﬂ ;3 = 1,2 eee,i o= grﬂL“Di+l§i+l . But the case j 1

~ ¢ Je~

is a consequence of Lemma 2.2 so the result follows by induction. [

Example: Equivalence results for a wide class of conjugate direction
algorithms applied to a given positive definite quadratic form can be
demonstrated by noting that at the i-th stage we find the minimum in the
translation to Xy
subspace is also spanned by Hlﬁl""’ngi . Thus §i+l depends only on

of the subspace spanned by ‘bl,...,ti , and that this
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X5 '”Xi and not on the particular updating formula for the inverse

Hessian estimate. If H, = I this equivalence extends to the conjugate

-~

gradient algorithm (2.7).

Lemma 2.4: If the descent condition is satisfied at each stage then
the sequence é;DLgl , i =1212,... is strictly decreasing provided Dl

is positive definite.

Proof: We have (as g*Td =0)
*T 2
xr %« xp_ % (87DY)
g'Dg =¢€Dg -7 ’
Yy Dy
*T *, 2
s«v_x (g Deg)
=ng-*T*T )

g Dg +g Dg

X[ _ % T
(¢ "Dg)(e Deg)

= ¥ % T :
g Dg +g Dg

Thus

L L L . (2.27)
D

By Corollary 2.2, the Di are positive definite so that the desired

result follows from (2.27). O

Remark: This result indicates a potential defect of the DFP algorithm.
For if the choice of Dl is poor in the sense that it leads to too

small a value of éiDlﬁl then the algorithm has no mechanism to correct
this, and must initially generate a sequence of directions which are

nearly orthogonal to the gradient. This must also happen if, for any
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T .
reason, an abnormally small value of g Dg is generated at some stage.

A possible cause of such behaviour is poor scaling of the problem.

Lemma 2.5: Corresponding to the formula (2.14) for updating H there

is a similar formula for updating H_1 . Specifically we have
H L = D(p,) "yt (2.28)
where
ny
- - ~~ 1 T -1, _-1. T
D(p,H) l=Hl+ (-J;-+p.)———— - (g:i H +H S.Er) , (2.29)
&y av.
Talg
pom =, (2:30)
ay
v o_y- =wuta (2.31)
~ ~ v8 ~
and 7 is related to ({ by
- - CTy 2.32

1+¢Ttv H - v

~

Proof: From (2.22) we have

- / Ty -1 / T T
D(p,H) 1o@- i& yu') H (I - - oy )

and (2.29) follows from this by an elementary calculation. From (2.25)

- - [ T
H =(L-Vq;g€%(ﬂ+éfgg)l(I-\'%~gz) )

- - - T
= (I -\/—T yuT)(H L E'TT gt v l)(I -‘\/—T uy )y
P ~ ~ ‘ - p ~~ 'S
1+gTv Iﬂ v

~ o~

(2.33)

29



Now

=H "d-py
= ‘p,Y ) (2'3)4')

so that (2.28) is a direct consequence of (2.33) and (2.34). O

Remark: If we take y = - ';'_ in (2.28) then we obtain
y
3".YT H-lddT H-l
-1 -1, 1 0% ~ o
G(Q)H ) = H +? T. ~ T -]
yd d"E™d
= (I+ zaD)E"H(1+a 20) (2.35)
where
z = L { L y - 1 H-ld} . (2.36)
Vi @rig We ™ Ve
We have
-1, -1 ak
D(p,H™™) ™™ = G(p,H™) + - ww'
yar~~©
= (I+ z &)@+ - W wh) (1+d'z) (2.37)
~ yia ~ ~ -
as dw = 0

~ o~



To summarize these results we have the following:
(1) D(p,H) = (T+ w)H(T + ')
6(eH ™) = (1+ 2dE T+ ggh)
o T

wW ;

Tl

(ii) D(0,H) F = a(p,H™Y) +

red

d

T T

|

6(p,E )™t = D(p,H) +

T vv

~ ~

1<
1 f

update formula

update formuls for inverse

D( P:H)

1 -
W) F - 7— (yd'H

T
YY

~oy

T_.-1
dTy dTy

~ o~ ~ o~

~~

c(pE™)| E +—51-—‘ - —=

H+ (p+ 1)

aar

~~ l
= . 2 (ay H+Hy

dTy d.Ty

~ o~ ~ o~

~ o~ ~

D(P:H) )

G(pyH 1)

have been called dual formulae by Fletcher.

+H

Lemma 2.6: Let A be a symmetric matrix, A = TATT where A diagonal

*
=X 0 1= 1,2,...5n) , and T orthogonal. Let Ay v i=12..0n

(A

be the eigenvalues of A+ca3T , then either ¢ > 0 and

*
e <A <

*
; S iv)‘i+1’ i=122..,n, or <0 and xi_lg xisxi
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Proof: We have

det{A+0a al - NI} = Tr'lr(xi-x) det {I+a(p~-AI) 'l(TTa) (TTa.)T}
oo i1 - -

= ﬁ‘ (NN (1 G(TTa)T(A -AI) 'l(TTa))
=1 ~ ”

2

R e} n vi T
=TT M0 ) ey, v = (e,
i=1 i=l ™4

and the desired result is an easy consequence of this expression. O

In the following theorem we consider specifically the minimization
of a positive definite quadratic form. We assume that the initial
estimate of the Hessian iy is positive definite, and we make use of

the following sequences of updates for the current Hessian estimates

(a) Hi+l = D(P:Hi) » 1 = 1,2,..., and

~ -1, -1 .
(b) H G(p,Hi ) » 1 = 1,2,000 .

i+l

Further we do not assume that the descent condition is satisfied.

/2., .1/2

, and let the eigenvalues of

Theorem 2.2: (1) Let Ki =C HiC

K, ordered in increasing magnitude begqu , 7 = Li2y.e0yn . Then

i
if)\.gl) > p then )».gl) _>_>\;§22 .. . >p, while if A.gl) < p then
}\gl) 5-x§2) <. ..<pforj=12.,0. (ii) Let & = cl/zﬁicl/2 ,

- and let the eigenvalues of f{i be gﬁ.(.i ;= L2yeee,n o If Xgl) >p
then Kgl) 2)\.5]2) > ... 2p, while if hgl) < p then

igl) Si](z) S o e e S o] for j = 1,2,.-.,!1 .
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Remark: This result is important because it shows that we have a
'weak' convergence result for these Hessian estimates when minimizing a
positive definite quadratic form even when the descent conditions is

not satisfied at each step.

. -1/2
Proof: Noting that 01/2d =C 1

~

y = a , we can write the formula for

updating K as
T T

* aa Kaa'kK
K =K+te - -"7
a a a Ka

We can break this into the two operations

Ka.a.TK

J=K - —==— P and

K =J+p!‘L"_

Note that J has a zero eigenvalue, and that a is the corresponding
eigenvector. By Lemma 2.6 we have M(J) = 0 , and Moy < Kj(J) S
for j =2,3,..4n. The rank one modification which takes J into

K changes the zero eigenvalue to p and leaves the other eigenvalues
of J unchanged. Assume that xjcn <p< kyibn then reordering the
eigenvalues in increasing order of magnitude we have h; = kaﬂJ),

kK = 1,2, e00,3-1 735 =5, f}: - A (), k= F#Leeom . This

establishes the first part of the theorem. The second is demonstrated

. K e .
in similar fashion by noting that satisfies a formally similar

~-1
update relation. This establishes the result for the eigenvalues of K

and hence for their reciprocals. O
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Remark: Note that both H, and f{i are positive definite 1 = 2,3,...

if Hy is positive definite. 1In this case the result does not depend

on the descent conditions being satisfied.

Theorem 2.3: Let H be positive definite, and consider a step d in

* A -1 -
the direction -Hg . Let H = D(p,H) , H = G(p,H )1=

~ *
D(p,H) + —"T‘ vv', and Hy = G+ (1-0)i = D(p,H) + ST vt L et
d ~ o~ y.l.d ~ o~

~ o~

A
~

1=

* -~
= C:L/EHCJ'/2 , and define X , K, Ky similarly. Let the eigenvalues

* ~ ¥ - a
of X, XK ,K, K@ be M. A N. , and }»? respectively,

J J d
A *
J =12...,n ., Let 0 <6 <1 . If KJZpthen)sj?_sz%.?z}\ij
. . * .9 =2 e
while if A, < p then M, < xj SAMNSA<e . If 6 £[0,1] then M

need not lie in the interval defined by Jk. and p.

* N
Proof: It follows from the definition of H , H , and He and

¥ A
Lemma 2.6 that hj ng S%.J. s J=DL2..n , provided 0 <6 <1
The first part of the result is now a consequence of Theorem 2.2. To

show that )\9 need not lie in the interval defined by A, and p ,

J J
consider the example
1+€ /g 0
C = . ) H=I K} p=l ’ a =
Je € ~ 1

We have ?\.1 =1, %.2 = 1+2¢ -1 where 1 = -23-' (1+ 2¢ -'\fl+p.e) . Thus

-1 is positive and 0(52) . In this case we have
T
a Ka 1/
KeC , 7o == ¢ , ¢¥2 ca-Lxa --
T ’ ~ ~ € ~
aa 0
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| | - N 0 oo
It is readily verified that K [ g 15 » SO that K-e - [O l] ’

Ko = [1+02€ ‘JJ_:] . In both cases eigenvalues lie outside the

prescribed interval. In the first case we have 0 <1 , and in the

second 1l+2e > 1+2e -1

Remark:  This result shows that ' gives the best improvement in the
eigenvalues < p , while H* has a similar property for those > p .
This suggests an algorithm in which a choice is made between updating

H to ff or H* depending on some appropriate criterion. Fletcher
suggests that if 7 > 1 (that is, XIHZ > ZTC_lg)then E  should
be used, while if t <1 then f is chosen. He has used this criterion

in an implementation of Goldstein's algorithm, and has reported satisfactory

results.
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Notes

1. For Ostrowski's theorem see his book 'Solution of Equations'
(2nd edition) or Kowalik and Osborne. Goldstein's theorem is from
his paper 'On steepest descent' in SIAM Control, 1965. Theorem 1.3
is abstracted from Goldstein and Price, 'An Effective Algorithm

for Minimization', Num. Math. 1967.

2. For background material see Kowalik and Osborne. The form of the
update for the inverse Hessian is due to Powell 'Recent Advances in
Unconstrained Optimization' to appear in Math. Prog. It is a
specialization of a form derived in Huang, 'Unified approach to
quadratically terminating algorithms for function minimization',
JOTA, 1970. The form (2.14) and the result of Lemma 2.2 are
probably due (in the case p = 1 ) to Fletcher 'A new approach to
variable metric algorithms', Comp. J., 1970, and Broyden, 'Convergence
of a class of double rank minimization algorithms', JIMA, 1970.
Lemma 2.3 is due to Powell (to be published). The product update
form (2.22) is due to Greenstadt (to be published). Dixon's paper
containing Theorem 2.1 is to appear in Math. Prog. The significance
of (2.27) for the successful performance of the DFP algorithm was
noted in Powell's survey paper already cited. Attention was drawn
to the dual updating formulae by Fletcher. This material together

with Theorems 2.2 and 2.3 are included in his paper already cited.
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APPENDIX  Numerical Questions Relating to Fletcher's Algorithm

1. Implementation

In this section we consider two questions relating to the implemen-
tation of Fletcher's algorithm. These are
(i)  an appropriate strategy for determining N to satisfy the
Goldstein condition, and
(i1) the use of the product updating formulae for the inverse Hessian

estimate.

In his program Fletcher uses a cubic line search to determine A . Here
we use a somewhat simpler procedure which has the advantage of requiring
only additional function values. Also we work with the Choleski decompo-
sition of the inverse Hessian estimate. This has certain numerical
advantages which have been outlined by Gill and Murrayr/. In particular,
it is possible to ensure the positive definiteness of Hi , and this can
be lost through the effect of accumulated rounding error when direct
evaluation of the updating formulae is used. Another possible advantage
of the Choleski decomposition is that we can work with an estimate of
the Hessian (that is H_:L ) rather than with H as division by a triangular
matrix does not differ greatly in cost to multiplication. We felt this
could well be an advantage in problems with singular or near singular
Hessians, in which case H would be likely to contain large numbers.

To implement the line search we note that by Theorem 1.2 we should
test first if W(fi’fi’ufi“) = W(fi’fi’l) satisfies the Goldstein condition.

This requires the evaluation of F(xi+si)’ and this, together with the

*
) NPL Mathematics Division, Report 97, 1970.
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known values F(xi) and F'(Xi) = VF(xi)si , gives sufficient information
to determine a quadratic interpolating polynomial to I? . We write this

as

P(N) = F(x;) +F' (x)h+ AA7 (A.1)
where A is to be determined by setting P(l) = F(x, +s,) . This gives

A

P(xy+sg) ~Flxy) - ¥ (xy)

Fr(x) (v(xg8550)-1) - (A.2)

The minimum of P(h) 1is given by

Fr(x,) 1
. = 2@-v(x;s0) .

A= - (4.3)

2A

To test if this is an appropriate value we compute wb%}si,K) . This

gives
_l_ " + X
1 1(1 3 P02t Asy)
V(x;580N) = 5+ 3 i - A (A1)
where A is a mean value. Thus, if F is quadratic and

w(xi,si,l) < g then N given by equation (A.3) satisfies the Goldstein
condition for any allowable ¢ (normally o is chosen small --

say J_O-]Jr ) : For nonquadratic F the test is satisfied if the relative
1- 'V .
error in estimating 3 F"(Xi+ %si) by A is not too large.

This analysis provides the basis for our method which is given below.

Algorithm

(1) Calculate “fi“ , set w = min(l,HEiH) > AM=1.

(ii) Evaluate ¢ = w(xi,si,K).
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(iii) If M <o then begin pA» = A,

go to (ii), end.

(iv) If A <1l-g gotO EXIT
If AN >1 then begin if N >1/w go to EXIT,

AN =2\, end.
else N = .5(N+DpN) .

go to (ii).

Remark
(1) Numerical experience has shown that the value of XN predicted in

(iii) can be too small, and that an additional instruction

If N < s*¥pA then N = s¥pA

should be included. A value for s of about .1 has proved

satisfactory (1/8 was used in the numerical experiments reported

in the next section).

lim ¥(x,,8,,A\) = 1 . Thus the
A0 ~E et

algorithm can be expected to return a value of A satisfying the

(ii) It is readily verified that

Goldstein condition unless V¥ exhibits rather pathological

behavior.

We write the Choleski decomposition of H as

H = R?R (A.5)

*
where R is an upper triangular matrix. Thus we require to find R

such that
* *
*T (4.6)

*
where H is given by either
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*
(i) E = (I+uyT)RTR(I+yuT) sy oOr
T
(11) H* = (I+uyT){RTR+§T~[vT}(I+~{u) :

The second case can be reduced to the first if we write

T

TR = RR+ET v (A.7)

To calculate ﬁ note that

RIR+ ¢ 7 YYT - & |VE ]

- [ |V via'q (A.8)

where Q 1is orthogonal. Thus we seek an orthogonal matrix Q such

that
R
Q = . (A.9)
/E; VI 0

>

Let W(i,j,{p,a}) be the plane rotation such that W(i,Jj,{p,a})A

combines the i-th and j-th rows of A , and reduces Apq to zero. It
is necessary that p be either i or j . Then Q is given explicitly
by
1
0 = |T w(i,nl, (m+1,1}) (A.10)
i=n

It is readily verified that the zero introduced by each transformation

is preserved by the subsequent transformations provided they are carried

out in the order indicated.
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Consider now the problem of constructing the Choleski decomposition
of STS where S = T+abT , and T is upper triangular. This corresponds
to our problem with the identifications T = R or R ,

a =Ry or ﬁy ,and '~b==E.. In this case the decomposition is done in
two stages. Our method uses ideas due independently to Stoer, Golub,

and Gill and Murray.

(1) We determine an orthogonal matrix Ql such that
Qe = ||a||5>n . (3.11)

If we set

Qq =?:I(Lw(i:n, {i,*}) (A.12)

i=1

where the * indicates that the rotation is defined by being applied

T .
to zero an element of a vector, then Q.8 = QT+ Ha“enb differs from
an upper triangular matrix only in having possible nonzero elements in

the last row.

*
(ii) To complete the determination of R we sweep out the elements
in the first (n-1) places in the last row of QlS by plane rotations.

Thus R* 1s given by

T
R* = Q,(Q;T+ |lalle, ) (4.13)
where
1
ay = || wimin,i}) . (2.14)
i=n-1

It will be seen that the updating of the Choleski factorization can
be carried out very cheaply. Depending on the update formula used, the

major cost is either 2n or 3n plane rotations. It should be noted that
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vy Ey = |Ryl® = [a)? (A.15)

is required in the update formula. Thus a can be already available

~

for S

2. Numerical Results

In this section we report the results of numerical experiments
carried out to test some of our techniques. We consider four line search
strategies:

(1) a standard cubic interpolation procedure with M = 1 as initial
search interval,
(ii) a standard cubic interpolation procedure with A given by the
step to the minimum in the previous line search,
(iii) a strategy for satisfying the Goldstein condition in which M
is reduced by the factor 1/8 if ¥ <o , and
(iv) the method for satisfying the Goldstein condition given in the

previous section.

Product form updating for the Choleski factorization of both H and

H-1 =G has been implemented, and the results obtained for each are
given.

The problems considered include:
(1) Hilbert: Minimization of a quadratic form with matrix given by

the Hilbert matrix of order 5 . Here

i 5 (Xi-l) (xa-l)

1
F =3 1+3-1

i=1 j=1
and the starting point is given by

XI =")+/i b i =l’2,-oo,5 .

>



(ii) Banana(n) : The Banana function in the cases n = 2 (the
Rosenbrock function) and n = 8 . Here
n-1
2,2 2
F = igl (100(x,,; - %))+ (1-x)%} ,

and the starting point is given by

X, = -1-2 if 1 odd, otherwise X. = 1

(iii) Woods: Here

2 2,2
o= 1200(x-x0)%+ (l-xl)2+9o(xh-x3)

4 (l-x3)2+ lO.l((l-x2)2+(l-xh)2)
+ l9-8(l—x2)(1 -xu) ’

and the starting point is

K = {-3, -1, -3, -1)

(iv) Singular: Powell's singular function is designed to test the
performance of algorithms on a function with a singular Hessian

at the solution. Here
2 2 L b
F = (xl+ le2) +5(x5-xu) + (x2 - 2x3) + lO(xl-xu) ’
and the starting point is

X = {3,-1,0,1)}

(v) Helix: Here we define
2 2,1/2
R = {xl t }in / )
1 X
T = if x, > 0 then,— arctan —

1 2n

01
1 X5
if x:L < 0 then —QT?rc—tan x—l + .5 )
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and set
F = :Loo((x5 —lOT)2+ (R-l)e) +x§ .
The starting vector is

XT={""1)O,O}.

Numerical results are given in Table A.l. For historical reasons,
the test for terminating the calculations was based on the size of HEiH
( HfiH.S EPS/n with EPS = 10-8 ). This proved reasonably satisfactory
for all cases except the singular function —-- in fact in all other cases
the ultimate convergence was clearly superlinear, and the results were
accordingly only marginally affected by the size of EPS. In the case
of singular the convergence test proved difficult to satisfy in most
cases (indicated by * 1in Table A.1l), and these computations were
terminated by the number of iterations exceeding the specified limit.
However, in all cases the answers were correct to at least six decimal
places. There is some variation in the H and G columns. This shows
the effect of rounding error, as these would be identical in exact
arithmetic. The most interesting case is the H column in both cases
of the Banana (8) when satisfying the Goldstein condition. In these
cases both H and G formulae produce very similar results until the
10-th iteration at which point-the H formulae produce much larger
reductions in F than do the G . However, this progress is not main-

tained and at the 20-th iteration (in the case of the line search

algorithm of Section 3) the H matrix becomes singular and the iteration

is terminated. A restart procedure could have been used at this stage.
The numerical results indicate that the new algorithm is promising.

In general, although more iterations are required, we make significantly

5



fewer function evaluations in comparison with the routine using a
standard line search. As only one derivative evaluation is required in
each iteration, the real saving can be considerable. We note that on
the basis of the evidence presented it is not possible to draw conclusions
as to the relative values of the H and G algorithms. However, that
both manage to produce very comparable results provides some evidence of
their stability.

The program which gave the results presented here is coded in
ATGOL W for the IBM360/67 at Stanford University. The calculations
were carried out using long precision (14 hexadecimal digits).

A FORTRAN version of the program has been developed at the Australian

National University.
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III. Barrier and Penalty Function Methods

78






1. Basic properties of barrier functions.

Consider the inequality constrained problem (ICP)
min f(x)

subject to gi(x) >0, i = 1,2,...,m (:'LeIl) ,

where we assume (as before) that f., gi , ieI1 , are in C2 . We also

assume that S = {x; gi(x) >0, ieI is compact, has a nonvoid interior

1}
SO and satisfies the regularity condition that every neighborhood of points

of S contains points of SO (this precludes S having 'whiskers'). If

xcS and gi(x) = 0 for some i then it is assumed that x)éSO .

Definition: P(g(x)) 1is a barrier function for S if the following

conditions are satisfied.
(1) >0, xe8 . If X closed set, X c 8y + then ¢602 on X

(ii) P -, g; ~ 0, iel, .

(1ii) gak_g@ < 0 if gi < Py where the Ps ieIl , are fixed positive constants.
i

(iv) |§-§| bounded on N(x,8) if g > 0 on N(x,8) .
i 2

m
Example: (1) ¢= Z l/gi(x) (inverse barrier function),
i=1 ~

(11) ¢ = Z_(llog(1+ g; (%)) -log g, (x))

Remark: In the second example the term with argument 1+ gigx) merely

ensures that the positivity condition is satisfied. It could be

replaced by a bound k; for log(l+ gi()f)) on S if this is known. In
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practice it is of no consequence. The barrier function

m
9 = z: (ki-log gi(x)) is called the log barrier function.
i=1 ~

Definition: T(x,r) is a barrier objective function if

T(x,r) = £(x) + rp(e(x)) (1.1)

where r >0

Lemma 1.1: 8 x = x(r) €8, such that T(x(r),r) = min T(x,r) .
~ ~ xeS ~

~

~

Proof: T(x,r) is bounded below on S , and T(X,r) =+ as x - OS

~

cl
Lemma 1.2: Let {rj} ! 0, and let f(rj) =X . Then
(1) {T(fj’rj)} is strictly decreasing,
(ii)  {f(x,)} is nonincreasing, and

(iii) {¢(xj) } is nondecreasing.

Proof: Let r; < r. then
£(x;) + r;8(e(x)) < £(x3) + vyB(e(x)))
< £(xy) +r.p(e(xy))

< f(fi)+rj¢(§(§i)) .

This demonstrates (i). Subtracting the inside and outside inequalities

gives

(z5 - r)P(e(x;)) > (x5 - 7;)P(s(x,))
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which gives (ii). From the first inequality we have
£x;) < £(x)) + 73 (B(elx))) - Ble(x;))

<f(x) . O

Remark: If T(x,r) is strictly convex, then all inequalities are
strict.
Theorem 1.1: The sequence {Tl(xi,ri)} converges, and

1im  T(x,,r.) = min f(x)
. ~L 1 ~
i-e xeS

~

Proof: By Lemma 1.2, {T(Xi,ri)} is decreasing and bounded below and

hence convergent. Let f* = min f(x) , then
xedS -

~

*
T(}E,ri) > f(x) >f

whence
*
i 1.2
lim T(fi’ri) > (1.2)

i-w

- - *
Now let ¢ > 0 be given. Choose XeS, such that f(x) -f < ¢/2 (this

is possible because of the regularity condition on S ), and choose Ty
such that ri¢(g(i)) < ¢/2 . Then

min T(x,ri) < T(i,ri) < f*+ €
. - =

whence

lim T(xi,ri) < £ .0 (1.3)

1-e

Corollary 1.1: The limit points of {xi} are local minima of the ICP.
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Remark: The generality of these results should be noted. For example,

we have not required S to be Lagrange regular at the limits points

of {fi} .
Definition: Q(x,r) 1is a separable barrier objective function if
n T
Q(x,x) = £(x) + ), 7.0, (8, (x)) = £(x)_+ r B(x) (1.1
~~ ~ in ~= -

where r >0 , and ¢i is a barrier function for §; = {x;gi(x) >0},
i = l,E’CC.,m -
The previous results are readily extended to this case and are

summarized in the following theorem.

Theorem 1.2: Let r, >r, 4, 1 =1,2... , and lim r, = 6 . Then
~i 7 L1 L e ™ ~
(1) min Q(x, rk) is attained for some x.keSO
xeS ~ 7 - !

(ii) {Q(fk’fk)} is strictly decreasing, {f(xk)} is nonincreasing, and
*
(iii) 1im Q(xk,rk) = f , and the limit points of {xk} are local
e ~E < ~

minima of the ICP.

Remark: Given a sequence of positive vectors tending to zero then it
is possible to select a subsequence which is strictly decreasing.

Conclusions (i) and (iii) remain valid in this more general case.
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2. Multiplier relations (first order analysis)

*
In this section we assume sequences {rk} ‘0, {fk} -X . The

condition that T(x,rk) is stationary at r,_ gives

k

vI(x,,1,) = vE(x)+ ﬁl Ty % ve, (%)
~ e i= i

m

= vi(x,) - igl uf ve; (%) = 0 (2.1)

k d k
where u; = - T, g (§(fk)) . Note that uj = O(rk) -0, k =,
if iﬁB0 , and u]; > 0 for ieBo and k Zko by the conditions

defining barrier functions. Equation (2.1) is formally similar to the

multiplier relations given earlier (MP(3.2)), and it is comparatively
straightforward to deduce these relations from (2.1) in certain special
cases. We assume that BO = {,2,...,8} , that the rank of the system
* * *

of vectors Vgi(x ), ieBO is 8 <t , and suce Vgl(x )s e o -;Vgs(f )
are linearly independent. We define matrices C.,g(x) , CE(X) by

T . T
Ki(cl) = Vgi(f) , 1i=1, , ® _*,5 , and Ki(CE) =Vgs+i(§)’

k)T k k k)T k k
i = 1,2’ ol.,t—s 7 and VeCtOIS B§- ) — {1J]-, 00y us} F] Eé ) = {us+l LRCIN ] us‘} .

Lemma 2.1: If {u}g} 'is bounded then the Kuhn-Tucker conditions hold

*
at x

~

Proof: From (2.1) we have

Vf(’,fk)T = Cl(fk)l.l.](.k) +02(§~:)‘iék) *0(xy) . (2.2)

* . .
The linear dependence of the set of vectors vgi(}j) , 1€BO r gives
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Cp(x) = Cy(xR (2.3)
so that (2.2) can be written
ve(e)T = 0300 B 4 m®y e ) - 0 )RI{D + oz L 2

Provided k is large enough the rank of lexk) will be s (see

MP Remark following Lemma 3.3). Thus

8 el = e )T (x) “Cl<xk> 200 T+ (Colm) - €y () RBIY +0(x,)Y -
(2.5)

As uék) bounded we conclude from (2.5)

~

(1) u(k) bounded, and
~1

(ii) kl—'::r: Eik)+Ru(k) {Cl(x ) Cl(x )} lcl(x ) Vf(x ) .

As {u§?)} ’ {uék)} are bounded and nonnegative (at least for k large
enough) this property is shared by the limit points of the sequences.

* ¥ ,
Consider subsequences tending to U, Uy respectively. From (2.2)

~

we have
*. T ¥, ¥ *. ¥
vE(x )T = Oy (X )8 *Cp(x )y,
or
* * *
vf(x) = Z uy vgi(x) . (2.6)
~ ieBO -~

Thus the Kuhn-Tucker conditions are satisfied. O

*
Corollary 2.1: If the Kuhn-Tucker conditions do not hold at x ,

then Fui} , {ug} are unbounded.

8l



‘ *
Corollary 2.2: If restraint condition A holds then the VgiQE)

. . ky .
are linearly independent for 1€BD In this case {uz} is null,

and {u?} converges. If restraint condition A holds then the multipliers

in the Kuhn-Tucker conditions are uniquely determined.
(
Lemma 2.2: If restraint condition B holds then ﬁé?} is bounded.

k .
Remark: By MP Lemma 5.2, this implies that {ug )} is bounded for the

convex programming problem provided S has an interior.

*
Proof: If restraint condition B holds then ¥ g such that Vgibi)9,> 0,
i=212,...,84 . From (2.2) we have
& k
Y, ul vey(5)d = vE(x)aro(r,) . (2.7)
i:l & -~ ~e ~ 2d e

. . . k
As VgiOQd is a continuous function, we must have ui >0 and

~~ o~

Vgi(fk)d >0, 1i=1212,.ee5t , provided k large enough. Thus (2.7)

gives

t vE(x)d+ 0(ry)

u <

. 2.8
i 1 mn ve; (x)d @)

k
This relation shows that the ui are bounded as k =»» . O

Remark: The results of the first section showed that convergence of
barrier function algorithms can be proved under very few assumptions.
The results of this section show that valuable structural information
on the problem is available as a by-product of the computation. Note
that the condition that the u? be bounded is a weaker restraint condition

than either A or B.
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3. Second order conditions.

Consider now a barrier function ¢ and a sequence {rk} {0 such
* *
that {xk} -X {uk} - u . It is convenient to assume the following
properties which are satisfied by all barrier functions of practical

interest.

) Feern Zwyso, o
L

iEK >O, i=l,2,...,m,Vk .

IQ/
(] n
He MO

N g .
(ii) r 3 cx& o+ , Koo, ieB  (But see Example L(ii) p. 100

i for qualification.)

(iii) a-$s&— =0 if 1 £33 .
i3

Lemma 3.1: If the matrices V2T(x are positive definite for

k’ rk)
k > ko and the Vgi(x ), ieBO , are linearly independent then

* ¥
VTVZ.!!(X yu)v >0, v # 0 such that Ve, (x )Jv =0, YieB, .

~a

Proof: Differentiating T(x,rk) gives

m 2
VQT(?fk,I‘k) = V2£(§k,gk) + T Z_'.l %% Vgi(ﬁ{)TVQi(ﬁ() (3.1)
i= gi

which can be written

2
o) = v alnen) +05) 00 () e T xS v, () e, ()
~ e ~ ~ ieI,- Bo Bgl
Where
2
(Dk)ii = I‘k ':_g ( i&){ ) i = 1’2, ocn’t .
&1
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Let

+
3.2)
B = Cy(xC; (%) (
then, for arbitrary nonzero v such that (I -Pk)g )
T
0 < v(I -Pk)VQT()ch,Ek)(I -Pk)z
= vT(I-P )ve.s(x w )(I-P )v+o(1)
T k ~k’Zk Tk

as

The desired result follows from this on letting k -»o . [

Corollary 3.l: If in addition to the conditions of Lemma 3.1 we have

also strict complementarity then the second order sufficiency conditions

*
(the conditions of MP Lemma 4.3) hold at X

Remark: The problem of generalizing this result to the case where the

active constraint gradients are not linearly independent is the following.

In general, when k < » , rank[cl(fkﬂcg(fk) 1] > s . Thus

V, = {v;ve(x)v=0,¥ieB}cu ={r;v=(I-PJu, uE]} .

We have

- * * - B
lin U =V = {Z,vgi(i)y_= 0, YieB,}

kK-

1i V*
jm Vk<: .

It is not difficult to construct examples in which K

. T *
Consider Cl(fk) = sl , Ce(ﬁk) = Sl+52(§'f )32 . Then
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T T . * T
V={V;ev=521r=0} = llmvkcv={Z;SlX=o}'The

k-

* %
argument of Lemma 3.1 shows only that t % £(x ,u)v > 0 for

~ ~ ~

velim V, .
k —»e

Lemma 3.2: Let

w=Uty VW ,

=
!

= st =1,ve =0},

M

fslll - 1,uent)

v =mint'Ut >0 , o =minu® Uu , p=min |Mil >0,
teN ~ 7 ueM ¥ 0~ ueM  ~

~

= min t°UW , p = min(0,M)
teN, ueM ~ ~

then W is positive definite provided

2, .2 oy
2.7y =7V
y > s . (3.3)
v
Proof: Any unit vector w can be written

~

w=Qu+gt where ueM , telN , and 062"'32 =1

Thus
W Ww = oPut Uu+ 2asuTUt +52tT Ut+ 7O£2HVT11H2
> Plo+n®-v) +2la|(1-A) Y%y

202(°+7u2-v)+2|0¢|p+v (3.1)
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|~

as p <0 . Provided y >-V—-29- (a weaker condition than (3.3)), the
"
i ' ini S The value at
right hand side has a minimum at @ = 5 . € value a
O+ % =v
this minimum is ————+ y which is positive if (3.3) holds. O
0+ % -v

Corollary 3.2: If W = U+\IDVT where D diagonal, and if the

conditions of Lemma 3.2 hold, then W is positive definite provided

2*_ 2 g
min D.. >P\)—2\)
. 11 .
1 Vi

If D is positive definite the result holds
provided the smallest eigenvalue of D satisfies this inequality.

Proof: We have

't
wI VD VTW = chuT VD VTu = 062 Z Dii( pi(VT)u)2
~ ~ ~ ~ i=1 ~

>min Dy, vl

1

The result now follows as fram equation (3.4) above. O

*
Lemma 3.3: If the second order sufficiency conditions hold at x

then V2T(xk,rk) is positive definite for k large enough.

Proof: We have

*
v U = v vgi’gx*)v - 0, Vi By such that u > 0.

~ ~e~

Thus the second order sufficiency conditions imply that
* * *
Tg(x 5w )y >0, WeV such that v # 0. From Corollary 3.2

it follows that 3 D0
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is positive definite for D >D By continuity this implies that the

o
corresponding matrix evaluated at X, is positive definite for k large
enough. The desired result follows from this as (Dk)ii - @,
i =120t as k = . O

Lemma 3.k4: If U is nonsingular, D diagonal, and V of full rank,

then the system of linear equations

[U+VDVT]x~= vy (3.5)

~

has the solution

x=U_lV(I+M)-le (3.6)

where M = (VTUFlV)-lD-l provided I+M is nonsingular. A sufficient
condition for I+M nonsingular is ”M”< 1l which is satisfied if

min lDii' is large enough.

Proof: The result follows on substituting (3.6) into (3.5). O

Remark: From (3.6) it follows that

x ~ Utv(vtut V)'ln'ly (3.7)
as min|Dii|—ow
i

Corollary 3.5: If the right hand side of equation (3.5) is z ,

~

a general vector, then the solution is given by

x = vtz + M) 'lM(vT vyttt z

+ U-l(I-V(VTU-lV)-lVTU-lZz . (3.8)



4, Rate of convergence results.

In this section, rate of convergence estimates for barrier function
algorithms are considered. Unless stated otherwise the conditions
imposed in Section 3 are assumed, together with the condition that

lve; (<O £ 0, ieB,.

Lemma 4.1: Provided [uk} is bounded then

t

2050 - £05) = 3, u] 8y(5)
+ O(max{|jx, - J:*Hz >l - f*”}) . (4.1)

Proof: The result follows by taking the scalar product of (2.2) with

*
X, - X and identifying with terms in the Taylor series expansion. [

~

Definition: We say that U is SO(vk) (strict order e ) provided

(1) u = O(Vk) , and
(1) Zk; <® and p >0 such that lo | > wlvy | for x > X,

Remark: (4.1) gives an error estimate provided the remainder term is

small. A sufficient condition for this is
* *
£(x ) - £(x) ., so(llx, ~x|) . (4.2)

k *
This implies that for at least one i , Y gi(fk) = SO(Hﬁ{ X 1.

If (4.2) does not hold then for i = 1,2,...,t either

(1) u]l{—-.o, k »o, or

(13) & 0g) = ol -x1) -
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*
If (ii) holds then the approach of fk to x is tangential to the

*
surface gi(x) =0 at x = x

~

Lemma 4.2: If the ICP is convex, then

(i) X, W are dual feasible, and

m
(1) £x) - £(x9)< Y g (x) .
AR NETHCN

Proof: The dual feasibility is a consequence of (2.1) and assumption

(i) of Section 3. This follows directly from Wolfe's form of the duality

theorem (MP Corollary 5.1). We have
& k * ¥ *
2(xow) = £(x) -igl U g () <s(x,u) = £(x) <f£(x)  (%.3)
which demonstrates the second part of the desired result.
) . * *
Example: For ieB, let gi(fk) = SO(HEK - %‘H) ; ug >0
(a) inverse barrier function. We have
k 2
U=y /e 0g)
whence
k
This gives
* 1/2
I =%l = O(rk/ ) -
(b) log barrier functions. In this case
k
U=/ e ()

which gives
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g; (%) =7 /uy
and

b =% | = 0(xy) -

Thus the strict order condition permits us to deduce a rate of convergence
result. We now show that the SO condition is equivalent to the
condition of strict complementarity for the inverse and log barrier
functions. In these cases the remark following Lemma b1 gives us a
geometric interpretation of strict complementarity.

To discuss this equivalence, consider the following system of
equations which define fk and U, as functions of Ty -

Vf(f‘k) - -2—1 ulfvg.(fk) =0,

1 1

and

ul;/(—%@; () == 7, 5 1=L2.0m. (h.4)

If the Jacobian H(x,u) of this system with respect to X ,u or an
appropriate transform of it is nonsingular then we can study the behavior
of x(r) , u(r) as a function of r by integrating the system of

differential equations

[~ ax m - M
e 0
H(x,u) = - (L.5)
du
= e
T
Where e : {l, l, ) -’l} . We have
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"7 £(x,1)
( ) Vgl(X)
H(x,u) =
“u o
. m - @ ng(x)
gm
(%)

Let D be the diagonal matrix

B i
T
D = kb1
w
m
_ _1
where
2 p)
_ og
W, = =
* (gagl )/ 36"
1
then
v g(xm) - Vgl(f)T
BECCEEEE = i
DH = agl
5,98, (%)

9L

T
- Vg, (x)" .-

Yo

- vgm(gs)T

ve (x)"

(4.6)

(3.7)

(4.8)

(+.9)




2
Provided % 6_@ -0, koo, ieBO then DH will be non-
. ag

*
singular for k large enough provided J(x ) is nonsingular (see MP

Lemma 4.4). This implies
(1) the second order sufficiency conditions hold,
(ii) the active constraint gradients are linearly independent, and

(iii) strict complementarity holds.

In this case

dx - -
Ir 0
DH = = (4.10)
du
- W
dr ~
- J o -J
whence
P' -
*
- X Tk L [o
= -[ (om) dr (k.11)
U, - u* 0 Y
~k .

provided the components of w are integrable.

Example: (i) inverse barrier function.

We have
X /3 &; XYV / % 1
= - 4 - *
&/ d¢° 2 & d° 2e;
i i
In particular, it follows that DH(xk) is nonsingular for k large enough,

while -w, = %«/ui/r . We have

1
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|
F

dx

ar 1 -1 :

= Tap M| =
du 2r uy
dr :
whence, changing to rl/2 as independent variable,
[~ ax B ]
= 0
/2
a(r ) 1] —
= e

du -1
1/2 .

d(r™")

- . h/ﬁ;n ]
Thus we have

_ X (r) x* 0

~ T . MR = | o(xH?)
*

u(r) -u il

o

3
\

(ii) log barrier function. In this case

2 2 2
2% ()

so that (4.10) becomes

dx

Ir ‘ 1 0
= J

du

ar £
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In particular, x(r) , u(r) inherit the differentiability properties of

~

f and g; > i=1see3m for r small enough (if f,geCp then

xgleCP-l ). Thus

*
x(r) -x o
- rax)t + o(z°) . (4.16)
* - e
u(r) -u ~
Remark: These results can also be derived by differentiating (2.1) with
, respect to r . We obtain

ar dx m 7 )
—_ _ - oL
Prie(n)r) = = - L o vg(x(e)” (417)
i=1 i
In this case Lemma 3.3 guarantees that VQT(x(r),r) is positive
definite for r small enough, and Corollary 3.5 can be used to give

du
the solution to (4.17). Note that (4.17) results if a% is eliminated

from (4.10).

We can now proceed to the main result.

*
Theorem 4.1: Provided J(x ) is nonsingular, then the strict
complementarity and strict order conditions are equivalent for the

inverse and log barrier functions.

Proof: The argument is essentially the same for both barrier functions,

but is simplest for the log function. Thus only this case is considered

here.

k
i = so that
For the log penalty function Uy k/gi(zk)
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£(x,) - £(x) };3

Ty .
ETy 050 + ol - <))
A

= tr +o(llx - x| (4.18)

If strict complementarity does not hold then for at least one ieBO

Ty
1im = 0 .
giz}fkj

k-ow

* . * _
R () = 96, () (o, + ol - ¥ 88 Ol ) =t most, it
follows that r, = o(ka-x*H) and hence, from (4.18), that
f(xk) - f(x*) ) o(ka -x*‘{l‘) . Thus the SO condition does not hold.

If strict complementarity does hold then asymptotically for small r

*
L = o) ieB. .

* * ~ = - ui > ,
e [x(x) -x'|| g, (x(x)) .

Thus r = O(|x(x) -x*”) . As J(X*) is nonsingular (4.16) holds and this
implies (as r = O(llx r) -X*H)) that
Hx(r)-x*H < Kr +O(r2)

*
for some K > 0 . This shows that r = SO( |x(r) - x|} so that, by (4.18),

the strict order condition is satisfied. [J

- Remark: The above argument shows that if strict complementarity does
not hold then the strict order condition cannot. The condition that

*
J(x ) Dbe nonsingular is required only for the second part of the theorem.
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Example: (i) minimize X +x2

2
subject to -X;*X; > 0, %, 20

v

Figure 4.1

From Figure 4.1 it is clear that the minimum is £

and that strict complementarity holds.

(a) inverse barrier function

1,1
T=xl+x2+r x2+x'l
¥p ™%
2x
Baf‘=°=1+r Ls-3
1 (xp-x)" %)
ar —
o
2" %
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This gives a pair of equations for X, and x, as funct ion:;

2f r . We have
X, = rl/e—r+ O(r5/2) ,
X, = rl/2+ r+ O(rB/e) .

(b) log barrier function

2
T = x +x2-r{log (x2-xl)+log xl}

1
T B N
> 0=l N\
1 X, =X 1
2 71
T 1\
é = O = l—I‘ .
*2 X -x2
2 1
Solving for Xy and X, as functions of r gives
X, = r-2r2+0(r5) ,
1
X, = r+r2+0(r5)
(ii) minimize x

2
bject t x—x2>0 X, >0
subjec o X, 1 X2

In this case the minimum is again f = 0 at X, = X, = 0 . However,

vf(0) = eg is orthogonal to Vge(O) = e%‘_ . Thus, as both constraints

are active at zero, strict complementarity does not hold. Note that

the constraint g, = x; > 0 is redundant, and that the barrier function

trajectory is tangential to the constraint surface g, = 0 Note also
. aég
that the rate of convergence 1s reduced, and that T S 5 does not
g

tend to « for the constraint with the zero multiplier.
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(a) inverse barrier function.

1 1
T=x+r _x2+xl
"%
I oo, 1
xX. - 22 2
1 (%, - xl) X,
oT -1
=0 =1+r
% 2\ 2
2 (x2 - xl)
whence

2
x1:(1‘/2)1/5,u-1 P 822

l" ’

2
v, = /2, u, = (Y3 Ly,

2 d¢
(b) log barrier function.

2
- - X
r{log(x, - x7) + 10g 1}

T = x2
-2X
5__31?__ + L
xl S0 X, --x2 xl
2 1
oT 1
Eig S0 b'q -X?
2 1
whence
2
(=
x) = (r/E)l/2 , w =1, x P _ 1

2 r
ag'l 1

2
x, = /2, uy = @Y? 2L
ng
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(iii) minimize Xy
. p)
subject to (l-xl) -x, >0, X%

This is the example used in MP Section 3 (see Figure 3.1). The
optimum is £ = -1 at X, = 1, X, = 0 . The Kuhn Tucker conditions

do not hold at this point.

(a) inverse barrier function.

T= =X_+I L + _];
1 (1 -xl)5 - X, %2
. 2
3(1-x%,)
gil‘ =0 =-=1+1 31 2
1 ((1-%)7 -x))
or O=r : -
=0 = 2~ 2
B—i; ((IL-X:L)5 -xe) X,
whence
x, l_21/2 51/l+ rl/u
x, _ o1/2 53/ 3[4
. B 3 1
In this case ul(r) = ue(r) - 5 . 55[2 ] rl/2

(b) log barrier furé&ion.

3
T = =X - r{log((1 -xl) 'XE) + log x2}

2

-3(1l-x%.)

§=O="l-r 31
xl (l-Xl) —X2
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o 0 r -1 + L
x. - 7T 3 X
2 (l-xl) - X, 2
whence
X _ 1-6r ,
x_ = 108r°
2
(1) =up(r) =
In this case u,(r) =u,(r) = —
* 2 1082

The above examples confirm the predictions of our analysis, and for
a given fixed sequence of r, values effective convergence is attained
more rapidly (i.e., for earlier members of the sequence) with the log
barrier function.

Now let § be a barrier function. Then
p, = log(c+@) , 0 >1 (+.19)

is a barrier function. Let X minimize f*—rk¢ » X, minimize

f%—rk¢l . Then comparing corresponding Lagrange multiplier estimates
gives
géﬂgi (%)
0+ $(3)) 3¢- ()
whence

Sa!fi‘(ﬁ)”(%(g{)) 2 1 <0 -

Essentially this says that gigfk)-* 0 more rapidly than gi(gk) , so
that a faster rate of convergence is anticipated for the ¢l barrier

function.
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Consider now the sequence of barrier functions defined recursively
by

81 = 10g(x, - 108(e,(0)
¢§i) = log(c+¢§i’l)) ; 1=2300,0> 1,

. mn .
g =y gl (%.20)

In this case the error estimate is

(i) .
; 2 :
V) -t =, L oSi—ei5) = X = 1og(g) TT W

=1 - J=1
(h.21)

The right hand side of (4.21) tends to zero as i - @ , and this suggests
that increasingly rapid rates of convergence can be obtained by using
barrier functions associated with large values of i

However, an even more interesting result is possible. This shows
that in certain circumstances it is possible to choose a barrier function
having the property that the solution to the ICP is approximated
arbitrarily closely by the result of a single unconstrained minimization,
without requiring r to be taken arbitrarily small. Let

i

O R R CIC IS

QM) = £(x)+ Zl% (k; - log(g;(x))) -
5!
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Theorem 4.2: Let Q(%,A) have a unique stationary value (necessarily
a minimum) in S, for each A >0, and let x(l) minimize T(l)(x,r)
(1)
3

for i = 1,2,... and fixed r . Then the limit points of {x

are local minima of the ICP.

Remark: Note that r does not have to be small in this result.
Proof: If x(i) minimizes T(l)(x,r) then
m i-1 .
| 413 l l l
ve(x ) - 5 &), (D o vt
j=1 kj-log(gj(gg )) s=2 0+¢j (7)) gy(x )
=O ’ (4022)
and this expression has the form
vQ(x(l),).(l)) =0 (4.23)
where Kgi) has the numerical value
. i-1
Kgl) = — — r (i) I I (S) l (i) F) j =l,2, uoo’m .
ky-log(g;(x177)) s=2 o+ Py (g;(x277))
(k.2k)

Thus the {x(i)} also correspond to a sequence minimizing Q(f:é(i)) by
the assumed uniqueness of these stationary values. Now, as 0 > 1 ,
¢§s)> 0, s =1,2ye00,i-1 , Kgi) can be made arbitrarily small for
each j by choosing i large enough. The desired result is thus a

consequence of the remark following Theorem 1.2. (O
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Remark: The conditions of the theorem are satisfied if f(x) convex,
gi(§) » 1=1212,...,m concave, and strict convexity / concavity holds

for at least one of these functions.

In what follows it is convenient to use the superscript i to

indicate the appropriate member of the log barrier function sequence

(k.20).
Lemma 4.%:
5 (1 . (1)
1) S eyt
2 dg N > 1= 1L,2..., (k.25)
%] j &5
where
(1) _ (3-1) + (1) (i-1)
Py =Py € éggg— < ey s (4.26)
and
pgl) -1, g5 =0 . (L.27)
Proof: Let ¢(O) = -log g. then

24(0) (0)
A (1.28)

o8 J &;

so that p§0) =1 . Now, differentiating the relation

ég(i+l) 1 a¢(i)
g - 0+_¢(f) ‘sgj (4.29)
gives
a2é(i+l) 1 (1) c 1 32p(1)
= - - + .
5" (o+g1)2 \_ %8 orp 3
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so that

a2¢(i+1) a¢(i+l) . a¢(':L+1) , a2¢(i) %(i)
5g§ agj ng 5%? €3
. (i+1) \
1 [o(l) o
" ey '\" & g /

This demonstrates (4.25) and Uh26), (4.27) follows on noting that
p(o) =1, and that, from (k.29),
551 .
g. - 0 , g. -0 , 1 = 1,2,-0. . d
J ©8. J
J
. . . *
A consequence of this lemma is that, provided JQC) nonsingular,

3 * " " *

then D(l)H(l) is nonsingular for x(r) sufficiently close to x

*
Lemma L4.h: Let J(x ) be nonsingular, and Il = BO , then the S0

condition is satisfied.

Proof: We have fram (4.29) that

2 .
. (1) 2 (1) & )
(1) _ _ é% ¢ - J g , (4.31)
% ( €; ng ogl) %8
so that wgi) -0 as r - 0 for j€BO . Now
xk-x* I ) 0 ]
~k < < [D(i)H(l)(fk)]-l ' ) “
u -u* P(l) ul gl
J .
K
. um gm -

+ smaller terms
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where P(l) is diagonal, and ng) = l/pgl) -1, T -0,
j =1,2,.0eym . This result implies that for k large enough

X - x* uk
5l K T e

The SO condition is an immediate consequence of this inequality. O

Remark: If By ¢ I, then ng) need not tend to zero for j;ﬁBO .

Thus eventually the largest components of w(l) will be those associated

" with the inactive constraints. This implies that “xk-é*n = O(yk).

which suggests that, in general, the SO

But OrY jeBO , is o(rk)
condition does not apply. This case should be contrasted with the log
and inverse cases where the contributions of the inactive constraints

do not dominate in W (in the inverse case the active constraints
dominate). We note that the SO condition is only sufficient for (4.1)
to provide an error estimate and numerical experience indicates that it
is applicable in the calculations with the log sequence. However, the
above discussion suggests that to attain the maximum rate of convergence
with the members of the log sequence, the inactive constraints should be

identified and discarded. A possible way to do this automatically is by

the use of a separable barrier objective function
T k-1
Q(x,p,) = £(x) + rki);i u " Bl (%)) (4.32)

where & = rkk?} , T, is the usual barrier parameter, and1;¥_l is

the multiplier estimate obtained from the previous minimization. This

objective function has the property of forcing the multiplier estimates
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for the inactive constraints to zero at a very fast rate. We have

R uk%ﬂ—(x )
i B kt1 i gy ~kt1
ktl
k k+1 0 n
STq Py S eee Sopg g=k T ug (4.33)

- )

where p. is a bound for ézz (xk) s k= 1,2,... .
i o~
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