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Introduction. In recent years, fast direct methods have been developed for

the numerical solution of the Poisson equation on a rectangle [1, 2], By
taking advantage of the special block structure of the approximating dis-
crete equation on a uniform rectangular mesh, these methods obtain the
solution with striking efficiency and accuracy. A comparison of fast
direct methods with other methods can be found in [3], and the extension to
more general separable elliptic equations in [4].

In this paper, we investigate a technique for using fast direct methods
to solve iteratively more general formally self-adjoint strongly elliptic
equations fu = £ , which are not necessarily separable. We consider
mainly Dirichlet conditions on the boundary of the rectangle, although
the technique applies with slight modification to other boundary conditions
for which fast methods are suitable. Our approach is to utilize a modified

form of the iterative procedure

(1) b= omuy, - r(8a D), A= 3/ + 8%

proposed for numerical computation in conjunction with alternating-direction
methods by D'Yakonov[5] and discussed recently by Widlund [6]. This procedure,
in addition to being of a form suitable for fast direct methods, has the desir-
able feature that for well-behaved problems its convergence rate is essentially
independent of mesh size.

The iteration (1) as it stands, however, may be too slowly convergent to
be of practical importance, even when optimal values of the parameter + are
used. The purpose of our paper is to discuss means for improving the iterative

procedure so that it becomes a potent one for attacking a class of problems



v

arising frequently in applications. The means we employ are: (i) scaling
the original problem £u = f and iterating instead with the scaled problem

7w = q ; (ii) using, instead of (1), the shifted iteration

(2) (-a#kw = (-a+K)w - t(mw -q)

where K is a suitably chosen constant; (1iii) applying Chebyshev accelera-
tion.

These means in themselves are not necessarily new; it is the effectiveness
of their combination for solving this problem that we wish to investigate, We
remark that algorithms for the fast direct solution of the discrete Poisson equation
in a rectangle can handle iteration (2), which requires the repeated solution
of a Helmholtz equation, with the same rapidity as they can (1).

In § 1 our 'basic iteration procedure for smooth coefficients is

described and in § 2 its convergence studied. 1In §3 the generalization to

non-smooth coefficients is discussed. 1In § 4 the results of numerical experi-
ments are given to illustrate the behavior of the procedure. 1p the remaining
sections, the question of scaling is covered, and generalizations to other
equations and nonuniform mesh spacing are discussed.

Related iterative techniques for elliptic equations are studied in [7]
in connection with alternating-direction methods and in [8, 9] in connection
with Stone's sparse factorization method. This latter method is formally
similar to ours; however, our technique has the desirable property of being

based on a more natural splitting of the operator. 1pn [10] a related

approach to nonlinear ordinary differential equations is investigated.
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1. The iterative procedure. In its simplest form, the iterative procedure

considered in this paper solves numerically on a uniform rectangular mesh

the problem

(3) fu = -v- [a(x,y)vu] = f(x,y) on R
(4) u(X,.V) = g(X)Y) on OR )

where f is the rectangle 0 < x < ¢, 0 <y < d and a(x,y) is strictly
positive on R and its boundary OoR . We assume a(x,y) and g(x,y) to
be sufficiently smooth so that the solution u(x,y) is well behaved. The
positivity of a(x,y) implies that £ is positive definite.

If a(x,y) has bounded second derivatives on RUOR , which is the case
of principal interest for the use of our procedure, the change of variable

is performed
(5) w(x,y) = [a(6y)1Ru(x,y) .

L
Then, after division by a® ,(3) becomes

= -aw+ p(X,y)W = g(x,y) on R,

=
1l

3
i

Wl

=

1
where p(%,y) = a %4 (a®) and - q(x,y) =a 2f . The effect of this
scaling is to transform the-operator £ into one whose differential part
is -A . Note that the change of variable (5) does not alter the positive

definiteness of £ , so that 7 is positive definite as well.



Substitution of (6) into (2) then yields as our iteration

(7) (-a#)w, 4 = (-a+K)w - 7(-a+p)w_+ 14 on &

The boundary condition is

(8) LA H{x,y) on oR ,

iy
where H(x,y) = a®g .(l)

. In an attempt to make the operator -A+K on the left of (7) agree
closely with M , we choosethe constant K to approximate p(x,y) , The

choice of central interest in our study is the minimax value,

(9) K = £(B+B) ,

where B is the minimum and B the maximum value of p(x,y) on the
closed rectangle. As will be shown in the next section, this choice leads
to an estimate that the optimal value of the single parameter T to give

most rapid convergence in (7) is

(10) T=1.

For this value of 1, (7) becomes simply

(11) (-aK)w = K-phv_ 4 q on R
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We have presented the iterative procedure in its underlying continuous
form to bring emphasis to the point that the convergence properties should
not be expected to depend significantly on the mesh size, at least rfor the
case of twice differentiable a(x,y) . The discretized version of the iterative
procedure (8, 9, 11) is discussed in subsequent sections. To obtain it,
we place a uniform rectangular mesh on g with spacing h in the x-direction
and k in the y-direction and let Wif correspond to w(x,y) at the mesh
points x=ih, y=jk . Corresponding to the operator -A with Dirichlet

boundary conditions we take the standard five-point approximation,

-2
2 - = -
(12) AhWij h “(-w

)

-2
) + k(W
i,

. W . —w, . +2W. .-
l_l/ j lj l+1 ’J J -1 w'l:'J wi ,j+1

. C . d
1=112)---,E -1 J=1:2:’--;K -1

Then the discrete form of iteration (8, 11) is given by

(13) (-Ah+KI)w(n+1) = (KI-P)W(n) +Q ,

where P is a diagonal matrix with elements p . = p(ih,jk) , Q is a vector
1]

with clements Q'3j= g(ih,Jk) , and I is the identity matrix. The solution

of' (13) is carried out in each iteration by using a fast direct method.
Finally, under the assumption that the eigenvalues of (-Ah+KI)-1(KI-P)

lie in the interval [-p,p] , Chebyshev acceleration is applied [1L4]:

(1) ﬁ(n+1) = mn+l(w(n+1)' ﬁ(n-1)) . ﬁ(n-1) ,

~ 2 2 -1
where =1, w1=2/(2-p ), cbn+1=(1-p wn/h) for n=1,2,... ,

~(n+1 )

and W is the improved value of W(n+1) , where now W(n+1) satisfies



(13) with W(n) replaced by ﬁ(n) on the righthand side. This is equivalent
to the use in (7) of a sequence {Tn}, rather than a single value of 7t , in
a manner that is numerically stable and does not require the total number of
parameters in the sequence to be specified in advance. If in some cases
memory limitations preclude the use of (14), then a fixed sequence [Tn}

could be used instead, ordered in the manner recommended in [11] for numer-

ical stability.



2. Convergence properties. We return to iteration ('7, 8), in which the

values of K and v are not yet specified. Its convergence properties

can be examined by standard methods in terms of the eigenvalues of the laplacc
operator, which are known explicitly for the rectangle. We carry out here
the analysis for the discrete form of the iteration; the continuous analysis
proceeds in essentially the same manner (for example, as in [12]).

2.1 We give first, for comparison purposes, the behavior of the discrete

form of iteration (1, 4) for the original problem (3, h) without scaling or

shifting. We place a uniform rectangular grid on the rectangle, as in the

previous section, and obtain as the discrete form of (3,4)

-2
1 IU.. =h -a=.U +[ 8o, +Bm 1
(15) 1] (-a130; 4,5 [yt 50045 1e1, V141,35 ) +
(- + [a.,= +a, - oo-as = UL =
~ + ko ( ai:]'Ui,j-1 [alJ &y s+ JUlJ al 5]+1U1,J+1) Fij !
. c . d
1=1,2,o--’ H-1 ; J=1,2 ey E-1 4
) where a denotes %(a:- + ar =,,) and a,: denotes i(azz + az,, =)
g ny 2813 * 31 T4 i3 zlagy * f1q 3/ 0
! 253 being the value of a(x,y) at x = (i-3)h , y = (j-3)k . The vector
o element U.l.J corresponds to u(ih,jk) and Fij is equal to f(ih,jk) .
.
Il[ Then the discrete form of (1, 4) is
(16) -AhU(n+1 ) = -AhU(n)— (1U 1 )—F) or, after premultiplying by (-Ah)-1 ,
N~

ylet) . (I-T[-Ah]'1L)U(n) +1(-)7'F

where, as is the case for £ , the positivity of a(x,y) implies the positive



definiteness of L .
The spectral radius p of the iteration matrix (f_r[-a ]-1L) is
h
expressed in terms of b and By 7 the minimum and maximum eigenvalues

of the generalized eigenvalue problem

(17) 2 = u(-4)8 ,
as
-1 ;
(18) p(I-T[—Ah] L) = Nbx(|1-¢pm| s l1-TpM') .
Since L and -Ah are positive definite, by > O . There follows the well-

known result [22]

Lemma: Iteration (16) converges for any initial approximation u(o) if

—

and Only if 0 < r < Q/pM k) and for a Single parameter T the Optlmal choice

(19) T=TT

0 = EV (um+”M)

yields the smallest spectral radius

(20) po=py = (uymp, )/ (uytm ) .

It is straightforward. to show that the uniform estimate independent of

h and k
B ) 3 I3
1 0 < < T A
S8 (e S

holds for any vector § , where o = min a(x,y) and A = Max a(x y) on the
)

closed rectangle. There follows the corresponding estimate



M e e % R

r.vJ"u.

-

22 0
(22) <e<u <u, <A,

based on which we obtain, from (19) and (20), that for

T =2/(e + B)
there holds

(23) p<(A-a)A+a).

The estimate (22), and hence (23), are, in fact, the sharpest possible

uniform ones, as can be seen by taking- for & in the Rayleigh quotient

(21) a vector that is zero except at the position corresponding to the maximum

diagonal element of L , or, alternatively, is zero everywkere except at the

minimum.

2.2 The discrete form of the shifted iteration (7, 8) for the scaled problem

(6, 8) 1is

- (n+1) n (n)
(24) (-8, +KI)W = (-0, k™) Lo W - a
We do not yet specify K to be the value (9), but require for now only that
K > - xm , where }\m is the smallest eigenvalue of —Ah ; hence ( -Ah+KI)
is positive definite. We assume also that N is sufficiently positive
definite so that the discretization to M = -Ah+P does not destroy the

positive definiteness. Then, corresponding to (17) and (18), we have that

if Vo and vy are the minimum and maximum eigenvalues of
M = v (—Ah+KI)§ ,
the spectral radius for iteration (24) is

-0-
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(25) p (T-r-2,#KT1 M) = wax([1-my | 1=, ])

and the Lemma holds for iteration (24) with b, and

replaced by

Havp
vm and vM .

To estimate Vo and Vy » weuse the Rayleigh quotient for v ,

, & (P-KI)s

T

26 T . =
(26) ) (—Ah+KI)§ e (-Ah+K_I)<L ’
Thus
” | 1 B-K _B-K B -K B -K
+ min <v <y <1 +M ]
At 2 Ay = "m-="M = ax ALK ? leK P

where XM is the largest eigenvalue of _Ah .

The estimate for p obtained from (25) and (27) is least when a choice

for K is made such that

(28) B-K < 0 < BX ,
assuming B >—xm holds. There results that for the corresponding optimal
choice
2(xm+K)
(29) 1= —2
+
2xm B+8

there holds
(30) P<op, = gxm+B+B_

To obtain a uniform upper bound on the spectral radius p , we note that the

-10-




smallest eigenvalue A of -by is given by

. -2 . 2[m -2 . 2 nk
Xm = bkh “sin (20) + 4k “sin ( 3
and that it satisfies
= ﬂ2 n2h2 2 n2 n2k2 2
(31) >y o= 5 1 -=—8) + &g T 20
m” =m K She e oha?

- for mesh spacings 0 < h <hy, O<k<k, . Substituting (31) into (30)

yields the desired bound in terms of the upper bounds hO , k0 on the mesh

E spacing.
(S We note also that xm is bounded above by

- 2, 2 2,.2
)\m<)\m =11/C +'n'/d

for all h , k > 0 ; the quantity lm is equal to the smallest eigenvalue of

-A for Dirichlet boundary conditions on the rectangle. For most computational
_— . 2y ..
purposes it is not necessary to take into account the O(hO + ko) difference

between Lnl and X;] , but instead to regard Xm as being essentially equal

to the simpler iﬁ .

The presence of the 2~ term in the denominator of (30) can have the

effect of there resulting a considerably smaller bound on p for the scaled

and shifted problem than results from (23) for the original problem. Since (23) is

~ essentially sharp such a smaller bound would imply a faster convergence

rate. Thus we conclude that scaling and shifting are most effective when

] A/a is not especially close to one and Pp does not vary with excessive

P~ rapidity over the rectangle, in which case the resulting improvement in

convergence rate could be substantial.

-11-



2.3 To illustrate the improvement in convergence rate for an ideal case,

10(x+
(x y)vu

we consider the solution of v. (e )y=f. For this case, «a =1

2
and A = e O, so that for the unscaled, unshifted iteration (16) , the

20 8

estimate for the optimal spectral radius,from (23), is p z 1- 2e 7 o 1-0.4x10"
Thus it takes the order of 108 iterations to reduce the initial error by a
factor /e .

For the iteration (24), however, we have p(x,y) = A(eB(x+y)yé5(x+y) = 50 ,
so that B = B =50 ; hence, if (9) holds (that is K =50), the optimal spectral
radius, from(30), is p = 0 . Thus the problem is solved completely (to round-
off accuracy) in only one iteration! -

This example emphasizes the point that we solve directly a discrete

Helmholtz equation (24) at each iteration.

2.4 We require in § 2.2 that B, the minimum of p(x,y) on the rectangle,
satisfy B > -xm . In the case for which g < -xm (the positive definiteness

of M does not preclude P dipping below -Xm over a portion of the rectangle)
the estimate (27) no longer yields an upper bound on p that is less than

one, hence it does not guarantee convergence. For the numerical examples of
such cases given in § 4, the iteration (24) converges, but at a comparatively
slower rate. We consider, then, as best candidates for our iterative procedure
those cases for which B > -xm (or uniformly B > 'Lm)‘

The choice of the particular value (9) for K out of the possible
ones (28) yielding the best convergence rate estimate (30), corresponding to
(29), is made for two reasons. One is that for the corresponding value
T =1, which is obtained from (29) for the shift (9), the resulting discrete

Picard iteration (13) requires fewer computer operations than does the one

-12-



for general T(Eh)gz) The other is that for this shift the actual convergence
rate observed in our numerical experiments was somewhat more rapid than it
was for shifts near the end points of the interval [B,B]. Centering the
spectrum of P - KI at zero and taking T =1 seemed to be a good strategy
for reducing the spectral radius of [I - T(-Ah£KIﬂ(-Ah+P)] , at least for
those problems for which p(x,y) varied smoothly without rapid changes. If
p varied more violently, the shift (9) was still effective, but in some
cases an improvement could be realized by fixing T at one and selecting
another value for K 1in the interval [B,B] that better approximated P ;
see § 4. (For the discrete scaling of §3, one obtains the estimate (9)
directly.)

Note that the primary effect of the shift K is the reduction of the

norm of P - KI ; the effect on (-A_ + KI) is usually slight and of little

h
importance.
In some cases it may be more convenient and advantageous to use in (9)
the sharper discrete bounds =mn P.. = i
P B 2] and B MaCPij, instead of B
and B . Specific shifts other than the min-max one (9), such as
K = (cd)-1ffp(x,y)dxdy or its discrete equivalent, and shifts that change

R
from one iteration to the next, are not considered here, but may be of

practical interest.

-13-



For the choice (9) and for A, <B<B <=, we may summarize the

behavior of the iteration procedure as follows:

Theorem: For mesh sizes 0 < h <hjy, 0 <k <k, the iteration (9, 13)

converges with spectral radius p < U&ﬁ)/(ELm+ B + B) .

2.5 In applying Chebyshev acceleration (14) to iteration (13), one can either
use the estimate (30) for the spectral radius or else obtain an estimate
by observing the convergence rate when solving the problem first on a coarse
grid. This latter procedure is often worth the small extra expenditure of
computing effort, because the estimate (30) may be pessimistic and, since
the iteration is essentially independent of mesh size, the observed value
usually is more accurate. At any rate, the convergence of (14) is assured
when p < 1

If one uses a fixed sequence {Tn} rather than (14%), then it may be
possible to speed convergence by utilizing the property that the largest
eigenvalue of -A_l is relatively isolated from its remaining eigenvalues,
which cluster toward zero. For example, on the unit square with Dirichlet
conditions the largest eigenvalue 1is (21'72)-1 , whereas all the others lie
between zero and(S:r)_1 . The eigenvalues of (—Ah + KI)-1(KI - P) exhibit
a similar grouping for some problems, hence the special parameter selection
method given in [13] for such cases could be employed.

A recent discussion of practical means for estimating Chebyshev accelera-
tion parameters as an iteration proceeds is contained in [15].

We remark that obtaining the optimal Chebyshev acceleration parameters
is not of central importance in our scheme. In many cases the scaling and

shifting alone can yield a convergence rate that is SO rapid that only

a few iterations are required for convergence, thus leaving little room for any

-1h-



substantial improvement to be made by further refinement of the Chebyshev

parameters.
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3. Non-smooth a(x,y).

3.1. For the case in which a(x,y) 1is only piecewise smooth, the situation
generally is less favorable. The change of variable (5) cannot be carried
out as described in § 1, since A(aé) does not exist everywhere on R (except
in a generalized sense). It may still be possible, however, to improve on
the convergence rate of (16) by performing the equivalent change of variable
in discrete form.

A discrete scaling corresponding to (5) is the one transforming the

diagonal elements of L into those of —Ah ’
- L
(32) Mh=D%LD_%, W= DU,

where D is the diagonal matrix with elements

1

23358541, 3 a0y 3y
(55) dlj - —2 _2 J 2 s d + J JEJ
2(h “+k ) h k

The resulting scaled matrix operator Mh is then Mh =-Ah + R , and the

original discrete equation IU = F becomes

(34) MW=DP%F=q .

The (symmetric) matrix ‘R has zeros on its main diagonal and, in general,

four non-zero diagonal bands. We have

- 2az, (0% ™%)
RW.. = h -
(5) 1] 1 & a5 i-1,]
i i-1,3
2a - .(h'2+k 2)
+ |1 H,

z 42 i+,3) *
1) i+1,]

=16~



2 =D
2&.-.(1’1 +k )
TR | [ LA
& & bl

i3 1,31
C
2a, = (™S
+ 1 - 1)J+1\ ) W
13 1,3M
L
o i i YD) ists at the point (i,J)
For the case in which p(x,y) = a a exists a e poin sJ)
Rwij is a multipoint difference approximation of p(%,y)w (%,¥)
v there. That is, the matrix R is an alternative representation of p(x,y) ,
which is represented in § 1, 2 by the diagonal matrix p . Note that R
requires approximately twice as much computer storage as does P .
== For the case in which either a ©Or Va has a simple discontinuity,
the elements of R are not uniformly bounded for all mesh spacings in the way
that the elements of P are bounded by B and B . For a given mesh
.
. spacing, however, R may be such that the convergence rate of the iteration
corresponding to (24) ,
- /
n+ n n
< Gy (- + x0T L e k™) gy, BT - 9T,
is satisfactorily rapid for suitable K and T
- The best values for K and T can be estimated in a manner similar
.
to that of § 2.2 . The' Rayleigh quotient analogous to (26) is
- T T
¢ M3 & (R-KI)d
(37) T = 1+ T
8 (-0, +KI)? & (-4,+KI)%
.
_ Here, however, we do not as in § 2.2  choose K so that the spectrum of
(R - KI) 1s centered near zero (the spectrum of R is already centered at
L

zero, since R has Property A and zero main diagonal ), but we obtain the

-17-



proper estimate after first rewriting (37) as

T 1
T 7 3 (=R - 1—( A -I’)él
. 2 Mo _ ok 1 ¢ (-ap)e N =
T = - -2 -2 T
) (-Ah+KI)@ 2h “+2k ) (-Ah+KI)<§ 8’ (-Ah+KI)§ J
~ Neglecting the first term in the brackets on the right, which is o(hei-ke),

and using the Gerschgorin estimate for the spectral radius of the matrix in
the numerator of the second term we obtain the choice (9, 10), providing
¢ B > -km , where now B = SR = M{R}min and B = BR = A{R}maxg {R}min denotes
the smallest element of R and.{R}maX the largest. These values for B
and B are analogous to the corresponding ones for p(x,y) in that they are
minimum and maximum values of difference quotients approximating a-%A(a%) .
Generally speaking, one expects these difference quotients to behave like

-1 - L . _ —
(h  + k 1) where va has a simple discontinuity and like (h 2+—k 2)
L where a itself is discontinuous.

Relevant numerical experiments are discussed in § 4.k. As might be

—

expected, the behavior in this case is not totally as satisfactory as it
is for the case of smooth a(x,y) and the diagonal matrix P . The parameter

estimates based on BR and B_ are not as sharp, perhaps because the elements

R

of R often vary sizably and are not always accurate approximations of

—

- i
% a §A(ae) . An attempt to improve the value of t , and even K , may be
~ useful for such problems as information on the spectrum of (—Ah + KI)—1Mh

is gained during the iteration.

- We remark that the method of this section could be used as well for
v smooth a(x,y) , as an alternative to the analytic calculation of

1
p(x,y) = a EA(a%) and the subsequent numerical evaluation to obtain the

-18-



elements of P in (13). We do not recommend this alternative, however.

If one wishes to avoid these calculations he should instead difference

% h
a®(x,y) directly, to obtain the approximate elements Pij of P,

Ahai/a2 , where a%j = [a(ih,jk)]% .  The discretization error
introduced by using pJ , instead of p(ih,jk) , 1is of the same order as
that already introduced by (12). The iteration (24) is generally preferable
to (36) because it requires less storage and fewer computer operations per
iteration and because, 1in our experience, the parameter estimates based on
P are sharper than those based on R .
We remark also that discrete scalings other than (32, 33) might be

used. For example, a closely related one is (32) with the choice, instead

£ (33), dijt= a(ih,jk) . Alternatively, one could investigate the use
of (24) with the elements of P equal to pqﬂ in the case for which a(x,y)
is only piecewise smooth. This would be equivalent, for fixed mesh, to
considering a(x,y) to be a smooth, but locally rapidly changing, function.

We hope to return to these matters in a future study. The question of

scaling is discussed further in § 5.

3.2 When a(x,y) 1s piecewise smooth with sizable discontinuities across
sub-domain boundaries within the rectangle, it can be faster to solve the
problem iteratively as a sequence of problems on each sub-domain than as

a single problem over the entire rectangle. For example, consider the

problem (3, 4) for which a(x,y) is piecewise constant

a 0 <x<cf2
0, -~
a(x,y) =
2, c/2 < x <1

with the matching condition that adu/dx is continuous at x = c¢/2

-19-



We consider solving the problem numerically by the following scheme:

(i) In the sub-domain where a = a0 solve by a fast direct
method
£u(gn)= £,
subject to (4) and uén) = u(n) on x = c¢/2 .,
(ii) In the sub-domain where a = al solve similarly
n+1
£u( )= £

subject to (4) and a1au(n+1)/ax = aoauo(n)/ax on x = c/2

Then one obtains that the error eohhy) in the value of u on x = c¢/2

a
at the nth iteration satisfies e(n) = =~ ;9 e(n-1) . Thus 1if %/a1 is
1

small, this scheme can be more rapidly convergent than the one given in § 3.1
for solving the problem on the entire rectangle at once. The scheme is equiv-
alent to using on the original problem, instead of D-gl, a diagonal scaling
that renders the discretized operator only weakly coupled between the sub-
problems (i) and (ii)

For the case in which a varies with x and y in each sub-domain,
the iteration (i, ii) could be combined in some cases with that of § 1, 2 ;

we hope to take up this matter in another paper. We give the results of a

numerical experiment for piecewise constant a(x,y) in § L.l

-20-
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4. Numerical Examples. In this section we collect the results of

numerical experiments for several cases of (3,&) to illustrate the contents

of the previous sections.

4.1 The ideal case for the basic technique 05,9) is one in which

1
a—%A(az) is constant on the rectangle (e.g., a = cose(xﬁy),

p

2,. 2 2 % . .
a JO ([x +y ] ) , etc.) . Then, as is pointed out for one such example

in § 2.3, only one iteration is required to solve the problem.

Since a numerical illustration of this property would have been
trivial, we instead checked the correspondence of iterations (24) and (36)
by solving several such cases using, instead of (24), the iteration (36),
which is based on the discrete scaling (32). Using the value (9) for X

(that is, K = a-%A(a%) = const.) and T = 1 , we found, as expected,

that the spectral radius of the iteration matrix, as indicated by the
observed convergence rate, was the order of magnitude of the discretiza-
tion error and decreased with mesh spacing for a given a . When using,
instead, the value K = %(BR+BR) of § 3.1, we obsérved slightly slower
rates of convergence, even though this value is derived fron1(36% The
estimate (9) based on P was especially preferable in the cases for which
the elements of R did not accurately approximate % a_%A(d%) everywhere

on the rectangle.

4.2 Other highly suitable cases for the basic technique are those not
departing strongly from the ideal one. We include here the results for
two such cases, one for non-negative and one for non-positive p(x,y).

We solved both numerically using (24%) on the unit square 0 < x <1,
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O<y <1 with uniform mesh spacing h = k = 2"1 , for the values

£ =4 5, and 6 . (The number of rows of interior mesh points should be

2 z- 1 , b an integer, 1in at least one direction for fast direct methods to apply
efficiently.) The righthand side q(x,y) of (6), and similarly Q of (2k),

were taken to correspond to w(x,y) =2[(X~%)2 0 (y-%)z], for which the solution of
the discrete problem with boundary data H(x,y) = 2[@@%)2-+(y-%fﬁ agrees exactly
with w(x,y) at the mesh points. The elements of the initial approxima-

(0)

tion W were taken to be either all zero or else pseudo-random numbers
in (0, 1), to permit the presence of different eigenvector blends in the
initial error.

The first example is the one for which a(x,y) =[1+ %(xhyu)]2 ’

hence p(x,y)= 6(x2+y2)/a§(x,y) and =0, B= 6 . Thus the estimate

(30) for the optimal spectral radius is p < pu = 5{975 ~ 0 132 (using
m

9n2 for Nn)’ and the shift (9) is K = 3 . The results are summarized
for five examples of parameter choices in Table l-a.
The entries in Table 1 are the rounded values for a mesh with

6Ux6h interior points and for the initial approximation W(O) = 0 in the
interior of R . For the 16x16 and 32x32 meshes the values differed only
slightly, if at all, from those in the table, and for the random initial
approximations the iterations behaved similarly. A value of K equal to

0 or to %(B + B) was used, along with the corresponding value (29) for

7 . When Chebyshev acceleration was included, either the estimate p, from
(30) or the experimentally observed estimate p, was used to approximate

the spectral radius p in (14) of (I - '1'[-Ah-1-IKI]-1

[-4,+F1) .
The entries for the value of Pe in the table are the observed

approximate limiting values of the ratio ”w(n) - W(n'1>lh/nw(n-1) - W(n‘2)|h ,
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Results after 5 iterations

Table 1

 E— -

" (x,y) Chebysh i
g T  Accelerat ?Zn Pe Haxinun 7
‘ Error
; 0.868 none 0.13 3.7(-5)
Y oy i u)lz 3 0.868 using p — 2.4(-6)
Xty . o
} none 0.039 3.9(-8)
3 L isi .
u
5 singp =~ — 1.1(-6)
1 using p 4.3 (-9)
0 16/15  ~one 0.066 1.2(-6) |
0 16/15 usi ”
in —_
o) [[irsingn ()2 | 25 o -
m/8 1 none 0.061 2,3(-7)
-my/8 1 using o — 3.2(-8)
. using gﬁ —_— 2.3(-8)
0 0.829 none 0.31 3.4(-4)
0.829 i
c) [2+tanhh(X+y—1)]2 o S >
h.Of f none 0.26 2:2?:3;
hor o using p, — 1.5(-3)
using P — 3 1*(-5)
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Table 2

Iteration details for Table l-a with X = 3 and T o= 1

Iteration Without Chebyshev Acceleration Chebyshev Acceleration Usingpe
1 Hw(n)_w(n-1 )”A ”w(n)_w(n-1 )“A o IW(n)-W(n-1 )HA “W(n)_w(n-1 )“A o
< - n- rror n- - rror
I L N Brrer | uetemt ) y(ne2)y - pele) -
L; 1 S 1 1.6(-2) —_— 1 1.6(-2)
T 2 0.0057 5.7(-3) 6.4 (-1) 0.0057 5.7(-3) 7.1(-}4)
% 3 0.033 1.9(-4) 2.4(-5) 0.13 7.5(-k) 1.1(-5)
E L 0.038 7.3(-6) 1.0(-6) 0.0047 3.5(-6) 2.7(-7)
L, 5 0.039 2.8(-7) 3.9(-8) 0.080 2.8(-7) 4.3 (-9)
0.039 1.1(-8) 1.7(-9) 0.0063 W-9) 1.2(-10)
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where HWHA . [Vfr(-Ah+KI)W]é . The maximum error, which is listed in the
last column, is the maximum of the difference at the mesh points between
W(S) and the solution w(x,y) . Note that the initial maximum error has
the value of approximately one.

In Table 2 the iteration-by-iteration details are given for the third
entry in Table la.

The second example is the one for-which a(x,y) = [14—sin§n(x+y)]2
for which B = -nz/h , B=0,and p, =~ 1/15 . The results analogous
to Table la are given in Table 1lb. In this case, the improvement obtained
by using the shift K = ﬁ(ﬂ + B), instead of K = 0, is not so great as
it is for the first test problem,

The effect of scaling and shifting can be found by comparing the
results for the two test problems with the estimate (23) for iteration
(16) . For both problems there holds @ =1 and A = 4 , so that the

spectral radius estimate without scaling and shifting in each case is 0.6.

4,3 Cases that are less strikingly suitable for the basic technique are
discussed in this sub-section. The example summarized in Table lc is

for the case a(x,y) =[2 + tanh h(xfy-1)]£ . The test problem is the

same as the one for the examples of § 4.2, and the entries are analogous

to the others in the table, except that in this case the task of calculating
the actual extremal values of p(X,y) on R was not carried out; instead,
the discrete equivalents B = Bh = min IHJ’ B = Bh = max Pij were used.

For the 64x6b4 mesh, B ~ -9.62 and Bh ~ 17.77 , for which Py ~ 0.575 .
Note that in this example, K = 0 does not correspond to an end point of

the interval [B,B] . As before, the results were insensitive to mesh size
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and to which of the initial approximations was used.

An investigation of the non~sharmess of estimate (27) and non-optimality
of (9) and (10), which are more important here than in a nearly ideal case,
was carried out by fixing Tt at the value one and observing the change in
pe as K was varied. A local minimum was found at approximately K = 3.0 ,

for which p_ = is approximately 0.23.

For the case a(x,y) = [2 + tanh lO(x;ljy-1)]2 » By and B become

h
approximately -60 and 111, respectively. In this case g < - )\m shence
the estimate (30) yields merely that p < P > 14 . The iteration did
- converge, however, with the observed spectral radius Po ™ 0.63 and a
maximum error of 2.5)(10_2 after five iterations for the usual test
problem, with K = Q(Bh‘i'Bh) and + = 1 .|  With the inclusion of Chebyshev
acceleration based on this wvalue of Pe + the maximum error after five itera-
tions was reduced to 6.3)(10_3 . The value of p, can be decreased in this
- - case, with T fixed at 1, to a locally minimum value of approximately
0.54 at approximately K = 1k,
The case a(x,y) = {1.5 + sin[lO(x+y)/\f2-]}2 , for which B = =40 < -)‘m and
B = 200 , was observed to converge also, but at a slower gate. Here, for the

shift K = 80 and for v =1, the value observed for__pa was 0.91, Even though

e —

this value is large, it is interesting to note that it is smaller, nevertheless,

wv

than the spectral radius estimate (A - @)/(A + @) & 0.93 for the iteration

—

without scaling and shifting.

—

4.4 The cases included for non-smooth a(x,y) are a(xy) = (1+ b|x - 3| )2 ,

r-'-\

for which there is a slope discontinuity at x = % , and a(x,y) = 1, x <i ,

9, x>
for which there is a jump discontinuity at x = ¢ . For both these cases,

rw-v-v
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the iteration without scaling and shifting (16) has the spectral radius
estimate (A - @)/(A + @) = 0.8 (independent of h ). The convergence
properties of the scaled and shifted iteration are not essentially inde-
pendent of h , however, as is the case for the examples of § 4.1 -~ 4.3.
The problems were solved numerically using the iterative procedure of
§ 3.1. The dependence on h for the first case is illustrated in Table 3.
The relationship (29) between K and T and the value (30) of p, were

computed using for B and B the observed quantities BR and BR 5

the rounded values of which are listed in the table. The value of pu was

essentially equal to the observed value Pe for K= 0 . Note that the
maximum error after ten, not five, iterations is given in the table.

Although BR - BR is large, the elements of R are essentially

zero everywhere except at the mesh points on and adjacent to the line x = %

where they become large. This suggests that a value of K closer to zero
than the minimax value §(3R+BR) might result in more rapid convergence.
Indeed, it was found that for h = 1/16 and ¢ =1 a local minimum for pe
occurred at approximately K = 13 (see the last row of Table 3).

The second case is, in a sense, an extreme version of the second one
of § 4.3, for which a(x,y) changes rapidly from approximately 1 on one

half of.the region to approximately 9 on the other. Here B, < -\_ , soO
ESY g3}

that again convergence cannot be guaranteed from the estimate (30). Very

slow. convergence was observed for this case, especially for the smaller mesh

spacings. For the 64x64 mesh the observed values for BR and B were

R
approximately -5597 and 9057 , respectively, for which 1 ~ 0.0113 from
(29) for K = 0 . There resulted P ™ 0.988 for these parameters. For

the shift K = %(BR+ BR) and the corresponding value t =1, p_ was not

14



Table 3

Results after 10 iterations for a = (1+h|x.%|)2

Max
h K T BR’BR Pe Error
1/16 0.270 0,107 0.73 3.5(-2)
1/32 0 0.145 0,234 0.86 1.8(-1)
1/ 6k 0.075 0,489 0.93 L.3(-1)
1/16 53.5 0.60 2.2(-3)
1/32 117 1 as above 0.78 2.7 (-2)
1/64 244 0.88 8.6(-2)
1/16 15 1 as above 0.24 1.2(-7)
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a great deal less.
When this same problem was solved numerically by the iterative scheme
of § 3.2, a much more satisfactory situation resulted. The spectral radius

was observed to be essentially 1/9 , independent of h , in agreement with

the discussion there.

4.5 All the above experiments were carried out using a subroutine, written
by Buzbee, which is based on Buneman's algorithm for odd-even reduction [4].
This subroutine solves the Helmholtz equation on a rectangle, and it
includes the boundary-condition options required for our examples, The
numerical solution of a problem on a 64X64 mesh requires approximately 0.06
seconds on the CDC 7600 computer.

Qualitative comparison of the computational requirements of our technique

with those of other methods can be made using the operation-count table

" given in [3]. For example, odd-even reduction requires (9/2)N2 logeN operations

to carry out the direct solution of a problem on an NXN mesh. getting

up the righthand side of (13) requires another 2N2 operations per iteration,
and, if Chebyshev acceleration (14) is used, another 3N2 operations are

needed. Thus, according to the table, the operations required for one iteration
of (13) are equivalent to those required for about 4 or 4 SOR iterations

or 1% ADl iterations if N = 64 . The reduction of the initial error

by a factor N_2 ~ 2.5X10_4 in the numerical solution of the Poisson

equation is listed as requiring about 85 SOR or 7 ADI iterations for

this - N , when optimal parameters are used; the solution of (3) or (6) will
generally require more. Further such comparisons can be made using the table.

The memory requirements of (13, 14) exceed those of SOR by about 3N2
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locations if both P-KI and W ("1 are stored. This value can be reduced
to N2 , however, in exchange for recomputing P-KI at each iteration and
using a form of Chebyshev acceleration that requires, jipstead of 71 ,
a sequence of parameters {Tn}.

We conclude from our numerical experiments that for well-suited cases,
such as those in § 4.2, our basic technique is an extremely efficient one
and compares very favorably with standard iterative and elimination methods.

Its advantages are especially striking for problems with a large number of

mesh points, since the number of iterations required is independent of h .

For less well-suited and poorly suited problems, such as those in § 4.3 - 4.4,

the scheme may be very satisfactory in some cases, but further study would
be useful to clarify the best means for estimating the parameters and for

utilizing the technique of § 3.2 in discontinuous cases.
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5. Scaling. We presented the scaling (5, 6), or equivalently (32, 33),

tacitly implying its suitability because the resulting operator resembles
the one on which the iteration is based. We now make some remarks on

the question of whether or not this scaling is in some sense the best one
possible.

Since the optimal spectral radius for iteration (24) increases with
the condition number vN/vm , the best sclaing is one that yields the
minimum condition number for a given problem. In the discrete case, the
choice (33), among all positive diagonal scalings (32), minimizes the
condition number of Mh , which has Property A , but not.necessarily
that of (-Ah + KI)_1Mh . The optimal diagonal scaling for these more
general matrices is not known; a related discussion pertaining to scaling
of alternating direction methods can be found in [16].

We have carried out calculations on some one-dimensional problems
corresponding to (3, 4) to determine numerically the scaling necessary

to minimize the condition number. We considered the standard three-point

discretization on a uniform mesh IU = F equivalent to (15) for the problem

o= e - £, w0) —u1) -0 .

The diagonal matrix D was calculated that minimized the condition number
of the matrdgc(-Ah + Kf; 5%ID-%'; where -Ah is the one-dimensional
equivalent of (12). The minimization was carried out for several values

of h using an algorithm of Osborne [17] and the minimization program

of Fletcher [18]. The actual value of K that was used was, in general,
. . . -2

not important, since the diagonal elements 2h of -Ah were, by

2
. d =
comparison, usually much larger. For the cases in which —= (a%)/a§ was
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constant, we found that the best D was essentially the same as the one

we have used here, that is, proportional to the main diagonal of L . Fpor

2 1

the one-dimensional equivalents of the examples of § 4.2, in which _g§ (a%)/ag
dx

varied only moderately over the interval, we found that the best D departed

from this value by only a comparatively slight amount. 1If a(x,y) had a
sizable discontinuity, however, then the best D was not as close to being
proportional to the main diagonal of % i rather, it tended to smooth out
the discontinuity (see also § 3.2). We concluded that for the problems with
relatively smooth a , the ones for which aur iterative technique has greatest
potential, the scaling (5, 6) is adequate.

We remark that Gunn also observed notably improved convergence rates
in certain cases when a variant of the scaling (5, 6) was used to solve (3, 4)

by an iterative technique [19].
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6. Extension to other problems. Our iteration procedure may be applied,

as well, to problems other than (3, 4). One immediate extension is to the
case in which the term b(x,y)u is added to the left of (3), where b(x,y)
is such that £ + b(x,y) remains positive definite. The transformation
(5) still results in an equation of the form (6), to which the iterative
procedure (7) applies directly.

Another extension is to the case in which on some of the edges of the

rectangle there are specified periodic boundary conditions or boundary con-
ditions of the form ou/dn + au = b for which fast direct methods can
be used. Then the wvalue of Xm changes, but otherwise the basic procedure
is not altered so long as the boundary conditions remain suitable for these
methods after the scaling (5,6) is performed.

We remark that the numerical solution of separable equations of the

form

r-

68)  e(gHa(I3) + anLEM) + 1 - £ixy)

!

with suitable boundary conditions, can be carried out by fast methods with

r‘-—’

only the additional work of solving a tridiagonal eigenproblem, the dimen-
! sion of which is the number of mesh points in a row. Thus it is not neces-
sary to attempt to solve such problems iteratively, using the scaling and

. shifting procedures described here. Included in (38) is the radially symmetric

Poisson equation on an annular region 0 < r <r< r1

2

2

1 9,.0r o u
raECeE TiE =T

which, after being multiplied by r , is also of the form (3).
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Also included in (38) is the case in which the iteration (11) is

discretized on a rectangular mesh with nonuniform spacing. .t

h: =x, - x, and ka =Yy -y be the mesh spacings; then the

1 1 1-1 J-1
resulting five-point discretization of =-A + K at an interior point

is

(-&, +K)W, _. _J_J'*'[ L _
TP i- - W, -——t
J 2 l 1 J i hi+1 1iJ {+1 1+1’J ]
h+ + h-
i i+1 1 i 1
T N S UG R IRV
2 ki_ 1,31 k3 k3+1 ) ij kj+1 1,J+1

K ", -
© g (hg+ By, )egr Ky Wy

After multiplying each equation through by h(h{ + h{+1)-1(k5 + k5+1)_1

or by performing the transformation that preserves symmetry [20] ,

D %(’A + KO0 E | D < diag w;:_}

one obtains separable equations that can be treated by the direct methods

suitable for (38). It also would be possible, of course, to apply the

techniques of §3 to the original problem.(j) discretized on the nonuniform
mesh.

Finally, we remark that if the domain on which the equation is to be
solved is not itself a rectangle, put is, instead, a union of rectangles,
then our iterative technique might be combined efficiently with the fast
methods suitable for such domains [21], These might then, in turn, also
be combined with iteration (i, ii) of § 3.2 for the case in which a(x,y)

is piecewise smooth over such subdomains.

34



well,

We plan to study these extensions in the future and to consider, as

application of the iterative technique to nonlinear equations.
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Footnotes

(1) The boundary data for the operator (-A+K) need not necessarily be the

same as for M . Other boundary data, such as 0 , may be computationally
more convenient for some problems.

(2) We note also, without comment on possible relevancy, that the underlying
iteration operator (2) becomes completely continuous when T =1 .
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