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| Abstract

| We study an iterative technique for the numerical solution of
«

strongly elliptic equations of divergence formin two dimensions with

Dirichlet boundary conditions on a rectangle. The technique 1s based on

the repeated solution by a fast direct method of a discrete Helmholtz equation
- .

on a uniform rectangular mesh. The problem is suitably scaled before iteration,

and Chebyshev acceleration 1s applied to improve convergence. We show that

convergence can be exceedingly rapid and independent of mesh size for smooth
\

coefficients. Extensions to other boundary conditions, other equations, and

irregular mesh spacings are discussed, and the performance of the technique

| 1s 1llustrated with numerical examples.
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no Introduction. In recent years, fast direct methods have been developed for

5 | the numerical solution of the Poisson equation on a rectangle [1, 2]. By

oo taking advantage of the special block structure of the approximating dis-

| crete equation on a uniform rectangular mesh, these methods obtain the

Co solution with striking efficiency and accuracy. A comparison of fast

direct methods with other methods can be found in [3], and the extension to

more general separable elliptic equations in [4].

In this paper, we investigate a technique for using fast direct methods

- to solve iteratively more general formally self-adjoint strongly elliptic

equations fu = f , which are not necessarily separable. We consider

mainly Dirichlet conditions on the boundary of the rectangle, glthough

-- the technique applies with slight modification to other boundary conditions

_ for which fast methods are suitable. OQur approach is to utilize a modified

form of the iterative procedure

"

| (1) bu = au T(t), A= d/ + 3

k proposed for numerical computation in conjunction with alternating-direction
methods by D'Yakonov[5] and discussed recently by Widlund [6]. This procedure,

. in addition to being of a form suitable for fast direct methods, has the desir-

able feature that for well-behaved problems 1ts convergence rate 1s essentially

independent of mesh size.

The iteration (1) as it stands, however, may be too slowly convergent to

be of practical importance, even when optimal values of the parameter + are

used. The purpose of our paper 1s to discuss means for improving the iterative

procedure so that it becomes a potent one for attacking a class of problems
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arising frequently in applications. The means we employ are: (i) scaling

the original problem fu = f and iterating instead with the scaled problem

fw = gq ; (ii) using, instead of (1), the shifted iteration

(2) (-a+k)w = (-a+K)w - 7(mw -q) ,

where K 1s a suitably chosen constant; (111) applying Chebyshev accelera-

tion.

C These means 1n themselves are not necessarily new; it is the effectiveness

of their combination for solving this problem that we wish to 1nvestigate, We

remark that algorithms for the fast direct solution of the discrete Poisson equation

¢ in a rectangle can handle iteration (2), which requires the repeated solution

of a Helmholtz equation, with the same rapidity as they can (1).

In § 1 our 'basic iteration procedure for smooth coefficients is

L described and in § 2 its convergence studied. In §3% the generalization to

non-smooth coefficients 1s discussed. In§ Lk the results of numerical experi-

ments are given to illustrate the behavior of the procedure. 1p the remaining

; sections, the question of scaling is covered, and generalizations to other
= equations and nonuniform mesh spacing are discussed.

| Related iterative techniques for elliptic equations are studied in [7]
in connection with alternating-direction methods and in [8, 9] in connection

| with Stone's sparse factorization method. This latter method is formally

| similar to ours; however, our technique has the desirable property of being
~~ based on a more natural splitting of the operator. 1p [10] a related

. approach to nonlinear ordinary differential equations 1s investigated.

-
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1. The iterative procedure. In its simplest form, the iterative procedure

oo considered in this paper solves numerically on a uniform rectangular mesh

~ the problem

(3) fu = -v- [a(x,y)vu] = f(x,y) on R

-

B (4) u(x,y) = g(x,y) on oR ,

CC where Rf 1s the rectangle 0 < x < ¢c, 0 <y < d and a(x,y) 1s strictly
positive on R and its boundary oR . We assume a(x,y) and g(x,y) to

- be sufficiently smooth so that the solution u(x,y) is well behaved. The

o positivity of a(x,y) implies that £ 1s positive definite.

If a(x,y) has bounded second derivatives on RUOR , which is the case

LL - of principal interest for the use of our procedure, the change of variable

| 1s performed
ne

(5) w(x,y) = [a(x,y)]*%u(x,y) .

Then, after division by a® ,(3) becomes

(6) a“fu = mw = -Aw+ p(x,y)w = g(x,y) on R ,

|-

-1 L _1
where (x,y) = a 24 (a®) and- g(x,y) = a Bf The effect of this

scaling is to transform the:operator § into one whose differential part

o - is -A. Note that the change of variable (5) does not alter the positive

definiteness of £ , so that 1 1s positive definite as well.

“
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| i Substitution of (6) into (2) then yields as our iteration

"
-A + — - - ~3 (7) (-a+)w (-a+)w = T(-a+p)w + 14 on ® .

oo The boundary condition 1s

.“

- (8) LA H{(x,y) on oR ,

1

N where H(x,y) = a®g (1)
“

_ . In an attempt to make the operator -A+K on the left of (7) agree

closely with 7 , we choosethe constant K to approximate p(x,y), The

pC choice of central interest 1n our study 1s the minimax value,

oo (9) K = 5(+B) ,

|

- where B 1s the minimum and B the maximum value of p(x,y) on the

closed rectangle. As will be shown in the next section, this choice leads

. to an estimate that the optimal value of the single parameter rt to give

_ most rapid convergence in (7) 1s

(10) T=1.

— For this value of rt, (7) becomes simply

o (11) (-a+K)v,4 = (K-pIw_ 4 q on §

“

“ Zh



We have presented the iterative procedure in 1ts underlying continuous

- form to bring emphasis to the point that the convergence properties should

not be expected to depend significantly on the mesh size, at least for the

case of twice differentiable a(x,y¥) . The discretized version of the iterative

. procedure (8, 9, 11) is discussed in subsequent sections. To obtain it,

we place a uniform rectangular mesh on { with spacing h in the x-direction

and k 1n the y-direction and let W.q correspond to w(x,y) at the mesh
C points x=ih, y=Jk . Corresponding to the operator -A with Dirichlet

boundary conditions we take the standard five-point approximation,

(12) “AW. = he (oy +2W |. —w, J) + x2 (-w. +2W. .~W )
. hij i-1,3 13 1i+1,] 1,J-1 1g 14+

, C : d

i=1,2,..0,8 -1 5 j=1,2,. cox 1

C Then the discrete form of iteration (8, 11) is given by

] (13) (-4, wT) = (xT-p)w'™) + Q

L where P is a diagonal matrix with elements Py = p(ih, jk) , QO is a vector
| with clements Q.. = alah, Jk) ry and I is the identity matrix. The solution

of' (1%) is carried out in each iteration by using a fast direct method.

i Finally, under the assumption that the eigenvalues of (-8, +1)" (x1-P)
| lie in the interval [-p,p] , Chebyshev acceleration is applied [1k]:

~ ~(n+1) (n+1)  ~(n-1)— rr I=

(1k) W =o (WL gn y gn-1)

where ®» =1 , 2/ (2-p°) Ww —(1-p"w, 1)" 2
| ~ (n+

‘ and wn 1) 1s the improved value of (n+) , where now lott) satisfies

-5-



(13) with (m) replaced by 7 (n) on the righthand side. This is equivalent

to the use in (7) of a sequence {r 3 rather than a single value of 7, in

B a manner that 1s numerically stable and does not require the total number of

parameters in the sequence to be specified in advance. If in some cases

= memory limitations preclude the use of (14), then a fixed sequence {r,]
I.

could be used instead, ordered in the manner recommended in [11] for numer-

ical stability.

Co

“~

| —

“

“

.

~
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2. Convergence properties. We return to iteration ('7, 8),in which the

a values of K and Tt are not yet specified. Its convergence properties

can be examined by standard methods in terms of the eigenvalues of the Laplace

operator, which are known explicitly for the rectangle. We carry out here

the analysis for the discrete form of the iteration; the continuous analysis

| proceeds in essentially the same manner (for example, as in [12]).

2.1 We give first, for comparison purposes, the behavior of the discrete

form of iteration (1, 4) for the original problem (3, 4) without scaling or

Fo shifting. We place a uniform rectangular grid on the rectangle, as in the

| previous section, and obtain as the discrete form of (3,4)

| (15) IU. = h™(-as.U. +a. ta JU... a U
1] 1J7i-1,3 13 YH,37 10 7 Sq 5744, ) +

| Ko UU + [a.= +a JU,. - a U ) =F~ f 3V4,5-1 7 FTF TTL,TH ag TTL Fea, am T Tag

: . C . d
| i=1,2,400., 5] 3 j=1,2 gece x 7

| ) where a denotes i(az= + ar =.,) and a.= denotes i(azz + ar,, =)| 13 =A] 1,J+1 1J SN By i+1 57 7
LC —

| ass being the value of a(x,y) at x = (i-3)h , y = (j-3)k . The vector

| _ element U.- corresponds to uf(ih,jk) and Fy is equal to f(ih,jk) .
Then the discrete form of (1, 4) is

# A -

| (16) a, UM ) = 8,0). (IU ° ) rr) or, after premultiplying by (~4,) /

| - -1

i lott) (IT-7Fs] Tul) (8) F
where, as 1s the case for £ , the positivity of a(x,y) implies the positive

-( =

!
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i definiteness of L .

2 The spectral radius p of the iteration matrix (I-T[-4 1711) isae h

: expressed in terms of be and hay 7 the minimum and maximum eigenvalues
of the generalized eigenvalue problem

~ (17) 2 = u(-4,)% ,
| as

-1 -

(18) p (I-7[-a,] L) = Max (|1-mu_| 5 | 1=Tyl) .
“

Since L and 4, are positive definite, uw, > 0 There follows the well-
known result [22]

q

Lemma: Iteration (16) converges for any initial approximation 4(0) i;

and only if 0 < = < hy » and for a single parameter the optimal choice
L

(19) Ts, = 2/ (uy tug)

C yields the smallest spectral radius

20 — = -—(20) po=pg = (yr) (uyiu)

It 1s straightforward. to show that the uniform estimate independent of

~ h and k

(21) ¢ If_ 21 O<a< T <A

g
holds for any vector $ , where e¢ = min a(x,y) and A = Max a(x y) on the

J

, closed rectangle. There follows the corresponding estimate
|

|



: op 0
| (22) Seu,Su <A,

based on which we obtain, from (19) and (20), that for

Tr =2/(a + A)

“ there holds

| (23) p< (A-a)/@A +a).

C The estimate (22), and hence (23), are, in fact, the sharpest possible

uniform ones, as can be seen by taking- for & in the Rayleigh quotient

(21) a vector that 1s zero except at the position corresponding to the maximum

L_ diagonal element of L , or, alternatively, is zero everywle re except at the

i minimum.
Sf 1 1 '

L 2.2 The discrete form of the shifted iteration (7, 8) for the scaled problem

i (6, 8) is
9 - (n+1) _ n (n) _(24) (-8, +KI)W = (a, DW) Lop a tRIW Ql

|

, We do not yet specify K 10 be the value (9), but require for now only that

b K > - I. , Where A 1s the smallest eigenvalue of -4y ; hence ( -A, +1)
| 1s positive definite. We assume also that NM is sufficiently positive

definite so that the discretization to M = -4, +P does not destroy the

positive definiteness. Then, corresponding to (17) and (18), we have that

if vo and vy are the minimum and maximum eigenvalues of

Mp =v (-4,4KI1)8 ,

the spectral radius for iteration (24) 1s

~-O-



] y
| (25) p (I-r[-4,+KI] 'M) = Max([1-7v| , [1-19 ]) ’

: and the Lemma holds for iteration (24) with po and po replaced by
| Vv and Vi

: To estimate Vo and Vy » we use the Rayleigh quotient for vy ,
T T

(26) ¢ Mp , $ (P-KI)%2 T = + T

¢  (-4 +KI)3 6 (-4,+KI)e °

~ Thus

7 BK 22 B-K B=(27 + min ; <v <v. <1+ Max
A HK Ay HE m= "M = AK MED

C

where Au 1s the largest eigenvalue of -4, .

The estimate for p obtained from (25) and (27) is least when a choice
L

for K 1s made such that

(28) B-K < 0 < BK ,

b

L assuming B >A holds. There results that for the corresponding optimal

| choice

: 2(x, *K)
(29) Ts ———

 +B+| om

| there holds

X (30) P <p, = By 48g”

~ To obtain a uniform upper bound on the spectral radius p , we note that the

~10-
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: smallest eigenvalue\ of -A, 1s given by

= -2 . 2{nh -2_. 2 (mk

| A, = 4h “sin = + 4k “sin =
| | and that it satisfies

| x: 2, 2\2 > 2 2\2
| (31) A, >A = 3 [1 -—%] + (1-12

moon cc 2h 4° olde

a for mesh spacings 0 < h < hy, O0<k<k,. Substituting (31) into (30)

| yields the desired bound in terms of the upper bounds hy, , KS on the mesh
spacing.

Sa We note also that \ is bounded above by

1 — 2, 2 2,0
A, <M n/c +m /d

for all h , k > 0 ; the quantity A, 1s equal to the smallest eigenvalue of

SE -A for Dirichlet boundary conditions on the rectangle. For most computational

2 2

BRN purposes 1t 1s not necessary to take into account the 0(hy +k) difference

beiween A and A , but instead to regard A as being essentially equal

to the simpler A .

« The presence of the A term 1n the denominator of (30) can have the

i effect of there resulting a considerably smaller bound on p for the scaled

and shifted problem than results from (23) for the original problem. Since (23) is
f

| ~ essentially sharp such a smaller bound would imply a faster convergence
rate. Thus we conclude that scaling and shifting are most effective when

A/a is not especially close to one and Pp does not vary with excessive

nS rapidity over the rectangle, in which case the resulting improvement in
Co

convergence rate could be substantial.

-11-
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| 2.3 To 1llustrate the improvement in convergence rate for an ideal case,

Nn we consider the solution of g. (e200xY) =f. For this case, o = 1
and A = e=° so that for the unscaled, unshifted iteration (16) , the

| estimate for the optimal spectral radius, from (23), is p 5 1- 2¢ 740 ~ 1-0.4x10"° .
- Thus 1t takes the order of 108 iterations to reduce the initial error by a

factor le .

| For the iteration (24), however, we have p(X,y) = (eH)ye (et) = 50 ,
N so that p = B =50 ; hence, if (9) holds (that is K =50), the optimal spectral
| radius, from(30), is p = 0 . Thus the problem is solved completely (to round-

| off accuracy) 1n only one iteration! -

N This example emphasizes the point that we solve directly a discrete
| Helmholtz equation (24) at each iteration.

N 2.4 We require in § 2.2 that B , the minimum of p(x,y) on the rectangle,

satisfy B > An . In the case for which B < “\, (the positive definiteness

| of M does not preclude P dipping below a over a portion of the rectangle)
EY the estimate (27) no longer yields an upper bound on p that is less than

 — one, hence it does not guarantee convergence. For the numerical examples of

| such cases given in § 4, the iteration (24) converges, but at a comparatively

oo slower rate. We consider, then, as best candidates for our iterative procedure

| B those cases for which B > Ap (or uniformly g > A)
| The choice of the particular value (9) for K out of the possible

nN ones (28) yielding the best convergence rate estimate (30), corresponding to

(29), is made for two reasons. One is that for the corresponding value

T =1, which 1s obtained from (29) for the shift (9), the resulting discrete

N Picard iteration (13) requires fewer computer operations than does the one

| -12-~
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for general (2) (2) The other 1s that for this shift the actual convergence

. rate observed 1n our numerical experiments was somewhat more rapid than it
was for shifts near the end points of the interval [B,B]. Centering the

spectrum of P - KI at zero and taking T = 1 seemed to be a good strategy

. for reducing the spectral radius of [I - r(-8,#KI)}(-8, +P)] , at least for
| those problems for which p(x,y) varied smoothly without rapid changes. If

| p varied more violently, the shift (9) was still effective, but in some

cases an improvement could be realizedby fixingTt at one and selecting
C

another value for K in the interval [B,B] that better approximated P ;

see § 4. (For the discrete scaling of $3, one obtains the estimate (9)

C directly.)
Note that the primary effect of the shift K 1s the reduction of the

norm of P - KI ; the effect on (-Ry, + KI) 1s usually slight and of little

. importance.
In some cases it may be more convenient and advantageous to use in (9)

the sharper discrete bounds By, =mn Po and B =M= PL, instead of B

. and B . Specific shifts other than the min-max one (9), such as

- K = (ca)™ fox, y)axdy or its discrete equivalent, and shifts that change
from one iteration to the next, are not considered here, but may be of

C practical interest.

C

C
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For the choice(9) and for-A\ <P <B <=, we may summarize the

behavior of the iteration procedure as follows:

“

Theorem: For mesh sizes 0 < h < hy 0 < k < Xs the iteration (9, 13)

converges with spectral radius p < (B-)/ (2a + B +B).

w

2.5 In applying Chebyshev acceleration (14) to iteration (13), one can either

use the estimate (30) for the spectral radius or else obtain an estimate

o by observing the convergence rate when solving the problem first on a coarse

grid. This latter procedure 1s often worth the small extra expenditure of

computing effort, because the estimate (30) may be pessimistic and, since

- the iteration is essentially independent of mesh size, the observed value

usually is more accurate. At any rate, the convergence of (14) is assured

when p < 1 .

C If one uses a fixed sequence {r } rather than (14), then it may be
possible to speed convergence by utilizing the property that the largest

eigenvalue of a7! 1s relatively isolated from its remaining eigenvalues,

% which cluster toward zero. For example, on the unit square with Dirichlet

conditions the largest eigenvalue 1s (on=) 1 , whereas all the others lie

between zero and (5m) . The eigenvalues of (-4, + KT) (KI - P) exhibit
w a similar grouping for some problems, hence the special parameter selection |

method given in [13] for such cases could be employed.

A recent discussion of practical means for estimating Chebyshev accelera-

C tion parameters as an iteration proceeds 1s contained in [15].

We remark that obtaining the optimal Chebyshev acceleration parameters

1s not of central importance in our scheme. In many cases the scaling and |

shifting alone can yield a convergence rate that is SO rapid that only

a few iterations are required for convergence, thus leaving little room for any

-1h4-
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| substantial improvement to be made by further refinement of the Chebyshev

. parameters.

“

\

|

LC

C
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5. Non-smooth a(x,y).

« 3.1. For the case in which a(x,y) 1s only piecewise smooth, the situation

| generally is less favorable. The change of variable (5) cannot be carried
il

out as described in § 1, since Aa?) does not exist everywhere on R (except

« in a generalized sense). It may still be possible, however, to improve on

| the convergence rate of (16) by performing the equivalent change of variable

in discrete form.

« A discrete scaling corresponding to (5) is the one transforming the

diagonal elements of L into those of 8 ’

- 1

"_

where D 1s the diagonal matrix with elements

15541, 3 “157%,Ji. : 3

R 2(h “+k ) h k

The resulting scaled matrix operator M 1s then MN o=-by + R , and the

BN original discrete equation IU = F becomes

(34) MW = DRF = Q,

“.

The (symmetric) matrix 'R has zeros on its main diagonal and, 1n general,

four non-zero diagonal bands. We have

- -2

~ (35) RiW,. = h 1 - — Ww. , .1J SLI BEE
1d 1-1,

: -2 =-

CL — 2a = (h +k 2
i+1,J

+ 1 -—T2F— | W, :
42 d= 1+1,J +

N 1J i+,]

-16-
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2-2

” 2a. z(h “1x )
+k [p= ———

d= d= 1, 7-1
1] 1,31

\

2a, = hCT
Cl PR ) .

ij i,J+1

“

— -% = ooFor the case in which p(x,y)= a A(a®) exists at the point (1,3) ,

RW, 1s a multipoint difference approximation of p(X, ¥)w (x,y)
“ there. That is, the matrix R 1s an alternative representation of p(x,y) ,

which is represented in § 1, 2 by the diagonal matrixP . Note that R

requires approximately twice as much computer storage as does P .

ha For the case in which either a ©Or Va has a simple discontinuity,

the elements of R are not uniformly bounded for all mesh spacings 1n the way

that the elements of P are bounded by B and B . For a given mesh

“

- spacing, however, R may be such that the convergence rate of the iteration

corresponding to (24) ,

a /
n+ n n

is satisfactorily rapid for suitable K and T .

- The best values for K and T can be estimated in a manner similar
“

to that of § 2.2 . The' Rayleigh quotient analogous to (26) is
- T T

® M¢ 3 (R-KI)%
(57) ——— = 1

$ ( -4,+KI) 3 (-4,*KI)e
« h

_ Here, however, we do not as in § 2.2 choose K so that the spectrum of

(R- KI) 1s centered near zero (the spectrum of R is already centered at

\

zero, since R has PropertyA and zero malin diagonal ), but we obtain the

-17-



: proper estimate after first rewriting (37) as

: : T 5 (R-—1 a -T)3
= Me Cx ¢ (-4,)e 2 y

8 (-, KI) on~Cok 2 (-A, +KI)g 8' (a, +KI)3 |

~ Neglecting the first term in the brackets on the right, which is ob + k°) ,

and using the Gerschgorin estimate for the spectral radius of the matrix in

the numerator of the second term we obtain the choice (9, 10), providing

L B>-A, , where now B = B_ = MR} and B = By = YR} _. 3 {RY i, denotes
the smallest element of R and {RY} _. the largest. These values for B

and B are analogous to the corresponding ones for (x,y) in that they are

L. minimum and maximum values of difference quotients approximating 2B (aF) ]
Generally speaking, one expects these difference quotients to behave like

) mn a3 kT) where a has a simple discontinuity and like mls ay
* where a itself is discontinuous.

Relevant numerical experiments are discussed in § 4.4. As might be

expected, the behavior in this case 1s not totally as satisfactory as it

| 1s for the case of smooth a(x,y) and the diagonal matrix P . The parameter
estimates based on Bn and Br are not as sharp, perhaps because the elements

| of R often vary sizably and are not always accurate approximations of
in a"B (2) . An attempt to improve the value of 1, and even K , may be

ng useful for such problems as information on the spectrum of (=A + KT)" 'M_
1s gained during the iteration.

- We remark that the method of this section could be used as well for

smooth a(x,y) , as an alternative to the analytic calculation of

| p(x,y) = a Ep (a?) and the subsequent numerical evaluation to obtain the

-18-



elements of P in (13). We do not recommend this alternative, however.

] If one wishes to avoid these calculations he should instead difference

i 22 (x,y) directly, to obtain the approximate elements 9 of P,

; = 2% Jak , where a = [a(n J? The discretization error
C introduced by using pu , instead of p(ih,jk) , is of the same order as

that already introduced by (12). The iteration (24) is generally preferable

to (36) because it requires less storage and fewer computer operations per

C iteration and because, in our experience, the parameter estimates based on
P are sharper than those based on R .

= We remark also that discrete scalings other than (32, 33) might be

. used. For example, a closely related one is (32) with the choice, instead

} of (33), dy 4 = a(ih,jk) . Alternatively, one could investigate the use
_ of (24) with the elements of P equal to ph + in the case for which a(x,¥)

C is only piecewise smooth. This would be equivalent, for fixed mesh, to
= considering a(x,y) to be a smooth, but locally rapidly changing, function.

le hope to return to these matters in a future study. The question of

" scaling is discussed further in § 5.

3.2 When a(x,y) 1s piecewise smooth with sizable discontinuities across

C sub-domain boundaries within the rectangle, 1t can be faster to solve the
problem iteratively as a sequence of problems on each sub-domain than as

} a single problem over the entire rectangle. For example, consider the

C problem (3, 4) for which a(x,y) is piecewise constant
a 0 < x <¢f2

a(x) ={ © }- ( , ¢/2 <x <1
‘ with the matching condition that adu/0x is continuous at x = c/2 .

. | -19- |
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We consider solving the problem numerically by the following scheme:

(i) In the sub-domain where a =a, solve by a fast direct

. method

n

gu! )_ f ,
_ : subject to (4) and ud) _ om) on x = ¢f2 .

«

i (11) In the sub-domain where a = a, solve similarly

n+1

+

subject to (4) and a, ut) ax = a du, 7 ox on x = c/2 .

Then one obtains that the error e )(y) in the value of u on x = ¢/2
«_ h | _ 2 -

of Che nt iteration satisfies (1) = - 2 (n 1) . Thus if 2 is
1

= small, this scheme can be more rapidly convergent than the one given in § 3.1

. for solving the problem on the entire rectangle at once. The scheme 1s equiv-
— 1

alentto using on the original problem, instead of D2 , a diagonal scaling

_ that renders the discretized operator only weakly coupled between the sub-

¢ problems (i) and (ii) .

~ For the case 1n which a varies with x and y in each sub-domain,

the iteration (i, 1i) could be combined in some cases with that of § 1, 2 ;

‘ we hope to take up this matter in another paper. We give the results of a

_ numerical experiment for piecewise constant a(x,y) in § WL.k.
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| 4, Numerical Examples. In this section we collect the results of

5 numerical experiments for several cases of (3,4) to illustrate the contents

| of the previous sections.

| 4.1 The 1deal case for the basic technique (13, 9) is one in which

| p = 2-2 (a2) is constant on the rectangle (e.g., a = cos” (x+y) ,
a = To (11) , etc.) . Then, as 1s pointed out for one such example

« in § 2.3, only one iteration is required to solve the problem.

Since a numerical illustration of this property would have been

trivial, we instead checked the correspondence of iterations (24) and (36)

C by solving several such cases using, instead of (2k), the iteration (36),

which is based on the discrete scaling (32). Using the value (9) for K

(that 1s, K = 2724 (2%) = const.) and T= 1 , we found, as expected,

C that the spectral radius of the iteration matrix, as indicated by the

observed convergence rate, was the order of magnitude of the discretiza-

. tion error and decreased with mesh spacing for a given a . When using,

4 instead, the value K = 2(Bo+Bg) of § 3.1, we obsérved slightly slower
L rates of convergence, even though this value is derived from (36). The

estimate (9) based on P was especially preferable in the cases for which

the elements of R did not accurately approximate n a Fa (a®) everywhere
. on the rectangle.

L 4.2 Other highly suitable cases for the basic technique are those not

i departing strongly from the ideal one. We include here the results for
two such cases, one for non-negative and one for non-positive p(x,y) .

We solved both numerically using (2k) on the unit square 0 < x <1,

~2]-



: O<y <1 with uniform mesh spacing h = k = ot , for the values

a £ = 4, 5 and 6 . (The number of rows of interior mesh points should be

| 2 ‘. 1 , I an integer, in at least one direction for fast direct methods to apply

efficiently.) The righthand side g(x,y) of (6), and similarly Q of (24),
2 2

N were taken to correspond to w(x,y) =2[k-%)" + (y-%)"1, for which the solution of
the discrete problem with boundary data H(x,y) = 2[ (x-3)° + (v5) agrees exactly

with w(x,y) at the mesh points. The elements of the initial approxima-

C tion wt) were taken to be either all zero or else pseudo-random numbers
in (0, 1), to permit the presence of different eigenvector blends in the

initial error.

The first example is th for which = 3 (xy) 2C ple is the one for which a(x,y) = [1+ (x+y )]° ,

hence p(x,y)= 6(x“+3°)/a%(%,7) and p= 0 , B= 6 . Thus the estimate

. (30) for the optimal spectral radius is p < pu = rr ~ 0 132 (using
| on” for a ), and the shift (9) is K = 3 | The results are summarized
L for five examples of parameter choices in Table 1l-a.

A The entries in Table 1 are the rounded values for a mesh with
oix6h interior points and for the initial approximation me) = 0 in the

- interior of R . For the 16x16 and 32x32 meshes the values differed only

slightly, if at all, from those in the table, and for the random initial

approximations the iterations behaved similarly. A value of K equal to

0 or to £(B + B) was used, along with the corresponding value (29) for

7 . When Chebyshev acceleration was included, either the estimate p, from

(30) or the experimentally observed estimate p, was used to approximate

the spectral radius p in (14) of (I =~ 7[-4, KI] 1 [-4, +P]) .
The entries for the value of Po in the table are the observed

approximate limiting values of the ratio wn) - way we) - w(n=2)|, ,

20.



Table 1

| r Results after 5 iterations

| ~ a (%,¥) ® Chebyshev |
0 | T  Acceleration Pe Maximum

0.868
0 none

0-13 3.7(-5)
C L 4 2 5 0.868 in — |

a) | [143 (x+y )] Py 2.4(-6)

5 . none 0,039 5.9(-8)1 Cs

| swimgo, — ce]
L ’ 1 using 0— To ——— —_— ) ]

0 16/15 5(-9)
none 0.066 Brave

| usin —_—

0) | [1+singm (xey))° 2/8 ° Pu (8 Citi
| w/8 i none 0.061

i -my/8 3 using p= —— 5.2(-8) |usin —

i _ © 8 2.3(-8)0.329

| 0 0.00 Hone 0.31 3.4 (=))bh . 0

c) [2+tanhh (x+y-1)]° using Py : o | |] NP. n .9(-3none

bor 1 0.26 5 6(-15
usi —

usi —_—

ing Pe 3.4(=5)
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Table 2

Iteration details for Table l-a with K = 3 and 7 = 1

| Iteration Without Chebyshev Acceleration Chebyshev Acceleration Usingp,

| f . - n-1 N
lw) y(n 1 I, (ny (n I, - (gy I. wm)_y (n-1 I. -

L - -2 E - -2 E| wo 1) _,(n in Iw), rror we 1 )_;(n I, jw) I, rror

1 — 1 1.6(-2) — 1 L6(-2) | |
k |
I: 0.0057 5.7(-3) 6.4(-4)| 0.0057 5.7 (~3) 7.1(-4)

3 3 0.033 1.9(-4) 2,4(-5) 0.13 7.5(-4) 1.1(-5) |
] L 0.038 7.3(-6) 1.0(-6) 0.0047 3.5(-6) 2.7(-7) |

| 5 0.039 2.8(-7) 3.9(-8)| 0.080 2.8(-7) 1.3 (9 || 6 3.03 1.1(-8) 1.7(-9) 0.0063 W-9) 1.2(-10)

ol.



|

where wll, . [Ww (-a,+xT)W]® . The maximum error, which 1s listed in the
last column, 1s the maximum of the difference at the mesh points between

- w 9) and the solution w(x,y) . Note that the initial maximum error has
the value of approximately one.

— In Table 2 the iteration-by-iteration details are given for the third
| &

entry in Table la.

~ The second example is the one for-which a(x,y) = [1 + sind (x+7)]°
for which B en , B= 0, and p,m 1/15 . The results analogous

¢ to Table la are given in Table lb. In this case, the improvement obtained
— by using the shift K = #(B + B), instead of K = 0, 1s not so great as

it 1s for the first test problem,

“- The effect of scaling and shifting can be found by comparing the

_ results for the two test problems with the estimate (23) for iteration

(16). For both problems there holds @ =1 and A = 4 , so that the

“ spectral radius estimate without scaling and shifting in each case is 0.6.

” 4,3 Cases that are less strikingly suitable for the basic technique are

¢ discussed in this sub-section. The example summarized in Table 1c is

for the case a(x,y) =[2 + tanh b(x4y-1)12 . The test problem is the

Ea same as the one for the examples of § 4.2, and the entries are analogous

: to the others in the table, except that in this case the task of calculating
— the actual extremal values of (x,y) on R was not carried out; instead,

the discrete equivalents B = By = min Piss B = By = max Py ; were used.

For the 64X64 mesh, By, ~ -9.62 and B a 17.77 , for which Py = 0.575 .

— Note that in this example, K = 0 does not correspond to an end point of

the interval [B,B] . As before, the results were insensitive to mesh size
LC
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] | and to which of the initial approximations was used.

| An investigation of the non-sharmess of estimate (27) and non-optimality

| ) of (9) and (10), which are more important here than in a nearly ideal case,
was carried out by fixing Tt at the value one and observing the change in

p, as K was varied. A local minimum was found at approximately K = 3.0 ,
~ for which p, 1s approximately 0.23.

| For the case a(x,y) = [2 + tanh 10(xty-1)1° , By, and B become
oo approximately -60 and 111, respectively. In this case g < = A ,hence

- the estimate (30) yields merely that p < Py > 1 . The iteration did
- converge, however, with the observed spectral radius Po ~ 0.63 and a

maximum error of 2,5x10 after five iterations for the usual test

- problem, with K = £(B, +B, ) and + = 1 . With the inclusion of Chebyshev
~ acceleration based on this value of Pe the maximum error after five itera-

. tions was reduced to 6.3107 . The value of p, can be decreased in this
- - case, with T fixed at 1, to a locally minimum value of approximately

| 0.54 at approximately K = 1k.

. The case a(x,y) = {1.5 + sin[10(x+y)AN2]}° , for which B = -40 < “A and
B = 200 , was observed to converge also, but at a slower rate. Here, for the

shift K = 80 and for tv =1, the value observed for p was 0.91, Even though
i this value 1s large, it is interesting to note that it is smaller, nevertheless,

| than the spectral radius estimate (A - @)/(A + @) & 0.93 for the iteration
without scaling and shifting.

4.4 The cases included for non-smooth a(x,y) are a(x,y) = (1 + 4x - 3)° ,

| for which there 1s a slope discontinuity at x = i , and a (x,y) -{ , Ng ,
for which there 1s a jump discontinuity at x = & . For both these cases,

q
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! the iteration without scaling and shifting (16) has the spectral radius

3 estimate (A - a)/ (A + a) = 0.8 (independent of h ). The convergence
| properties of the scaled and shifted iteration are not essentially inde-

pendent of h , however, as is the case for the examples of § 4.1 ~ 4.3.

| The problems were solved numerically using the iterative procedure of

§ 3.1. The dependence on h for the first case is illustrated in Table 3.

The relationship (29) between K and T and the value (30) of p, were

| computed using for B and B the observed quantities Br and Be s

’ the rounded values of which are listed in the table. The value of py, Was
essentially equal to the observed value Pe for K = 0 . Note that the

maximum error after ten, not five, iterations 1s given in the table.

be Although By ~ Br 1s large, the elements of R are essentially
zero everywhere except at the mesh points on and adjacent to the line x = £ ,

g where they become large. This suggests that a value of K closer to zero

ie than the minimax value 2 (B+; ) might result in more rapid convergence.

| Indeed, it was found that for h = 1/16 and * =1 a local minimum for p,
| occurred at approximately K = 13 (see the last row of Table 3).

| The second case 1s, 1n a sense, an extreme version of the second one
. of § 4.3, for which a(x,y) changes rapidly from approximately 1 on one

“ half of.the region to approximately 9 on the other. Here Bp < “A, SO
] that again convergence cannot be guaranteed from the estimate (30). Very

' slow convergence was observed for this case, especially for the smaller mesh

| spacings. For the 6hxb4 mesh the observed values for Bp and B were
approximately -5597 and 9057 , respectively, for which 1 ~ 0.0113 from

(29) for K = 0 . There resulted Pe 0,988 for these parameters. For

the shift K = 2(Bg+ Bp) and the corresponding value T= 1, p, was not

| 7-



| Table 3

: Results after 10 iterations for a = (144 x3 )*

Max |
K T . Pro Br Pp Error

1/16 0.270 0,107 0.73 3.3(-2)
“

1/32 0.145 0,234 0.86 1.8(-1)

1/64 0.075 0,489 0.93 4.3(-1)

C 1/16 53.5 0.60 2.2(-3)

1/32 117 as above 0.78 2.7 (-2)

- 1/64 244 0.88 8.6(-2)

- [we | w 0-2 | ran

L

t
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| a great deal less.

3 When this same problem was solved numerically by the iterative scheme

N of § 3.2, a much more satisfactory situation resulted. The spectral radius
was observed to be essentially 1/9 , 1ndependent of h , 1n agreement with

] the discussion there.
.

4.5 All the above experiments were carried out using a subroutine, written

. by Buzbee, which is based on Buneman's algorithm for odd-even reduction [4].
This subroutine solves the Helmholtz equation on a rectangle, and it

includes the boundary-condition options required for our examples, The

¢ numerical solution of a problem on a 6x64 mesh requires approximately 0.06
B seconds on the CDC 7600 computer.

| Qualitative comparison of the computational requirements of our technique

with those of other methods can be made using the operation-count table
>

L “given in [3]. For example, odd-even reduction requires (92) log, N operations

i to carry out the direct solution of a problem on an NXN mesh. Setting
up the righthand side of (13) requires another oN operations per iteration,

| and, 1f Chebyshev acceleration (14) is used, another IN operations are
needed. Thus, according to the table, the operations required for one iteration

~ of (13) are equivalent to those required for about 4 or 4 SOR iterations

or 14 AD1 iterations if N = 64 . The reduction of the initial error

by a factor N 2 po 2.5%10* in the numerical solution of the Poisson

| equation is listed as requiring about 85 SOR or 7 ADI iterations for
this - N , when optimal parameters are used; the solution of (3) or (6) will

generally require more. Further such comparisons can be made using the table.

The memory requirements of (13, 14) exceed those of SOR by about ©
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- locations if both P-KI and WW"! sre stored. This value can be reduced
: | to N- , however, in exchange for recomputingP-KI at each iteration and

= using a form of Chebyshev acceleration that requires, instead of (n=l) ,

| a sequence of parameters (r,} .
| We conclude from our numerical experiments that for well-suited cases,

- such as those in § 4.2, our basic technique is an extremely efficient one

and compares very favorably with standard iterative and elimination methods.

Its advantages are especially striking for problems with a large number of

¢ mesh points, since the number of iterations required is independent of h .

For less well-suited and poorly suited problems, such as those in § 4.3 - 4.4,

the scheme may be very satisfactory in some cases, but further study would

H- be usefulto clarify the best means for estimating the parameters and for

q utilizing the technique of § 3.2 in discontinuous cases.

L

|
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| 5. Scaling. We presented the scaling (5, 6), or equivalently (32, 33),

tacitly implying 1ts suitability because the resulting operator resembles

) the one on which the iteration is based. We now make some remarks on

the question of whether or not this scaling 1s in some sense the best one

possible.
LC

Since the optimal spectral radius for iteration (24) increases with

} the condition number var Vi , the best sclaing 1s one that yields the
| minimum condition number for a given problem. In the discrete case, the
~

choice (33), among all positive diagonal scalings (32), minimizes the

oT condition number of M , which has PropertyA , but not.necessarily

that of (-Ah + KI)" 'M . The optimal diagonal scaling for these more
~

i general matrices is not known; a related discussion pertaining to scaling

B of alternating direction methods can be found in [16].

We have carried out calculations on some one-dimensional problems
.

- corresponding to (3, 4) to determine numerically the scaling necessary

to minimize the condition number. We considered the standard three-point

u discretization on a uniform mesh IU = F equivalent to (15) for the problem

- fu = Lla(x)D] = f(x) , u(0) = u(l) = 0 .

. The diagonal matrix D was calculated that minimized the condition number

of the matrix (-4,, + KT) Ep , where 4, 1s the one-dimensional
equivalent of (12). The minimization was carried out for several values

- of h using an algorithm of Osborne [17] and the minimization program

of Fletcher [18]. The actual value of K that was used was, in general,

- not important, since the diagonal elements on™" of -by WEES by
. comparison, usually much larger. For the cases in which <5 hye was

-3]1-
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. constant, we found that the best D was essentially the same as the one

» we have used here, that 1s, proportional to the main diagonal of L . gpqor

- 2 )

the one-dimensional equivalents of the examples of § 4.2, in which -&s (2)/a2
varied only moderately over the interval, we found that the best 5* departed

from this value by only a comparatively slight amount. If a(x,y) had a

a. sizable discontinuity, however, then the best D was not as close to being

| proportional to the main diagonal of L i rather, it tended to smooth out
| the discontinuity (see also § 3.2). We concluded that for the problems with

- relatively smooth a , the ones for which aur iterative technique has greatest
potential, the scaling (5, 6) is adequate.

We remark that Gunn also observed notably improved convergence rates

= in certain cases when a variant of the scaling (5, 6) was used to solve (3, 4)
] by an iterative technique [19].

b

L

|
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| 6. Extension to other problems. Our iteration procedure may be applied,

as well, to problems other than (3, 4). One immediate extension is to the

a case in which the term b(x,y)u is added to the left of (3), where b(x,y)

is such that £ + b(x,y) remains positive definite. The transformation

| (5) still results in an equation of the form (6), to which the iterative
procedure (7) applies directly.

Another extension is to the case in which on some of the edges of the

rectangle there are specified periodic boundary conditions or boundary con-

- ditions of the form du/dn + au = b for which fast direct methods can
be used. Then the value of \, changes, but otherwise the basic procedure

1s not altered so long as the boundary conditions remain suitable for these

t- methods after the scaling (5,6) is performed.

3 We remark that the numerical solution of separable equations of the

form

>,

= od ou 0 od
(38) c(x)g(a(x)5z) + A(y)5(b()S) + Ku = f(x,y) ,

| with suitable boundary conditions, can be carried out by fast methods with
only the additional work of solving a tridiagonal eigenproblem, the dimen-

sion of which 1s the number of mesh points in a row. Thus it 1s not neces-

i sary to attempt to solve such problems iteratively, using the scaling and

n shifting procedures described here. Includedin (38) is the radially symmetric

| Poisson equation on an annular region 0 <r <r< r,
| 2

2

Z

which, after being multiplied by r , is also of the form (3).
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Also includedin (38) is the case in which the iteration (11) is

E discretized on a rectangular mesh with nonuniform spacing. (ot

| h- =x, - Xx, and ks = y, - y. ngs;| 3 § i 3 V3 Yq be the mesh spacings; then the
resulting five-point discretization of =A + K at an interior point

: is

~ k- + Ks 1
(BW, oH[=m Ce eedy

2 1 rd HY T+ 3 Dy Ti+

hy + Bi 1 :
=F LW a (ry |7 = _ = Cm— WL,

ky L1,0~1 ks K34q 1] Kj4q 1yJ+1

+ L (h- + n- ) (k= + k= WW...
C I MTT Pie / V5 Tae

- + he ~1 -

After multiplying each equation through by 4 (hs hs 4) (k3 + 3p) 1
or by performing the transformation that preserves symmetry [20],

L (-%, - hz+ hs,)(k~+ k-

i D 2g, + K)D 2 sy D = diag(Alri) ,
i one obtains separable equations that can be treated by the direct methods

suitable for (38). It also would be possible, of course, to apply the

techniques of §3 to the original problem (3) discretized on the nonuniform

mesh.

Finally, we remark that 1f the domain on which the equation 1s to be

solved 1s not itself a rectangle, put is, instead, a union of rectangles,

then our iterative technique might be combined efficiently with the fast

methods suitable for such domains [21], These might then, in turn 2150’

be combined with iteration (i, ii) of § 3.2 for the case in which a (x,y)

1s pilecewise smooth over such subdomains.
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We plan to study these extensions in the future and to consider, as

| well, application of the iterative technique to nonlinear equations.
.
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Footnotes

(1) The boundary data for the operator (-A+K) need not necessarily be the
same as for M . Other boundary data, such as 0 , may be computationally
more convenient for some problems.

C (2) We note also, without comment on possible relevancy, that the underlying

iteration operator (2) becomes completely continuous when tv = 1 .

L_

-
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