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SETS GENERATED BY ITERATION OF A LINEAR OPERATION

David A. Klarner

Abstract
This note is a continuation of the paper "Arithmetic properties of
certain recursively defined sets," written in collaboration with Richard
Rado. Here the sets under consideration are those having the form
= + - . LY i
S (mlxl . mXx, 1) where m5 »)m, are given natural numbers

with greatest common divisor 1 . The set S is the smallest set of

natural numbers which contains 1 and is closed under the operation

mlxl+ ... +mrxr . Also, S can be constructed by iterating the
operation m1x1+ . "+mrXr over the set {1} . For example,

(2x+ 3y: 1) = {1,513, 17, 25, . . . } = (1+ 12N) U (5+12N) where

N = {0,1,2,...} . It is shown in this note that S contains an infinite

arithmetic progression for all natural numbers r-l,ml,. s, -

Furthermore, if (ml,...,mr) = (ml Ceemo,mt o ..4-mr) =1, then S is

a per-set; that is, S is a finite union of infinite arithmetic
progressions. In particular, this implies (mx+ny: 1) is a per-set
for all pairs {m,n} of relatively prime natural numbers. It is an
open question whether S is a per—-set when (ml,..qnaj =1, but

(m el Myt oLt y>1 .

1 1 T

This research was supported in part by the National Science Foundation
under grant number GJ-992, and the Office of Naval Research under
contract number N-00014-67-A-0112-0057 NR 044-402. Reproduction in
whole or in part is permitted for any purpose of the United States
Government.



1. Introduction

This note is a continuation of Section 5 of "Arithmetic properties
of certain recursively defined sets," written in collaboration with
Richard Rado. All of the special notation used in this note is defined
there. Besides using the notation of [1], we shall require also several
results proved there.

The significance of the present note in relation to [1] is as
follows: Let r—l,ml,...,mr denote natural numbers. There exists a
smallest set S denoted (m1%L+ ...+mrxr: 1) which contains 1 and

is closed under the operation p =m ..+mrxr . The set S can

lxl+
be constructed by iterating p over the set {1} ; that is,
s = (MJupflu({1iue{llup({1lUp{i}))U.*. . Among other things,
it was shown in [1] that S is an affine transformation of the set
(mle ...-+mrxr+ln a) , and S is closed under multiplication. We
use these results in the present note to show that § contains an
infinite arithmetic progression, thus resolving Conjecture 2 of [1l] in
the affirmative. Also, we show that if (ml,...,mr) = (ml...mr,ml+ . ..+mr)
=1, then S is a per-set; that is, S is a finite union of infinite
arithmetic progressions. This settles affirmatively infinitely many
cases of Conjecture 1 in [I]. In particular, this completely settles
the case r = 2 of Conjecture 1.
The main idea developed here is as follows. We show that S
contains an affine transformation of a set T having the form
(mxl+ . «otmxk: 1) where k = r! and m = mj...m . Next, we show

that T contains an infinite arithmetic progression A . This implies

S contains an affine transformation of A , so S contains an infinite



arithmetic progression, a+dN say. We show that if

(a,d) = @h""’mr)= 1 , then S is a per-set. The condition

(a, d) = 1 is met when (m

Lo oeemom otm ) =1

1 T

route to our main result.

2. Results

THEOREM 1: Suppose k,meP , and let

14

and this is the

(1) s = (mxl+-...4-mxk4-1: 0) ,
h
(2) T = {co+ cym+ . ..+cm: heN, ¢ € {0,113, C'1<—kc 1
Then
(3) S=T.

PROOF': First, we show that

(W) 1+ml+ ...+ml ¢ T

To see this, suppose X(J)GT and let x(Jy = céj>4-c§j)m4-..

j=1,...,k , then by definition of T

ie[1,h]} .

for

() e etony , e <eld) (160, 5 = L,.00sk)
there exists a number t such that C{J) =0 for all i > t and

j=1...,k . Now let

k . ® .
(6) x=1+m ¥ x = ¥ cn
§=1 i=0
where CO =1, and
k
(7) o, = % ol (icP)
J=1



It follows from (5) that

(8) c, < ke; (ieP) ;

also, c, = 0 for all i > t+1 since ci\(Jl) = 0 for all i-1 >t
and j = 1l,...,k . Hence, xeT , and this proves (4).

Next, we show that

(9) T c {0} U (1+mI+ . ..+mT)

Suppose the contrary, and let y denote the smallest number in T

not contained in the set defined on the right in (9). We have
h
(10) y=c¢ §emt...+cm

where ¢, ¢ {0,1} and ¢; < ke, , for i =1,..,h. Suppose c,
has the form

k
(11) c., = gl

)
J i=1 1

with c(jl)l eN for i = 1,...,k , then since C541 < kcj , there exist
o

1)1 for i = 1,...,k , such that

c.(l) EN with c.
J J J

(D, o)

Hence, we can construct k-vectors IRIERERY cJ 1 recursively for

j=1,....h such that c§l) < cgf)l and (11) holds for j = 1,...,h-1 .

Also, since ¢, < k , we can select(\ e {0,1} for 1 =1,...,k .

It follows that cél) + cl.(l)m+ ... ET for i = 1,...,k . Also, (11)

implies



S S (1) g1
(13) y = Z cjm = co+m z Z cj-lm .
J=0 J=1 i=1

Since 0 is an element of the set on the right in (9), and we are

supposing y is not an element of this set, it follows that cO £0

Hence, CO =1 , and (13) implies
i i i . i) h-1 .
(1) y > y(B - cél) + %_(l)m‘l-.,"" °1(1-)1 m (i =1,..0,k)
The numbers y(l) have the proper form so that we can conclude
i (
y(l)eT for i =1,...,k , and (13) shows that y = l+mwll . ..+my(k)

But this means vy is an element of the set on the right in (9), a
contradiction. So (9) is true.

Together (4) and (9) imply

(15) l1+ml+ ...+mT = T

Since ]:fmxl+ . ..+mxk is an increasing operation, we can apply the

Corollary of Theorem 3 proved in [1] to conclude from (15) that T = S

This completes the proof.

THEOREM 2: Suppose k-1,meP , and let f be an integer satisfying

k' k!t > m-1, then

klmz-l L
(16) m‘l‘ mNo{r_nxl+ . e +ka+l: 0) = s
PROOF': Suppose heN , do e[O,kl], and di <__kdi 1 for i =1, ..4h,
- - +
then it follows from Theorem 1 that l+km+ . . . +k£ lm2 1“+d0m24-...+-dhm£ h
is an element of S . That is,
wWhnfo1

(17) oL T ™D < 8,



where

(18) D = {d0+d m+ . ..+d.hmh: heN, do € [0,k2], di < kdi , for i=1,...,h} .

We want to show D = N . Of course, D € N, so it has to be shown

- that N ¢ D . Suppose the contrary, and let y denote the smallest
non-negative integer not contained in D . Note that

- L
(19) [0,x"] € D,
(20) Pkt 14 < b

Since kl-kl-l > m-1 , there exists r e [ka_],kz] such that y = gmtr

But (19) implies y > it , 850 0 < g <y . Because y was chosen
minimal, it follows that qeD , and (20) implies y = rtgm €D , a
contradiction. This completes the proof.

= COROLLARY OF THEOREM 2:

(21) K+ (m-1)my ¢ (mx + . eebme 1)

k

PROOF': This follows from (16) and Corollary 1 of Theorem 9 proved

in [1].
- THEOREM 3: Suppose ,r-l,ml, .)..,mreP , let k = r! , let m = ml ...mr ’
— and let § = (mlxl+ cee M 1),
_ (22) T =((ml+...+mr)r-km+mxl+...+mxr: 1) c 8
~ PROOF : It was shown in [1] that S is closed under multiplication.

Hence, since

(23) m$t . .. +m S C S



we have

(2k) (mlS+. .. +mrS)t

for all teP . In particular, (24) holds for t r . Writing t =r

in (2k), we have

(25) Z z M eeemy Srg_:S H

i.=1 i=1 M e

but, since leS and st c S, (25) implies

r!

26 +o..+ Tt ..
(26) (m1 mr) Timg.o.em 4 my..m S C S
i=1
Hence, S is closed under the operation (ml+ < et )r Km+m X, + v.odm x
r e S 4
also, 1leS . ©Now we use the fact that T is a subset of every set X
closed under this operation provided 1leX . Since S satisfies these

conditions, we have T ¢ S , and this completes the proof.

COROLLARY OF THEOREM 3:  Suppose ZeP satisfies k'-k'™1 >m-1 . Then
kK m” -

(27) 1+ ((mlt .oo+m )T 1( n’ )+ ((m+ . ..+r%)r-1)m£1\1 c S

PROOF : The set T defined in (22) is an affine transformation of the

set R = (mxl+ . ..+mxk; 1> . In fact, using Corollary 1 of Theorem 9

proved in [1], we have

((m + . ..+mr)r—l)R—(ml+ oo tm )T+ dm
km-1

(28) T =

Furthermore, (21) asserts that R contains an arithmetic progression A .

Thus, T contains the set obtained by replacing R with A in the

right number of (28), and this gives (27).

.
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THEOREM 4: Suppose a,d,r-l,ml,...,mreP , (a,d) = (m ,...,mr)’= 1,

1
and let S =(mlxl+ oeetmoX s 1) . If a+dVc S, then S is a
per-set.
PROOF': Let a,l,...,aheP denote representatives of all the residue
classes modulo d entered by S . We suppose the a's are ordered so

that a = l(mod d) , and for each j e [2,h] there exist elements

AN o =
bl’. @D@D_ ) ...,aj_l} such that aj =mp ... +mrbr(mod d) . Now

we show by induction on t that aa, + N @ S . Since a; = 1(mod d) ,
aal = a(mod d) , and
(29) a,a+di o atdN _C S.

Suppose aia+ dN ¢ S for i = 1,...,t where t > 1 . We have

8y g Embit .. +mrbr(mod d) for certain elements

bl,...,bre {al,...,at} 5 also, we have supposed bia+ dN @ S for

i=1...,r . Using the fact that mlN+ . ..+mrN = N , and applying

Lemma 5 of [1] we have
r

Y m.(ab.+aN) @ S
. 1 1 -
i=1

(30) 8, ja+ aN

It follows by induction that

(31) a,a+dl 'S

for t =1,...,h

Recall that S is closed under multiplication. Hence, for each

ieP there exists o [al, ' DOE@%] such that ai = ci(mod d) . In
particular, if u is the order of a(mod d) , then au_l = cu l(mod d)
and ¢ _.a = 1(mod d) . But ¢, 18t A € s by (31), and this implies
1+dV e S .



r—

The numbers a,..., ah were selected so that

(32) S <

| B

(a, + am)
i=1
Furthermore, since 1+dN Cc S ywe can write a = 1 in (31) and
conclude that
h

(33) U (a;+am) @ s
i=1

Together (32) and (33) imply
h
(34) u (a,+aN) = s ,
. i
i=1
so S is equal to a per-set with a finite subset deleted from it. It

follows from Lemma 2 of [1] that S is a per-set. This completes the

proof.

THEOREM 5: Suppose r-Lml,. . om eP with (ml"°"mr) = (m,ml+ . ..-+mr) =1

where m = m, ...m . Then S = (mlxl+ ...+1nrxr: 1) is a per-set.

PROOF: Let a+ dN denote the arithmetic progression given in (27),

and note that (m,ml+ . ..+ﬂ19 = 1 implies (a,d) = 1 . This is easily
checked by noting that a = 1 mod((ml+ oo )Yy and
r
B r . L1
a =(ml+ .+ o *tm ) (mod m)  since (km -1)/(km-1) = l(mod m) . Since
(ml,. ..ﬂr) = 1, we can apply Theorem 4 to conclude that S is a

per-set. This completes the proof.

COROLLARY OF THEOREM 5: If myneP with (myn) = 1 , then {(mx+ny: 1)

is a per-set.



PROOF : If (m,n) =1, then (mmtn) = (n,mn) = (mn,mn) = 1 ,

and the result follows from Theorem 5.

There are infinitely many sets (mlxl+ . ..+n&xr: 1) with
r-l,ml,...,n&.eI’ and (ml"" “mr) = 1 whose status as a per-set or
non-per-set is left open by Theorem 5 or Theorem 10 of [1l]. For
example, neither Theorem 5 nor Theorem 10 applies to sets
X +m2x +m,x,: 1) where m, = ab(aytbz) , m, = acy , m, = bcz

(m, %) ptmsXg: 1 1 D 3

with a, b, ¢, ¥y , 2 natural numbers chosen so that (H&,meﬂné
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