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= SETS GENERATED BY ITERATION OF A LINEAR OPERATION

— David A. Klarner

Abstract

This note 1s a continuation of the paper "Arithmetic properties of

— certain recursively defined sets," written in collaboration with Richard

Rado. Here the sets under consideration are those having the form

— = + oo Tt . soS (mx, . mx 1) where m, SI, are given natural numbers

with greatest common divisor 1 . The set S is the smallest set of

natural numbers which contains 1 and is closed under the operation

- mix, + coe. tmx. Also, S can be constructed by iterating the

operation mix,+ . ..4mx = over the set {1} . For example,

N = {0,1,2,...} . It is shown in this note that S$ contains an infinite

arithmetic progression for all natural numbers r-l,m.,,, may,

_ Furthermore, if (mys eeesm) = (my Ceem moto etm) = 1 , then S is

a per-set; that is, S 1s a finite union of infinite arithmetic

— progressions. In particular, this implies (mx+ny: 1) is a per-set

for all pairs {m,n} of relatively prime natural numbers. It is an

open question whether S is a per-set when (mys eeesm) = 1 , but
[ 3 BN J + [ oo t+ [_ (my msm, m_) > 1

“
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contract number N-0001L4-67-A-0112-0057 NR 044-402. Reproduction in
whole or in part 1s permitted for any purpose of the United States
Government.
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1. Introduction

- This note is a continuation of Section J of "Arithmetic properties

of certain recursively defined sets," written in collaboration with

Richard Rado. All of the special notation used in this note is defined

Eo there. Besides using the notation of [1], we shall require also several

results proved there.

- The significance of the present note in relation to [1] is as

_ follows: Let rel,m;eee,m, denote natural numbers. There exists a

smallest set S denoted (my x, + . cotm x 21) which contains 1 and

— 1s closed under the operation p = m xX, +. etm X . The setS can

be constructed by iterating p over the set {1}; that is,

~ s = MJUupBIU({BIUP{B3Up({L3UpA))U.*. . Among other things,

| it was shown in [1] that S is an affine transformation of the set

(m xt Co +m x +b: a) , and S is closed under multiplication. We

— use these results in the present note to show that § contains an

infinite arithmetic progression, thus resolving Conjecture 2 of [1] in

” the affirmative. Also, we show that if (mys eeesm ) > (mg «vem mo + : etm)
= 1, then S 1s a per—-set; that 1s, S is a finite union of infinite

arithmetic progressions. This settles affirmatively infinitely many

cases of Conjecture 1 in [I]. In particular, this completely settles

the case r = 2 of Conjecture1.

The main 1dea developed here 1s as follows. We show that S

contains an affine transformation of a set T having the form

(mx, + . «otmxk: 1) where k = r! and m = m,...m . Next, we show

_ that T contains an infinite arithmetic progression A . This implies

S contains an affine transformation of A , so S contains an infinite
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arithmetic progression, a+ dN say. We show that if

- (a,d) = (mys eeeom ) = 1 , then S 1s a per-set. The condition

(a, d) = 1 is met when (my Loeem mot otm) = 1 , and this is the
route to our main result.

2. Results

— THEOREM 1: Suppose ky,meP , and let

_ (1) S = (ox, + ...+mx +1: 0) ,

h ,

~ (2) T = {e+ cm+ . ..tCom: hel, Cy € {0,11, c. < ke C1 ie[1,h]} .

Then

(3) S=T.

= PROOF: First, we show that

(4) 1+mT+ ...+mT ¢ T .

To see this, suppose x WU) eT and let x (J) > e$3) + olny Ca for
Jj =1,...,k , then by definition of T

(5) cy ec {0,1} , $9) <cld) (iP, J = 1,..4,k) ;

there exists a number t such that cd = 0 for all 1 > t and
J =1,...,k . Now let

K © .
(3) _ 1

~ (6) x=1+m} x = L em
J=1 1=0

. where cy = 1 , and

k :

(7) c, = y cl (ieP) .1 . 1-1
J=1
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| It follows from (5) that

(8) c,< ke,J (ieP) ;

- also, Cc, = 0 for all 1 > t+1 since FA = 0 for all 1-1 >t
| andJj = 1l,...,k . Hence, xeT , and this proves (4).

: Next, we show that

| (9) Tc {0} U(Q+mr+ . ..+uT) .

- Suppose the contrary, and let y denote the smallest number in T

| not contained in the set defined on the right in (9). We have

. -
| (10) y=c¢ pemt...+cm

where cy € {0,1} and ¢, < ke,, fori =L1,..,h. Suppose Cc.
_ has the form

k [ ]
1)(11) Cc. = Y ol

- J sop 9+

| (1) . | |
. with yp EN for 1 = 1,...,k , then since C51 < ke, , there exist

(1) oy with 1) < (1) for 1 = 1,...,k , such that
Co J J — J-1

i)(12) C., 4 = $ el+ :al 3 3

Hence, we can construct k-vectors eM, trey ei) recursively for
. (1) (1) .
]j=1,....h such that ; < C51 and (11) holds for j l,.¢.,h=1 .

- | (0a |
Also, since ¢;< k , we can select cy € {0,1} for 1 = 1,...,k .

_ It follows that oD) + olny ... ET for 1 = 1,...,k . Also, (11)
implies



SE. SS (1) gel
3=0 j=1 i=l

3 Since 0 is an element of the set on the right in (9), and we are

| supposing y 1s not an element of this set, 1t follows that Cy F 0 .

Hence, o = 1 , and (13) implies

i i i) (i) h-1

Bh The numbers SA) have the proper form so that we can conclude
i (

(1) or for 1 = 1,...,k , and (13) shows that y = 1+ myth . my)

But this means vy is an element of the set on the right in (9), a

_ contradiction. So (9) 1s true.

Together (4) and (9) imply

(15) 1+mlT+ ...+mT = T .

Since 1+ mx, + . co ¥ MX, 1s an 1ncreasing operation, we can apply the

Corollary of Theorem 3 proved in [1] to conclude from (15) that T = S .

This completes the proof.

THEOREM 2: Suppose k-1,meP , and let I be an integer satisfying

3 kx! >m1, then

£2
K'm" -1 4 _

_ (16) Tmel | m Ne (mx, + ce tmx, + l: 0) = s .

— PROOF: ~~ Suppose heN , dj € [0,k") , and d, < kd, , for 1 = 1, ...h,
- - +

then it follows from Theorem 1 that l+km+ . . . it Tn ted mf + «oot an’ bh
is an element of S . That 1s,

I
K'm"-1 2
—-— +



where

Bh h f
(18) D = {dtd mt . ..+qm: heN, dj e [0,k" 1, d, < kd, ; for i=1,...,h} .

We want to show D = N . Of course, D © N , so it has to be shown

~ that N ¢ D . Suppose the contrary, and let y denote the smallest

non-negative integer not contained in D . Note that

(19) [0,k"] Cc D,

(20) (fh kt + mo c D .

Since iho >m-1 , there exists r ¢ x 24h such that y = gmr .
4

But (19) implies y > k° , so 0 < g <y . Because y was chosen

minimal, 1t follows that qeD , and (20) implies y = r+gm €D , a

contradiction. This completes the proof.

= COROLLARY OF THEOREM 2:

a_a 1

(21) kK“ + (km-1)m'N (mx, + ceetmx zl)

- PROOF: This follows from (16) and Corollary 1 of Theorem 9 proved

in [1].

THEOREM 3: Suppose r-lmy,ee.,m €P , let k =r! , let m = my reed ,

— = + seo + .and let S (mx, m Xx 1),

Tr

= + ve.+ - coe : ._ (22) T ((m, m_) km + mx, + tmx: 1) © 8

~~ PROOF : It was shown in [1] that S is closed under multiplication.

Hence, since

(23) mst. +m S CS



we have

€
2 v~ (2k) (m8+... +m 8)" cs

| for all teP . In particular, (24) holds for t =r . Writing t =r

ue in (24), we have

(25) ) Y m, ...om s¥T cg
i=l i=l N11 eT

but, since leS and gt c S , (25) implies

r r!
26 +...4 - rt .. coe :. (26) (m, m_) Tr my . 0, + Y my m_S CS

i=1

Hence, S 1s closed under the operation (m, + . etm IE Xi + eutm x
r 11 Try

also, 1leS . Now we use the fact that T is a subset of every set X

. closed under this operation provided 1leX . Since S satisfies these

conditions, we have T c¢c S , and this completes the proof.

COROLLARY OF THEOREM J: Suppose Le¢P satisfies it gf 1 >m—1 . Then
|_—

(27) 1+ ((ml+ ...+n (Kala (( *-1jn’i ceetm er) +t (mg +. Lot) -1)m°N ¢c S .

| PROOF : The set T defined in (22) 1s an affine transformation of the
set R = (mx, + . REL 1) . In fact, using Corollary 1 of Theorem 9

| proved in [1], we have
r r

oot - -—(Omg etn )T = DR (mg+ oes 4m) + dm
(28) r-

km-1

Furthermore, (21) asserts that R contains an arithmetic progression A .
-

Thus, T contains the set obtained by replacing R with A in the

A right number of (28), and this gives (27).
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THEOREM 4: Suppose 8,0, r-1,m 000m eP , (a,d) = (mys eeem ) = 1,

2 and let S = (mx, + co.etmx 21). If a+dNc 8, then S is a
per-set.

= PROOF: Let a;,...,a,€¢P denote representatives of all the residue

classes modulo d entered by S . We suppose the a's are ordered so

: ] that a, = l(mod d) , and for eachj e [2,h] there exist elements
AR _| by, Jaa & cees8s q} such that 24 = m.p, +. .. +m b_(mod d) . Now

FC we show by induction on +t that aa, + dN @ S . Since a, = 1(mod d) ,

| aa; = a(mod d) , and

(29) a,at di © at+tdN_ cS.

| suppose a.at dV @¢ S for 1 = 1,...,t where t > 1 . We have

| By,q = m, b, + Co. tm b_(mod d) for certain elements

| bs neesb_€ ta; REPL ; also, we have supposed b.a+ di @ S for

1 =1...,r . Using the fact that m, N+ . etm N = N , and applying

Lemma 5 of [1] we have

| } (30) a, at dV = Y m, (ab, + dN) « Ss .
1=1

It follows by induction that

| (31) a, a+ dV cS

| for t = 1,...,h .

| Recall that S is closed under multiplication. Hence, for each

. \ M [3

| ieP there exists  « | IEE such that a’ = c, (mod d) . In
particular, 1f u 1s the order of a(mod d) , then add = ¢. 1 (mod d)

| and c_ _,a = 1(mod d) . But c¢ ,a+ dV @€ S by (31), and this implies

1+dN cS .

| 7



The numbers a,..., ah were selected so that

(32) S < uU (a,+dnN) .
= 3

i=1

Furthermore, since 1+dN Cc S ye can write a = 1 in (31) and

conclude that

h

(33) U (a;+ai)@ S .
i=]

Together (32) and (33) imply

h i

- (34) u (a;+an) = s ,
i=1

so S 1s equal to a per-set with a finite subset deleted from it. It

| follows from Lemma 2 of [1] that S 1s a per-set. This completes the

proof.

_
THEOREM 5: Suppose r-Lm, : om eP with (mg,...,m ) = (mm, + cotm ) = 1

| where m = m, em Then S = (mx, + ceetm Xo 1) is a per-set.

| PROOF: Let a+ dN denote the arithmetic progression given in (27),

checked by noting that a = 1 mod ( (m, + . ootm YT L1) andr

_ r ££

a = (m, + ++ tm)" (mod m) since (km -1)/(km-1) = (modm) . Since

b (mys. con) = 1, we can apply Theorem 4 to conclude that S is a

| per-set. This completes the proof.

COROLLARY OF THEOREM 5: If myneP with (myn) = 1 , then (mx+ ny: 1)

1s a per-set.
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PROOF : If (myn) = 1, then (m,mtn) = (n,mn) = (mn,mtn) = 1 ,

and the result follows from Theorem 5.

There are infinitely many sets (m, x, + CoeetmoX 1) with

r-1,m ,...,m_ €P and (mys .0 wm) = 1 whose status as a per-set or

non-per-set 1s left open by Theorem 5 or Theorem 10 of [1]. For

example, neither Theorem 5 nor Theorem 10 applies to sets

+ . = + = =

(mx; mX, + MX: 1) where my ab (ay+bz) , m,, acy , Ty bcz

— with a , b, ¢ , y , 2 natural numbers chosen so that (my m1 5) = 1.
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