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1. Introduction.

When coloring highly symmetric graphs, one often finds
that the symmetries of a given graph determine to a certain
extent the symmetries of its minimal colorings. We will say
that an automorphism a and a coloring

¢c : V—=>R 1)
of a graph H = (V,E) are compatible if there is a bijection
P: R —> R with c(a(v)) = p(c(v)) for all veV . One
might expect that a graph H having at least one non-identical
automorphism always admits a non-identical automorphism a
compatible with some minimal coloring of H (a minimal
coloring of H is a coloring (I) with |R| equal to the
chromatic number X (H) of H ). However, this is not always
the case. The 3-chromatic graph H in Fig.1 admits 30 distinct
3=-colorings and four distinct non-identical automorphisms
but none of the 120 pairs are compatible.

(Pig.1)
In discussions with Dr. Jarik Ne#et¥il of Charles

University, we were led to the concept of a chromatic auto-

morphism of H : this is an automorphism compatible with
every minimal coloring of H ., Obviously, the chromatic
automorphisms form a subgroup C(H) of the full automorphism
group A(H) of H . Besides, C(H) is always a normal sub-

group of A(H) . To see this, let f be an arbitrary auto-
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morphism of H and let a&C(H) . If ¢ is a minimal
coloring of H , then cot"1 is another such coloring and there
is a p : R —= R such that ce(sflaef ) = ( cot Noaet =
= pe( c-£™")ef = pec', that is, f2laef & C(H) .

t It is well-known that any group G is isomorphic to
the full automorphism group of some graph H (Prucht (1] has
been the first to prove this) . Now, it is natural to ask
which pairs (G,N) - where G is a group and N a normal
subgroup of G - are representable as (A(H),C(H)) of some

graph H .The answer is given in the next section,

2, The main result.

THEOREM, Let G be a group and let N be a normal
subgroup of G . Let n >3 be an integer. Then there exists

an n-chromatic graph H with A(H) ¥ G and C(H)XY N ,

Proof. If G is the one-element group, then the statement
follows immediately from the main result of [2] . From now on
we shall assume that lG!>1 .

A graph H with the required properties will be constructed.
To help the reader, we give first an informal description of
the construction with n =3 and then proceed in a more

precise manner. Let e be the unit element of G and let

£ be an arbitrary well-ordering of the set G -{e} . For



each pair (x,y) &€ (G - S.e})2 with x{ y we take a copy of
the graph in Fig.3, for each pair (x,y)€G2 we take a copy
of the graph in Fig.2. Identifying all the vertices with equal
labels we obtain the desired 3-chromatic graph H,.
(Fig.2)
(Fig.3)
More generally and more precisely, we set
essG’ = {(x,y) : x,5€6 , x4 3},
R-{(x,y) P X,y€EG - e}, x < 7%,
The vertex-set of H will be V = V,,UVZU...U‘V6 » Where
V= Gx {1},
@ - fo) X {23,
(6 - {e}) X (3%,
08862 X {1,2,¢..,20-1% ,
G/N X (6 - {e}) X {1,2,000yn-1%
Vg = {1:2,3} X R .
The edges of H will be all the two-point sets
UE3)53), ((xy3), k)Y (0 <&|3-k|< n),
{x,1), (=3, (0 < 3<n),
{301 ((x,3),3)} (n <3< 2n) ,
{(x,1),(xN,2,3)% ,
{((x.y).d).(xN.x'1y.k)} (0£3j<& n, J £Kk),
{z,2),(z,3)% ,
{z,2),GN,2,0}

\nqqlﬁw l\)<
" W 0
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$(x43), (34 (x, 3003 (3e 1,2,3))

£(343),(3,(x, 7))} (Je@3}) »

{(2,(xy3)), (3, (x, ¥} (G L2,3))
and no other ones. Now, we will show that the graph described
above has all the desired properties.

Let a be an arbitrary automorphism of G . First of all,

we note that the elements of V2 are the only vertices of H
not contained in any triangle of H . Therefore a(V2) =V, .
When V2 is removed, the resulting graph has just two comp-
onents: the céhponent induced by VBLJ V6 y which conténs vertices

of degree two in H , while the other component , induced by

VUV UV, contains no such vertices. Thus a(V5\)V6) =

- v3uv6 and a(V,UV,UVg) = v, UV, U Vg . The elements of
V3 are the only vertices of the first component which are,
adjacent to the elements of V, , so that a(VB) = V5 and
a(VG) =V . A similar argument applied to V,U ¥4L)V5 yields

) a(Vs) = V5 and a(qu) Vu) = V,UV, . Since the group G is

non-trivial, the degrees of the elements of V1 are not
only
smaller than 3n-3 , while VA containshvertices whose degrees

do not exceed 3n-4 . Thus a(V,) = V, and a(Vy) =V, o

1
Al‘bogether, a(Vi) = Vi for i = 1,2,0-0’6 .

.. we are in position enabling us to define bijections
a': G - (e —> G - {e} and a*: G —> G by

a(x,2) = (a'(x),2) , a(x,1) = (a*(x),1) .
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Since (x,3) is the only element of V3 adjacent to
(x,2) , we have a(x,3) = (a'(x),3) . Moreover, it ia.easy to
gsee that x <y if and only if H has a vertex v of
degree two whose distance from (y,3) is two and which is
adjacent to (x,3) . Consequently,

x< y if and only if a'(x) L a'(y) . (2). §
A well-ordered set, however, is a rigid structure: the only
bijective transformation a' satisfying (2) is the identity
mapping. Hence a'(x) = x for all x€G -{e“s ; we conclude

that a(u) = u for all ue V,U V5 , Wwhich yields a(u) =u

& nvm—-

for all ug V6 as an easy consequence., -
The vertex ((x,y),n-1) is the only vertex in v, of

degree 3n-4 which is adjacent to (x,1) and has distance

two from (y,1) . Hence a((x,y),n-1) = (a*(x),a*(y),n-1) . -

Now, by a series of similar easy arguments, there it follows

that a((x,y),J) = (a*(x),a*(y),J) for all J = 142,ee0,2n-1 .

Since (xN,x'1y,k) is the only vertex in Vs adjacent to

all ((x,y),J) with 0 € 3 < n, J # k , the equality

a(iN,x"1y, §) = (a‘(x)N,a‘(x)'1a‘(y),j) must hold. Finally,

(x'1y,2) is the only vertex in V, adjacent to each

(xN,x"1y,3) ; hence a(x"'y,2) = (x"'7,2) must also be

adjacent to (a‘(x)N,a‘(x)'1a‘(y),;j) for all j . Consequently,

a*(x)a*(y) = x7Ty (3)
whenever (x,y)€ essG® . Setting x = e in (3) and writing

z = a*(e) we obtain



a*(y) = 2y (4)

for all y # e ; a*(e) = 2 by definition. Our findings can

be summarized as follows. Given any a& A(H) there is a :

Z, = 2€G such that

| a(x,1) = (zx,1) , ~

a((x,y),3) =((zx,2y),3) ,
a(xN,w,j) = (zxN,w,J) ,
a(u) = u for all ug V2UV3UV6 .

Conversely, it is easy to verify that the formulas(5)

(5)
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define an automorphism of H for an arbitrary z€G . It is
clear that the assignment a t—> z, is a group isomorphism

—
of A(H) onto G .
It is quite obvious that H . is n-chromatic. Given any
two vertices u, v of H , u~v will mean that c(u) =
= ¢(v) for each n-coloring ¢ of H . It is not difficult r

to see that

(x,1) ~ ((1,3),0) ~ (7,0 ~ (77,2)

((X,3)4) ~ ((x,3),3+40) ~ (N,x17,3)  (0< g<m) .
If 2z = Z € N , then 2zxN = xN for all x€G § the corresponding
automorphism a (defined by (5)) satisfies

a(u) =u for all uevauvauv5uv6 ,

a(u) ~u whenever ueV, or u = ((x,¥) 4n) ,

a((x,5),3) = ((2x,27),3) ~s (2xN,(2x)7"(23),3) =

-(xN,x°1y,;l) ~ ((x,5),J) ’
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a((x,y),3+n) = ((zx,2y),J+n) ~ ((zx,2y),3)- ~v
~((X,57)93) ~ ((x,5),34n) ,
whenever 0 £ j«¢ n . Altogether, we have a(u)~ u for all
W€V ; a is compatible with every minimal coloring, i.e.,
a €C(H) . o
Conversely, let z = z,.€ G - N . Set p(1) = 2., p(2) = 1,
p(J) = J for §J = 3,...,n and define a mapping ¢ : V —>
—+{1,...,n} by
c(u) = n (u €V,UV,) ,
c((x4y)yn) = n ,
c(u) = 1 (uevy) ,
e(2,(x,5)) =2,
e(1,(x,3)) = ¢c(3,(x,5))= 3,
c(Nyw,yd) = ¢((x,7)53) = c((xy3)y3+n) = 3§ (0L J< n)
it xeN ,
o(xN,w,J) = c((x,5),3) = c((xy3)y34n) = p(J)
(0< j< n) iz xgN .,
It is easy to verify that ¢ is a coloring of H , Let us note
that c¢(N,w,1) = 1 = c(x,3) ; however, c(a(N,w,1)) =
= ¢c(zN,w,1) = p(1) = 2 , while c(a(x,3)) = c¢(x,3) = 1 ., Hence
a is not compatible with ¢ , a¢ C(H) . Wé have shown that
an automorphism a is chromatic if and omnly if zaeN « Thus

C(H) N - which finishes the proof.

I e o -



3. Concluding remarks.

Our theorem is best possible in the sense that the range
of the chromatic number n of the representing graph cannot
be extended without imposing additional restriction on the
choice of N and G . The case n = 1 is trivial: every
graph H =(V,E) with X (H) = 1 has A(H) = C(H) & Symwl .
The smallest pair (G,N) which is not realizable as (A(H),C(H))
of a 2-colorable H is (Cz,{e}) . Indeed, if H = (V,E) is
& 2-chromatic graph with A(H) & (:5 and C(H)X{e} , then H
must be disconr;écted (otherwise H is uniquely colorable and
every automorphism is chromatic). No.two different components
~of H are isomorphic =~ if there were isomorphic components,
A(H) would have an element of order two. Exactly one component
has a non-trivial automorphism (otherwise |A(H)| > 4); denote
this component by Ho and the rest of the graph by H,] o Let
& be one of the two non-trivial automorphisms of H ; a is
.not chromatic. Let ¢ be a 2-coloring of H which is not
compatible with a . Since H, is uniquely colorable, c(u) =
= ¢(v) is equivalent to c(a(u)) = c(a(v)) for all u,v€H, .
As a is not compatible with ¢ , c(a(u)) = 2 if ¢(u) = 1 and
c(a(v)) =1 if c(u) = 2 for all u€H, . But then c(a5(u)) £
# c¢c(u) , which is a contradiction as ad is the identity mapping.

Finally, we will show that (03,05) is not realizable as

Jnrvane
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(A(H),C(H)) of a graph H with infinite chromatic number n .
Assume that there is such a graph H . It contains at most

one vertex adjacent to all other vertices (if there were two
such vertices u, v , then the mapping a ¢: V =3 V

defined by a(u) = v , a(v) = u , a(w) = w for all the other
vertices, would be an automorphism of H ). V contains three
distinct vertices u,v,w with a(u) = v , a(v) = ¥ , a(w) = u ;
at least one of them - say u - is not related to some other
vertex u* ., But then {a(u),a(u*)t # fu,u*} ; since n+1 = n ,
there is a miniinal coloring ¢ of H with c¢(u) = c(u*) and
c(a(u)) # c(a(u*)) . a is not chromatic, C(H) # A(H) , which

is a contradiction.
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